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1. Introduction 

Obesity has reached epidemic proportions in many countries around the world (WHO, 1998). 

It is a major health risk for adults and increasingly for children in developed countries. 

Overweight and obesity in childhood represent a major risk factor for several common 

disorders including type 2 diabetes mellitus (NIDDM), coronary heart disease (CHD), and 

cancer. The socio-economic impact of obesity is considerable. While environmental factors 

are contributory, there is major evidence for genetic factors underlying severe obesity 

(Hebebrand et al., 2001).  

 

1.1 Obesity 

1.1.1 Definition and classification of obesity  

Obesity is defined as an excessive accumulation of body fat. The proportion of fat mass to 

body mass (body mass = lean mass + fat mass) of an individual is increased. The body mass 

index (BMI) is used to define and classify obesity. It is used as a measure for relative weight 

that is largely adjusted for body height (Watson et al., 1979). 

Body mass index (BMI) = body weight (kg) / body height (m2) 

In the mean BMI correlates well with the amount of body fat (Dietz et al., 1998) and is 

therefore, a good measure for obesity. In adults, weight classes are defined by BMI (Table 

1). 

Table 1: Weight classes for adults (WHO, 1998) 

weight class BMI in kg/m2 

underweight < 18.5 

normal weight 18.5 – 24.9 

Overweight ≥ 25.0 

 pre-obese 25.0 – 29.9 

obesity ≥ 30.0 

 obesity class I 30.0 – 34.9 

 obesity class II 35.0 – 39.9 

 obesity class III ≥ 40.0 

 

Obesity in adults is defined as a BMI ≥ 30 kg/m² whereas extreme obesity is defined by a 

BMI ≥ 40 kg/m² (WHO 1998). However, the BMI has limitations. Despite the high correlation 

of BMI with fat mass, Body fat can for instance be overestimated in individuals with a high 
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muscle mass and can be underestimated in individuals with a reduced lean body mass – for 

example in elderly people.    

In childhood and adolescence fat mass and lean body mass show stronger relative 

fluctuations than in adulthood (Gray 1989). Hence, percentile curves representing age and 

gender matched BMI distributions are used to define different weight classes for children and 

adolescents (Figure 1; Hebebrand et al., 1994).  

 

 Age (years) 

Figure 1: Example of BMI percentiles for boys at the age of 0-18 years (Kromeyer-Hauschild et al., 2001) 

In childhood and adolescence the 90th and 97th percentile are used for definition of 

overweight and obesity in Germany (Kromeyer-Hauschild et al., 2001; http://www.mybmi.de, 

http://www.a-g-a.de). Additionally, the standard deviation score (SDS) can be used to 

quantify the degree of BMI deviation of an individual from the mean BMI in an age and 

gender matched normal population (Cole and Green, 1992). Calculations of SDS values for 

instance allow comparisons of BMI values within a study group of extremely obese children 

and adolescents.  

1.1.2 Prevalence of obesity  

During the last two decades, the prevalence of obesity increased worldwide. Obesity is 

becoming a major health problem, especially in developed countries and advanced 

developing countries. The cross-national survey “Health Behaviour in School-aged Children 

(HBSC)” was conducted in collaboration with the WHO and is based on nationally 

representative school-surveys of adolescents in Europe, Israel, and the USA in 1997-1998. 

This study showed that the prevalence of obesity (BMI ≥95th percentile) in 15 year old boys 

and girls is highest in the USA (13.9 % and 15.1 %) and lowest in Lithuania (0.8 % and 2.1 

%; Lissau et al.,  2004). The study reference standard was based on the 29.242 observations 

from all 15 participating countries. Cut-off points for overweight and obesity were determined 
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by BMI values at or above the 85th and 95th BMI percentiles for defined age groups. In this 

study, 15 year old boys and girls from Germany met the expected average value: 14.2 and 

14.8 % of boys and girls were found to be overweight (BMI ≥85th percentile) whereas 5.4 % 

and 5.1 % were obese (BMI ≥95th percentile). Comparing the results from the 1999-2002 

National Health and Nutrition Examination Survey (NHANES) with the results from NHANES 

II (1976-1980) and III (1988-1994), the prevalence of early onset obesity for different age and 

gender groups increased in the United States in the last 25 years from 2.3 to 3.3 fold 

(Ebbeling et al.,  2002).  

In 2007, the German Health Interview and Examination Survey for Children and Adolescents 

(KiGGS) provided the first representative national data on overweight and obesity in children 

and adolescents (Kurth et al., 2007). Between ages 3 and 17, 15% of the participants 

exceeded the 90th BMI percentile and were thus overweight, 6.3% exceeded the 97th BMI 

percentile and thus fulfilled the definition of obesity. Kurth et al. (2007) based their cut-offs for 

overweight and obesity on a joint analysis of non-representative samples (Kromeyer-

Hauschild et al., 2001). A second national survey will be needed to truly investigate secular 

trends for overweight and obesity. Kurth et al reported that children were at a higher risk of 

being overweight or obese if they had a lower socioeconomic status, a migration 

background, or overweight mothers. No clear differences were detected between boys and 

girls or between East and West Germany. 

1.1.3 Causes of obesity  

Obesity is a complex multifactorial disease that occurs as a result of a combination of 

genetic, environmental and psychological factors. Obesity is seemingly caused  by a positive 

energy balance that persists for a prolonged time period. 

Altogether, the worldwide increase in obesity prevalence rates in the last decades 

presumably results from changes in life style which is reflected in decreased physical activity, 

and increased energy intake (Ebbeling et al., 2002). A detailed analysis of data from the 

United States revealed that just a part of the population responded with an increase in body 

weight to these changes in life style (Troiano et al., 1998). The 3rd, 10th and 50th BMI 

percentiles have remained nearly stable over time, whereas BMI values constituting the 90th 

and 97th percentiles are clearly increasing. An individual genetic predisposition to increased 

body weight in response to altered environmental factors is assumed to be the cause of this 

increase. During human evolution, when food was not easily available, individuals who had a 

very efficient system to utilize and store energy presumably had an advantage in survival. 

From an evolutionary point of view a genetic predisposition to obesity might have been 

advantageous in periods of decreased food availability. As a consequence, the human 

genome is presumably enriched with genetic variations that favour the storage of energy and 
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diminish energy expenditure (“thrifty genotype hypothesis”, Neel 1962). Today’s availability of 

cheap high-caloric food and the sedentary lifestyle result in a maladaptation of the 

physiological mechanisms formerly increasing chances of  survival during famines 

(Hebebrand et al.,  2000).  

Taken together, the alteration of environmental factors in combination with a genetic 

predisposition for obesity can be viewed as an explanation for the epidemic increase of 

overweight and obesity.   

1.1.4 Therapy 

Following the guidelines of the German Society of Obesity (DAG, Deutsche 

Adipositasgesellschaft) the indication for obesity therapy in adults is given, if one of the 

following criteria is met: 

1. BMI ≥ 30 kg/m2   

2. BMI between 25 and 29.9 kg/m2 and additionally one of the following 

o health problems related to overweight (e.g. NIDDM, hypertension) 

o visceral body fat distribution 

o diseases aggravated by overweight 

o substantial psychosocial complaint 

The indication for obesity therapy in children and adolescents is illustrated in figure 2. In light 

of the obesity epidemic and its dire health consequences the need for successful programs 

for treatment of obesity in childhood and adolescence is large. In contrast to adults, a 

growing child can achieve a BMI reduction by maintaining weight; a reduction in SDS-scores 

for BMI can even be accomplished if BMI increases over time. Children, adolescents and 

their parents need to learn that treatment effects in terms of weight loss are usually rather 

small and that ongoing efforts are required to prevent further or renewed weight gain.  

As of today, only a very limited number of randomised controlled trials (RCT) of lifestyle 

interventions have been completed (Summerbell et al., 2005). In their Cochrane analysis 

based on 18 RCTs with 975 participants aged < 18 years, Summerbell et al. (2005) 

concluded that the respective studies were very small and included only homogeneous, 

motivated groups in hospital settings. As such, common evidence was limited and no direct 

conclusions for treatment of childhood obesity could be drawn.   

In many conventional treatment studies the assessment of potential medium and long-term 

side effects has been ignored. Frequently, data on only successful completers are presented 

(e.g. percentage of subjects who have lost 5% or 10% of their body weight) at the end of a 

relatively short treatment episode. However, treatment of children and adolescents should 

entail that data on adverse outcomes be reported in detail; obviously medium and long-term 
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Figure 2: Criteria and aims for obesity therapy in children and adolescents, given by the guidelines of the task 
force obesity in childhood and adolescence (AGA, Arbeitsgemeinschaft Adipositas im Kindes- und Jugendalter) 

 

follow-ups should be attempted. Conventional obesity treatment can result in transient 

curtailment of height growth velocity (Epstein et al., 1990). Sensible weight loss practices do 

not entail an elevated risk for the development of eating disorders (Butryn et al., 2005). 

Dieting has been associated with increased weight gain (Stice et al., 1999; Field et al., 2003). 

Elevated mortality rates have been associated with weight cycling in adults (Jeffery 1996; 

Wannamethee et al., 2002). However, this association has been attributed to 

disadvantageous lifestyle factors and pre-existing disease. Wannamethee et al. (2002) 

concluded that weight loss and weight fluctuation (cycling) does not directly increase the risk 

of death. However, Soerensen et al. (2005) revealed that intentional weight loss was linked 

to increased mortality. Obviously, the health effects of weight loss are complex and more 

research is needed. This holds particularly true for children and adolescents.   

Currently available pharmacological interventions do not produce permanent changes in 

metabolism or behaviour. Hence, lifelong medication might be indicated. The two anti-obesity 

drugs (Sibutramine, Orlistat) currently available in Germany produce only modest weight 

losses, ranging from 3 to 7 % of initial body weight (Glazer 2001; van Gaal et al., 2005; Pi-

Sunyer et al., 2006). Irrespective of the type of drug, long-term treatment will most likely be 

required, if the weight loss is to be maintained.   
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2. State of the art 

 

2.1. Formal genetic findings 

Body weight is a complex multifactorial phenotype which is determined by a combination of 

genetic factors and environmental conditions. Environmental conditions may be further 

divided into behavioural, cultural, and socioeconomic factors (Hebebrand and Remschmidt,  

1995). The genetic influence on body weight regulation has been demonstrated by numerous 

twin, adoption, and family studies.  

There is a general consensus that parental obesity is by far the strongest risk factor for 

childhood and adolescent obesity. The risk is influenced by the degree of parental obesity 

(Whitaker et al., 2004) and is further elevated if both parents are obese (Reilly et al., 2005). 

According to a number of studies, offspring BMI is somewhat more strongly correlated with 

maternal than paternal BMI (Magnusson and Rasmussen, 2002), suggesting intrauterine 

influences, imprinting effects and/or a rearing effect. Formal genetic studies have led to the 

conclusion that the strong predictive value of parental BMI mainly stems from genetic rather 

than environmental factors (Maes et al., 1997).  

Twin studies (Maes et al., 1997; reviewed in: Hebebrand et al., 2000) have reported the most 

consistent and highest heritability estimates in the range of 0.6 to 0.9 for explained variance 

of BMI. These heritability estimates apply to both twins reared together and apart. While the 

majority of studies were conducted in twins reared together, some of which included 

thousands of twin pairs, only single studies with small sample sizes exist for twins reared 

apart. Additionally, a substantial number of twins reared apart were not separated 

immediately after birth. Except for this newborn period where the influence of the intrauterine 

environment is strong, age does not seem to affect heritability estimates of body weight to a 

substantial degree. For example, a heritability of body weight of 0.4 was calculated for the 

newborn period (Vlietinck et al., 1989). Similar findings exist for other anthropometric 

measurements such as body height where a smaller correlation was observed in the infant 

than in the childhood period in monozygotic (MZ) twins. Thus, higher heritability of body 

weight and BMI in e.g. school -age children may mirror a larger impact of genetic factors. 

Possibly, the heritability of BMI is maximal (≈ 0.9) during late childhood and adolescence 

(Pietilainen et al., 1999).  

However, most adoption and family studies have reported considerably lower heritability 

estimates of BMI in the range of 0.25 to 0.7 (Maes et al., 1997; Hebebrand et al., 2004). The 

difference in heritability estimates may be related to age effects which are better controlled 

for in twin studies. Moreover, twin studies are more valid if non-additive genetic factors play a 

larger role in body weight regulation. For an adequate interpretation of the heritability 
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estimates it is noteworthy to point out that both direct and indirect genetic effects are 

subsumed under the genetic component. If for example both infant twins of a MZ pair are 

frequently irritable due to a biologically driven hunger (direct genetic effect), frequent 

feedings by the caretaker ensue (indirect genetic effect); even if the twins are separated at 

birth, the respective caretakers can be expected to respond similarly.  

Another interesting and important aspect of formal genetic studies has been the observation 

that non-shared environment explains considerably more variance of the quantitative 

phenotype (BMI) than shared environment. In the large twin study of Stunkard and coworkers 

(Stunkard et al., 1990), which encompassed adult twin pairs reared together or apart, shared 

environment did not explain variance at all; instead non-shared environment totally explained 

the environmental component, estimated at 30%. Accordingly, only genetic factors would 

account for a familial loading with obesity. However, more recent studies indicate that the 

shared environment might play a more substantial role after all (Allison et al., 1996; Plomin et 

al., 1997); past research may have underestimated common environmental effects on BMI 

because the designs lacked the power or ability to detect them. Finally, the environment of 

modern day societies (easy access to a large variety of cheap and tasty foods, a life style 

promoting physical inactivity) is quite similar for basically all children, irrespective of the 

family in which they grow up.    

The complexity of the genetic basis of obesity emerges from different sources (Hebebrand et 

al., 2004): Metabolic phenotypes including resting energy expenditure are partially under 

genetic control (Bosy-Westphal et al., 2008). Behavioural genetic research has convincingly 

demonstrated that approximately 50% of the variance of diverse complex quantitative 

behaviours is genetically determined (Plomin et al., 1997). Both macronutrient intake (Reed 

et al., 1997) and physical activity levels (Perusse et al., 1989) have been shown to be 

genetically co-determined. Restrained eating, drive for thinness and other eating behaviours 

show heritability estimates in the range of 20 to 55% (Hebebrand et al., 2004). It appears that 

television viewing may have an - albeit small - heritable component (Plomin et al., 1990).  

Because the gene pool of a population cannot have changed within the past generation, 

environmental changes affecting both energy intake and expenditure are assumed to 

underlie the obesity epidemic (Taubes 1998). These changes are presumed to have a major 

impact because according to the thrifty genotype hypothesis (Neel et al., 1998) many 

common genotypes render humans obesity prone: Gene variants facilitating energy 

deposition as fat have accumulated over time in different species to enhance survival during 

periods of famine.  

Epigenetic phenomena have also been invoked to contribute to the obesity epidemic. Indeed, 

it is conceivable that modern-day living might affect methylation patterns of specific genes, 
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which in turn increases the risk of obesity. In line with these considerations young 

monozygous twins are epigenetically indistinguishable from each other during the early years 

of life, whereas remarkable differences in their overall content and genomic distribution of 5-

methylcytosine DNA and histone acetylation with an effect on gene-expression become 

evident with increasing age (Fraga et al., 2005). Such environmentally induced changes 

could have an influence on BMI.  

 

2.2 Candidate gene studies 

Almost all known metabolic pathways involved in body weight regulation were discovered in 

rodents. Most of the monogenic forms of human obesity were detected in mice - either as 

spontaneous mutations or in knockout models. Although only a small part of all obese animal 

models is in concordance with a monogenic inheritance, they give an important insight in the 

complex endocrine and metabolic pathways involved in body weight regulation. Two 

approaches are commonly used to investigate genetic mechanisms involved in body weight 

regulation. In candidate gene approaches, one selectively explores genes with a known role 

in metabolism based on prior information such as animal models. Genome-wide linkage and 

association analyses as the second approach will be introduced in a later chapter. 

Association studies on genetic variants in candidate genes for obesity serve to assess 

correlations between genetic variants at a polymorphic site and an investigated phenotype. 

Such variants can either be directly involved in disease predisposition or indirectly involved 

through linkage disequilibrium with pathogenic variants in close vicinity.  

In classical genetic association studies one usually compares genotype or allele frequencies 

in a group of cases and a group of controls. These studies are often criticized as positive 

association can result from factors different from the genetic variation leading to false-

positive findings. One of the most frequently discussed factors is population stratification. 

Individuals with and without the investigated phenotype may possibly derive from different 

population subgroups which might also differ in allele frequencies (Lander and Schork, 

1994). Analysing a mixed sample of different subpopulations may then result in a (false) 

positive finding. Although careful selections of case and control groups may help to reduce 

this problem, positive genetic association studies should at least be confirmed in a second 

sample. Family-based samples are appropriate for confirmation as they are not influenced by 

underlying stratification effects when statistical tests like the Transmissions-Disequilibrium 

Test (TDT) are applied  

The TDT (Spielman et al., 1993) is a test for association in the presence of linkage. Typically, 

TDT study groups comprise so called trios or triads - one affected index patient and both 

biological parents. The analysis makes use of heterozygous parents. For each trio, one may 
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count the number of times an allele was transmitted and not transmitted from the parents to 

the child. In the case of no linkage or no association, the ratio of allele transmissions to allele 

non-transmissions is expected to be 1. Significant deviations from 1 indicate linkage and 

association to the investigated phenotype (Ott et al., 1989). However, one disadvantage that 

is common to all genetic association studies including TDT studies lies in the fact that it 

cannot be discriminated between associations due to linkage disequilibrium (LD) between 

alleles on the same haplotype and associations due to the functional variant itself. The 

following paragraphs summarize different genetic forms of obesity. 

2.2.1 Dominant forms of monogenic obesity 

In humans, one of the first reported forms of dominant monogenic obesity is due to the 

mutated peroxisome proliferative activated receptor gamma 2 gene (PPARγ2), an important 

determinant of adipogenesis. Ristow et al. (1998) described four subjects of German origin 

with a mutation (Pro115Gln) in the N terminus of the nuclear hormone receptor. This 

mutation leads to a receptor, which interferes with a negative regulatory site in the molecule. 

All subjects with the mutant allele were markedly obese, with BMI values ranging from 37.9 

to 47.3 kg/m2. Functional studies showed that a Pro115Gln mutation in PPARγ2 leads to an 

acceleration of the differentiation of adipocytes. The Pro115Gln mutation is seemingly 

exceedingly rare, as subsequent studies did not find the variant in further study groups of 

obese und normal weight individuals (Clément et al., 2000, Hamer et al., 2002). 

In humans and animals, one of the best investigated forms of dominant obesity is 

represented by (partial) deficiency in the melanocortin-4-receptor (MC4R). The MC4R is a 

hypothalamic receptor and target of the anorexigenic neuropetide alpha-melanocyte-

stimulating hormone (α-MSH). Huszar et al. (1997) were able to show that the inactivation of 

the Mc4r in mice resulted in a maturity-onset obesity syndrome associated with hyperphagia, 

hyperinsulinemia and hyperglycinemia. Male adult Mc4r-/- deficient mice are on average 50% 

heavier than matched wild type controls. The body weight of heterozygous carriers ranged 

between homozygous mutation carriers and wild type controls.  

In humans, the first families in which heterozygous mutations in the melanocortin-4-receptor 

gene (MC4R) were associated with dominantly inherited obesity were reported in 1998 and 

1999 (Vaisse et al., 1998; Yeo et al., 1998; Hinney et al., 1999). Until now, several missense, 

frameshift- and nonsense mutations leading to haploinsufficiency of the receptor have been 

detected (Vaisse et al., 1998; Vaisse et al., 2000; Yeo et al., 1998; Hinney et al., 1999, 2003, 

2006; Farooqi et al., 2000; Jacobson et al., 2002; Stutzmann et al.,, 2008). Hinney et al. 

(2003) screened the MC4R in 808 extremely obese children and adolescents and 327 

underweight or normal-weight controls. A total of 15 obese patients carried at least one 

functionally relevant mutation (frequency of 1.86 %), whereas no functionally relevant 
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mutations were found in normal weight controls. Carriers of the mutations leading to 

haploinsufficiency or dominant negative effects were extremely obese, but no obvious clinical 

or endocrinologic abnormalities were found. Until today, more than 80 non-synonymous 

mutations in the MC4R are known and further classified based on their functional relevance 

in pharmacological in vitro assays. Most of these mutations lead to a partial or complete loss 

of function of the receptor (Ho et al., 1999; Vaisse et al., 2000; Farooqi et al., 2000, 2003; 

Kobayashi et al., 2002; Hinney et al., 2003); some are reported to lead to dominant negative 

effects (Biebermann et al., 2003; Tarnow et al.,, 2008). It was expected that missense 

mutations would always result in obesity but surprisingly some carriers were normal weight 

(Sina et al., 1999; Farooqi et al., 2000; Vaisse et al., 2000; Dubern et al., 2001; Hinney et al, 

2006). As approximately two percent of extremely obese children and adolescents carry 

functionally relevant mutations in the MC4R (Hinney et al., 1999), common obesity can only 

partially be explained via this known major gene effect. 

Dempfle et al. (2004) estimated the quantitative effect of MC4R mutations on BMI in a 

sample of 25 pedigrees with segregating mutations observed in relatives of extremely obese 

index patients. The observed effect on current BMI suggested that mutations in the MC4R 

gene are relevant for the development of obesity. The effect was about twice as strong in 

females than in males and corresponds to a mean difference in current BMI of approximately 

9.5 kg/m2 for females and 4.0 kg/m2 for males in the age range 30–40 years. In conclusion, 

heterozygous male mutation carriers are on average 15 – 20 kg heavier whereas female 

mutation carriers are on average 30 kg heavier than their family members without MC4R 

mutations.  

The pathways downstream of the MC4R are also involved in body weight regulation. Several 

lines of evidence indicate an involvement of brain derived neurotrophic factor (BDNF) in body 

weight regulation and activity: (i) heterozygous Bdnf knockout mice (Bdnf+/-) are 

hyperphagic, obese, and hyperactive (Kernie et al., 2000); (ii) central infusion of Bdnf leads 

to severe, dose-dependent appetite suppression and weight loss in rats (Pelleymounter et 

al., 1995); (iii) Bdnf infusion into the brain suppresses the hyperphagia and excessive weight 

gain observed on higher-fat diets in mice with deficient Mc4r signalling (Xu et al., 2003). 

Additionally, Bdnf+/- mice are also obese and show an increase in body weight similar to that 

seen in heterozygous melanocortin-4-receptor deficient (Mc4r+/-) mice. MC4R signalling 

controls BDNF expression in the ventromedial hypothalamic area (VHA) and supports the 

hypothesis that BDNF is an important effector through which MC4R signalling controls 

energy balance (Xu et al., 2003). Han et al. (2008) showed that among patients with the 

WAGR (Wilms' tumor, aniridia, genitourinary anomalies, and mental retardation) syndrome, 

BDNF haploinsufficiency is associated with lower levels of serum BDNF and with early onset 

obesity. Very recently, Thorleiffson et al. (2009) identified BDNF as a candidate gene for 
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obesity and related traits in a GWAS. Therefore, BDNF should also be discussed as a 

polygene for obesity. 

The BDNF receptor (TRKB) is also relevant in body weight regulation. Mouse mutants 

expressing TrkB at a severely reduced amount showed hyperphagia and excessive weight 

gain on high-fat diet (Kernie et al., 2000). Yeo et al. (2004) described an 8-year-old boy with 

severe obesity and a complex developmental syndrome, who was heterozygous for a 

Tyr722Cys substitution in the TRKB. The mutated TRKB led to markedly impaired receptor 

autophosphorylation and to reduced signalling to the MAP kinase. Mutations of NTRK2, the 

gene encoding TRKB, seem to result in a unique human syndrome including hyperphagia 

and obesity. The associated impairment in memory, learning and nociception seen in the 

proband reflects the crucial role of TRKB in the human nervous system (Yeo et al., 2004). 

Again, mutations in this gene seem to be rare and cannot explain the genetic basis of obesity 

in the general population. 

2.2.2 Recessive forms of monogenic obesity 

The two most well known forms of monogenic obesity are caused by recessively inherited 

mutations in the leptin gene (Zhang et al., 1994) and the leptin receptor gene (Tartaglia et al., 

1995, Chen et al., 1996). The obese mouse (ob-/-) produces a non-functional protein (leptin) 

whereas the diabetes mouse (db-/-) produces a defect leptin receptor. The phenotype of both 

mice is nearly identical. Both show early onset obesity, hyperphagia and 

neuroendocrinological abnormalities. In contrast to the ob-/- mouse for which a central 

injection of leptin reverses the phenotype, the phenotype of the db-/- mouse is not affected by 

such an intervention.  

The first monogenic human obesity syndrome reported was congenital leptin deficiency. 

Montague et al. (1997) reported two severely obese children who were members of the same 

highly consanguineous pedigree of Pakistanian origin. Both children had very low serum 

leptin levels despite their markedly elevated fat mass and in both a homozygous deletion 

leading to a frame-shift mutation in the coding region of the leptin gene was found. Both 

children were severely hyperphagic, showed aggressive behaviour when denied food, and 

developed severe obesity. The leptin deficient children were treated daily with injections of 

human recombinant leptin (Farooqi 1999, 2002). The treatment showed beneficial effects on 

appetite, fat mass, hyperinsulinaemia, and hyperlipidemia. The food intake of the children 

decreased substantially and parents reported a near normalization of eating behaviour 

(Farooqi 1999, 2002). 

Leptin receptor deficient subjects show a phenotype that is similar to the phenotype of leptin 

deficient subjects. Correspondingly, patients with leptin receptor deficiency showed severe 

hyperphagia resulting in early onset obesity and aggressive behaviour when food was 
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denied. First, Clement et al. (1998) reported data from a patient with a leptin receptor 

deficiency with both parents being members of a consanguineous pedigree of Kabilian origin. 

The deficiency was caused by a homozygous mutation in the leptin receptor gene resulting in 

a truncated leptin receptor lacking both the transmembrane and the intracellular domains. 

Farooqi et al. (2007) examined the presence of leptin receptor mutations systematically in a 

sample of 300 subjects with early onset obesity and hyperphagia including 90 probands from 

consanguineous families. They detected seven homozygous and one compound 

heterozygous mutation carrier. Affected subjects were characterized by hyperphagia, severe 

obesity, alterations in immune function, and delayed puberty due to hypogonadotropic 

hypogonadism. Serum leptin levels were within the range predicted by the elevated fat mass 

in these subjects. These results indicated that leptin is an important physiological regulator of 

several endocrine functions in humans. As seven of the mutation carriers were from 

consanguineous families, this sample is unlikely to reflect the prevalence of leptin receptor 

mutations in the general population.  

Two additional genes encoding peptides of the leptinergic-melanocortinergic pathway are 

involved in monogenic obesity: Pro-opiomelanocortin (POMC) is produced by hypothalamic 

neurons of the arcuate nucleus. Studies in animal models elucidated a central role of α-MSH 

in the regulation of food intake by activation of the brain Mc4r. Cleaved by prohormone 

convertases POMC serves to build peptides like anorexigenic α-MSH, ß-MSH and ACTH. 

The dual role of α-MSH in regulating food intake (Fan et al., 1997) and the identification of 

mutant alleles at the α-MSH receptor 1 locus (MC1R) producing hair pigmentation 

phenotypes (Robbins et al., 1993) predicted that the phenotype of POMC deficiency would 

include obesity and alteration in pigmentation, in addition to ACTH deficiency. In line with 

these findings, Krude et al. (1998) reported two obese German children with early onset 

obesity, pale skin, red hair, and adrenal insufficiency due to ACTH deficiency. A second 

study on early onset obese, red-haired children revealed homozygosity or compound 

heterozygosity for mutations in the POMC gene for three additional children. 

Prohormone-Convertase-I/3 (PCSK1), one of the peptides cleaving POMC, is also related to 

monogenic obesity: There are three known cases of prohormone-convertase-I-deficiency. 

O'Rahilly et al. (1995) described a female with severe childhood obesity, abnormal glucose 

homeostasis, low plasma insulin, but elevated levels of proinsulin, hypogonadotropic 

hypogonadism, and hypocortisolaemia associated with elevated levels of POMC. This patient 

was found to be compound heterozygous for a missense mutation (Gly593Arg), which 

causes failure of propeptide cleavage of PCSK1 and its retention in the ER, and was also 

heterozygous for +4A>C in the splice donor site of intron 5, resulting in exon skipping, a 

frameshift, and the introduction of a premature stop codon in the catalytic domain (Jackson et 

al., 1997). The second patient, identified by the same group (Jackson et al., 2003) was 
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compound heterozygous for a nonsense mutation (Glu250stop) which truncates the protein in 

the catalytic domain and an in-frame deletion (Ala213del). Farooqi et al. (2007) identified a 

boy homozygous for a novel missense mutation (Ser307Leu) with severe, early-onset 

obesity. As with the previous two patients, this child had obesity and persistent diarrhea. The 

patient showed markedly increased food intake, confirming that hyperphagia makes a major 

contribution to the obesity seen in this syndrome.   

Recently, Benzinou et al. (2008) assessed the contribution of PCSK1 to polygenic obesity 

and genotyped single nucleotide polymorphisms (SNPs) in the genomic region comprising 

PCSK1 in a total of 13,659 individuals of European ancestry from eight independent case-

control or family-based cohorts. The nonsynonymous variants Asn221Asp, and haplotype 

Gln665Glu-Ser690Thr were consistently associated with obesity in adults and children. 

Functional analyses showed a significant impairment of the Asn221Asp-mutant PCSK1 

protein catalytic activity. Studies by independent investigators will show if this finding can be 

confirmed. 

2.2.3 Polygenic obesity 

The first validated polygene for human obesity was discovered by a family based association 

study (Geller et al., 2004). Subsequent polygenes were identified in larger samples and 

validated in population based cohorts exploiting more cost effective large scaled genotyping 

methods in combination with new statistical approaches.  

The most common MC4R missense variant Val103Ile (rs2229616) was initially reported to be 

similarly distributed between obese and non-obese individuals. These results were in line 

with functional studies, as no functional implications of the variant could be shown. Geller et 

al. (2004) initially performed a TDT in 520 obesity trios (extremely obese index patient with 

both parents) and observed a lower transmission rate of the Ile103 allele (p= 0.017). Based 

on the unexpected finding, two large case-control studies were performed and their data 

were combined with those from 12 published studies resulting in a total of 7,713 individuals. 

The meta analysis provided evidence for a negative association of the Ile103 allele with 

obesity (p=0.03). Carriers of the Ile103 variant were on average 1.5 kg (0.5 BMI units) leaner 

than non-carriers. Heid et al. (2005) confirmed this result in an extended study group (N > 

8000 individuals) while Young et al. (2007) conducted a meta-analysis encompassing 29,563 

individuals. Xiang et al. (2006) showed in vitro that the human MC4R harbouring 103Ile has a 

normal endogenous agonist ligand affinity and normal receptor expression at the cell surface. 

However, they also observed that the Ile103-MC4R possesses a modest but statistically 

significant 2-fold decrease in antagonist AGRP potency, which is consistent with the initial 

finding of negative association to obesity. Further support of the genomic region comprising 

the MC4R comes from a meta analysis of data of genome-wide association studies (GWA) 
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data of 16,876 individuals (Loos et al., 2008). The strongest association signal after FTO 

(see below) was observed for the variant rs17782313 which maps 188 kb downstream of 

MC4R. For further confirmation and initial characterization of the locus more than 90,000 

individuals were genotyped. The per allele effect in 60,352 adults was 0.05 Z-score units 

(0.22 kg/m2) and 0.13 Z-score units in 5,988 children. The localisation of the associated SNP 

and patterns of phenotypic associations are consistent with effects mediated through altered 

MC4R function. In sum, MC4R seems to entail both loss and gain of function and represents 

the first identified polygene for body weight regulation. 

The first GWA based on approx. 100,000 SNPs analyzed in families of the Framingham 

cohort, identified an association of a SNP in the proximity of the insulin-induced gene 2 

(INSIG2; rs7566605) with obesity. Approximately 10% of the analysed individuals harboured 

the CC genotype that, according to this study, predisposes to obesity (Herbert et. al., 2006). 

Several attempts to replicate the INSIG2 finding have been or are currently being 

undertaken. Both confirmations (Lyon et. al., 2007) as well as negative findings (Dina et. al., 

2007; Loos et. al., 2007; Rosskopf et. al., 2007) have been reported. Data have been 

compiled for a large-scaled meta-analysis that underscored the role of the INSIG2 SNP in 

(extreme) obesity (Heid et al., submitted). Interestingly, it was recently reported that CC 

homozygotes for the relevant INSIG2 SNP (rs7566605) lost less weight in a one-year 

lifestyle intervention program, than individuals with the two other genotypes. This finding 

further supports a role of this polymorphism in weight regulation (Reinehr et al., 2007). 

(FTO): A genome wide association study for type 2 diabetes susceptibility genes identified a 

common variant in the fat mass and obesity associated gene (FTO) that showed a BMI-

mediated association to NIDDM. After correction for BMI the NIDDM-effect vanished, so FTO 

seemed to be more relevant for obesity. The BMI-related association was replicated in 13 

samples with 38,759 participants. The 16% of adults who are homozygous for the risk allele 

weighed about 3 kg (≤ 0.8 BMI units) more than average and had a 1.67-fold increased risk 

of obesity when compared with those not inheriting a risk allele (Frayling et al., 2007). Two 

additional GWAs also found FTO to be associated with obesity. Whereas Scuteri et al. 

(2007) investigated the genetically isolated population of Sardinia (N=4,617), Hinney et al. 

(2007) performed the first GWA for extreme early onset obesity (N=942) and found markers 

in FTO to be significantly related to obesity even after correcting for genome wide multiple 

testing. Additionally, Dina et al. (2007) detected the same effect in 8,000 French individuals. 

Since then, the association of first intron variants of FTO and increased BMI has been 

confirmed in many studies (e.g. Sladek et al., 2007; Kring et al., 2008; Qi et al., 2008). As the 

functional impact of FTO on body weight regulation is still unclear, the latest studies focus on 

more specialised phenotypes in smaller samples to figure out the possible function: 

Andreasen et al. (2008) showed that low physical activity might accenuate the effect of the 
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FTO rs9939609 on body fat accumulation. Tschritter et al. (2007) found that FTO-SNPs 

seem to be associated with cerebrocortical insulin resistance in humans. Wahlen et al. 

(2008) detected an association of rs9939609 to fat cell lipolysis. Klöting et al. (2008) revealed 

a potential inverse relationship between obesity and FTO gene expression in visceral 

adipose tissue in humans. The investigation of these more specialized phenotypes might 

help to narrow down the functional implications of FTO on obesity by stimulating ideas for 

functional in vitro and in vivo studies. Currently, FTO is one of the most promising and most 

consistently supported findings in obesity genetics. 

 

2.3 Genome-wide approaches 

2.3.1 Genome-wide linkage analysis 

Linkage is the association of gene loci on the same chromosomal region. Linked genes and 

markers are inherited together. Besides other factors, the physical distance between genetic 

loci is important for linkage: the smaller this distance on a chromosome the less likely two 

genetic loci will be separated by a meiotic recombination event called crossing-over (Morgan, 

1911). The relationship between recombination frequency and chromosomal genetic 

distance is defined by the relative unit Morgan with one centi Morgan (1 cM) being roughly 

equivalent to a recombination frequency of one percent. On the other hand, a group of 

alleles, which is inherited preferentially together, is called a haplotype. Close linkage 

between marker- and disease locus can lead to an allelic phenomenon called linkage 

disequilibrium (LD). LD is detected whenever the observed frequencies of haplotypes in a 

population deviate from haplotype frequencies predicted by the product of individual genetic 

marker allele frequencies of each haplotype assuming allelic independence.  

Classical linkage studies are parametric and model-based, so that usually some prior 

knowledge of the mode of inheritance, the allele frequencies and the penetrance is 

necessary. These analyses were very successful for the identification of genetic loci causing 

Mendelian monogenic disorders like Huntington´s disease (Walker, 2007). For classical 

linkage analyses up to 500 multiallelic DNA markers (micro satellites; di-, tri-, or 

tetranucleotid repeats) with an average distance of up to 10 cM were investigated in large 

multi-generational pedigrees including affected and non-affected members. Patterns of co-

segregation with the phenotype were analysed (Hebebrand et al., 2001). A measure of 

linkage is the so called LOD (logarithm of the odds) score (Morton 1955). The LOD score 

summarizes evidence in the sample comparing the hypothesis of linkage vs. no linkage 

between a marker (or gene) locus and a disease locus. Evidence for linkage is given if the 

maximum LOD exceeds a certain threshold which is e.g. dependent on the size of the 

investigated genome or number of investigated markers. Chromosomal regions surrounding 
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markers with significant or increased LOD scores are often called candidate regions. Fine 

mapping with denser marker sets (smaller average distance) is used to narrow down such 

regions.  

Most genome scans for complex traits are non-parametric linkage studies in which the whole 

genome is systematically analyzed for phenotype related chromosomal regions. Usually an 

(affected) sib pair approach is applied requiring the sampling of an index patient, of at least 

one affected sib and ideally both biological parents. The method is based on the idea that the 

phenotype similarities investigated in sib pairs results from the same underlying and thus 

shared genotype. A major advantage of methods like the extreme concordant sib pair 

approach (ECSP; Risch and Zhang, 1995) is that, compared to classical linkage analyses, 

they do not require knowledge of the mode of inheritance (Lander and Krugylak, 1995; Risch 

and Zang, 1995). Thus, the intention of genome scans is to identify chromosomal regions 

that are observed more frequently in the sibs than would be expected by Mendelian 

inheritance. A common measure to describe the genetic similarity between sibs is the 

number of alleles shared identical by descent (IBD; Fishman et al., 1978). However, given 

the lack of clear patterns of inheritance coupled with small genetic effect sizes and the 

multiple genetic and environmental factors that influence complex traits, the utility of genome 

scans to identify candidate regions or even candidate genes for complex disorders like 

obesity is still questioned. Such genome scans are further complicated by the fact that 

instead of a single test for linkage, one must conduct multiple tests across the entire 

genome. As a consequence, Lander and Krugylak (1995) have argued that a LOD score 

≥3.3 may be viewed as evidence for linkage whereas a LOD score ≥1.9 but <3.3 should be 

quoted as evidence for suggestive linkage that needs further support. 

Until today more that 40 conventional genome scans pertaining to obesity and related 

phenotypes have been performed. Genome scans for obesity and related traits (Adeyemo et 

al., 2003; Atwood et al., 2002; Bell et al., 2004; Chen et al., 2004, 2005; Deng et al., 2002; 

Feitosa et al., 2002; Hager et al., 1998; Hanson et al., 1998; Hsueh et al., 2001; Hunt et al., 

2001; Iwasaki et al., 2003; Kissebah et al., 2000; Lee et al., 1999; Lembertas et al., 1997; 

Lindsay et al., 2001; Meyre et al., 2004; Moslehi et al., 2003; Norris et al., 2005; Ohman et 

al., 2000; Palmer et al., 2003; Perola et al., 2001; Platte et al., 2003; Price et al., 2002; Reed 

et al., 1996; Saar et al., 2003; Stone et al., 2002; Van der Kallen et al., 2000; Watanabe et 

al., 2000; Wu et al., 2002; Zhu et al., 2002) have come up with some consistent regions. 

Especially chromosomes 1p, 3q, 6q, 11q and 16q showed overlapping evidence for linkage.  

However, the general comparability of genome scans from different research groups is often 

limited by e.g. differences in ethnic groups and/or phenotypes (e.g. obesity related 

phenotypes like fat mass and plasma leptin level) studied. It has to be kept in mind, that 
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genome scans are appropriate to identify major gene loci i.e. those with a large penetrance, 

whereas genetic loci with small effects or rare mutations with reduced penetrance can not be 

detected. Recently, Saunders et al. (2007) performed a meta analysis on 37 published 

genome-wide linkage scans containing data on over 31,000 individuals from more than 

10,000 families. They found suggestive evidence for linkage to increased BMI at 

chromosomes 13q13.2-q33.1 and 12q23-q24.3 in the pooled analysis and suggestive 

evidence for chromosome 11q13.3-22.3. Interestingly, the FTO locus at 16q12.2 also 

showed nominal evidence for linkage. Despite having substantial statistical power even for 

smaller genetic effects, Saunders et al. did not identify specific loci for increased BMI or 

obesity. Several reasons may have contributed to this finding. First of all one may argue that 

effect sizes of genes that influence body weight are even smaller than those that the study 

was powered for. Other reasons might be substantial locus and allelic heterogeneity or 

variable dependence of genetic factors on environmental factors.  

Until today, three genes contributing to observed linkage peaks for obesity related 

phenotypes have been identifies: (1) neurotransmitter transporter SLC6A14 (solute carrier 

family 6 member 14) on chromosome Xq23-24 maps to a linkage peak in Finnish sib pairs 

(Öhman et al., 2000; Suviolahti et al., 2003). Durand et al. (2004) confirmed the finding in 

1,267 obese French adult cases and 649 lean control French subjects, whereas Brönner et 

al. (in preparation), found no association in up to 700 German obesity trios. (2) The second 

gene is GAD2 (glutamate decarboxylase 2) for which a haplotype comprising three SNPs 

located in the linkage region on chromosome 10p was found to predispose to obesity (Boutin 

et al., 2003). The haplotype may contribute to a peak region described by Hager et al. (1998) 

which was confirmed by our own genome-wide scan (Saar et al., 2003). However, this 

finding could not be confirmed in larger samples of children and adolescents contributing to 

the linkage peak (Saar et al., 2003) or independent obese adults and obesity families 

(Swarbrick et al., 2005; Groves et al., 2006). (3) The third gene, ectonucleotide 

pyrophosphatase / phosphodiesterase 1 (ENPP1) on chromosome 6q16.3-q24.2 was found 

to be associated with childhood obesity (Meyre et al., 2005). The Genotype IBD Sharing Test 

(GIST) suggested that the obesity-associated ENPP1 risk haplotype contributed to the 

observed linkage on chromosome 6q with childhood obesity. The same group investigated 

the predictive value of ENPP1 SNPs with regard to the risk to develop obesity and/or type 2 

diabetes in a large French cohort. They found no association of the risk haplotype with adult 

obesity and NIDDM. However, they detected nominal evidence of an association between 

the Lys121Gln polymorphism and both severe adult obesity at baseline and the risk of 

NIDDM in participants with a family history for this disease (Meyre et al., 2007). The recent 

analysis of McAteer et al. (2008) consisted of 30 studies comprising 15,801 case and 26,241 
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control subjects and revealed that ENPP1 variant Gln121 increases the risk for NIDDM under 

a recessive model of inheritance. 

It is possible that more than one gene leads to the described linkage peaks. For single 

mutations, SNPs and haplotypes, future discoveries will potentially reveal to what extent this 

is the case (Hebebrand et al., 2001). Especially in the case of human obesity, it seems 

possible that some of the peaks actually represent the joint interacting effect of several SNPs 

or even several haplotypes (at more than one locus). As all three genes (SLC6A14, GAD2, 

ENPP1) did not light up in the available GWAs for obesity and related phenotypes, it is 

probably more likely that they have no major impact on general obesity.  

2.3.2. Genome-wide association studies  

Within the last three years the number of genetic association studies using large numbers of 

genetic markers (up to 1,000,000) to search for genetic variation underlying common 

diseases like diabetes, cardiovascular disease and cancer has increased dramatically. SNPs 

(frequency >1%) are common and occur on average once every 1,000 base pairs 

(International HapMap Project, 2007). GWA studies rely on the assumption that LD enables 

one SNP to act as a surrogate marker for association to other sequence variants in the same 

region (Freimer and Sabatti, 2007). Depending on the used genotyping platform, GWA 

studies differ in terms of the number and criteria for SNP selection. Some used SNPs evenly 

distributed across the genome (Affymetrix 500k; e.g. Frayling et al., 2007), whereas others 

selected SNPs to capture most of the common variation given the data of the International 

HapMap Project (Illumina; e.g. Sladek et al., 2007) 

By genotyping a large number of SNPs, there is a good chance that at least one SNP will be 

in LD with common functional variant(s) relevant for the investigated phenotype. Genome 

wide association studies represent a major step forward in the study of common genetic 

variation in complex diseases. The thousands of densely spaced SNPs genotyped using 

high-throughput genotyping arrays provide means for a comprehensive evaluation of 

common genetic variation unbiased by candidate gene hypotheses (Dupuis and O´Donnell, 

2007). Until today, several GWAs revealed previously unknown gene-disease associations, 

e.g. FTO and obesity (Sladek et al., 2007; Frayling et al., 2007) or CDKN2A/B and CHD and 

NIDDM (Saxena et al., 2007; Scott et al., 2007; Zeggini et al., 2007; McPherson et al., 2007). 

Three recent GWAS have successfully identified a total of 17 new loci for obesity 

(Thorleiffson et al., 2008; Willer et al., 2009; Meyre et al., 2009). In the study of Thorleiffson 

et al. (2008) 305,846 SNPs were genotyped in 25,344 Icelandic, 2,998 Dutch, 1,890 

European American and 1,160 African American subjects. The results were combined with 

previously published data of the Diabetes Genetics Initiative (DGI) based on 3,024 

Scandinavians. In eleven chromosomal regions a total of 29 variants (some of these are in 
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high LD), reached genome-wide significance.  The known candidate genes FTO and MC4R 

were reconfirmed; furthermore, the two obesity candidate genes BDNF and SH2B1 were 

identified.  

In parallel a meta-analysis of 15 GWAS for BMI (n = 32,387) was performed by the GIANT 

(Genetic Investigation of ANthropometric Traits) consortium based on approximately 2.4 

million SNPs (Willer et al., 2009). The top 35 signals were followed up in 14 additional 

cohorts (59,082 probands). A strong confirmation was detected for FTO and MC4R. 

Additionally, six new loci were identified: TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2, and 

NEGR1. Together, the six newly discovered loci account for 0.40% and in combination with 

FTO and MC4R for a total of 0.84% of the BMI variance. Subsequently, the combined impact 

of these loci on BMI was estimated: Individuals with 13 or more obesity-predisposing alleles 

across the eight loci were in average 1.46 kg/m2 (equivalent to 3.7–4.7 kg for an adult 160–

180 cm in height) heavier than those individuals with less than 3 of these alleles (Willer et al., 

2009) 

Most recently, 38 SNPs of a GWAS based on 1,380 Europeans with early-onset obesity and 

morbidly obese adult individuals and 1,416 age-matched normal-weight controls showed 

strong association with obesity and were further evaluated in 14,186 European individuals 

(Meyre et al., 2009). In addition to FTO and MC4R, significant association with obesity was 

detected for three new risk loci in (NPC1, MAF, and PTER).Additionally, candidate genes 

were analyzed in the GWAS data set. Nevertheless, a number of limitations must be 

considered when interpreting such studies in which multiple genetic markers are tested and 

when small to moderate effects are expected for most common genetic variations. Typical 

multiple testing procedures, such as Bonferroni and permutation testing, are used to limit the 

probability of false discovery. However, such error control becomes very conservative as the 

number of statistical tests increases, eventually preventing the discovery of true associations. 

Even with a less conservative approach to correct for multiple testing to find genes with small 

contributions to the phenotype remains a challenge. Alternative data mining techniques and 

other novel statistical approaches will be required to identify important interactions without 

excessively increasing the number of statistical tests performed.  

Dupuis and O´Donnell (2007) summarized the major requirements for GWA-based studies 

on common diseases: first, large samples with sufficient power to detect small to moderate 

effects will be required; GWAs performed on small samples will only be useful for generation 

of hypotheses. Second, for discovery of true associations it is likely of importance that the 

samples are ethnically homogeneous. While homogeneity may not ensure the 

generalizability of the association to other populations, it improves the odds that genetic 

effects are detectable in the test population and reduces the risk of false positive association 
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due to population stratification. Third, the implementation of well-defined, reproducible, 

phenotypes will be crucial to clearly distinguish signal from noise in genetic association 

studies. And fourth, as statistical evidence alone cannot distinguish between “causal” 

variants and non-functional variants in LD with the true causal mutations, the evidence for 

causality should include demonstration of functional significance for the genetic variant. As 

the last task requires substantial time and effort, it is more likely that causality of variants will 

be investigated in studies subsequent to the initial publications (Dupuis and O´Donnell, 

2007).  
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2.4 Aims of the study 

An overall objective of this thesis was to study the genetic mechanisms of human body 

weight regulation. Specific aims were: 

� To use genome-wide approaches to identify chromosomal regions/candidate 

genes/genetic variants involved in body weight regulation 

o Identification of chromosomal regions involved in the etiology of early onset 

obesity using linkage analyses in 89 families of German origin with two or 

more extremely obese children (Saar et al., 2003, publication 1) 

o Identification of genetic variants involved in body weight regulation using a 

genome-wide association study (GWA) for extreme, early onset obesity 

(Hinney et al., 2007, publication 2) 

� To investigate candidate genes for obesity  

o Analyses of the brain-derived neurotrophic factor precursor gene (BDNF) as a 

candidate gene for body weight regulation and physical activity (Friedel et al., 

2005, publication 3). 

o Analysis of the involvement of two single nucleotide polymorphisms (SNPs) of 

the insulin-responsive glucose transporter 4 gene (GLUT4) in samples from 

different weight extremes (Friedel et al., 2002, publication 4) 

o Investigation of the diacylglycerol O-acyltransferase homolog 2 gene (DGAT2) 

as a positional and functional candidate gene for early onset obesity on 

chromosome 11q13 (Friedel et al., 2007, publication 5) 

� To discuss the influence of functionally relevant MC4R-variants on weight loss 

during a lifestyle intervention program (Reinehr et al., 2009, publication 6)  

� To discuss the perspectives of molecular genetic research in human obesity 

(Hebebrand et al., 2003, publication 7) 
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3.1 Publication I 

Saar K, Geller F, Rüschendorf F, Reis A, Friedel S, Schäuble N, Nürnberg P, Siegfried W, 

Goldschmidt HP, Schäfer H, Ziegler A, Remschmidt H, Hinney A, Hebebrand J. Genome 

scan for childhood and adolescent obesity in German families. Pediatrics. 

2003;111(2):321-7. 

 

The aim of this study was to detect chromosomal regions/candidate genes that are involved 

in the aetiology of early onset obesity via a genome-wide linkage study. The genome scan 

was based on 89 families with 2 or more obese children. A total of 369 individuals were 

initially genotyped for 437 microsatellite markers. A second sample of 76 families was 

genotyped using microsatellite markers that localize to regions for which maximum likelihood 

binomial logarithm of the odd (MLB LOD) scores on use of the concordant sibling pair 

approach exceeded 0.7 in the first sample.  

Regions with MLB LOD scores >0.7 were detected on chromosomes 1p32.3-p33, 2q37.1-

q37.3, 4q21, 8p22, 9p21.3, 10p11.23, 11q11-q13.1, 14q24-ter, and 19p13-q12 in sample 1; 

MLB LOD scores on chromosomes 8p and 19q exceeded 1.5. In the second sample, MLB 

LOD scores of 0.68 and 0.71 were observed for chromosomes 10p11.23 and 11q13, 

respectively.  

We consider that several of the peaks identified in other conventional genome scans for 

obesity were overlapping with signals in this scan as promising for ongoing pursuits to 

identify relevant genes.  

 

 

Own contribution: 

- Establishment of a database to collect and manage the data of all published genome-

wide linkage studies for obesity and related phenotypes  

- Comparison of our linkage data with all scans collected in the database 

- in silico analyses of peak regions and identification of potential candidate genes for 

obesity 

- interpretation and implementation of these results in the manuscript 



Genome Scan for Childhood and Adolescent Obesity in German Families

Kathrin Saar, PhD*‡; Frank Geller, MSC§; Franz Rüschendorf, PhD*; André Reis, Prof*�;
Susann Friedel, MSC¶; Nadine Schäuble, MSC¶; Peter Nürnberg, PhD*; Wolfgang Siegfried, MD#;

Hans-Peter Goldschmidt, MD**; Helmut Schäfer, Prof§; Andreas Ziegler, Prof‡‡;
Helmut Remschmidt, Prof�; Anke Hinney, PhD�; and Johannes Hebebrand, Prof�

ABSTRACT. Objective. Several genome scans have
been performed for adult obesity. Because single formal
genetic studies suggest a higher heritability of body
weight in adolescence and because genes that influence
body weight in adulthood might not be the same as those
that are relevant in childhood and adolescence, we per-
formed a whole genome scan.

Methods. The genome scan was based on 89 families
with 2 or more obese children (sample 1). The mean age
of the index patients was 13.63 � 2.75 years. A total of 369
individuals were initially genotyped for 437 microsatel-
lite markers. A second sample of 76 families was geno-
typed using microsatellite markers that localize to re-
gions for which maximum likelihood binomial
logarithm of the odd (MLB LOD) scores on use of the
concordant sibling pair approach exceeded 0.7 in sample
1.

Results. The regions with MLB LOD scores >0.7
were on chromosomes 1p32.3-p33, 2q37.1-q37.3, 4q21,
8p22, 9p21.3, 10p11.23, 11q11-q13.1, 14q24-ter, and 19p13-
q12 in sample 1; MLB LOD scores on chromosomes 8p
and 19q exceeded 1.5. In sample 2, MLB LOD scores of
0.68 and 0.71 were observed for chromosomes 10p11.23
and 11q13, respectively.

Conclusion. We consider that several of the peaks
identified in other scans also gave a signal in this scan as
promising for ongoing pursuits to identify relevant
genes. The genetic basis of childhood and adolescent
obesity might not differ that much from adult obesity.
Pediatrics 2003;111:321–327; linkage analysis, BMI, body
weight.

ABBREVIATIONS. BMI, body mass index; ECSP, extremely con-
cordant sibling pair; MLB LOD, maximum likelihood binomial
logarithm of the odd; PCR, polymerase chain reaction.

T
he number of whole genome scans for obesity
and obesity-related phenotypes has rapidly in-
creased after publication of the initial scan per-

taining to a search for genes that influence percent-
age body fat in Pima Indians in 1997.1 The ethnically
diverse populations include Pima Indians1–4; Mexi-
can Americans5–7; European and African Ameri-
cans8–11; French Canadians12,13; Old Order Amish14;
and Europeans from France,15 Finland,16–18 the
Netherlands,19 and Sweden.17 Several different chro-
mosomal regions have been identified in these whole
genome scans, some of which have been confirmed
in independent whole genome or regional studies,
including linkage to chromosomes 2p,7,15 7q,11,14,20–25

10p and q,9,15,26,27 and 20q.9,28

One of the highest heritability estimates for body
mass index (BMI; kg/m2) has been determined in a
twin study based on adolescents.29 These findings
suggest that heritability might even be higher at this
age than in adulthood, for which estimates derived
from twin studies typically range in the magnitude
of 0.6 to 0.8.30,31

Human obesity as a result of rare single gene
mutations such as in the leptin32,33 and leptin recep-
tor genes34 typically manifests early in life. Non-
sense, frameshift, and functionally relevant missense
mutations in the melanocortin-4 receptor gene,
which occur with a frequency of 2% to 4% among
extremely obese adolescents and adults, are often
associated with (extreme) obesity during child-
hood.35–41 It has been estimated that only 40% of the
genes that influence BMI at age 20 continue to do so
at ages 40 and 60.42 Nevertheless, obesity, in partic-
ular extreme obesity in adolescence, commonly per-
sists in adulthood,43 the risk being even higher when
at least 1 parent is also obese.44

Currently, no published whole genome scan for
obesity has been based on children or adolescents as
index patients. In light of the potentially stronger
genetic determination of childhood and adolescent
BMI and the possibility of age-dependent genetic
influences on body weight, genome-wide scans
based on children and adolescents are of obvious
interest. Furthermore, scans based on young pro-
bands entail the advantage that the parents can be
readily ascertained, thus enabling more accurate de-
termination of the identity by descent status. Because
the typical complications of obesity, including non–
insulin-dependent diabetes and hypertension, have
not fully become manifest at adolescence, these com-
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Received for publication Mar 26, 2002; accepted Aug 15, 2002.

Reprint requests to (J.H.) Clinical Research Group, Department of Child and

Adolescent Psychiatry of the Philipps University Marburg, Hans-Sachs-Str

6, 35033 Marburg, Germany. E-mail: johannes.hebebrand@med.uni-

marburg.de

PEDIATRICS (ISSN 0031 4005). Copyright © 2003 by the American Acad-

emy of Pediatrics.

PEDIATRICS Vol. 111 No. 2 February 2003 321



Fig 1. MLB LOD scores for chromosomes 1 to 12 (A) and 13 to 22 and X (B) based on a genome scan of 89 families with 2 or more obese
children (black lines) and MLB LOD scores obtained in an additional sample of 76 families in regions of interest (gray lines).

322 GENOME SCAN FOR CHILDHOOD AND ADOLESCENT OBESITY



Fig 1. Continued.
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plications cannot be co-assessed in a scan based on
young siblings. Particularly, a scan based on adoles-
cents is complicated by the fact that several obesity-
related traits are influenced by pubertal status; se-
rum leptin levels represent a good and well-
characterized example45 of this phenomenon.

The standard definitions for obesity based on ab-
solute BMI46 cannot be applied to children and ado-
lescents. In our molecular genetic studies, we have
used BMI centiles based on the representative Ger-
man National Nutrition Survey47 to define the de-
gree of obesity of our index patients in the age range
5 to 22 years and their siblings (eg,26,38,39,48). Differ-
ent centiles have been used to define overweight and
obesity in children and adolescents, including the
85th and 95th49 and the 90th and 97th50 centiles,
respectively. On the basis of the extremely concor-
dant sibling pair approach (ECSP51) we have ascer-
tained obese index patients and their siblings via a
BMI �95th for 1 sibling and �90th centile for the
other(s). Under consideration of the parameters esti-
mated in previous segregation analyses for obesity,
we have shown that the ECSP is better suited than
the extreme discordant sibling pair approach to de-
tect linkage.52 On use of the ECSP approach, we have
confirmed linkage of obesity to chromosome 10p
based on a regional scan encompassing 93 families
with 2 or more obese offspring.26

In this study, we present for the first time results of
a whole genome scan based on 89 young obese af-
fected sibling pairs. The 452 microsatellite markers
were spaced at an average distance of 8.4 cM and
included markers for fine mapping; maximum like-
lihood binomial logarithm of the odd (MLB LOD)
scores53 were calculated to determine linkage on the
basis of the ECSP approach. We were subsequently
able to genotype an additional 76 families with 2
young obese offspring in chromosomal regions of
interest identified in the first group.

METHODS

Ascertainment of obese index patients was performed at 3
German hospitals (Klinik Hochried, Murnau; Adipositas Rehabili-
tationszentrum Insula, Berchtesgaden; and Spessart Klinik, Bad
Orb) that specialize in the inpatient treatment of extremely obese
children and adolescents. Families that were willing to participate
were included when 1) at least 1 offspring had an age- and
gender-specific BMI centile �95, 2) at least 1 sibling had an age-
and gender-specific BMI centile �90, and 3) the DNA of both
biological parents was available. There were 77, 11, and 1 families
with 2, 3, and 4 obese children, respectively. Accordingly, the total
number of individuals genotyped for the whole genome scan was
n � 369 (sample 1). During genotyping of sample 1, an additional
76 families (sample 2) were recruited as part of an ongoing ascer-
tainment to enable a future genome scan based on 300 families.
Sample 2 also fulfilled the aforementioned 3 criteria. Again, the
majority of these families (n � 68) had 2 obese offspring; 6, 1, and
1 had 3, 4, or 5 obese siblings, respectively. These families (sample
2) were genotyped for those markers that contributed to peak
regions identified in sample 1 as defined by a MLB LOD �0.70.
Finally, families of samples 1 and 2 were genotyped for 15 addi-
tional markers that localize within the identified peak regions.
These markers were chosen by applying informativity criteria.
Descriptive statistics for both samples are presented in Tables 1
and 2. In single families in samples 1 and 2, an obese offspring was
aged �18 years: the oldest index patient (22 years) had an 18-year-
old sibling; 18 siblings of index patients who were younger than 17
years were older than 22 years. Age- and gender-adjusted BMI
centiles were calculated from the large and representative German

National Nutrition Survey.47 Written informed consent was given
by all participants; in the case of minors, consent was given by
their parents. This study was approved by the Ethics Committee
of the University of Marburg.

Genotyping

DNA was isolated from peripheral white blood cells using
standard protocols.48 The Gene Mapping Centre panel of 372
highly polymorphic microsatellite markers with an average dis-
tance of 9.9 cM and an average heterozygosity of 0.78 was selected
from the final Généthon linkage map as previously described.54 In
brief, markers were amplified on microtiter plates in single reac-
tions on Tetrad polymerase chain reaction (PCR) machines (MJ
Research Biozym, Hessisch Oldendorf, Germany). All pre- and
post-PCR pipetting steps were performed using robotic devices.
PCR product pools were separated on ABI377XL (Applied Biosys-
tems [ABI], Darmstadt, Germany) sequencers and on MegaBace
sequencers (Pharmacia Amersham, Freiburg, Germany), respec-
tively. Semiautomated genotyping was performed using the Ge-
nescan and Genotyper (ABI) software and the genetic profiler in
the case of MegaBace data. Instrument allele calling was checked
manually. All genotypes were subject to an automatic Mendelian
check using the Linkrun routine (T. F. Wienker, unpublished),
which in turn calls the program Unknown v5.20 from the Linkage
Package.55 All allele sizes were standardized to known Centre

TABLE 1. Descriptive Statistics Based on 89 Families With at
Least 1 ECSP Used to Perform a Whole Genome Scan (Sample 1)

Mean Minimum Maximum SD

Obese index patients (n � 89)*
Age 13.63 7.59 22.05 2.75
BMI 32.53 24.22 56.68 6.36
BMI centile 99.30 95.00 100.00 1.23

Obese sibs (n � 102)†
Age 14.97 6.71 34.63 5.11
BMI 28.85 19.77 51.99 5.59
BMI centile 97.47 90.00 100.00 2.84

Fathers (n � 89)
Age 44.65 33.62 59.63 6.01
BMI 31.20 20.94 49.33 5.57
BMI centile 82.62 2.00 100.00 23.47

Mothers (n � 89)
Age 41.62 30.95 61.97 5.32
BMI 31.15 21.91 48.13 6.35
BMI centile 86.41 34.00 100.00 17.91

SD indicates standard deviation.
* Females: n � 52 (58%).
† Females: n � 53 (52%).

TABLE 2. Descriptive Statistics Based on 76 Families With at
Least 1 ECSP (Sample 2) Used in an Attempt to Confirm Linkage
to Regions With an MLB LOD score �0.70 as Detected in Sample 1

Mean Minimum Maximum SD

Obese index patients (n � 76)*
Age 13.25 5.10 18.18 2.30
BMI 31.76 22.62 49.96 5.12
BMI centile 99.28 90.00 100.00 1.55

Obese sibs (n � 87)†
Age 15.26 7.26 29.38 5.35
BMI 28.23 19.61 50.02 5.14
BMI centile 97.28 90.00 100.00 2.79

Fathers (n � 76)
Age 44.75 30.42 62.01 5.91
BMI 30.57 22.62 56.16 5.34
BMI centile 81.08 10.00 100.00 23.28

Mothers (n � 76)
Age 41.62 30.69 52.42 5.11
BMI 31.26 19.38 47.47 6.29
BMI centile 86.04 7.00 100.00 20.11

* Females: n � 45 (59%).
† Females: n � 45 (52%).
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d’Etude Polymorphisme Humain control individuals. Sixty-five
additional markers were typed where the total information con-
tent56 was below 0.6 in our samples. Statistical analyses included
Crimap to minimize false double recombinants. Peak regions from
sample 1 with MLB LOD scores �0.70 were then typed with 2
additional flanking markers on each side of the peak, encompass-
ing 10 cM on either side of the peak loci on chromosomes 1, 2, 4,
8, 9, 10, 11, 14, and 19.

Statistical Analysis

We conducted model-free linkage analysis because the mode of
inheritance is unknown for obesity. Multipoint LOD score analysis
was performed using the MLB statistics as implemented in ML-
BGH, Version 1.0.53 This test statistic is based on the binomial
distribution of parental alleles among extremely concordant off-
spring and accounts for multiple sibships in a natural way.

Gender-averaged map distances (cM) from the Généthon map
were transformed to recombination fractions and vice versa using
Haldane’s map function. X chromosomal calculations were con-
ducted with Genehunter, version 1.3.56

RESULTS

The whole genome scan performed with sample 1
based on all 452 markers did not reveal a MLB LOD
score �2. Two peaks on chromosomes 8p and 19q
surpassed a MLB LOD score of 1.5. MLB LOD scores
of 2 additional peaks on chromosomes 2q and 11q
were �1.0. Figure 1 demonstrates that 2 peaks on
chromosomes 10p and 11q out of the total of 9 peak
regions, for which sample 2 was also genotyped,
revealed a MLB LOD score �0.5. In addition, Table 3
gives an overview of all 21 markers with 2-point
LOD scores �0.70 in the first sample. These markers
primarily contribute to the reported multipoint LOD
scores.

DISCUSSION

To our knowledge, this study represents the first
genome scan for adolescent obesity; the mean ages of
the index patients and their siblings range between

13 and 15 years (Tables 1 and 2). Only single off-
spring were older than 18 years; in all sibships, 1
sibling was aged �18 years. Because the majority of
the index patients had BMIs above the maximal BMI
observed in the age- and gender-matched popula-
tion-based reference group,47 it seems reasonable to
assume that the onset of obesity dated before age 10
in most of the index patients and their siblings. We
had hypothesized that a genome scan based on child-
hood- and adolescent-onset obesity has a greater po-
tential to detect relevant chromosomal regions than a
scan based on obese adult sibling pairs. This hypoth-
esis stemmed from findings indicating a potentially
higher genetic load in childhood and adolescent obe-
sity.29 Furthermore, such young sibling pairs are
more homogeneous with respect to age at onset, thus
potentially limiting a major source of heterogeneity.
Finally, and in contrast to most genome scans based
on adult probands, we ascertained both parents of all
of our young sibling pairs so that the parental phase
was primarily used as source of information instead
of allele frequencies.

Recently, Altmüller et al57 reviewed 101 published
genome scans for complex disorders. They pointed
out that most of the analyzed studies were not able to
detect “significant” linkage according to the Lander
and Kruglyak criteria.58 The results of our genome
scan based on only 89 families fall within this cate-
gory. Despite our failure to detect suggestive evi-
dence for linkage according to the strict Lander and
Kruglyak criteria,58 the following aspects need to be
considered:

First, for 77 of our 89 families, only 2 obese off-
spring were ascertained. The advantage of a genome
scan based on mostly single and independent sibling
pairs is that the respective results can be considered
more representative of families with obese offspring
in a given population than a scan that includes a
mixture of both small and large or only large sib-
ships. However, because heterogeneity of obesity is
evident, the reliance on single sibling pairs entails
the disadvantage that a hypothetical major gene op-
erative in a limited number of families cannot lead to
a high LOD score in a small sample. For identifying
such major genes, large pedigrees with several af-
fected family members should be sampled.

Second, despite the low MLB LOD scores, it is of
interest to observe that some of the peaks localize to
the same or close to chromosomal regions that have
previously been detected in other scans based on
adult populations of European origin (Table 4). Thus,
previously identified peaks on chromosomes 1p,19

2q,15 8q,9 10p,15 11q,9 and 14q2 also gave a peak
signal in the current scan. The moderate size of our
peaks is in line with considerations that substantially
larger sample sizes are needed to replicate previous
findings with LOD scores that fulfill the Lander and
Kruglyak criteria.58 In addition, it is worthwhile to
point out that with the exception of our peaks on
chromosome 14q and 19p, all of the other peaks with
a MLB �0.70 have previously been identified in 2 of
the scans based on extremely obese probands of Eu-
ropean origin.9,15 Because in both of these studies
extremely obese adult index patients were ascer-

TABLE 3. Two-Point MLB LOD Scores �0.70 in Sample 1 and
Corresponding LOD Scores in Sample 2 (if Available)

Chromosome Position
(cM)*

Marker LOD MLB
Sample 1

LOD MLB
Sample 2

2 180.7 D2S294 1.13 —
2 240.2 D2S396 1.29 0.00
2 244.0 D2S2193 0.83 0.00
2 250.0 D2S331 1.30 0.00
2 259.4 D2S345 0.76 —
2 269.5 D2S125 0.77 —
2 277.0 D2S2338 1.36 —
4 86.0 D4S2963 0.70 1.01
8 20.9 D8S265 0.75 0.00
8 29.5 D8S511 0.91 —
8 35.8 D8S261 1.02 0.06
9 29.5 D9S156 0.73 0.01
9 36.5 D9S1846 0.77 0.00

10 50.5 D10S197 2.24 0.22
10 60.3 D10S1781 0.94 0.22
11 24.7 D11S902 0.89 —
11 63.2 D11S1313 1.65 0.15
11 64.9 D11S4076 0.80 0.53
14 117.1 D14S1006 0.77 0.16
14 128.6 D14S1007 0.75 0.41
16 57.8 D16S411 1.16 —
19 35.5 D19S221 0.88 —
19 53.2 D19S414 1.97 0.00

* Location (cM) according to Genethon from NCBI (www.ncbi.
nlm.nih.gov/).
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tained, it is possible that several of these also had a
childhood onset of their obesity.

Finally, despite the finding that study groups sev-
eral times the size of the original sample need to be
analyzed to confirm reliably the linkage regions,59 2
of our peaks (chromosome 10p and 11q) also showed
up—albeit weakly—in our second sample. The chro-
mosome 10p linkage currently can be considered one
of the most consistent findings in obesity scans.15,26,27

Promising candidate genes localized within the chro-
mosome 10 and 11 regions of interest include glu-
tamic acid decarboxylase 2 (chromosome 10) and
angiotensin receptor-like 1, ciliary neurotrophic fac-
tor, galanin, and uncoupling proteins 2 and 3 (www.
ensembl.org/). Previously, we had not found evi-
dence for association of a null allele of the ciliary
neurotrophic factor gene with obesity.60 Further-
more, despite a positive association study pertaining
to an uncoupling protein 2 promoter polymor-
phism,61 we were not able to replicate this finding;
we also did not find evidence for linkage based on
the families investigated in the current study.62

CONCLUSION

Whereas our scan did not reveal MLB LOD scores
�2, we nevertheless consider that several of the pre-
viously identified peaks also gave a signal in this
scan as promising for ongoing pursuits to identify
genes within the respective chromosomal regions.
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We aimed to to detect chromosomal regions/candidate genes that are involved in the 

aetiology of early onset obesity via a genome-wide association study.  

We performed a GWA (Affymetrix, Genome-Wide Human SNP Array 5.0) for early onset 

extreme obesity based on 487 extremely obese young German individuals and 442 healthy 

lean German controls. We aimed to identify and subsequently confirm the 15 SNPs (minor 

allele frequency > or =10%) with the lowest p-values of the GWA by four genetic models: 

additive, recessive, dominant and allelic. Six single nucleotide polymorphisms (SNPs) in FTO 

within one linkage disequilibrium (LD) block including the GWA SNP rendering the lowest p-

value (rs1121980; log-additive model: nominal p = 1.13 x 10(-7), corrected p = 0.0494; odds 

ratio (OR)(CT) 1.67, 95% confidence interval (CI) 1.22-2.27; OR(TT) 2.76, 95% CI 1.88-4.03) 

belonged to the 15 SNPs showing the strongest evidence for association with obesity. For 

confirmation we genotyped 11 of these SNPs in the 644 independent families. For both FTO 

SNPs the initial association was confirmed. However, none of the nine non-FTO SNPs 

revealed significant transmission disequilibrium. Additionally, similar to the approach of 

Scuteri et al. (2007), we re-analysed specific candidate genes for obesity in our data. 

Our GWA for extreme early onset obesity substantiates that variation in FTO strongly 

contributes to early onset obesity. This is a further proof of concept for GWA to detect genes 

relevant for highly complex phenotypes. We concurrently show that nine additional SNPs 

with initially low p-values in the GWA were not confirmed in our family study, thus suggesting 

that of the best 15 SNPs in the GWA only the FTO SNPs represent true positive findings. 
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- defining a strategy for and selection of specific candidate gene for obesity 

- re-analyses and summarizing the of GWA data for the selected candidate genes 
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Genome Wide Association (GWA) Study for Early Onset
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Background. Obesity is a major health problem. Although heritability is substantial, genetic mechanisms predisposing to

obesity are not very well understood. We have performed a genome wide association study (GWA) for early onset (extreme)

obesity. Methodology/Principal Findings. a) GWA (Genome-Wide Human SNP Array 5.0 comprising 440,794 single

nucleotide polymorphisms) for early onset extreme obesity based on 487 extremely obese young German individuals and 442

healthy lean German controls; b) confirmatory analyses on 644 independent families with at least one obese offspring and

both parents. We aimed to identify and subsequently confirm the 15 SNPs (minor allele frequency $10%) with the lowest p-

values of the GWA by four genetic models: additive, recessive, dominant and allelic. Six single nucleotide polymorphisms

(SNPs) in FTO (fat mass and obesity associated gene) within one linkage disequilibrium (LD) block including the GWA SNP

rendering the lowest p-value (rs1121980; log-additive model: nominal p = 1.1361027, corrected p= 0.0494; odds ratio (OR)CT
1.67, 95% confidence interval (CI) 1.22–2.27; ORTT 2.76, 95% CI 1.88–4.03) belonged to the 15 SNPs showing the strongest

evidence for association with obesity. For confirmation we genotyped 11 of these in the 644 independent families (of the six

FTO SNPs we chose only two representing the LD bock). For both FTO SNPs the initial association was confirmed (both

Bonferroni corrected p,0.01). However, none of the nine non-FTO SNPs revealed significant transmission disequilibrium.

Conclusions/Significance. Our GWA for extreme early onset obesity substantiates that variation in FTO strongly contributes

to early onset obesity. This is a further proof of concept for GWA to detect genes relevant for highly complex phenotypes. We

concurrently show that nine additional SNPs with initially low p-values in the GWA were not confirmed in our family study,

thus suggesting that of the best 15 SNPs in the GWA only the FTO SNPs represent true positive findings.

Citation: Hinney A, Nguyen TT, Scherag A, Friedel S, Brönner G, et al (2007) Genome Wide Association (GWA) Study for Early Onset Extreme Obesity
Supports the Role of Fat Mass and Obesity Associated Gene (FTO) Variants. PLoS ONE 2(12): e1361. doi:10.1371/journal.pone.0001361

INTRODUCTION
The advent of genome wide association studies (GWAs) already has

had a major impact on the identification of polygenes involved in

human body weight regulation [1]. However, a GWA based on

obese cases and lean controls has not yet been described. GWA have

recently proven extremely powerful for the detection of genes/SNPs

for different complex disorders [2,3]. The progress has been

particularly impressive for type 2 diabetes mellitus (T2DM) [4–7].

FTO was one of the genes picked up in GWA studies for T2DM

[5,6], adjustment for BMI revealed that this effect was solely based

on this quantitative phenotype [5].We performed a GWA (Genome-

Wide Human SNP Array 5.0; Affymetrix) on patient samples

stemming from both ends of the BMI distribution and subsequently

aimed to confirm the 15 GWA SNPs with minor allele frequency

(MAF) $10% rendering the lowest p-values determined upon

analysis of four genetic models (additive, recessive, dominant and

allelic) in an independent family-based study.

RESULTS
The GWA was analysed for the four genetic models additive,

recessive, dominant and allelic. By sorting all analysed SNPs with a

MAF $10% by minimal nominal p-values a list was derived for

the best 15 SNPs (Table 1). Six SNPs (rs1121980, rs9939973,

rs7193144, rs9940128, rs8050136, rs9939609, pair-wise r2 range

0.88–1) in FTO were among these 15 best SNPs of the scan (see

Table 1); all six SNPs localize to the same linkage disequilibrium

(LD) block. FTO-SNP rs1121980 rendered the lowest nominal

p-value of 1.1361027; this SNP was the only SNP that survived

correction for multiple testing (corrected p= 0.0494; Table 1). The

log-additive OR for the rs1121980 risk T-allele was 1.66 (95% CI

1.37–2.01); the odds ratios for heterozygotes (CT) and homozy-

gotes (TT) were estimated at 1.67 (95% CI 1.22–2.27) and 2.76

(95% CI 1.88–4.03), respectively. Frequencies of the T-allele in

cases and controls were 0.53 and 0.41 (Table 1).

Eleven of the best 15 markers were subsequently genotyped in

644 independent obesity families based on at least one young
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Table 1. Top 15 SNPs associated with early onset extreme obesity from the Genome-Wide Human SNP Array 5.0 (lowest nominal p-values across four genetic models) and their
confirmation using family-based association studies for the risk allele derived from the GWA data
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

chromo-some

nearest gene

or cDNA1 SNP GWA 500K case-control approach

confirmation-family-based associa-

tion study2

dbSNP alleles

(bold: obesity

risk related)

minor allele fre-

quency cases/

controls [%]

genotype distribution cases[%]/

controls[%]

odds ratio (95% CI) under best

genetic model for minor allele

p-value (x1026)

(corrected empirical

p-value)

risk allele (more

frequently

transmitted)

p-value (one-

sided) (Bonferroni

corrected p-value)

16 FTO rs1121980 C/T 53.0/40.7 104 [21.5]/
153 [34.6]

247 [51.0]/
218 [49.3]

133 [27.5]/
71 [16.1]

1.660 (1.369;2.017) log-additive 0.113 (0.0494) T 0.0001 (0.0011)

16 FTO rs9939973 A/G 52.7/40.7 104 [21.5]/
153 [34.6]

250 [51.7]/
218 [49.3]

130 [26.9]/
71 [16.1]

1.644 (1.355;1.999) log-additive 0.211 (0.0875) A 0.0003 (0.003)

16 FTO rs7193144 C/T 50.1/38.7 121 [25.0]/
165 [37.4]

241 [49.8]/
211 [47.8]

122 [25.2]/
65 [14.7]

1.593 (1.318;1.925) allelic 0.765 (0.2802) -4 -

16 FTO rs9940128 A/G 52.1/40.7 106 [21.8]/
153 [34.6]

254 [52.3]/
218 [49.3]

126 [25.9]/
71 [16.1]

1.606 (1.324;1.954) log-additive 0.772 (0.2831) -4 -

20 C20orf75 rs6076920 C/G 14.9/8.3 347 [71.4]/
375 [84.8]

133 [27.4]/
61 [13.8]

6 [1.2]/
6 [1.4]

2.242 (1.601;3.157) dominant 0.86 (0.3081) C 0.850 (1)

20 none SNP_A-
19679675

A/G 14.5/7.7 348 [71.5]/
375 [84.8]

137 [28.1]/
66 [14.9]

2 [0.4]/
1 [0.2]

2.236 (1.596;3.148) dominant 0.94 (0.3321) G3 0.9742 (1)

16 FTO rs8050136 A/C 50.0/38.7 123 [25.3]/
165 [37.3]

240 [49.4]/
212 [48.0]

123 [25.3]/
65 [14.7]

1.585 (1.312;1.915) allelic 0.976 (0.3433) -4 -

14 TSHR rs3783950 C/G 43.7/54.9 151 [31.5]/
88 [20.2]

239 [49.8]/
216 [49.7]

90 [18.8]/
131 [30.1]

0.635 (0.526;0.767) allelic 1.38 (0.4541) G 0.132 (1)

4 BC041448 rs2969001 C/G 38.1/27.6 194 [39.8]/
240 [54.3]

215 [44.1]/
160 [36.2]

78 [16.0]/
42 [9.5]

1.614 (1.320;1.974) allelic 1.60 (0.5044) G 0.108 (1)

16 FTO rs9939609 A/T 49.7/38.7 123 [25.4]/
164 [37.1]

241 [49.8]/
214 [48.4]

120 [24.8]/
64 [14.5]

1.565 (1.295;1.892) allelic 1.94 (0.5681) -4 -

4 none rs619819 C/G 30.4/39.4 248 [51.0]/
157 [35.5]

181 [37.2]/
222 [50.2]

57 [11.7]/
63 [14.3]

0.529 (0.402;0.694) dominant 1.96 (0.5717) C 0.566 (1)

4 none rs2172478 A/G 30.6/21.2 234 [48.1]/
281 [63.6]

207 [42.6]/
135 [30.5]

45 [9.3]/
26 [5.9]

1.880 (1.433;2.467) dominant 2.33 (0.6348) A 0.292 (1)

20 PCSK2 rs16998603 A/G 14.4/7.9 346[71.8]/
371 [84.7]

133 [27.6]/
65 [14.8]

3 [0.6]/
2 [0.5]

2.177 (1.552;3.068) dominant 2.37 (0.6427) G3 0.878 (1)

6 HLA-DQA2 rs9276431 C/T 35.5/45.9 203 [41.9]/
121 [27.4]

218 [45.0]/
236 [53.4]

63 [13.0]/
85 [19.2]

0.522 (0.392;0.694) dominant 3.45 (0.7697) T3 0.967 (1)

4 none rs10008032 C/T 44.9/53.2 157 [32.4]/
84 [19.0]

221 [45.6]/
246 [55.7]

107 [22.1]/
112 [25.3]

0.490 (0.357;0.671) dominant 3.58 (0.7825) T 0.591 (1)

1genes or transcripts according to the UCSC Genome Bioinformatics (http://genome.ucsc.edu/): FTO: fat mass and obesity associated; C20orf75: hypothetical protein LOC164312; TSHR: thyroid stimulating hormone receptor
isoform 1; BC041448: Homo sapiens cDNA clone IMAGE:5170949, partial cds; PCSK2: Homo sapiens cDNA FLJ34186 fis; HLA-DQA2: major histocompatibility complex, class II, DQ; none: no gene 250 kb up- or downstream of the
SNP,
2FBATs were all evaluated under additive genetic model (as it is e.g. unknown if a dominant model is also appropriate for the analysis of the family-based data),
3SNPs showed evidence for a deviation from HWE in founders (p # 0.05),
4not genotyped due to strong linkage disequilibrium to other FTO SNPs,
5rs41492957according to NCBI Build 36.2
doi:10.1371/journal.pone.0001361.t001..
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obese index patient; of the six positive FTO SNPs belonging to the

same LD block, we genotyped only the two SNPs with the lowest

p-values. Confirmation of the initial finding using FBAT (family-

based association test) was detected for the two FTO SNPs (both

Bonferroni corrected p#0.01). However, none of the risk alleles of

the nine other SNPs showed evidence for association in the

independent families.

Additionally, similar to the approach of Scuteri et al. [8], we

analysed specific candidate genes (coding sequence plus approx-

imately 50 kb flanking the 59 and 39 regions, respectively). We

chose those candidate genes delineated in the current version of

the Obesity Gene Map Database (http://obesitygene.pbrc.edu/; [9]),
for which two or more independent positive associations to obesity

have been reported in addition to those genes listed in the

Database to harbour mutations leading to monogenic forms of

obesity. In Table S1 (Supporting Information), for each of these

genes, the SNP with the lowest p-value and the respective genetic

model are shown. Overall, among the 745 SNPs tested 75 (12) had

a p-value below 0.05 (0.01). We re-assessed the original

publications for the markers in Table S1 (Supporting Information)

which had a nominal p-value below 0.005. For three SNPs of the

previous publications (ESR1: rs2234693; rs9340799 and LDLR
rs688) HapMap data were available. Hence, we checked for linkage

disequilibrium by D’ and r2. For ESR1 both previously investigated

SNPs (rs2234693; rs9340799 [10,11]) were approximately 16 kb

apart from the 500k SNP rs712221. D’ was 0.321 and 0.809,

respectively, r2 was 0.103 and 0.378, respectively. For LDLR the

previous SNP (rs688 [12,13]) was just 48 bp apart from the 500k

SNP rs1799898. D’ was 1 and r2 was 0.144. However, the allele

frequencies of the original SNPs and the closest GWA SNPs were

quite different (e.g. rs1799898 MAF approximately 12% versus a

MAF of 45% in rs688), complicating statements dealing with

whether or not both markers tag the same disease related haplotype.

Clearly, this possibility requires further attention.

DISCUSSION
Here we show by a GWA including early onset extremely obese

cases (mean BMI Zscore 4.6362.27) and healthy underweight

controls (mean BMI Zscore 21.3860.35; BMI,15th age

percentile) that variation in FTO strongly contributes to the

development of early onset obesity. Recently, the FTO gene was

found to be associated with T2DM as based on two GWAs [5,6].

However, after adjusting for BMI the T2DM association vanished

indicating that FTO explains variation of body weight. Confirma-

tion in 13 samples with 38,759 individuals and a meta-analysis

showed that the A-allele of the variant rs9939609 is associated with

a 31% increased risk to develop obesity [5]. These results were

independently supported in 8,000 individuals from different

populations [14] and in a GWA for obesity-related traits in an

epidemiological cohort [8]. The best SNP rs1421085 of the study

of Dina et al. [14] showed a nominal p = 3.4661027 (log-additive

OR for the risk allele 1.69, 95% CI 1.38–2.06) in a case-control

sample which also comprised obese German children. For our best

SNP rs1121980, which is located 8.3 kb upstream of rs1421085

(pairwise r2=0.90 in CEU HAPMAP; both within intron 1), we

found similar estimated genetic effect sizes. As effect sizes for the

best markers derived from GWA data sets are usually overesti-

mated [15], our GWA data is an example that this will not always

be the case.

Given the relatively small sample size used in our GWA, this

investigation nevertheless revealed a single SNP in FTO that

remained significant after a proper control of the type I error. The

FTO SNPs have previously been shown to be relevant for obesity

in both children and adults [5,8,14]. To determine, if the finding is

present in all children or only among the older teenagers we did a

median split for age within the case group and explored the

relationship of each subgroup in comparison to controls as well as

to each other (data not shown). The effect is valid in both

subgroups and there is no difference between the subgroups.

Frayling et al. reported that the association is relevant by the age of

7 and persists into the pre-pubertal period and beyond [5]. Only a

meta-analysis addressing developmental aspects will be able to

pinpoint, if the effect of the FTO variants is more relevant for

children or for adults.

Confirmation of the 11 SNPs genotyped in 644 independent

obesity families succeeded only for the two FTO SNPs (Table 1).

Hence, our data suggest that of the best 15 SNPs of the GWA only

the FTO SNPs represent true positive findings. This is in

accordance with a population-based GWA for body weight that

also merely resulted in the initial confirmation of only one

candidate gene [8].

Our data pertaining to the candidate gene analyses (Table S1)

are not readily comparable with the previous publications, as for

instance the number of analysed individuals was quite low for

some of the previous reports. We restricted our analyses to genes

listed in the Obesity Gene Map Database (http://obesitygene.pbrc.

edu/; [9]) with at least two confirmations; the quality of the

original reports varied considerably and for some of the genes

different SNPs/variants had been analysed. Hence, we suggest

that the candidate genes with SNPs resulting in nominal p-values

below 0.005 in our scan should be followed up in subsequent

studies.

In general, this report is another proof of concept in favour of

GWAs contributing to the investigation of common variation in

complex phenotypes.

METHODS

Participants
487 extremely obese children and adolescents (‘cases’) were

recruited in hospitals specialized for the inpatient treatment of

extreme obesity (Table 2; mean BMI Z score: 4.6362.27) while

442 healthy lean individuals (‘controls’) were ascertained at the

University of Marburg (Table 2). We relied on older healthy

underweight controls to substantially reduce the probability of

their becoming overweight and to increase power [e.g. 16]. Based

on self-reported questionnaire data on body-weight course, 78% of

the lean controls reported having had a below average body

weight at age 15, which is similar to the mean age of our obese

cases. Thus, our control group mainly comprises individuals who

presumably also were in the lower body weight range during

adolescence. Details on power considerations are provided in the

Supporting Information (Text S1). Written informed consent was

given by all participants and in case of minors their parents. The

study was approved by the Ethics Committees of the Universities

of Marburg and Essen and conducted in accordance with the

guidelines of The Declaration of Helsinki.

Genotyping
Genotyping was performed on the Genome-Wide Human SNP

Array 5.0 (http://www.affymetrix.com/) at the Affymetrix

Services Lab (California, USA). 440,794 genotypes of 929

individuals (Dynamic Model algorithm call rate.86%) were

called by the BRLMM-P algorithm. For the replication of 11

SNPs genotyping was performed by matrix-assisted laser desorp-

tion ionization-time of flight mass spectrometry (MALDI-TOF

MS) analysis of allele-dependent primer extension products as

described elsewhere [17].

FTO and Early Onset Obesity
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Statistical Methods
For the GWA data, SNPs with a call rate,95%, departure from

Hardy-Weinberg equilibrium in the control group (exact test

p,0.01), or with minor allele frequency below 10 percent were

excluded from the final analysis (151,503 excluded; 289,291

retained; see Supporting Information; Text S1 and Table S2). The

statistical analyses followed the procedure of Sladek et al. [4].

Details are described in the Supporting Information (Text S1). All

reported nominal p-values of the GWA are two-sided and

asymptotic. In addition, empirical p-values corrected for ge-

nome-wide testing and maximization across genetic models are

provided. We used a genome-wide significance level of .05 (two-

sided). For the confirmation study, both nominal one-sided and

Bonferroni corrected (11 tests) p-values are presented for the risk

alleles identified in the GWA.

Confirmation
The 11 of the 15 best SNPs (ranked by p-value, irrespective of the

genetic model; see Table 1) were genotyped in 644 independent

obesity families comprising 644 extremely obese children and

adolescents (index patients) and both of their biological parents;

additionally in 297 families obese sibs were also included (for

details see Table 2). As none of the 11 SNPs showed strong

evidence for a recessive genetic model in the GWA, it was decided

to restrict the family-based association testing to the additive

model for each of the SNPs (FBAT additive) in order to reduce the

amount of multiple testing.

Candidate gene analyses
Within the GWA data we analysed genes previously suggested to

be involved in body weight regulation. We examined 745 SNPs

(located within the gene and approximately 50kb 59and 50kb 39to

the gene) in 47 candidate genes (single gene mutations with an

obesity phenotype and candidate genes associated with obesity in

at least two independent studies as shown in the Obesity Gene Map

Database; http://obesitygene.pbrc.edu/) and determined the num-

ber of SNPs with p-values # 0.05 (0.01). In addition, we provided

information on the SNP with the lowest p-value among all tested

genetic models for the respective candidate gene in Table S1

(Supporting Information). For markers which had a nominal p-

value below 0.005 we re-assessed the original publications in order

to figure out if the marker in our GWA scan matches the

information provided in the original publications.

SUPPORTING INFORMATION

Table S1 Analyses of obesity candidate genes (according to the

human obesity gene map: the 2005 update: Rankinen et al., 2006) in

the GWA approach

Found at: doi:10.1371/journal.pone.0001361.s001 (0.16 MB

DOC)

Table S2 Genotyping and quality control

Found at: doi:10.1371/journal.pone.0001361.s002 (0.08 MB

DOC)

Text S1 Genotyping and quality control; Additional information

on statistical analyses; References for the Supporting Information.

Found at: doi:10.1371/journal.pone.0001361.s003 (0.04 MB

DOC)
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Several lines of evidence indicate an involvement
of brain derived neurotrophic factor (BDNF) in
body weight regulation and activity: heterozy-
gous Bdnf knockout mice (Bdnfþ/�) are hyperpha-
gic, obese, and hyperactive; furthermore, central
infusion of BDNF leads to severe, dose-dependent
appetite suppression and weight loss in rats. We
searched for the role of BDNF variants in obesity,
eating disorders, and attention-deficit/hyperac-
tivity disorder (ADHD). A mutation screen (SSCP
and DHPLC) of the translated region of BDNF in
183 extremely obese children and adolescents and
187 underweight students was performed. Addi-
tionally, we genotyped two common polymorph-
isms (rs6265: p.V66M; c.�46C>T) in 118 patients
with anorexia nervosa, 80 patients with bulimia
nervosa, 88 patients with ADHD, and 96 normal
weight controls. Three rare variants (c.5C>T:
p.T2I; c.273G>A; c.*137A>G)and theknownpoly-
morphism (p.V66M) were identified. A role of the
I2 allele in the etiology of obesity cannot be ex-
cluded. We found no association between p.V66M
or the additionally genotyped variant c.�46C>T
and obesity, ADHD or eating disorders. This
article contains supplementary material, which
maybeviewedat theAmericanJournalofMedical
Genetics website at http://www.interscience.
wiley.com/jpages/0148-7299:1/suppmat/index.html.
� 2004 Wiley-Liss, Inc.

KEY WORDS: weight regulation; BMI; anorexia
nervosa; bulimia nervosa

INTRODUCTION

BDNF plays a key role in regulating neuronal survival
during the development of the central nervous system,
differentiation and maintenance of the phenotype of mature
neurons [Maisonpierre et al., 1991], and prevents neuronal
death [Tuszynski et al., 1994]. Human BDNF is localized on
chromosome 11p14.1 (http://genome.ucsc.edu/, Freeze July
2003) and encodes a 247 amino acid (aa) preprotein that is
proteolytically cleaved to form the 120 aa mature protein
[Darling et al., 1983],which is 100%conserved betweenmouse,
rat, pig, and humans [Maisonpierre et al., 1991]. Human
BDNF consists of fivealternatively used50 exons andonemajor
30 exon. Alternative splicing of the 50 exons results in six
different transcripts leading to three preproprotein isoforms
(a, b and c) that differ in the length of their signal peptide
(http://www.ncbi.nlm.nih.gov/LocusLink, April 2004). Iso-
forms b and c contain additional N-terminal aa compared to
isoform a.

Several lines of evidence indicate an involvement of genetic
factors in the etiology of the complex and multifactorial dis-
orders obesity, anorexia nervosa (AN), bulimia nervosa (BN),
and attention-deficit/hyperactivity disorder (ADHD). We pro-
pose a role of BDNF in the development of these disorders for
the following reasons: (i) obesity and eating disorders: hetero-
zygous Bdnf knockout mice (Bdnfþ/�) are obese and develop
hyperphagia [Kernie et al., 2000]. Their increase in body
weight is similar to that seen in heterozygous melanocortin-4-
receptor deficient (Mc4rþ/�) mice, a well-known model for
human obesity [e.g., Huszar et al., 1997; Hinney et al., 2003].
BDNF is expressed at high levels in the ventromedial
hypothalamus (VMH), where it is regulated by nutritional
state and byMC4R signaling [Xu et al., 2003]. Bilateral lesions
of the VMH entail hyperphagia and obesity [Shimizu et al.,
1987]. Central infusion of BDNF leads to severe, dose-
dependent appetite suppression, weight loss, and increase in
hypothalamic 5-hydroxy-indoleacetic acid (5-HIAA) and ser-
otonin in rats, implying an anorexigenic function of BDNF
[Pelleymounter et al., 1995].
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Arecent study revealed a strong association of theM66allele
ofBDNFwith obsessive-compulsive disorder [OCD;Hall et al.,
2003],which is quite common inpatientswith eatingdisorders,
suggesting that theremay be a common genetic predisposition
to both OCD and AN [Halmi et al., 1991]. Ribases et al. [2003]
recently detected an association of the M66 variant in the
region encoding BDNF proprotein [Momose et al., 2002] to AN
(restricting type) and to a low minimum body mass index
(MBMI). Additionally, it was shown that female patients with
eating disorders (ED) have decreased levels of serum BDNF
compared to healthy normal weight controls [Nakazato et al.,
2003]. (ii) ADHD: a relationship between ADHD and BDNF
has already been hypothesized [Tsai, 2003]. Conditional
deletion of Bdnf in postnatal mice brain leads to hyperactivity
after exposure to stressors [Rios et al., 2001]. A recent study
revealed evidence for the involvement of the M66 variant
(rs6265) of BDNF in poor verbal episodic memory [Egan et al.,
2003]. Therefore, the M66 allele might be relevant in ADHD.
BDNF affects central nervous system myelination [Cellerino
et al., 1997]; central dysmyelination has been found in patients
with ADHD [Overmeyer et al., 2001]. Neurochemical and be-
havioral analysis of heterozygousBdnfþ/�mice revealed that a
partial impairment of BDNF expression causes physiological
disturbances which were associated with impaired impulse
control, manifested as exaggerated aggressiveness, and exces-
sive appetite/food intake [Lyons et al., 1999].

Therefore, we hypothesize that gain of function mutations
could predispose to AN, whereas loss of function mutations
could be expected to result in obesity and ADHD. The M66
variant is of particular interest, because it is the only known
frequent non-conservative polymorphism in the BDNF gene.
Furthermore, the M66 variant affects intracellular processing
and secretion of the mature protein [Egan et al., 2003].

MATERIALS AND METHODS

In order to assess an involvement of BDNF in weight
regulation, we screened the translated region of BDNF in 183
extremely obese children and adolescents and 187 healthy
underweight students (initial screening sample).We identified
two new variants and three known SNPs, which enabled us to
perform association studies.

Study Subjects

We screened 183 extremely obese children and adolescents
and 187 healthy underweight students. The mean BMI per-
centile of the 183 obese probands exceeded the 99th BMI-
percentile, the BMI of the underweight students was below
the 15th percentile, as previously determined in a representa-
tive German population sample [Hebebrand et al., 1996]. For
association studies, we used the initial screening-sample and
samples of patients with ADHD, AN, BN, and normal weight
controls (see the online Table II at http://www.interscience.
wiley.com/jpages/0148-7299:1/suppmat/index.html). Patients
with ED or with ADHD fulfilled DSM-IV criteria [APA, 1994].
Written informed consent was given by all participants and, in
the case of minors, their parents. This study was approved by
the Ethics Committee of the University of Marburg.

PCR, DHPLC, and SSCP

Six transcript variants encoding three preproprotein iso-
forms have been described for this gene. The nomenclature of
the described polymorphisms is according to den Dunnen and
Antonarakis [2001] and in relation to transcript variant 1
encoding isoform a (Acc. No. NM_001709). Variant c.�46C>T
was earlier described as 270C>T [Kunugi et al., 2001]. We
screened the translated region of human BDNF in two

overlapping fragments A and B (see the online Table III at
http://www.interscience.wiley.com/jpages/0148-7299/suppmat/
index.html). For PCR amplification primers were placed so
that potential splice site variants could be detected. Mutation
screen on fragment A was performed with denaturing high
performance liquid chromatography (DHPLC) analysis on
Transgenomic WAVE1 system [Transgenomic, Cheshire, UK;
Oefner and Underhill, 1998]. All chromatograms were com-
pared with chromatograms of sequenced wild-type samples.
PCR amplicons that showed a peak appearance different to
the wild-type pattern were sequenced (Seq Lab, Göttingen,
Germany). To detect mutations in fragment B, the PCR-
productswere digestedand standardnonisotopic single-strand
conformation polymorphism analyses (SSCP) were performed
at room temperature and at 48C [Hinney et al., 1999]. The
sensitivities for DHPLC have been described to be approxi-
mately 95% [Ellis et al., 2000] and about 97% for SSCPbyusing
two temperatures, respectively [Salazar et al., 2002].

SNPs

PCR products of all SNPs were run on ethidium bromide-
stained 2.5% agarose gels. Positive controls for the variant
alleleswere runoneachgel. Forvalidity of thegenotypes, allele
determinations were rated independently by at least two
experienced individuals. Discrepancies were resolved unam-
biguously either by reaching consensus or by retyping (see the
online Table IV at http://www.interscience.wiley.com/jpages/
0148-7299:1/suppmat/index.html).

Statistics

Differences in genotype frequencies were investigated using
the Cochran-Armitage trend test. Pearson’s w2-tests were car-
ried out to investigate differences in allele frequencies. Ini-
tially, obese children and adolescents were compared with
underweight students. Our latter analyses tested each of the
groups AN, BN, and ADHD separately against normal weight
students. We did not correct for the multiple tests we
performed for the different groups at the two loci. Therefore,
all reported P values are nominal.

RESULTS

By sequencing PCR products showing an aberrant SSCP or
DHPLC-pattern we identified three rare variants (c.5C>T;
c.273G>A; c.*137A>G) in addition to the common missense
mutation p.V66M. In the study groups comprising 183 ex-
tremely obese children and adolescents and 187 healthy
underweight students each rare variant was observed only
once: (a) the novel silent variant c.273G>A in codon 91 of the
region coding for the proproteinwas discovered byDHPLC. An
extremely obese male (age 16.2 years, BMI 50.4 kg/m2,
BMI� 99th percentile) was heterozygous for this variant. (b)
A knownvariant c.5C>T (rs8192466), previously detected in a
patient with idiopathic congenital central hypoventilation
syndrome [CCHS; Weese-Mayer et al., 2002] leading to the
non-conservative non-synonymous aa change p.T2I was de-
tected in a single extremely obese boy (age 11.1 years, BMI
40.4 kg/m2, BMI� 99th percentile) by DHPLC. The allele
coding for I2 was transmitted by the overweight mother (BMI
28.7 kg/m2); the overweight sib had inherited the wild type
allele. (c) One of the underweight controls (age 24.1 years, BMI
19.7 kg/m2, 6th BMI percentile) was heterozygous for a novel
30UTR variant c.*137A>G, detected by SSCP.

We analyzed two common polymorphisms (V66M in the 50

pro-region; SNP c.�46C>T in one of the 50UTR exons, Kunugi
et al., 2001) in the initial study groups and additionally in
118 patients with AN, 80 patients with BN, 88 patients with
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ADHD, and 96 normal weight controls. Genotype frequencies
did not differ from Hardy–Weinberg equilibrium. Association
studies revealed no significant differences in genotype or allele
distributions between extremely obese children and adoles-
cents and underweight controls, aswell as betweenAN,ADHD,
and normal weight students; all nominal P values were >0.2
(Table I).We detected a trend towards association for the�46T
allele in 80 patients with BN compared to 82 normal weight
controls (nominal P¼ 0.06 for the genotypes and nominal
P¼ 0.03 for the alleles). At the nominal significance level of 5%,
for the given sample sizes and the observed allele frequencies
in controls, our study had a power of 80% to detect a 10%
increase in M66 frequency between underweight controls and
obese children and adolescents; for the comparisons involving
normal weight controls the respective power was about 60%.
For c.�46C>T, we had a power of 80% to detect a twofold
increase in �46T allele frequency between underweight
controls and obese children and adolescents; for the compar-
isons involving normal weight controls the respective power
was about 40%.

DISCUSSION

We screened the translated main exon of BDNF for
mutations in a total of 370 German obese and underweight
individuals. Three variants were identified apart from the
previously known SNP p.V66M (rs6265): (i) we found the
previously detected non-conservative amino acid substitution
p.T2I [Weese-Mayer et al., 2002] in a single extremely obese
malewho inherited themutation fromhis obesemother.Amino
acid position 2 of isoform a is equivalent to position 10 in
isoform b and position 17 in isoform c of the BDNF pre-
proprotein. The threonin at this position is conserved between
all species, of which a sequence has been deposited into public
databases, including mouse, rat, pig, various bears, kangaroo,
chicken, carp, platy fish, and zebra fish [Weese-Mayer et al.,
2002]. It is unclear whether the I2 variant affects the mode of
action of the signal peptide. If it results in a loss of function, the
mutation could very well be relevant for obesity; the body
weights of the extremely obese carrier (BMI 40.4 kg/m2) of
the I2 variant and his overweight mother are in the expected
range as based on the phenotype of Bdnfþ/� mice that show a
significant weight increase in males (50%) and females (27%)
compared to wild type littermates. The weight of the index
mutation carrier has increased by approximately 50 kg in the
last 3 years after loss of 15 kg in an inpatient weight reduction
program. Initially, the p.T2I has been described in a dysphagic
patient affected byCCHSwith aBMIof 16 [Weese-Mayer et al.,
2002; Weese-Mayer, personal communication]. His heterozy-
gous father has a BMI of 26 and does not show symptoms of

CCHS, but of the associated autonomic nervous system
dysfunction [ANSD; Weese-Mayer et al., 2002; Weese-Mayer,
personal communication]. This is not readily compatiblewith a
putative role of I2 in the development of obesity. Nevertheless,
I2 could be involved in the etiology of obesity because being
affected with CCHS or ANSD could explain why obesity does
not ensue in these two heterozygotes. ANSD and CCHS are
severe syndromes accompanied by oesophageal dysmotility,
gastroesophageal reflux, and dysphagia. Until further func-
tional studies are carried out, it is unclear what effect the
mutation at I2 might have on the mode of action of the signal
peptide and how it may relate to the clinical condition of
obesity. (ii) The novel variant c.273G>A was detected once in
an extremely obese male. We assume that there is no major
effect because this mutation is silent. (iii) The 30UTR variant
c.*137A>G was detected in one underweight control (BMI
19.7 kg/m2), an influence on the mode of action of BDNF is
unlikely. (iv)We did not detect an association between obesity,
AN or ADHD and SNP p.V66M or c.�46C>T in the genomic
region of BDNF. For BN, we found a trend towards an asso-
ciation with�46T.We were not able to follow-up on this result
due to our limited number of BN cases and the trend needs to
be judged in the context of the multiple tests we performed.
Apart from a false positive result, two different mechanisms
could explain this finding: First, the c.�46C>T variant is in
linkage disequilibrium with a yet unknown variant or an
unknown susceptibility gene directly involved in the etiology
of BN. Alternatively, this variant itself entails an increased
risk that may result from an alteration in the translation
efficacy [Shintani et al., 1992]. No data are available as
to potential functional consequences of this variant. Our
results were not in linewithRibases et al. [2003], who reported
an association of the M66-allele with AN in a Spanish
sample. Some of our data on patients with AN or BN and
controls have been included in a recent meta-analysis pertain-
ing to the polymorphisms V66M and c.�46C>T. The meta-
analysis showed that theM66 variant is strongly associated to
all ED subtypes and that the�270C (�46T) BDNF variant has
an effect on BN and age at onset of weight loss [Ribases et al.,
2004].

In conclusion, our results do not suggest a large role of
genetic variation of BDNF in AN, BN, ADHD, or obesity;
possibly the I2 variant plays a role in obesity. To exclude
moderate effects of the two investigated polymorphisms larger
samples need to be assessed.
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in patients with NIDDM. Hence, genes involved in NIDDM might also be relevant for obesity. 
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of the GLUT4 by polymerase chain reaction with subsequent restriction fragment length 
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0.05). Hence, we did not detect association of any of the analyzed SNP alleles in the GLUT4 

to different weight extremes, so these seem not to be involved in weight regulation in our 
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ABSTRACT: The human insulin-responsive glucose transporter 4 gene (GLUT4)
has been related to non-insulin-dependent diabetes mellitus (NIDDM) in several

studies. Obesity is commonly found in patients with NIDDM. Hence, genes
involved in NIDDM might also be relevant for obesity. We have analyzed 212
extremely obese children and adolescents, 82 normal-weight students, and 94

underweight students for two single nucleotide polymorphisms (SNPs: pro-
moter –30G/A; exon 4a: silent 2061T/C) in the vicinity of the GLUT4 by
polymerase chain reaction with subsequent restriction fragment length poly-

morphism analyses (PCR-RFLP) or single-strand conformation polymorphism
analyses (SSCP). Allele and genotype distributions were similar in all study
groups (all p values > 0.05). Hence, we did not detect association of any of the

analyzed SNP alleles in the GLUT4 to different weight extremes, so these seem
not to be involved in weight regulation in our study groups.

KEYWORDS: GLUT4; weight regulation

INTRODUCTION

Obesity is a multifactorial disease that is influenced by both environmental and

genetic factors. Patients with non-insulin-dependent diabetes mellitus (NIDDM) are

often obese, so genes involved in NIDDM might also be relevant for obesity. The

human insulin-responsive glucose transporter 4 gene (GLUT4) has been analyzed in

several studies pertaining to NIDDM.1 Additionally, two recent genome-wide scans

for phenotypes related to diet and the metabolic syndrome identified a region on

chromosome 17p13 that harbors the GLUT4.2,3
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Additional evidence implicates GLUT4 in body weight regulation: GLUT4

knockout mice have greatly reduced fat depots.4 Female mice overexpressing

GLUT4 (transgenic) have increased adipose cell size and tissue weight.5 GLUT4

promoter activity is increased in obese compared to lean rats.6

MATERIALS AND METHODS

Study Subjects

Briefly, blood samples were collected7 from 212 extremely obese German

children and adolescents (mean BMI: 32.8 ± 6.41 kg/m2; mean age: 14 ± 2.48 years),

82 normal-weight students (mean BMI: 21.84 ± 1.05 kg/m2; mean age: 24.8 ± 2.62

years), and 94 underweight students (mean BMI: 18.51 ± 1.15 kg/m2; mean age:

25.35 ± 3.76 years). Sixty-seven percent of the obese children and adolescents had

an age- and gender-specific BMI ≥ 99th percentile, as previously determined in a

representative German population sample.8 The BMI of the underweight students

was below the 15th percentile and between the 40th and 60th percentile for the

normal-weight students.

Written informed consent was given by all participants and, in the case of minors,

their parents. This study was approved by the Ethics Committee of the University of

Marburg.

Molecular Analyses

We investigated two single nucleotide polymorphisms (SNPs) in the vicinity of

GLUT4: one SNP in the promoter region (−30G/A) and another one in exon 4a

(silent Asp-130).9–11

For the promoter (−30G/A) SNP, we performed standard polymerase chain reac-

tion (PCR) and subsequent restriction fragment length analysis (RFLP) with Bam

HI. PCR primers were as follows: 5′-GGGCTTCTCGCGTCTTTT-3′ (forward) and

5′-TGAAAGAACCGATCCTGGAG-3′ (reverse). The amplicon (189 bp) with the

A-allele was digested by Bam HI (124 bp/65 bp). PCR-RFLP products were run on

ethidium bromide–stained 2.5% agarose gels. Positive controls were run on each gel.

To detect the alleles of the SNP in exon 4a, standard nonisotopic single-strand

conformation polymorphism analysis (SSCP) (15% acrylamide gel run at 600 V for

2.5 h at ambient temperature and subsequent silver staining) was performed. Primers

were 5′-AAAGAGGAAGGGAGCCACTG-3′ (forward) and 5′-GTGCCCGTGAG-

TACCTGAGT-3′ (reverse). The amplified segment was 203 bp in length.

Statistics

Pearson’s χ2 test (asymptotic, two-sided) and Cochran-Armitage’s trend test

(exact, two-sided) were used to investigate for association.
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RESULTS

The genotype and allele distributions of both SNPs are given in TABLES 1 and 2.

The genotype frequencies were not different from Hardy-Weinberg equilibrium. No

significant differences in genotype and allele distributions were found between

extremely obese children and adolescents, underweight students, and normal-weight

students. All nominal p values were >0.2.

CONCLUSIONS

This study analyzed a possible association of body weight with two SNPs in the

insulin-stimulated GLUT4 in a German Caucasian population. We investigated a

total of 388 probands: 212 extremely obese children and adolescents, 94 underweight

students, and 82 normal-weight students.

We did not detect association of any of the analyzed SNP alleles in the vicinity of

GLUT4 to different weight categories. Hence, the analyzed polymorphisms are not

involved in weight regulation in our study groups. Our results do not exclude the

occurrence of relevant mutations in the GLUT4.

TABLE 1. Genotype and allele distributions of a single nucleotide polymorphism (–30G/

A) in the promoter region of GLUT4

Study group

Genotypes Alleles

GG (%) GA (%) AA (%) G (%) A (%)

Extremely obese children and 

adolescents (n = 212)

40 (18.9) 92 (43.4) 80 (37.7) 172 (40.6) 252 (59.4)

Underweight students (n = 94) 13 (13.8) 39 (41.5) 42 (44.7) 65 (34.6) 123 (65.4)

Normal-weight students

(n = 82)

15 (18.3) 32 (39.0) 35 (42.7) 62 (37.8) 102 (62.2)

NOTE: Genotype frequencies are not different from Hardy-Weinberg equilibrium.

TABLE 2. Genotype and allele distributions of a single nucleotide polymorphism

(silent Asp-130) in exon 4a of GLUT4 

Study group

Genotypes Alleles

TT (%) TC (%) CC (%) WT Mut

Extremely obese children and 

adolescents (n = 212)

24 (11.3) 99 (46.7) 89 (42.0) 147 (34.7) 277 (65.3)

Underweight students (n = 94) 7 (7.5) 49 (52.1) 38 (40.4) 63 (33.5) 125 (66.5)

Normal-weight students (n = 82) 11 (13.4) 35 (42.7) 36 (43.9) 57 (34.8) 107 (65.2)

NOTE: Genotype frequencies are not different from Hardy-Weinberg equilibrium.
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Friedel S, Reichwald K, Scherag A, Brumm H, Wermter AK, Fries HR, Koberwitz K, Wabitsch 

M, Meitinger T, Platzer M, Biebermann H, Hinney A, Hebebrand J. Mutation screen and 

association studies in the diacylglycerol O-acyltransferase homolog 2 gene (DGAT2), 

a positional candidate gene for early onset obesity on chromosome 11q13. BMC 

Genet. 2007;8:17. 

 

The aim of this study was to investigate the role of DGAT2 as a positional and functional 
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and adolescents and 94 healthy underweight controls. Association studies were performed in 

samples of up to 361 extremely obese children and adolescents and 445 healthy 

underweight and normal weight controls. Additionally, we tested for linkage and performed 

family based association studies at four common variants in the 165 families of our initial 

genome scan.  

The mutation screen revealed 15 DNA variants, four of which were non-synonymous 

(p.Val82Ala, p.Arg297Gln, p.Gly318Ser and p.Leu385Val) and ten variants were 

synonymous exchanges. Additionally, the small biallelic trinucleotide repeat rs3841596 was 

identified. None of the case control and family based association studies showed an 

association of investigated variants or haplotypes in the genomic region of DGAT2.  

In conclusion, our results do not support the hypothesis of an important role of common 

genetic variation in DGAT2 for the development of obesity in our sample. Anyhow, such an 

effect might be conferred by the less common variants or the detected, rare non-synonymous 

variants. 
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Abstract

Background: DGAT2 is a promising candidate gene for obesity because of its function as a key enzyme in fat metabolism and

because of its localization on chromosome 11q13, a linkage region for extreme early onset obesity detected in our sample.

We performed a mutation screen in 93 extremely obese children and adolescents and 94 healthy underweight controls.

Association studies were performed in samples of up to 361 extremely obese children and adolescents and 445 healthy

underweight and normal weight controls. Additionally, we tested for linkage and performed family based association studies at

four common variants in the 165 families of our initial genome scan.

Results: The mutation screen revealed 15 DNA variants, four of which were coding non-synonymous exchanges: p.Val82Ala,

p.Arg297Gln, p.Gly318Ser and p.Leu385Val. Ten variants were synonymous: c.-9447A > G, c.-584C > G, c.-140C > T, c.-30C

> T, IVS2-3C > G, c.812A > G, c.920T > C, IVS7+23C > T, IVS7+73C > T and *22C > T. Additionally, the small biallelic

trinucleotide repeat rs3841596 was identified. None of the case control and family based association studies showed an

association of investigated variants or haplotypes in the genomic region of DGAT2.

Conclusion: In conclusion, our results do not support the hypothesis of an important role of common genetic variation in

DGAT2 for the development of obesity in our sample. Anyhow, if there is an influence of genetic variation in DGAT2 on body

weight regulation, it might either be conferred by the less common variants (MAF < 0.1) or the detected, rare non-synonymous

variants.
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Background
Obesity has become a major public health problem in
industrialized countries and its prevalence is still increas-
ing worldwide [1]. Estimates from twin studies attribute
up to 80% of human body weight variation to genetic fac-
tors [2] and positional candidate gene analyses in linkage
peak regions identified in genome wide scans for obesity
have been suggested as a means to detect obesity associ-
ated genes [i.e. [3-7]]. Examples for positional candidate
gene association findings pertain to (a) SLC6A14 on chro-
mosome (chr.) Xq24 [3] which was confirmed by Durand
et al. [4] and (b) GAD2 on chr. 10p12 [5] which was con-
firmed by the same group [6]. In contrast, Swarbrick et al.
[7] found no evidence for a relationship between the three
GAD2 SNPs and obesity in a sample comprising 2,359
individuals.

A genome wide scan for obesity based on 89 German fam-
ilies, comprising extremely obese children and adoles-
cents and both of their parents and at least one obese sib,
identified nine regions with maximum likelihood bino-
mial logarithm of the odd (MLB LOD) scores > 0.7; in an
independent confirmation sample of 76 obesity families
MLB LOD scores of 0.68 and 0.71 were observed for chro-
mosomes 10p11.23 and 11q13, respectively [8].

The hypothesis of a susceptibility gene for obesity and
related phenotypes on chromosome 11q13 was addition-
ally supported by independent linkage studies for BMI
and obesity related phenotypes [9-12]. Further support
was obtained from chromosomal regions homologous to
human chromosome 11q13 in rodents in which quantita-
tive trait loci (QTL) for obesity related phenotypes such as
leptin level [13] and BMI [14] were identified. Taken
together, there is evidence for a candidate gene for obesity
in this chromosomal region.

In earlier studies, we investigated different promising can-
didate genes on chr.11q, but none of them contributed to
the linkage peak [15-17]. Diacylglycerol-O-acyltransferase
homolog 2 (DGAT2), another potential candidate gene, is
also located on chr. 11q13. DGAT2 is a key enzyme in fat
metabolism [18,19]. It is responsible for the synthesis of
triglycerides and catalyzes the reaction that joins diacylg-
lycerol covalently to long chain fatty acyl-CoAs. It was
hypothesized that leptin regulates adipocyte size by alter-
ing expression patterns of Diacylglycerol O-acyltrans-
ferase 1 (DGAT1) and its functional homolog DGAT2 via
the CNS to determine the levels of triglyceride synthesis
[20]. The deduced 387-amino acid human DGAT2 pro-
tein contains at least one transmembrane domain, three
potential N-linked glycosylation sites, six potential phos-
phorylation sites, and a putative glycerol phospholipid
domain found in acyltransferases [18]. Although func-
tionally related, DGAT2 shares no sequence homology

with the members of the DGAT1 family. The gene was
identified via homology search with fungal DGAT subse-
quent to the finding that Dgat1 knockout mice (Dgat1-/-)
were viable and still able to synthesize triglycerides
[18,19,21].

Dgat2 knockout mice (Dgat2-/-) are lipopenic, their total
carcass triglyceride content was reduced by 93% [22]. In
contrast to Dgat1-/- mice, where Dgat2 is able to compen-
sate the role of Dgat1 in triglyceride synthesis, Dgat1 was
unable to compensate for the absence of Dgat2 in Dgat2-/

- mice. Dgat2-/- mice die in the early postnatal period,
apparently from abnormalities in energy homeostasis and
from impaired permeability barrier function in the skin.
The results indicate that Dgat2 is the major enzyme of trig-
lyceride synthesis in mice [22].

Based on both positional as well as on functional argu-
ments, we hypothesized that genetic variations in DGAT2
might alter triglyceride synthesizing activity of the protein
in humans. Genetic variations leading to a gain of func-
tion of DGAT2 may thus be associated with obesity,
whereas variations entailing a reduced function could be
relevant in underweight.

Results
Gene structure

To include all potentially relevant exons of DGAT2, its
structure was analyzed both in silico and experimentally.
Visual inspection of ESTs assembled to the DGAT2 locus
in the UCSC genome browser identified two ESTs
(BF979495, BF979677) which seemed to harbour alterna-
tive/additional exons. The sequences of both ESTs overlap
by 200 bp and form a transcript of 1,238 bp. Alignment of
this mRNA to genomic DNA revealed the presence of an
alternative first noncoding exon of human DGAT2, while
exons2–8 are as defined by AB048286 (suppl. table 1).
Sequencing of EST BF979677 revealed the presence of an
alternative internal exon which is located between exon1
and exon2 as defined in AB048286. Furthermore, by RT-
PCR in human adipocyte mRNA, a transcript was identi-
fied that comprised 7exons in which exon1 and exons3–8
are as defined by AB048286 while exon 2 is missing. In
sum, three alternatively spliced transcripts of the human
DGAT2 gene were identified. Including the two previously
reported mRNAs (AB048286, ENST00000228027) there
are at least five different mRNAs transcribed from this
locus [see additional file 1].

Mutation screen

Screening was performed in the coding region, the pre-
dicted promoter region and in the identified non-coding
5' exon. The mutation screen in ten fragments comprised
3,079 bps and revealed 15 (14 novel) DNA variants, four
of which are coding non-synonymous exchanges:
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p.Val82Ala, p.Arg297Gln, p.Gly318Ser and p.Leu385Val
whereas ten variants are synonymous c.-9447A > G, c.-
584C > G, c.-140C > T, c.-30C > T, IVS2–3C > G, c.812A >
G, c.920T > C, IVS7+23C > T, IVS7+73C > T and *22C > T
(see also table 1). Additionally, a small known biallelic
trinucleotide repeat (IVS7+164(TAG)2–3 = rs3841596)
located in intron 7 was identified.

Case control association studies

Minor allele frequencies (MAF) of the variants were esti-
mated in sample 1. Most of the variants were rare and it
was thus decided to genotype only the more frequent var-
iations rs3841596, rs1017713 and rs3060 in sample 2.
Variant -140C > T, located 5' to the translation start, was
genotyped in sample 3 which includes sample 2 but is
larger and therefore has an improved power (see table 1).
Given the sample sizes, the study had a statistical power of
more than 80% to detect allelic differences between the
respective case and control groups of e.g. 0.17 and 0.1 in
MAFs. Genotype distribution in all study samples did not
differ from Hardy-Weinberg equilibrium. No significant
differences in genotype or allele distributions were found
in samples 2 and 3, all nominal p-values were >> 0.05 (see
table 1).

Family based association studies

To investigate the contribution of DGAT2 polymorphisms
to the linkage peak on chromosome 11q13 [8] SNPs -
9447A > G and -140C > T, as well as two additional

known variants (rs1017713 (IVS1+212T > C) and rs3060
(*19T > C)) were genotyped in the families contributing
to the genome scan peak (sample 4). Neither single
marker family based association analyses (PDT) in all 165
families nor in the 48 families contributing to the linkage
peak on 11q13, revealed significant evidence for allelic
associations (all p-values > > 0.05). Consistent with this
finding, subsequent haplotype analyses using FAMHAP
did not indicate an associated haplotype (best nominal p-
value 0.5 with the zhaomax allcombi option).

Discussion
The linkage scan in 89 families revealed the highest LOD
at D11S1313. Subsequent fine-mapping in 76 independ-
ent families revealed a combined peak region at position
67.8 – 69.1 Mb (approximately 68.55 - 68.01 cM, UCSC,
hg16) between D11S1337 and D11S4095 [, unpublished
data]. DGAT2 is located at 75 Mb and thus close to this
peak region. In light of the small sample size, which leads
to considerable stochastic variation in the location esti-
mate of linkage peaks [23] and combined with its impor-
tant role in fat metabolism DGAT2 is a very plausible
positional and functional candidate gene for obesity in
our sample.

A mutation screen in the coding region of the gene, the
predicted promoter sequence and a 5' non-coding exon
(altogether 3,079 bp) revealed 15 genetic variants, 14 of
which were novel. Twelve of the variants were rare (MAF

Table 1: Summary of DGAT2 variants detected in the coding region, the predicted promoter region and a 5'non-coding exon: 15 (14 

novel) identified and 2 previously described (rs1017713 and rs3060), minor allele frequency among all successfully genotyped 

individuals and results of the case control association studies with cases (extremely obese children and adolescents) and controls 

(normal- or underweight healthy individuals)

variant region Study group1 minor allele frequency n (%) p-value2

cases controls

g.-9447 A > G exon 01 2 29 (8.06) 33 (8.82) 0.79

c.-584C > G promoter 1 0 (0) 1 (0.53) nd.

c.-140C > T 5'UTR/exon 1 3 2 (0.28) 9 (1.01) 0.13

c.-30C > T 5'UTR/exon 1 1 0 (0) 2 (1.06) nd.

c.475T > C p.Val82Ala exon 2 1 1 (0.54) 0 (0) nd.

g.IVS1+212T > C rs1017713 exon 2 2 25 (7.65) 26 (7.06) 0.77

g.IVS2-3C > G intron 2 1 0 (0) 1 (0.53) nd.

c.812A > G p.Thr194Thr exon 5 1 1 (0.54) 0 (0) nd.

c.920T > C p.Ser230Ser exon 6 1 1 (0.54) 0 (0) nd.

c.1020G > A p.Arg297Gln exon 7 1 0 (0) 2 (1.06) nd.

c.1492G > A p.Gly318Ser exon 7 1 0 (0) 2 (1.06) nd.

g.IVS7+23C > T intron 7 1 1 (0.54) 0 (0) nd.

g.IVS7+73C > T intron 7 1 2 (1.08) 0 (0) nd.

g.IVS7+164(TAG)
2–3

rs3841596 intron 7 2 24 (6.67) 28 (7.61) 0.67

c.1383C > G p.Leu385Val exon 8 1 0 (0) 1 (0.53) nd.

g.*19T > C rs3060 3'UTR/exon 8 2 27 (7.50) 27 (7.76) 1

g.*22C > T 3'UTR/exon 8 1 1 (0.54) 0 (0) nd.

Hardy Weinberg equilibrium was fulfilled (all exact p > > 0.20). 1for descriptions of study groups see Methods; 2Fisher's exact test, two-sided.
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= 1%) and would thus have a too low statistical power to
allow for a comparison in a case control association anal-
ysis. Nonetheless, these rare variants might have an
impact on the phenotype. Four coding non-synonymous
variants were detected: p.Val82Ala occurred once in an
extremely obese male, whereas p.Arg297Gln, p.Gly318Ser
and p.Leu385Val were detected in underweight controls.
[1] The conservative amino acid (aa) exchange p.Val82Ala
is located in a predicted transmembrane domain of the
DGAT2 protein [18]. This position is situated within an
area highly conserved among the selected species with
Val82 being unchanged for more than 1 billion years of
evolution. While this non-synonymous variant seemingly
does not affect the predicted transmembrane domain (aa
73 to aa 95), altered function may be the consequence as
already postulated for other genes [24]. Moreover, for the
very same aa substitution positioned within a transmem-
brane domain (TM) an inactivating variant in TM2 of the
monocarboxylate transporter 8 [25] as well as an activat-
ing variant in TM1 of the lutropin receptor [26] had been
described. Therefore although Val82Ala is a conservative
exchange it has been shown that a Valin to Alanin substi-
tution is able to materially affect membrane protein func-
tions in both an activating as well as in an inactivating
manner. Hence, assuming that a gain of function might
well lead to obesity, it is reasonable to consider the Valin
to Alanin substitution in DGAT2 as a potential cause for
the patient's remarkably increased BMI (see table 2). [2]
Arg297Gln is a non conservative amino acid exchange. In
contrast to arginine, glutamine has an amide-side group
that is able to form hydrogen bonds, which might influ-
ence protein structure. However, positioned in a region of
little evolutionary conservation characterised by a differ-
ence in amino acid sequence length between mammals
and plants and a non-conservative amino acid exchange
between these kingdoms (basic polar arginine in mam-
mals vs. neutral unpolar methionine in plants) an
exchange of the wt arginine vs. also polar but neutral
glutamine does not suggest a functional consequence of
this substitution. [3] The substitution of glycine to serine
at position 318 is also non-conservative. During evolution
persisted at this position a neutral unpolar amino acid;
therefore an exchange by polar serine may be functionally
relevant. However, several amino acids flanking position
318 show little conservation; therefore the patient's
remarkably low BMI as consequence of this amino acid
substitution seems rather speculative. [4] The exchange of
leucine to valine at position 385 is conservative. The non
reactive aliphatic side chains of leucine and valine that are
important for hydrophobic bonds within the protein are
not affected. Functional studies of these variants in
DGAT2 have to be performed to clarify the effect of the
detected variants on body weight regulation.

There is no indication that the rare synonymous variants
might have an effect on body weight regulation. Variant
c.-584C > G in the putative promoter region is located in
a potential binding site for the transcription factor ARP-1
(COUP-TF II), which might participate in regulation of
lipid metabolism and cholesterol synthesis [27] and is
assumed to negatively influence PPARα gene transcrip-
tion [28]. Two variants were detected in untranslated
regions (-30C > T in the 5'UTR and *22C > T in the
3'UTR). These variants may influence mRNA stability, but
as they are rare, we assumed that they have no major effect
on common obesity under a "common disease common
variant"-perspective given that the estimated MAF of each
variant was 1/186 = 0.54% (95% confidence interval
0.014%...2.96%). The intronic variants IVS2–3C > G,
IVS7+23C > T and IVS7+73C > T are also rare and neither
affect any consensus splice site nor do they introduce cryp-
tic splice sites. None of the case control and family based
association studies showed an association of investigated
variants or haplotypes in the genomic region of DGAT2.

Starting off with a mutation screen of the coding sequence
and the 5'flanking region we were investigating both case
control samples and independent samples with families
contributing to a linkage peak. However, due to insuffi-
cient statistical power to explore the less common variants
(MAF < 0.1), our study design only allows evaluation of
common variants.

In conclusion, our results do not support the hypothesis
of an important role of common genetic variation in
DGAT2 for the development of obesity in our sample.
One may thus speculate that if there is an influence of
genetic variation in DGAT2 on body weight regulation, it
might either be the less common synonymous or non-
coding variants that play an important role.

Methods
Study subjects

The ascertainment strategy for the extremely obese and
underweight study groups was previously described in
detail [29]. Briefly, extremely obese German index
patients were ascertained at German hospitals specialized
in inpatient treatment of extreme obesity in children and
adolescents. All index patients had an age- and gender-
specific BMI ≥90th percentile as previously determined in
a representative German population sample [30]. The
BMIs of the underweight students were below the 15th
percentile whereas normal weight controls had BMIs
between the 40th and the 60th age- and gender-specific per-
centile. Mean BMI and age and the respective standard
deviations are provided below. Written informed consent
was given by all participants and, in the case of minors,
their parents. This study was approved by the Ethics Com-
mittee of the University of Marburg.
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The coding exons of DGAT2, the predicted promoter
region and an additionall non-coding 5' exon were
screened in a 'screening sample' (sample 1) comprising 93
extremely obese children and adolescent cases (48.4 %
females, mean BMI 34.4 ± 5.0 kg/m2; mean age 14.1 ± 2.0
yrs) and 94 healthy underweight controls (36.2 %
females, mean BMI 18.5 ± 1.2 kg/m2; mean age 25.5 ± 4.0
yrs). Identified sequence variants were genotyped in sam-
ple 2, comprising both the initial groups (sample 1) and
additional 87 cases (51.7 % females, mean BMI 36.9 ± 7.0
kg/m2; mean age 14.6 ± 2.8 yrs) as well as 93 healthy
underweight controls (52.7 % females, mean BMI 18.3 ±
1.0 kg/m2; mean age 25.7 ± 3.8 yrs). Finally, in order to
increase the power to detect association for one variant (-
140C > T), sample 2 was further extended (sample 3).
Sample 3 comprised a total of 361 extremely obese cases
(53.2 % females, mean BMI 34.7 ± 6.3 kg/m2; mean age
14.4 ± 2.6 yrs) and a total of 445 control subjects compris-
ing 278 underweight students (50.7 % females, mean BMI
18.2 ± 1.1 kg/m2; mean age 25.0 ± 3.7 yrs) and 167 nor-
mal weight controls (60.5 % females, mean BMI 21.8 ±
1.1 kg/m2; mean age 24.6 ± 2.4 yrs).

To investigate the potential genetic effects of variants in
DGAT2 on body weight regulation; SNPs rs1017713,
rs3060, -9447A > G and -140C > T were genotyped in a
family based association analysis, the respective markers
were also genotyped in the 165 genome scan families
(sample 4) described previously [8] to test for linkage.
Sample 4 is independent of samples 1–3. The aim of our
study was the investigation of associations of common
DGAT2 variants with extreme early-onset obesity.

Promoter prediction and evaluation of gene structure

Promoter sequence was predicted by PromoterInspector,
Mammalian Promoter Prediction Software from Genom-
atix, [31]. Analyses were based on human genome assem-
blies hg15 and hg16 [32] and the corresponding
ENSEMBL genome browser [33]. cDNA clone sequences
of Unigene cluster Hs.334305 representative for the
human DGAT2 gene were downloaded from NCBI [34]
and assembled using GAP4 [35]. DGAT2 transcripts were
aligned to human genomic sequence using Sim4 [36].
Two known human mRNAs mapped to the DGAT2 locus
in genome assemblies hg15 and hg16. One of these,
AB048286 (2,439 bp) formed the basis for RefSeq entry
NM_032564, the annotation status of which was provi-
sional. The second mRNA AL834287 (2,347 bp) was 92
bp shorter at its 5'end than AB048286. Nonetheless, both
transcripts harbour 8 exons; and as defined by AB048286,
the human DGAT2 at chr. 11q13.5 covers 32,766 bp with
a coding region (CDS) of 1167 bp extending from exon1
to exon8. In the corresponding Ensembl genome browser
[33] there were also two transcripts assigned to the DGAT2
locus (ENST00000289503, 1,545 bp;
ENST00000228027, 2,238 bp). The former entry har-
boured 8 exons as found in AB048286 while the latter
contained only 7 exons, i.e. exon5 was missing which
indicated the presence of at least one alternatively spliced
DGAT2 transcript.

Sequencing

Human cDNA clone BF979958 was obtained from RZPD
[37] and cultured by standard methods [38]. Sequencing
was performed using vector primers and BigDye Termina-

Table 2: Phenotypic characteristics (gender, age, BMI, BMI-SDS) of heterozygous carriers of infrequent variants detected in the 

genomic region of DGAT2

Mutation Gender Age [years] BMI [kg/m2] BMI-SDS*

p.V82A male 12 29.30 3.6

p.R297Q female 26 16.9 -1.3

female 23 17.0 -1.6

p.G318S male 25 19.6 -1.2

male 20 17.9 -1.9

p.L385V male 23 20.4 -0.9

c.812A > G (T194T) female 12 31.4 4.6

c.920T > C (S230S) male 13 31.5 3.7

-584C > G female 34 18.4 -1.3

-30C > T male 24 19.6 -1.4

IVS2–3C > G male 27 19.5 -1.5

IVS7+23C > T female 14 35.9 5.4

female 16 33.8 5.2

IVS7+73C > T male 12 29.3 3.3

*22C > T male 21 33.8 4.7

All individuals are heterozygous carries of these variants. * Estimates based on Hebebrand et al., 1996 (53)
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tor Cycle Sequencing v2.0 kit (Applied Biosystems, Weit-
erstadt, Germany). Sequencing reactions were
electrophoresed on ABI 3700 automated sequencers. Base
calling was performed using phred [39,40]. Sequence
assembly was done using phrap [41]. Trace files were
inspected visually in GAP4. RT-PCR: Primers located in
exons 1 and 8 of DGAT2 as defined by reference sequence
NM_032564 were used in a nested PCR approach (PCR I:
1F [ACCCTCATAGCCGCCTACTC], 1R [AGGTTAGCT-
GAGCCACCCAG]; PCR II: 2F [CTCAT-
AGCCGCCTACTCC], 2R
[CTAGAACAGGGCAAGCTGGA]) on human multiple tis-
sue cDNA (Clontech, Heidelberg, Germany) or adipocyte
mRNA [42]. Omniscript RT Kit (QIAGEN, Hilden, Ger-
many) was used for reverse transcription. PCR products
were cloned into pCR2.1-TOPO (Invitrogen, Karlsruhe,
Germany). Sequencing of recombinant clones, sequence
assembly, trace file inspection and alignment to genomic
sequence was done as described above.

Mutation screen

A mutation screen was performed in the 8 coding exons of
human DGAT2 and also in the predicted promoter region
and a non-coding 5' exon. For PCR amplification, primers
corresponding to intron sequences were used in order to
detect potential splice site variants [for PCR primers see
additional file 2]. Mutation screens of exon 6 and 8 were
performed using denaturing high performance liquid
chromatography (dHPLC) analysis on a Transgenomic
WAVE® system [Transgenomic, Cheshire, UK; ]. The opti-
mal melting temperatures for separation of homo- and
heteroduplices were deduced from the melting tempera-
ture of the PCR-amplicon using WAVEmaker software,
version 4.0 (Transgenomic, Cheshire, UK). All chromato-
grams were compared with chromatograms of sequenced
wild-type samples. PCR amplicons showing a peak
appearance different to the wild-type pattern were
sequenced (SeqLab, Göttingen, Germany). To detect
mutations in exons 1–5, 7, the promoter region and the
non-coding 5' exon standard nonisotopic single-strand
conformation polymorphism analyses (SSCP) was per-
formed [44]. 15% acrylamide gels (Q-BIOgene, Heidel-
berg, Germany; 37.5:1) were run at 600 V for 16 h at 4°C
and for 5.5 h at ambient temperature; all gels were silver
stained. The sensitivity of dHPLC has been described to be
approximately 95% [45] and that of SSCP about 97%
when using two temperatures [46]. All SSCP patterns were
compared with patterns of sequenced wild-type samples.
Samples that showed a pattern different from that of the
wild-types were re-sequenced (Seq Lab, Göttingen, Ger-
many). The nomenclature of the described variants fol-
lows den Dunnen and Antonarakis [47] and NM_032564.

Genotyping

High-throughput genotyping for two additional intronic
SNPs (rs1017713, rs3060,) as well as for variants -9447A
> G and -140C > T entering the family based association
studies was performed as described earlier [48] using
matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry (MALDI-TOF MS). For case control
association studies, genotyping of SNPs -9447A > G and
c.920T > C was perfomed via tetra-ARMS-PCR [49] [see
additional file 3]. For all other SNPs [see additional file 3],
PCR with subsequent diagnostic restriction fragment
length polymorphism analyses (RFLP) was used. PCR
products were run on ethidium bromide-stained 2.5%
agarose gels. Positive controls for the variant alleles and a
negative control (water) were run on each gel. To validate
the genotypes, allele determinations were rated independ-
ently by at least two experienced individuals. Discrepan-
cies were resolved unambiguously either by reaching
consensus or by retyping. Missings were retyped twice.
Genotyping success rate was above 99%. Genotyping of
rs3841596, a biallelic trinucleotide repeat was carried out
using fluorescence-based semi-automated technique on
an automated DNA sequencing machine (LiCor 4200-2;
MWG-Biotech, Ebersberg, FRG). Analyses and assignment
of the marker alleles were done with ONE-Dscan Version
1.3 software (MWG-Biotech).

In silico evaluation of non-synonymous variants

To gain information about putative functional relevance
of an amino acid substitution, public sequence database
[34] was mined for full length mammalian and more dis-
tant related DGAT2 orthologs where particular attention
was given to species surpassing oil production. These data
were utilized to determine the evolutionary conservation
of the DGAT2 amino acid sequence. Protein sequence
alignment was carried out via Omiga (Oxford Molecular
Ltd.). Transmembrane domains were predicted in silico
[50].

Statistics

Associations in the case control sample were analyzed by
Cochran-Armitage trend test for genotype frequencies and
Fisher's exact test for alleles. Family based association
analyses were performed using the pedigree transmission
disequilibrium test [PDT; ]. Analyses of linkage disequi-
librium (LD) between the investigated polymorphisms as
well as haplotype associations in the families were inves-
tigated by FAMHAP v16 [e.g. ]. All reported p-values are
nominal. Due to lack of p-values < 0.05 (see below),
adjustment for multiple testing was considered unneces-
sary.
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SNP: single nucleotide polymorphism

TM: transmembrane domain
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UTR: untranslated region
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Reinehr T, Hebebrand J, Friedel S, Toschke AM, Brumm H, Biebermann H, Hinney A. 

Lifestyle intervention in obese children with variations in the melanocortin 4 receptor 

gene. Obesity (Silver Spring). 2009;17(2):382-9. 

 

Since information on weight changes after lifestyle intervention in children with mutations in 

the melanocortin 4 receptor gene (MC4R) is scarce, we compared weight changes after 

lifestyle intervention between children with and without MC4R mutations.  

514 overweight children, who presented to participate in a one-year lifestyle intervention 

based on exercise, behaviour and nutrition therapy were screened for MC4R mutations. For 

comparison, children with MC4R mutations leading to reduced receptor function were each 

randomly matched with 5 children of same age and gender without MC4R mutations. 

Changes of weight status were analyzed as change of body mass index standard deviation 

scores (BMI-SDS). Sixteen children (3.1%) harboured MC4R mutations leading to reduced 

receptor function and 17 (3.3%) children carried variations not leading to reduced receptor 

function. Children with and without MC4R mutations reduced their overweight at the end of 

intervention to a similar degree (p=0.318 between groups based on an intention-to-treat 

analysis). The maintenance of weight loss after intervention among children with MC4R 

mutations leading to reduced receptor function failed in contrast to children without such 

mutations (p<0.001 adjusted for BMI-SDS at baseline, age, and gender in an intention-to-

treat analysis). In conclusion, children with MC4R mutations leading to reduced receptor 

function were able to lose weight in a lifestyle intervention but had much greater difficulties to 

maintain this weight loss supporting the impact of these mutations on weight status. 

 

 

Own contribution: 

- MC4R mutation screen 

- in silico validation of functional relevance of detected mutations 

- ascertainment of probands (in coop. with Reinehr T) 
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INTRODUCTION

Obesity has been recognized by the World Health Organization 
as one of the major global health problems, and its increasing 
prevalence calls for knowledge of the genetic factors inluenc-
ing body weight regulation. Studies in mice and humans have 
pointed out the critical importance of the central melano-
cortinergic pathway in the control of energy homeostasis, 
in particular, the pivotal role of the melanocortin 4 receptor 
(MC4R) (1). Previous studies in humans have shown that the 
prevalence of functionally relevant MC4R mutations ranges 
from 0.5 to 5.8% in obese children and adolescents ascertained 
for molecular genetic studies (2–8). Most importantly, little is 
known about the impact of these mutations on the efect of a 
lifestyle intervention program. We hypothesized that children 
with MC4R mutations leading to reduced receptor function 
lose less weight than those without the mutations.

More than 90 diferent obesity-associated mutations in the 
MC4R, most of which are nonsynonymous mutations lead-
ing to either total or partial loss of function, have so far been 
reported (9,10). he phenotype of carriers with mutations 

leading to a reduced receptor function considerably varies in 
their efect on body weight (4,10–12). hese mutations within 
the coding region are assumed to have a major efect on body 
weight averaging ~4.5 kg/m2 and 9 kg/m2 in adult males and 
females, respectively (13). Interestingly, two nonsynonymous 
polymorphisms, Val103Ile and Ile251Leu, which occur in 1–3%  
of the examined populations, respectively, are both associated 
with a slightly decreased BMI (14–18).

One of the studies of children with MC4R mutations lead-
ing to a reduced receptor function resulted in the deinition 
of a “MC4R syndrome” which is characterized by early onset 
obesity, increased linear growth, body fat and fat free mass, 
increased bone mineral density as well as hyperphagia and 
hyperinsulinemia (5,11). However, several studies could not 
replicate these indings (4,12,19). herefore, alterations of 
growth and hormone proile are controversially discussed.

he primary aim of this study was to compare the long-term 
degree of weight change between MC4R mutation carriers 
and noncarriers participating in a 1-year lifestyle interven-
tion 1 year ater end of intervention. Secondary aims included 

Lifestyle Intervention in Obese Children With 
Variations in the Melanocortin 4 Receptor Gene
Thomas Reinehr1, Johannes Hebebrand2, Susann Friedel2, André M. Toschke3, Harald Brumm4,  

Heike Biebermann4 and Anke Hinney2

Because information on weight changes after lifestyle intervention in children with mutations in the melanocortin 

4 receptor (MC4R) gene is scarce, we compared weight changes after lifestyle intervention between children with 

and without MC4R variations. A group of 514 overweight children (aged 5–16 years), who presented to participate in 

a 1-year lifestyle intervention based on exercise, behavior, and nutrition therapy were screened for MC4R mutations. 

For comparison, children with MC4R mutations leading to reduced receptor function (group A) were each of them 

randomly matched with five children of same age and gender without MC4R mutations (group B). Changes of weight 

status were analyzed as change of BMI standard deviation scores (BMI-SDSs). Furthermore, 16 children (3.1%) 

harbored MC4R mutations leading to reduced receptor function, and 17 (3.3%) children carried variations not leading 

to reduced receptor function. Children with and without MC4R mutations reduced their overweight at the end of 

intervention to a similar degree (P = 0.318 between groups based on an intention-to-treat analysis). The maintenance 

of weight loss after intervention among children with MC4R mutations leading to reduced receptor function failed 

in contrast to children without such mutations (P < 0.001 adjusted for BMI-SDS at baseline, age, and gender in an 

intention-to-treat analysis). In conclusion, children with MC4R mutations leading to reduced receptor function were 

able to lose weight in a lifestyle intervention but had much greater difficulties to maintain this weight loss supporting 

the impact of these mutations on weight status.

Obesity (2008) 17, 382–389. doi:10.1038/oby.2008.422

1Department of Pediatric Nutrition Medicine, Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Datteln, Germany;  
2Department of Child and Adolescent Psychiatry, University of Duisburg-Essen, Duisburg-Essen, Germany; 3Division of Health and Social Care Research,  
King’s College London, London, UK; 4Institute for Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany.  
Correspondence: Thomas Reinehr (T.Reinehr@kinderklinik-datteln.de)

Received 23 January 2008; accepted 14 July 2008; published online 6 November 2008. doi:10.1038/oby.2008.422

http://www.nature.com/doifinder/10.1038/oby.2008.422
http://www.nature.com/doifinder/10.1038/oby.2008.422
mailto:T.Reinehr@kinderklinik-datteln.de


OBESITY | VOLUME 17 NUMBER 2 | FEBRUARY 2009 383

ARTICLES

METHODS AND TECHNIQUES

to explore the weight change at end of intervention and the 
anthropometrics, cardiovascular risk factors, and hormone 
proiles at baseline by individuals harboring and not harboring 
a MC4R mutation.

METHODS AND PROCEDURES
he local ethics committees of the Universities of Witten/Herdecke 
and of Duisburg-Essen approved this study. Written informed consent 
was obtained from all subjects and corresponding parents. he study 
was conducted in accordance with the guidelines of the Declaration of 
Helsinki.

We examined all 514 overweight children aged 5–16 years (mean 
age 10.7 ± 2.7 years, 44% male; median BMI 27.1 interquartile range 
24.4–29.8 kg/m2; median BMI-SDS 2.37 interquartile range 2.06–2.77) 
consecutively presenting to our outpatient obesity clinic to attend the 
1-year outpatient lifestyle intervention program “Obeldicks” in the years 
2001–2004. None of the children were on any medications or sufered 
from endocrine disorders including type 2 diabetes mellitus, familial 
hyperlipidemia, or syndromal disorders.

Body height was measured to the nearest centimeter using a rigid sta-
diometer. Weight was measured in underwear to the nearest 0.1 kg using 
a calibrated balance scale. he degree of overweight was quantiied using 
Cole’s least mean square method, which normalizes the BMI skewed 
distribution in childhood and expressed BMI as a standard deviation 
score (BMI-SDS) (20). German population–based reference data were 
used for height, weight, and BMI (21). Overweight was deined according 
to the International Obesity Task Force (22).

he blood pressure was measured according to the guidelines of the 
National High Blood Pressure Education Program (23). Systolic and 
diastolic blood pressure were measured twice at the right arm ater a 
10-min rest in the supine position using a calibrated sphygmomanometer 
and aterwards averaged.

he pubertal stage was determined according to Marshall and  Tanner. 
he triceps and subscapularis skinfold thickness was measured in dupli-
cate using a caliper and averaged to calculate the percentage of body fat 
using a skinfold thickness equation with the following formulas (24): 
boys: body fat % = 0.783 × (subscapularis skinfold thickness + triceps 
skinfold thickness in mm) + 1.6; girls: body fat % = 0.546 × (subscapularis 
skinfold thickness + triceps skinfold thickness in mm) + 9.7.

Fasting serum insulin, leptin, glucose, glycated hemoglobin, uric acid, 
triglyceride, total cholesterol, low-density lipoprotein cholesterol, high-
density lipoprotein cholesterol, thyroid stimulating hormone, free T3, free 
T4, luteinizing hormone, follicle stimulating hormone, cortisol, total tes-
tosterone, dehydroepiandrosterone-sulfate, insulin like growth factor-I, 

and insulin like growth factor binding protein-3 concentrations were 
measured. An oral glucose-tolerance test was performed in all children 
≥12 years. he children had been carefully instructed to fast over a period 
of at least 10 h. Serum hormone concentrations were determined by high-
speciic chemiluminescence immunoassays (Cortisol Immulite DPC Los 
Angeles, thyroid stimulating hormone Immulite DPC Los Angeles, free 
T3 Immulite DPC Los Angeles, free T4 Immulite DPC Los Angeles, Lep-
tin DRG, Marburg, testosterone ADVIA, dehydroepiandrosterone-sulfate 
Immulite DPC Los Angeles, luteinizing hormone Immulite DPC Los 
Angeles, follicle stimulating hormone Immulite DPC Los Angeles, insulin 
like growth factor-I Immulite DPC Los Angeles, insulin like growth fac-
tor binding protein-3 Immulite DPC Los Angeles, and insulin Abbott). 
Intra- and inter-assay variations were <10% in all assays. Leptin was 
transformed into SDS (leptin-SDS) according to gender, pubertal stage, 
and degree of overweight (25). Serum fasting triglycerides, total choles-
terol, high-density lipoprotein and low-density lipoprotein cholesterol, 
transaminases, uric acid, glycated hemoglobin, and glucose concentra-
tions were determined by commercially available test kits (Roche Diag-
nostics, Mannheim, Germany; Boehringer, Mannheim, Germany; Ortho 
Clinical Diagnostics, Neckargemuend, Germany). Intra- and inter-assay 
variations of these variables were <5%. Homeostasis model assessment 
was used to detect the degree of insulin resistance (26): resistance (home-
ostasis model assessment) = (insulin (mU/l) × glucose (mmol/l))/22.5.

Genetic analyses
he complete coding region of MC4R was screened for mutations 
by dHPLC as described previously (6). We performed in silico analy-
ses for nonsynonymous mutations by PolyPhen (http://genetics.bwh. 
harvard.edu/pph/index.html); for synonymous, nonsense, and frame-
shit mutations these analyses were impossible as PolyPhen analyses 
only nonsynonymous mutations. However, it can be assumed that 
nonsense and frameshit mutations are not compatible with a normal 
receptor function, so that these mutations can all be classiied as leading 
to a “loss-of-function.”

Functional characterization of MC4R mutations
All investigated novel mutant MC4Rs of this study and the wild-type 
(WT) MC4R were cloned in a pcDps expression vector. For func-
tional studies mutant and WT receptors were transiently transfected 
into COS-7 cells using Metafectene (Biontex, Munich, Germany) 
according to the manufactures protocol. Ater 48 h, cyclic adenosine 
monophsphate accumulation assays were determined by a nonradioac-
tive cyclic adenosine monophosphate assay based on the AlphaScreen 
technology (Perkin Elmer Life Science, Boston, MA). To investigate 
agonist independent cell surface expression WT and mutants receptors 
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Figure 1 Structure of the lifestyle intervention “Obeldicks.”
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were N-terminally HA-tagged and cell  surface ELISAs were performed. 
Cells were transfected in 48-well plates. hree days later cells were 
washed, ixated, and probed with anti-HA-biotin antibody (Roche, 
Grenzach-Wyhlen, Germany). Bound anti-HA antibody was detected 
by peroxidase-labeled streptavidin (Dianova, Hamburg, Germany).

Lifestyle intervention
To participate in the intervention program “Obeldicks,” the overweight 
children had to prove their motivation by illing out a questionnaire 
concerning their eating and exercise habits and by attending exercise 
groups for overweight children regularly for at least 8 weeks (27). Only 
children who had illed out the questionnaires and who had partici-
pated in the exercise groups were included in the “Obeldicks” lifestyle 
intervention program.

he intervention program “Obeldicks” has been described in detail 
elsewhere (28,29). he intervention program “Obeldicks” was based on 
physical exercise, nutrition education, and behavior therapy including 
the individual psychological care of the child and his/her family. An 
interdisciplinary team of pediatricians, diet assistants, psychologists, and 
exercise physiologists was responsible for the training. he children were 
divided into groups according to their sex and age. he 1-year training 
program was divided into three phases (see Figure 1): In the intensive 
phase (3 months), the children took part in the nutritional course and in 
the eating behavior course in six group sessions, each lasting for 1.5 h. At 
the same time, the parents were invited to attend six parents’ evenings. 
In the establishing phase (6 months), individual psychological family 
therapy was provided (30 min/month). In the last phase of the program 
(accompanying the families back to their everyday lives) (3 months), 
further individual care was possible, if and when necessary. he exercise 
therapy took place once a week during the whole year and consisted of 
ball games, jogging, trampoline jumping, and instructions in physical 
exercise as part of everyday life and in reduction of the amount of time 
spent watching television. he nutritional course was based on the pre-
vention concept of the “Optimized mixed diet.” Here, the present scien-
tiic recommendations were translated into food-based dietary guidelines 
also considering the dietary habits of children and families in Germany 
(28–30). In contrast to the present-day diet of children in Germany with 
a fat content of 38% of energy intake (E%), 13 E% proteins, and 49 E% 
carbohydrates including 14 E% sugar (31), the “Optimized mixed diet” 
was both fat and sugar reduced and contained 30 E% fat, 15 E% proteins, 
and 55 E% carbohydrates including 5 E% sugar. he children followed 
a “traic-light system” (30) when selecting their food. In this system, 
the foods and drinks available in Germany were separated according 
to their fat and sugar contents into “red = stop,” “orange = consider the 
amount,” and “green = o.k. when hungry or thirsty.” he traic light sys-
tem has been described in detail elsewhere (28–30). hree-day weighed 
dietary records demonstrated a reduction of the mean energy content of 
1,459 kcal (s.d. 379) per day before intervention to a median of 1,250 kcal 
(s.d. 299) per day at the end of intervention and a reduction of E% fat 
from 36.3 (s.d. 5.0) to 30.4% (s.d. 7.1) (ref. 30).

Of the 514 overweight children, 240 (47%) dropped out in the moti-
vation phase preceding the intervention and 44 (9%) in the irst three 
months of the intervention period. he dropouts did not difer in age, 
gender, BMI-SDS, cardiovascular risk factors, or hormone proile from 
the children inishing the intervention. he 44 children who dropped out 
during the intervention period had the same mean BMI-SDS at last visit 
as compared to baseline. he reasons for dropout were a perceived lack 
of success in 41 children and disciplinary dismissal in three children. No 
child dropped out in the observation period ater the end of intervention. 
he children and parents who hade completed the lifestyle intervention 
had participated in >95% of all sessions.

Statistical analysis
For comparison, children with MC4R mutations leading to reduced 
receptor function (group A) were each randomly matched with ive chil-
dren of same age and gender without MC4R mutations (group B). All 
calculations were carried out using Winstat for Exel and the  statistical 

sotware package SAS version 9.1 (SAS Institute, Cary, NC). Normal 
distribution of variables was tested by Kolmogorov–Smirnov tests with 
Lilliefors correction. For the exploration we used Student’s t tests for 
paired and unpaired observations, Mann–Whitney U-test, Wilcoxon 
test, and chi-square test as appropriate. For comparison of blood pres-
sure, the values were adjusted for height.

To examine the BMI-SDS diference from baseline to 1 year ater end 
of intervention between children of group A and B, we used a linear 
model with random intercepts in order to account for the correlated data 
structure (family as cluster variable). hese models were adjusted for 
BMI-SDS at baseline, sex, and age. We followed an intention-to-treat 
approach by carrying the last observation forward for the children who 
aborted the intervention and no follow-up data were available. Signii-
cance was assumed for P values <0.05. Data are presented as mean and 
s.d. for normally distributed variables and as median and interquartile 
range for not normally distributed variables.

RESULTS

he clinical characteristics of the children with MC4R muta-
tions are demonstrated in Table 1. In this table, we also sum-
marized the functional in silico and published in vitro data.

Functional characterization was carried out for the novel 
investigated Ala244Val, Met281Val, and Gln307Stop mutant 
MC4R. WT and mutants were transiently transfected into 
COS-7 cells and signal transduction properties ater [Nle4,d-
Phe7]–α–melanocyte-stimulating hormone challenge as well as 
ligand-independent cell surface expression was examined. Cell 
surface expression and signal transduction properties of the 
Ala244Val mutant were comparable to the WT (Table 2). he 
Met281Val mutant showed a reduction in cell surface expres-
sion; EC50 values were slightly shited to higher [Nle4,d-Phe7]–
α–melanocyte-stimulating hormone concentrations; therefore, 
this receptor has to be classiied as a partial loss of function. As 
expected the Gln307Stop mutant resulted in a complete loss of 
function (Table 2).

In ive mutations, in silico and in vitro, data were incon-
sistent. Two mutations (hr112Met and Ala175hr) were 
in silico predicted to be “benign” but the published in vitro 
data showed that they lead to a reduced function (5,32). 
Additionally, our in vitro data demonstrated that the muta-
tion that was predicted to be “benign” (Met281Val) lead to 
a reduced function (Table 2). herefore, the children with 
these mutations were grouped to the children with muta-
tions leading to reduced receptor  function (group A). he 
 mutation Pro48Ser was in silico predicted to be “possibly 
damaging” but the published in vitro data showed that this 
mutation is functionally similar to the WT receptor (33). 
Because our functional in vitro data showed that the new 
mutation Ala244Val predicted to be “possibly damaging” was 
similar to the WT (Table 2), this mutation was also deined 
as non functionally relevant.

In conclusion, we dealt with 16 children with nonsynony-
mous mutations leading to a reduced function (group A) and 
17 (2.7%) children with MC4R variations that do not lead to 
a reduced receptor function as they are (i) synonymous (1×฀
T5T), (ii) in the noncoding 3ʹ region (1× 15 C>T), (iii) func-
tionally similar to the WT receptor as shown by in vitro analy-
ses (1× Asn274Ser (18), 2× Pro48Ser (33), and 1× Ala244Val 
(Table 2)), (iv) lead to a slightly enhanced receptor function 
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Table 1 Clinical characteristics of the overweight children with mutations in the melanocortin 4 receptor (MC4R) gene

Number

Age 

(years) Gender

Weight (kg) 

(SDS)

Height (cm) 

(SDS)

BMI  

(kg/m2) 

(SDS)

Mutation (effect on 

amino acid level)

Functional 

relevance: in silico 

analysesa

Functional relevance: 

in vitro analyses

1 10.8 Female 83.2 (3.0) 151.0 (0.0) 36.5 (3.2) None (T5T) Analysis impossible —

2 13.1 Male 78.2 (1.9) 168.7 (0.6) 27.5 (2.0) None (15 C>T) Analysis impossible —

3 8.0 Male 48.2 (2.7) 134.8 (0.9) 26.5 (2.9) [Tyr35Stop; 110A>T] Analysis impossible Loss of function (6)

4 13.3 Male 77.5 (2.1) 152.9 (–0.7) 33.2 (2.7) [Tyr35Stop; 110A>T] Analysis impossible Loss of function (6)

5 10.0 Female 69.5 (3.0) 155.5 (2.1) 29.0 (2.6) [Tyr35Stop; 110A>T] Analysis impossible Loss of function (6)

6 10.8 Female 56.5 (1.5) 155.0 (0.5) 23.5 (1.6) [Tyr35Stop; 110A>T] Analysis impossible Loss of function (6)

7 9.1 Female 58.9 (2.6) 154.9 (2.4) 24.6 (2.1) A: [Tyr35Stop; 
110A>T]

A: analysis 
impossible

A: loss of function (6)

B: Ile251Leu B: possibly benign B: like wild-type (9)

8b 14.2 Female 107.8 (3.5) 166.5 (0.5) 38.9 (3.3) Pro48Ser Possibly damaging Like wild-type (33)

9b 15.0 Female 76.0 (1.8) 164.1 (–0.2) 28.2 (2.0) Pro48Ser Possibly damaging Like wild-type (33)

10 9.4 Male 47.3 (1.8) 135.2 (–0.7) 25.9 (2.4) Val103Ile Possibly benign Slightly enhanced 
function (18)

11 10.1 Male 50.9 (1.6) 152.7 (1.2) 21.8 (1.5) Val103Ile Possibly benign Slightly enhanced 
function (18)

12 14.5 Female 87.4 (2.5) 168.1 (0.6) 30.9 (2.5) Val103Ile Possibly benign Slightly enhanced 
function (18)

13 10.9 Male 69.4 (2.3) 156.4 (0.9) 28.4 (2.3) Val103Ile Possibly benign Slightly enhanced 
function (18)

14 5.4 Female 35.4 (2.9) 122.4 (1.5) 23.6 (3.0) Val103Ile Possibly benign Slightly enhanced 
function (18)

15 11.9 Male 76.1 (2.8) 153.0 (0.9) 32.5 (2.8) Thr112Met Possibly benign Partially inactive (5,32)

16 13.0 Female 79.6 (2.4) 163.4 (0.6) 29.8 (2.4) Thr112Met Possibly benign Partially inactive (5,32)

17c 9.9 Male 67.3 (2.8) 155.7 (2.1) 27.8 (2.5) A: Ser127Leu A: possibly 
damaging

A: reduced function (38)

B: Val103Ile B: possibly  
benign

B: slightly enhanced 
function (18)

18c 8.4 Female 54.6 (3.1) 143.0 (2.5) 26.7 (2.8) A: Ser127Leu A: possibly 
damaging

A: reduced function (38)

B: Val103Ile B: possibly  
benign

B: slightly enhanced 
function (18)

19 13.1 Female 78.0 (2.2) 169.0 (1.0) 27.3 (2.0) A: Ser127Leu A: possibly 
damaging

A: reduced function (38)

B: Val103Ile B: possibly  
benign

B: slightly enhanced 
function (18)

20 11.6 Female 105.0 (3.6) 170.5 (1.8) 36.1 (3.1) Ala175Thr Possibly benign Reduced function (5)

21 12.9 Female 112.9 (3.8) 165.5 (0.9) 41.2 (3.4) Leu211fsX216 Analysis impossible Loss of function (18)

22 11.7 Female 120.0 (4.1) 167.4 (1.4) 42.8 (3.5) Ala244Val Possibly damaging Like wild-type  

(see Table 2)

23 12.1 Male 69.0 (1.8) 165.7 (1.2) 25.1 (1.8) Ile251Leu Possibly benign Like wild-type (9)

24 7.3 Female 43.0 (2.5) 131.1 (0.8) 25.0 (2.7) Ile251Leu Possibly benign Like wild-type (9)

25 16.5 Male 79.5 (1.1) 159.7 (–2.5) 31.2 (2.3) Ile251Leu Possibly benign Like wild-type (9)

26 14.1 Female 105.5 (3.4) 179.7 (2.3) 32.7 (2.7) Ile251Leu Possibly benign Like wild-type (9)

27 12.6 Female 107.6 (3.6) 165.5 (0.5) 39.3 (3.3) Ile251Leu Possibly benign Like wild-type (9)

28 13.5 Female 97.8 (3.2) 163.9 (0.3) 36.4 (3.1) Ile251Leu Possibly benign Like wild-type (9)

29 12.6 Male 81.7 (2.0) 153.2 (–1.2) 34.8 (2.8) Asn274Ser Possibly benign Like wild-type (18)

Table 1 Continued on next page
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(5× Val103Ile), or (v) presumably lead to a slightly enhanced 
receptor function (6× Ile251Leu) (14–18).

A total of 9 (56%) out of the 16 children of group A started 
the lifestyle intervention, while seven children of group A 

dropped out the motivation phase. his frequency was similar 
as compared to the 481 children without MC4R mutations (52% 
participation) and to the 80 age- and gender-matched chil-
dren without MC4R mutations (group B): A total of 46 children 
(58%) of group B started the intervention, while 34 children 
aborted in the motivation phase, and one child (11%) of group 
A and ive children (11%) of group B aborted the intervention.

To test our primary hypothesis, we followed an intention-
to-treat approach and carried the last observation forward 
for children who aborted the intervention. In the follow-up, 
the nine children of group A did not reduce their overweight 
1 year ater the end of the 1-year intervention as compared to 
the children of group B in a linear model with random inter-
cepts considering the family cluster variable and adjusting for 
BMI-SDS at baseline, age, and gender (P < 0.001 for mean 
BMI-SDS change; Figure 2).

In contrast to the long-term indings, the nine children of 
group A, who underwent the intervention, reduced their over-
weight at the end of intervention to a similar extent as com-
pared to the age- and gender-matched children without MC4R 
mutations (group B) based on an intention-to-treat approach 
in a linear model considering the family as random efect and 
adjusting for BMI-SDS at baseline, age, and gender (P = 0.318 
for mean BMI-SDS change between groups; Figure 2).

he children with functionally relevant MC4R mutations 
(group A) did not signiicantly difer from the randomly selected 

Table 2 Functional characterization of mutant MC4R

cAMP accumulation

Cell surface expressionNDP–α–MSH

Construct Basal cAMP (nmol/l) E
max

 cAMP (nmol/l) EC
50

 (nmol/l) (% of WT-MC4R)

MC4R-WT 12.8 ± 0.25 344 ± 76 0.41 ± 0.01 100

A244V 8.65 ± 1.05 408 ± 143 0.9 ± 0.1 98 ± 25

M281V 7.8 ± 3.5 153 ± 6 1.3 ± 0.3 52 ± 15

Q307X n.d. n.d. n.d. n.d.

n.d., Not determinable with sufficient accuracy. COS-7 cells were transfected with the wild-type or MC4R mutants. EC
50

 and E
max

 values were obtained from 
concentration-response curves (from 0.01 to 100 nmol/l NDP–α–MSH), using the computer program GraphPad Prism. Data are indicated as means ± s.e.m. of two 
independent experiments performed in triplicates. Cell surface expression experiments were performed twice in quadruplicates with GFP transfected cells as negative 
control. Values are gives as percentage of wild-type MC4R expression.
cAMP, cyclic adenosine monophosphate; MC4R, melanocortin 4 receptor; NDP–α–MSH, [Nle4,d-Phe7]–α–melanocyte-stimulating hormone; WT, wild-type.
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Figure 2 Decrease of BMI-SDS (standard deviation score) (mean 

and s.e.m.) in nine children with melanocortin 4 receptor (MC4R) gene 

mutations that lead to a reduced receptor function (group A) and 46 age- 

and gender-matched children without MC4R mutations (group B) at the 

end of a 1-year lifestyle intervention and 1 year after end of intervention 

compared to baseline BMI-SDS, *P < 0.05. n.s., nonsignificant.

30 14.5 Female 100.7 (2.7) 168.1 (0.2) 35.6 (2.8) Met281Val Possibly benign Reduced function  

(see Table 2)

31 11.3 Male 61.7 (2.2) 145.7 (–0.1) 25.8 (2.5) Arg305Gln Possibly damaging Reduced function (2)

32d 7.9 Male 56.1 (3.1) 133.5 (0.6) 31.5 (3.3) Gln307Stop Analysis  
impossible

Loss of function  

(see Table 2)

33d 8.3 Female 45.4 (2.1) 136.3 (0.6) 24.4 (2.3) Gln307Stop Analysis  
impossible

Loss of function  

(see Table 2)

SDS, standard deviation score.
aFor nonsynonymous mutations in silico analysis were performed by PolyPhen (http://genetics.bwh.harvard.edu/pph/index.html); for synonymous, nonsense and 
frameshift mutations these analyse were impossible (PolyPhen determined that “this variant is predicted to be possibly damaging” (short in the Table “Possibly damaging”) 
or that “this variant is predicted to be possibly benign” (short in the Table “Possibly benign”)). b,c,dThese patients are siblings.

Table 1 (contunued)

Number

Age 

(years) Gender

Weight (kg) 

(SDS)

Height (cm) 

(SDS)

BMI  

(kg/m2) 

(SDS)

Mutation (effect on 

amino acid level)

Functional 

relevance: in silico 

analysesa

Functional relevance: 

in vitro analyses
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matched controls (group B) in respect to any anthropometrical 
marker, insulin levels, or insulin resistance index homeostasis 
model assessment at baseline apart from higher-weight SDS, 
waist circumference, and leptin concentrations in the children 
of group A (Table 3). However, SDS-leptin and waist-to-hip 
ratio did not difer signiicantly between the children with and 
without the MC4R mutations leading to reduced receptor func-
tion. he children of group A und B did not difer signiicantly 
in respect to any cardiovascular risk factor such as blood pres-
sure, fasting triglycerides, total cholesterol, high-density lipo-
protein and low-density lipoprotein cholesterol, transaminases, 
uric acid, and glucose, as well as glucose levels at 2 h in the oral 
glucose-tolerance test. Furthermore, glycated hemoglobin, thy-
roid stimulating hormone, free T3, free T4, cortisol, insulin like 
growth factor-I, insulin like growth factor binding protein-3, 
luteinizing hormone, follicle stimulating hormone, testoster-
one, and dehydroepiandrosterone-sulfate concentrations did 
not difer signiicantly between the children of group A and B.

Furthermore, 4 (25%) of the children with MC4R muta-
tions leading to reduced receptor function were siblings of two 

families, while 14 (2.9%) of the 481 children without MC4R 
mutations were siblings of seven families (P < 0.001), and two 
of the nine children of group A who participated in the lifestyle 
intervention were siblings.

Comparing the 17 overweight children with MC4R variations 
that do not lead to a reduced receptor function to the overweight 
children with the WT receptor demonstrated no signiicant dif-
ferences in any anthropometrical measurements, cardiovas-
cular risk factors, and hormone proile at baseline, as well as 
degree of overweight reduction at the end of intervention and at 
the 1-year follow-up (data not shown). he overweight children 
with MC4R variations that do not lead to a reduced receptor 
function demonstrated a signiicant (P = 0.028) higher degree 
of overweight reduction at the 1-year follow-up ater the end of 
intervention (mean decrease in BMI-SDS 0.38 ± 0.17) as com-
pared to the children with MC4R variations that do not lead to a 
reduced receptor function (group A), while the children did not 
difer signiicantly at the end of intervention (P = 0.716).

Separating the children by gender or pubertal stage did not 
reveal diferent indings in respect to any anthropometrical 
measurement, cardiovascular risk factor, or hormone proile 
(data not shown).

DISCUSSION

his is the irst report of a long-term response to a 1-year life-
style intervention of MC4R variation carriers compared to 
noncarriers. We identiied 16 (3% of all screened subjects) chil-
dren with eight diferent MC4R mutations leading to a reduced 
receptor function. In concordance with a small previous report 
comprising four children with MC4R mutations (34), our nine 
children with MC4R mutations that lead to a reduced recep-
tor function, who had participated in a lifestyle intervention, 
decreased their overweight at the end of the intervention. 
However, 1 year ater the end of the intervention, children with 
these MC4R mutations demonstrated a similar degree of over-
weight as at baseline, while children without these mutations 
had sustained their degree of weight loss. hese indings sup-
port an impact of MC4R mutations on weight status. Because 
carriers of the MC4R mutations can lose body weight but have 
diiculties to maintain this weight loss, very long lifestyle 
interventions seem to be necessary for these children.

he novel MC4R mutations were functionally characterized 
in this study (Table 2). he nonsense mutation Gln307Stop 
resulted, expectedly, in a complete loss of function due to the 
premature stop codon which led to a truncated receptor that 
lacks the C-terminal part. he Met281Val mutation is located 
at the beginning of transmenbrane domain 7. his position is 
highly conserved throughout species (35). he exchange of a 
methionine residue at amino acid position 281 for a valine resi-
due thus results in a partial loss of function. Position Ala244 is 
as well highly conserved (35). he mutation of alanine 244 to 
glutamic acid was reported to result in a partial loss of function 
(6,18). In this study we examined the exchange of Ala244Val 
and found no functional diferences to the WT MC4R in cell 
surface expression and for signal transduction properties ater 
[Nle4,d-Phe7]–α–melanocyte-stimulating hormone challenge. 

Table 3 Baseline anthropometrical data, fasting insulin, 

insulin resistance index HOMA, and leptin in overweight 

children with MC4R mutations that lead to a reduced receptor 

function (group A) and age- and gender-matched overweight 

children without MC4R mutations (group B)

MC4R mutations No MC4R mutation

Number 16 80

Age (years) 10.9 ± 2.2 10.9 ± 2.2

Gender 38% Male 38% Male

Pubertal stage 50% Prepubertal 50% Prepubertal

Height (cm) 154.2 ± 13.2 152.3 ± 12.3

Height-SDS 0.77 ± 1.05 0.43 ± 1.07

Weight (kg) 70.5 ± 18.8 68.1 ± 16.3

Weight-SDS 2.47 ± 0.60 2.16 ± 0.64*

BMI (kg/m2) 29.3 ± 4.7 28.5 ± 4.3

BMI-SDS 2.48 ± 0.51 2.37 ± 0.46

Triceps skinfold (cm) 34 (28–37)a 33 (29–36)a

Subscapularis skinfold (cm) 33 (30–36)a 33 (28–38)a

Percentage body fat (%) 48 (45–57)a 48 (39–53)a

Waist circumference (cm) 99 ± 18 88 ± 12*

Hip circumference (cm) 101 ± 19 98 ± 13

Waist-to-hip ratio 0.97 ± 0.09 0.91 ± 0.12

Fasting insulin (mU/l) 17 ± 11 18 ± 10

HOMA 3.8 ± 3.1 3.9 ± 2.3

Leptin (ng/ml) 58 ± 9 44 ± 19*

Leptin-SDS 1.0 ± 1.2 1.0 ± 1.5

Data as mean and s.d.
HOMA, homeostasis model assessment; MC4R, melanocortin 4 receptor;  
SDS, standard deviation score.
aData as median and interquartile range since variable was not normally 
distributed, none of the variables differed significantly except *(P <0.05 derived 
from t-test for unpaired observation).
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his might be due to the slight steric diferences between alanine 
and valine at the beginning of transmenbrane domain 6. Hence, 
there are presumably no conformational changes, which are 
more likely if alanine 244 is exchanged to glutamate.

Children with MC4R mutations did not difer signiicantly 
in their pubertal stage, cardiovascular risk factor, or hormone 
proile from obese children without MC4R mutations matched 
for age and gender. he higher leptin concentrations in chil-
dren with MC4R mutations that lead to a reduced receptor 
function can be explained by the slightly higher degree of over-
weight, as SDS-leptin adjusted for BMI did not difer between 
children with and without these MC4R mutations. herefore, 
we were unable to identify any clinical or laboratory character-
istic pointing toward MC4R mutations. However, one-fourth 
of children with MC4R mutations that lead to a reduced recep-
tor function were siblings, potentially suggesting that the pres-
ence of a relevant MC4R mutation should be considered if sibs 
are referred to obesity units.

We did not ind a signiicant diference between height, 
percent body fat, and insulin levels between children with 
and without MC4R mutations in contrast to the inital report 
of Farooqi and colleagues who described the “MC4R syn-
drome” (5). hese discrepancies may be explained at least in 
part by diferent ways of body composition measurement. 
he dual-energy X-ray absorptiometry method in the original 
report represents the gold standard in contrast to determinate 
percent body fat based on skinfold measurement. Furthermore, 
there was a trend toward greater height in the children with 
MC4R mutations in our study. It could be argued that our sam-
ple size was too small to detect signiicant diferences. However, 
in concordance with our indings several other studies have 
not replicated the “MC4R syndrome” (4,19,34,36). Because we 
matched the children with MC4R mutations to children with-
out these mutations according to age and gender, which might 
also explain partially the diferences between our study and 
the report of Farooqi and Keogh (5) due to growth, hormone 
levels, and body fat depending on these factors. Furthermore, 
a diferent age range may explain diferent indings because 
Farooqi and Keogh observed that hyperinsulinemia of obese 
subjects with MC4R deiciency seems to decline with age (5). 
In concordance with our indings, analyses of homozygous 
loss of function mutations suggest that in humans the MC4R 
does not mediate the efect of leptin on linear growth and other 
endocrine axes (37). In addition, complete MC4R deiciency is 
not a cause of relative hyperinsulinemia (37).

his study has a few potential limitations. First, this was 
an observation study and not a randomized clinical trial. 
herefore, the indings have to be interpreted cautiously. 
Second, the study was clinically based and the observed preva-
lence of MC4R mutations might rather represent the frequency 
that can be observed among obese children asking for medi-
cal advice than the frequency among obese children in the 
population. However, there is no evidence that obese children/
families with MC4R mutations difer from obese children/
families in behavior in general or in behavior regarding con-
tact to health services. hird, one-fourth of the children with 

MC4R mutations that lead to a reduced receptor functions 
were siblings. Family eating and exercise behaviors likely also 
inluence the response to a lifestyle intervention. However, we 
have adjusted our analyses for relatives.

In summary, overweight children with MC4R mutations that 
lead to a reduced receptor function were signiicantly more 
frequently siblings, while they did not difer in respect to any 
anthropometrical marker, hormone proile, or cardiovascular 
risk factor as compared to obese children without these MC4R 
mutations. Children with MC4R mutations were able to lose 
weight in a lifestyle intervention program. However, the chil-
dren with MC4R mutations that lead to a reduced receptor 
function had much greater diiculties to maintain this weight 
loss as compared to children without MC4R mutations sup-
porting the impact of these mutations on weight status.
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Within the past decade the molecular basis of single forms of monogenic obesity has been 

elucidated. With the exception of functionally relevant mutations in the MC4R, which occur in 

approximately 2-4% of extremely obese individuals, all other currently known monogenic 

forms are rare and additionally associated with distinct endocrinological abnormalities. A 

large number of association studies have been performed in 'normal' obesity. Whereas many 

associations have been reported, it is largely unclear which of these represent true positive 

findings. More than 30 genome scans pertaining to obesity and related phenotypes have 

been performed; specific chromosomal peak regions have been identified in different scans. 

We review the current status and discuss relevant issues related to phenotyping, association 

and linkage studies. We recommend that the procedure via which a consensus is reached as 

to what constitutes a true positive association finding requires formalization 

 

Own contribution: 

- Establishment of a database to collect and manage the data of all published genome-

wide linkage studies for obesity and related phenotypes (in cooperation with 

Schäuble N) 

- Comparison of our linkage data with all scans collected in the database 

- Graphical analyses and comparison of linkage data (Figure1) 

- Writing the paragraph “Genome scans” 
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Summary
Within the past decade the molecular basis of single forms of monogenic obesity

has been elucidated. With the exception of functionally relevant mutations in the

melanocortin-4 receptor gene, which occur in approximately 2–4% of extremely

obese individuals, all other currently known monogenic forms are rare and addi-

tionally associated with distinct endocrinological abnormalities. A large number

of association studies have been performed in ‘normal’ obesity. Whereas many

associations have been reported, it is largely unclear which of these represent true

positive findings. Over 20 genome scans pertaining to obesity and related pheno-

types have been performed; specific chromosomal peak regions have been identi-

fied in different scans. We review the current status and discuss relevant issues

related to phenotyping, association and linkage studies. We recommend that the

procedure via which a consensus is reached as to what constitutes a true positive

association finding requires formalization.

Keywords: Ascertainment, BMI, candidate gene, genome scan, phenotyping 

Introduction

In order to allow a fruitful discussion of future perspectives

to be pursued in molecular genetic studies in obesity, we

review the current ‘main stream’ approaches to detect

mutations and polymorphisms predisposing to the devel-

opment of obesity and related phenotypes. We proceed by

critically reflecting on these approaches to dissect both their

strengths and weaknesses. Finally, from a subjective point

of view we discuss complementary or alternative strategies

which we believe will broaden our potential of understand-

ing the genetic mechanisms involved in body weight

regulation. The better our understanding of the genetic

mechanisms and the underlying pathways becomes, the

more we stand a chance of addressing genotype–genotype

and genotype–environment interactions.

Phenotyping

Apart from body mass index (BMI; kg m-2), percent body

fat as assessed by, for example, bioelectrical impedance

analysis, different skin fold measurements, waist to hip

circumferences and/or other more sophisticated measure-

ments are frequently used as additional phenotypes in

molecular genetic studies. Other variables correlated with

both BMI and percent body fat are also frequently co-

determined. These include, for example, serum adiponectin

and leptin levels.

This large number of phenotypes tends to obscure the

important fact that current phenotyping cannot address the

major phenotypes energy intake and expenditure in suffi-

ciently large samples. If these phenotypes were not black

boxes, we would presumably be able to considerably better

address the underlying genetic mechanisms. Because only a

small positive energy balance is required to develop obesity

over a prolonged period of time (1), measurements of

energy intake and expenditure would have to be very sen-

sitive. They would also have to precisely take into account

the current fat-free mass as the major determinant of energy

expenditure. Thus, whereas anthropometric and endocri-

nological variables are undoubtedly relevant, it appears

highly probable that the current phenotyping schemes may

obesity reviews (2003) 4, 139–146
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be missing out on other genetically based phenotypes that

contribute to the development of an energy imbalance. In

particular, behavioural and sensory phenotypes are cur-

rently not being analysed extensively in molecular genetic

studies. This presumably stems from the fact that in med-

ical terms obesity is frequently perceived as a metabolic

disorder; this perception has led to a self-perpetuating

mechanism in that the belief in a metabolic aetiology has

facilitated access of clinicians and scientists into the field

with a corresponding background who then use their

expertise to study the phenotype. Because behavioural phe-

notypes have already been deemed as important in the pre-

molecular genetic era, it seems that ‘endocrinologists’ based

on their training have more readily been able to initiate

molecular genetic studies than behavioural scientists.

Undoubtedly, part of the problem also stems from the fact

that behavioural phenotypes are frequently more difficult

to address than endocrinological parameters.

Behavioural phenotypes are often viewed critically. How-

ever, it is frequently forgotten that even the most precise

measurements of fat mass or serum parameters merely rep-

resent a momentary glimpse into a complex organism

which is subject to developmental change. This is particu-

larly true for the genetic analysis of children and adoles-

cents, in whom the transitions made during puberty clearly

underscore the problems inherent to an over-reliance on

absolute anthropometric and endocrinological parameters.

Along the same lines, a longitudinal twin study (2) has

revealed that the genetic factors that influence BMI at age

20 only partially overlap with those relevant at age 40.

Irrespective of these considerations, the rather low reliabil-

ity rates for measurement of, for example, waist and hip

circumference in extremely obese subjects need to be

reflected upon critically. In addition, even serum parame-

ters are subject to circadian rhythms and short-term alter-

ations of eating behaviour, which, if not properly

accounted for, are likely to diminish the chance of detecting

relevant alleles.

The relative negligence of addressing behavioural pheno-

types is becoming more and more apparent in light of the

importance of central mechanisms in body weight regula-

tion. Most of our current knowledge pertains to hypotha-

lamic pathways. However, other brain regions have

emerged and will continue to do so (3). As such, the impli-

cation of a specific region entails questions as to what

behavioural and/or sensory phenotypes are related to it and

if these might be relevant for obesity. For example, recent

advances in understanding olfaction and gustatory sensa-

tion (4,5) lead to the question as to if and how genetic

variability in sensation of smell and taste has potential

implications for eating behaviour and obesity. The brain

reward system in which the nucleus accumbens play a

prominent role is also a system that could have an influence

on body weight regulation (6). Such considerations can also

be extended to the candidate gene level. Thus, melanin

concentrating hormone (MCH) is exclusively expressed in

neurones of the lateral hypothalamic area that project to

widespread brain regions including the olfactory bulb,

anterior olfactory nucleus, neocortex and amygdala (7). A

melanin concentrating hormone receptor 1 (MCHR1)

antagonist not only has been shown to induce weight loss

but also has both an anti-depressant and anxiolytic effect

(8). MCHR1 knock-out mice not only have an altered body

weight but also display hyperactivity (9,10). Conceivably,

feeding-related functions of MCH include appetite, arousal

and anxiety, food-searching behaviour, olfaction, regula-

tion of energy balance, swallowing and mastication. In

general, pathways involved in energy intake and expendi-

ture can overlap with those relevant for mood regulation,

anxiety, activity and cognition. This is underscored by the

findings in several transgenic animal models with an altered

body weight in which effects are also apparent for these

phenotypes [e.g. Npy–/– mice (11), Cb1–/– mice (12,13), 5-

Ht2cr–/– mice (14)].

This brief discussion serves to illustrate the fact that we

could profit from an inclusion of behavioural and sensory

phenotypes. Behavioural phenotypes generally show heri-

tability estimates in the range of 0.5 (15) and are thus in a

range similar to those for many anthropometric and endo-

crinological phenotypes relevant for body weight (16); as

has repeatedly been shown in formal genetic studies per-

taining to BMI (16,17), the environmental component is

largely explained by non-shared environment (15). Behav-

ioural phenotypes which warrant consideration for genetic

analyses of body weight regulation include eating behav-

iour (e.g. binge eating, restrained eating), activity, stress,

mood and anxiety. It is granted that the assessment of these

phenotypes is complicated; we argue that narrowing the

focus on assessment of their (assumed) impact on energy

intake and expenditure might, nevertheless, prove valuable

for unveiling the molecular mechanisms involved in body

weight regulation. More research is required to address if

and how these behavioural phenotypes have an influence

on body weight. Depression which in prospective studies

conducted in children and adolescents has been shown to

predict a higher BMI (18,19) may serve as an example.

Furthermore, the delineation of taste and dietary prefer-

ences should prove valuable, too. The very recent posi-

tional cloning of the quantitative trait locus (QTL)

underlying sensitivity to phenylthiocarbamide (5) raises the

question if this QTL also has an impact on dietary prefer-

ences and potentially on body weight.

Quantity or quality?

It is commonly assumed that the better specific subgroups

are delineated at the phenotypical level, the more homoge-

neous the underlying genetic factors will turn out to be.
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Such a precise phenotyping might actually be a prerequisite

for identifying genes in the first place. However, it is evi-

dent that not all conceivable phenotypes of potential rele-

vance in body weight regulation can be addressed in every

individual who is willing to participate in a molecular

genetic study. Both the endurance of the proband and the

costs for phenotyping represent a limiting factor. These

limitations necessitate diversity in phenotypical ap-

proaches. We recommend that behavioural phenotypes are

better integrated into current assessment schemes. Alterna-

tively, study groups well characterized for single behav-

ioural phenotypes or for psychiatric disorders can be used

to get further insight into the significance of alleles once

their involvement in weight regulation has been demon-

strated unambiguously. As such, we need to convince

researchers pursuing behavioural and psychiatric genetic

studies to at least obtain a measurement of body height

and weight in the respective probands to allow calculation

of BMI.

In light of the multitude of potentially relevant mecha-

nisms underlying body weight regulation, it is debatable if

the probands whose DNA samples are used for genome

scans and mutation screens really need to be that well

phenotypically characterized. Future research findings

undoubtedly have the potential to necessitate inclusion of

a phenotype that was originally not considered as being

within the spectrum of relevant phenotypes. As a conse-

quence, expensively ascertained samples will not be able to

deal with such a novel phenotype, unless the probands are

recontacted. Thus, it might currently make more sense to

first identify genes relevant in weight regulation in a very

large but phenotypically not too well-characterized study

group to then proceed to test the effect of specific alleles in

samples well characterized for specific behavioural, physi-

ological and endocrinological phenotypes. This strategy

would also at least partially circumvent the problem of

testing several different phenotypes within a single sample

(multiple testing). For BMI alone, several different peaks

have been reported in genome scans, some of which have

been confirmed in different studies (20–40; Fig. 1). Evi-

dently, for the identification of the relevant genes in these

peak regions, no further phenotypical information is

required.

If we perceive obesity as a multifactorial disorder, in

which polygenic effects account for a large proportion

of the total genetic effect, we need to perform our sam-

pling accordingly. Thus, to initially detect and subse-

quently confirm alleles associated with relative risks

below 1.5, we need samples encompassing thousands of

probands.

In conclusion, we definitely need exceedingly large

samples. If financial resources permit a top notch pheno-

typical assessment of thousands of probands, this obvi-

ously represents a superb solution. To deal with

developmental aspects, such a sample should optimally

be assessed longitudinally. However, if financial resources

are limited, the research team has to decide between the

extremes of high quality phenotyping in a limited number

of probands and a simple phenotypical assessment of a

large number of probands. Researchers in other fields,

particularly those involved in behavioural and/or psychi-

atric genetic studies, should be encouraged to include

simple anthropometric measurements, thus potentially

allowing the assessment of an allele which in prior stud-

Figure 1 Chromosomal regions which were 

identified by linkage studies (20–40) for pheno-

type body mass index (BMI) (status: 12/2002). 

Each bar represents one positive linkage find-

ing. LOD, Logarithm of odds.
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ies has already unequivocally been shown to be involved

in body weight regulation.

Ascertainment schemes

To both detect specific alleles involved in body weight

regulation and to fully understand their functional role,

cases, controls, trios, extreme sibships and extended pedi-

grees have been ascertained by different groups worldwide

in ethnically diverse populations. Populations include both

children and adults. In addition, several large epidemiolog-

ical samples and cohorts exist which can be used to follow

up on an allele of interest. In our opinion, this diversity is

to be encouraged because it allows synergistic strategies.

However, it should briefly be pointed out that the issue of

genomic controls is important in case-control studies (41).

The transmission disequilibrium test (TDT) (42) is fre-

quently preferred if parents can readily be ascertained. The

limitations of extreme sibpair approaches need to be kept

in mind. Ziegler et al. (43) performed sample size calcula-

tions for the different designs and discussed these strategies

in the context of body weight. Furthermore, infrequent

major genes and minor gene effects (alleles associated with

small relative risks) can only be picked up by analysing

thousands of families, because allele sharing only slightly

surpasses the expected rate of 50% (44).

Merging genetic studies in different species

QTL studies have been ongoing for several years in rodents,

pigs and cattle. A priority for future research into the

genetic mechanisms involved in body weight regulation is

to bring experts together who work on different species.

The occurrence of a functionally relevant single nucleotide

polymorphism (SNP) in the pig melanocortin-4 receptor

gene (MC4R) (45) is just one example illustrating the

potential inherent to this approach. Some QTL peaks iden-

tified in pigs map to homologueous human chromosomal

regions which have also been identified in linkage studies

of human obesity. Quite possibly, the same gene(s) underlie

these peaks, thus indicating conservation not only of genes

and pathways but also of the mechanisms leading to genetic

variability of body weight. An additional advantage per-

tains to the ease with which relevant phenotypes can be

assessed in non-human species.

Research is required to assess the implications of studies

in invertebrates. Thus, genomewide RNAi analysis of Cae-

norhabditis elegans revealed that out of the total of 16 757

genes 305 and 112 gene inactivations led to a decreased

and increased fat storage, respectively (46). Thus, approx-

imately 2.5% of all genes in this invertebrate are involved

in fat storage. An interesting hypothesis resulting from this

study is that in humans more genes might be relevant for

underweight than for obesity.

Candidate gene approach

The candidate gene approach has proven to be successful

for obesity. Thus, the conservation of hypothalamic path-

ways in rodents and humans has certainly aided in deter-

mining suitable candidate genes (47–52). This particularly

applies to those candidate genes originally identified in

animal models. All the spontaneously occurring obesity

mutations in mice (47,53–56) either have been found to

harbour functionally relevant mutations in humans too

(48,57), or have led to the identification of a system/path-

way in which other genes were found to be mutated [e.g.

carboxypeptidase mutations in mice (58) and prohormone

convertase 1 gene mutations in humans (59)].

However, it should be pointed out that most of these

mutations in humans were not detected via a classical

mutation screen. Instead, specific endocrinological findings

such as elevated proinsulin levels (59) or hypoleptinemia

(48,60) led investigators to screen specific genes with clear-

cut a priori hypotheses. Functionally relevant mutations in

the MC4R currently represent the only exception to this

rule; this is related to the fact that obesity resulting from

MC4R mutations is not distinguishable from ‘normal’ obe-

sity. It is apparent, that mutation screens of larger samples

are required to identify alleles involved in obesity not

readily associated with a specific endocrinological or

behavioural phenotype.

We perceive two major perspectives for the candidate

gene approach both of which can certainly apply at the

same time.

1. Within linkage regions the candidate gene approach

is frequently resorted to in complex phenotypes when

the number of putative genes has been narrowed down.

Undoubtedly, we should witness the success of this

approach for specific candidate chromosomal regions for

obesity in the near future.

2. Some candidate genes warrant consideration indepen-

dently of whether or not they are localized within chromo-

somal regions of interest. Such genes are considered

because they are involved in relevant pathways as shown

in animal models or via other evidence. This approach

should not be viewed as an alternative to the identification

of the genes contributing to linkage peaks. Instead such

studies are complementary because as illustrated above

linkage studies cannot readily lead to the detection of

minor gene effects or infrequent major gene effects.

Validation of an obesity gene

Irrespective of the approach for the choice of a particular

candidate gene, we need to devise how to conclude that a

specific allele indeed predisposes to obesity (61). The cur-

rent literature abounds with positive association studies

some of which have been followed up with negative or
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equivocal results (62). Many of the positive results must be

viewed critically because multiple tests were performed to

achieve the respective ‘significant’ result. It is crucial that

negative findings are also published; hence, every effort

should be made to encourage researchers to publish these

finding. To avoid discouraging other researchers from con-

ducting studies, high standards should be set for publica-

tion of such negative findings. Journal editors need to be

aware of their responsibility. Potentially, specific journals

might be required to competently deal with these issues. To

allow a better interpretation of negative findings, the power

of the study for a given (previously reported) effect should

be stated.

We deem it important that positive findings are followed

up in a systematic fashion thus enabling the scientific com-

munity to conclude whether or not the identified allele is

indeed involved. For this purpose, defined population (epi-

demiological) samples could be referred to in addition to

large trio samples to allow the TDT (42); meta-analyses

should prove helpful when a sufficient number of studies

are available. At some point a decision needs to be reached

as to whether current evidence is sufficient to unequivocally

conclude that a particular allele(s) is involved. A final deci-

sion on the epidemiological level should be based on an

appropriate meta-analysis of all available studies.

This procedure should be formalized by, for instance, a

committee whose task would be to rank candidate gene

findings according to the empirical evidence from improb-

able to probable and finally to definite. Rules for determin-

ing this status need to be defined. Such a formalization

would entail many benefits, the foremost of which would

be the separation of solid findings from false-positive or

equivocal findings. The committee would need to consider

if ethnicity, gender, age and other variables have an impact

on the respective association. Gene–gene interactions can

reliably be assessed if the contribution of the single genes

has been shown without doubt.

False-negative findings are also an issue of concern (61).

Most current candidate gene studies suffer from a lack of

power because of small sample sizes. Therefore, the power

of these studies to detect a given effect should be stated for

the negative finding. Another way of addressing this issue

is to include relative risks and sample size calculations in

association studies based on the premise that the observed

non-significant difference in allele frequencies between

cases and controls is indeed real. This will enable follow-

ups on negative association studies. Estimations of allele-

and/or genotype-specific relative risks and attributable risks

should be presented in all positive association studies.

The thoroughness with which a particular candidate

gene has been investigated requires attention. In many stud-

ies only one SNP was analysed, while in other studies two

or more SNPs and haplotypes were addressed. A systematic

mutation screen of the coding region represents an attempt

to detect all mutations within a candidate gene. Finally, the

promoter region can also be screened. Nevertheless, even

this arduous approach does not totally allow the exclusion

of a particular gene; theoretically a regulatory sequence can

have quite a distance from the gene. The methodology also

warrants consideration; thus, mutation detection rates

upon use of single strand conformation analysis or other

methods are not 100%.

We are already witnessing a commercialization of molec-

ular genetic findings in obesity. Diagnostic tests based on

specific polymorphisms or mutations are available com-

mercially (e.g. Internet). Unfortunately, in some of these

cases the consumer is led to believe that genotyping of a

particular polymorphism will allow detection of the ‘fat

gene’, thus indicating that the seriousness of such providers

cannot be taken for granted. In our opinion, the consumer/

patient should have access to molecular genetic testing after

having been informed of potential implications. Clearly,

only those tests should be made available that pertain to

polymorphisms or mutations whose functional relevance

has been established unequivocally and which occur with

a frequency large enough to warrant screening efforts. In

our opinion, this is currently only the case for MC4R

mutations, which occur in up to 2–4% of extremely obese

probands. An individual should obtain a clear grasp of the

implications of such a finding for herself/himself, for other

family members and potentially for future offspring. The

individual should also obtain a feeling of to what extent

her/his obesity results from a specific mutation or polymor-

phism. Thus, it is evidently debatable if polymorphisms

associated with a relative risk < 2 should be screened for.

Such an approach might be warranted in the future if

several polymorphisms involved in body weight regulation

have been identified, which in a specific combination could

have a larger impact.

We need to analyse potential effects of genetic testing on

the obese subject; what if any are the consequences of a

‘positive’ test? Will such a result lead to alleviation, because

the carrier now has pinpointed a major reason for the

obesity and as such no longer needs to blame herself/him-

self? Or, might the knowledge of being a carrier of a func-

tionally relevant mutation have negative effects in that the

individual stops restraining her/his eating behaviour,

because the detection of a genetic basis of the obesity is

viewed as an excuse for not having to exert further control?

and finally, what are the implications of genetic testing at

the societal level? Will public knowledge of the genetic

basis of obesity as exemplified by specific diagnosable

mutations entail a reduction in stigmatization?

Genome scans

As has already been pointed out, linkage genome scans

performed in obesity have come up with some consistent
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regions (20–40). Fine mapping is ongoing; the TDT is of

great value for detection of linkage disequilibrium (42).

The next years will reveal to what extent single mutations

or SNPs and haplotypes underlie these peaks. Furthermore,

it seems possible that some of the peaks actually represent

the combined effect of SNPs or haplotypes at more than

one locus. The fact that gene and regional chromosomal

duplications have occurred frequently (63) indicates that

gene clusters might indeed play a role.

Genotyping

The advent of high throughput technology offers the

chance to genotype more than 10 000 samples a day, thus

potentially enabling genomewide association studies.

Undoubtedly, scientific groups have already or will devise

ways and means to obtain access to high throughput facil-

ities. This in itself might turn out to become crucial for

obtaining a competitive edge. SNPs and the extents of

linkage disequilibrium blocks need to be identified. Addi-

tionally, the genotyping strategy becomes more and more

important because concepts like DNA pooling and haplo-

type-tagging SNPs might improve efficiency. A substantial

proportion of the work is currently shifting from lab work

to computer work.

Study designs and statistical analysis

With the large amount of data coming up, studies have to

be planned carefully and appropriate statistical methods

need to be chosen. Kaplan and Morris (64) have investi-

gated association studies for fine mapping in complex dis-

eases and show that rare disease alleles are hard to detect.

Another feature that has to be sorted out are the strengths

and limitations of the analyses of haplotypes, that is, in

trios the haplotype sharing analysis can be inferior to the

TDT analysis at single SNPs (65). Discussing all proposed

statistical approaches is beyond the scope of this article; an

excellent overview of these important issues is given by

Terwilliger and Göring (66). Topics include quantitative/

qualitative phenotypes, admixture mapping, gene–environ-

ment interactions and gene–gene interactions. All the

proposed methods are based on sound statistical

considerations; future applications will show which of

these methods are indeed powerful tools for identifying

genes.

In light of the vast number of candidate genes, SNPs and

haplotypes, false-positive results because of multiple testing

will become exceedingly frequent; testing of SNPs will basi-

cally occur on a genomewide level (41). Appropriate deci-

sion rules and additional (high throughput) molecular

studies in other samples are required to determine whether

or not the polymorphism is to be pursued by, for instance,

genotyping it in a second sample. Because ‘significant’ find-

ings will additionally require functional studies, efforts

must be maximized to allow identification of those genes

and alleles which are indeed involved in the phenotype.

Specific guidelines for a sequential procedure entailing a

high probability of identifying an allele with an impact on

the phenotype could prove valuable in this situation.
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4. Summary of the studies and discussion in the context of 

    obesity genetics 

Two different genome wide approaches to identify candidate genes will be discussed, 

focussing on differences between the analyses applied in this thesis (Saar et al., 2003, 

Hinney et al., 2007). Additionally, the role of the three investigated candidate genes in body 

weight regulation will be summarized in the context of the recent findings in obesity research 

(Friedel et. al., 2002, 2005, and 2007). Finally, the importance of such studies for obesity 

treatment interventions will be considered in the discussion of these results (Reinehr et al., 

2009).    

 

4.1 Genome-wide approaches to identify chromosomal  regions/ 

candidate genes/genetic variants involved in body weight 

regulation 

During the last two years, technical approaches to detect novel genes/genomic regions by 

genome-wide approaches changed dramatically. Genome-wide linkage studies for obesity 

have been conducted since 1997 (Comuzzie et al., 1997), the first two positional candidate 

genes were identified in 2003 (Suviolathi et al., 2003; Boutin et al., 2003), a third followed in 

2005 (Meyre et al., 2005) – however, still none of these candidate genes have been robustly 

and consistently confirmed in a larger number of independent studies. The implementation of 

GWAs during the last two years, however, led to the identification of a larger number of new 

candidate genes for obesity. 

The results of the last decades revealed that linkage studies have primarily been successful 

in detecting genes underlying monogenic disorders and that they have rather limited power 

to detect genes with modest or small effect (oligogenes, polygenes) which are more typical in 

complex diseases. In comparison, GWAs have the statistical power to detect such smaller 

gene effects. For obesity, the first GWA was published in 2006, followed by the identification 

of the first polygenes in 2006 and 2007 (Herbert et al., 2006; Sladek et al., 2007).  

In the following, two genome wide scans, a linkage scan as well as a GWA will be presented 

and discussed in the context of current obesity research. 
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4.1.1 Identification of chromosomal regions involved in the aetiology of 

early onset obesity using linkage analysis in 89 families of German 

origin with two or more (extremely) obese children 

Genome-wide linkage scans are used for the identification of chromosomal regions 

harbouring candidate genes. Genome scans for complex disorders are based on the 

assumption that the similarity in the phenotype of affected sibs is based on the same 

genotype (allele sharing). The genome scan of Saar et al. (2003) represented the first scan 

for early onset obesity. The scan was based on 89 families with 2 or more obese children. A 

total of 369 individuals were initially genotyped for 437 microsatellite markers, a second 

independent sample of 76 families was genotyped using microsatellite markers that were 

localized in regions for which maximum likelihood binomial logarithm of the odd (MLB LOD) 

scores used for the concordant sib pair approach exceeded 0.7 in the first sample. The 

regions with MLB LOD scores >0.7 were on chromosomes 1p32.3-p33, 2q37.1-q37.3, 4q21, 

8p22, 9p21.3, 10p11.23, 11q11-q13.1, 14q24-ter, and 19p13-q12 in sample 1; MLB LOD 

scores on chromosomes 8p and 19q exceeded 1.5. In sample 2, MLB LOD scores of 0.68 

and 0.71 were observed for chromosomes 10p11.23 and 11q13, respectively.  

Similar to Saar et al., Meyre et al. (2004), also conducted a genome-wide linkage study for 

childhood obesity-associated traits (e.g. BMI >95th, 97th and 99th percentile (PCT95, 97, 99) 

and age of adiposity rebound (AAR)). A set of 431 microsatellite markers was genotyped in 

506 subjects from 115 multiplex French Caucasian families, with at least one child with a BMI 

>PCT95. Among these 115 pedigrees, 97 had at least two sibs with a BMI >PCT95. Fine-

mapping was performed for the seven most promising loci. Nonparametric multipoint 

analyses revealed six regions of significant or suggestive linkage on chromosomes 2q33.2-

q36.3, 6q22.31-q23.2, and 17p13 for PCT95, PCT97, or PCT99 and 15q12-q15.1, 16q22.1-

q24.1, and 19p13.3-p13.11 for AAR. The strongest evidence of linkage was detected on 

chromosome 6q22.31 for PCT97 (maximum likelihood score: 4.06) at the marker D6S287. 

This logarithm of odds score was significant at a genome-wide level of 0.05 when using 

permutations (empirical genome-wide p = 0.01 [CI: 0.0027-0.0254]).  

A third scan investigated longitudinal BMI data from childhood to adulthood in 782 siblings 

from the Bogalusa Heart study (Chen et al., 2004). Because of the differences in study 

design and analysed phenotypes (i.e. the sib pairs were not ascertained for obesity), this 

study is hard to compare with Saar et al., (2003) and Meyre et al., (2004). Therefore, we will 

restrict the subsequent discussion to the first to scans.  

These two studies are the only genome-wide linkage scans for phenotype early onset 
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obesity. In light of the potentially stronger genetic determination of childhood and adolescent 

BMI and the possibility of age-dependent genetic influences on body weight, genome-wide 

scans based on children and adolescents are of obvious interest. Furthermore, scans based 

on children and adolescents entail the advantage that the parents can be readily ascertained, 

thus enabling determination of the identity by descent status. It was hypothesized that a 

genome scan based on childhood- and adolescent-onset obesity has a greater potential to 

detect relevant chromosomal regions than a scan based on obese adult sib pairs. This 

hypothesis originates from data indicating a potentially higher genetic load in childhood and 

adolescent obesity (Pietiläinen et al., 1999). The ascertainment of the sample investigated by 

Saar et al., (2003) was based on the extremely concordant sibling pair approach (ECSP; 

Risch and Zhang, 1995). They included German obese index patients and their siblings via 

BMI >PCT95 for one sibling and >PCT90 for the other(s). In comparison, Meyre et al., (2004) 

included French families with at least two probands with a BMI >PCT95 before the age of 8 

and two living parents and additionally 18 pedigrees with at least two sibs and only one 

proband with a BMI >PCT95 for analysis of age of adiposity rebound. Despite the stricter 

inclusion criteria of Meyre et al., the German sample has a is slightly higher BMI (mean BMI 

32 vs. 29) and older than the French sample (mean age 13.6 vs.11.9). Furthermore, Meyre 

et al. used their whole sample of 115 families for the scan as well as for the fine mapping 

while Saar et al. divided their sample in an initial scanning sample and a second sample for 

independent fine mapping. Moreover, the strongest signal of Meyre et al. (2004) was a 

maximum likelihood score of 4.06 on chromosome 6q; Saar et al., observed no suggestive 

peak of linkage (LOD >2.2) with obesity. Beside a signal on chromosome 2q33 (Meyre et al., 

2004) and 2q37 (Saar et al., 2003) was no overlap in chromosomal regions identified in both 

scans. Interestingly, no linkage with morbid obesity in adults was reported for this region. It 

might be possible that the molecular determinants of the severe forms of early onset obesity 

are different from those associated with morbid obesity in adults. Until today, no candidate 

gene contributing to these linkage peaks was identified. 

Nevertheless, both genome-wide linkage studies discussed and followed up candidate genes 

derived from their scans. Saar et al. describe glutamic acid decarboxylase 2 (GAD2; chr.10), 

angiotensin receptor-like 1 (AGTL1), ciliary neurotrophic factor (CNTF), galanin (GALN), and 

uncoupling proteins 2 and 3 (UCP2, 3) as promising candidate genes localized within the 

chromosome 10 and 11 peak regions. However, they found no evidence for association of 

CNTF, UCP2 and GAD2 with obesity (Münzberg et al., 1998; Schäuble et al., 2003; 

Swarbrick et al., 2005). In contrast, Meyre et al. (2005) performed fine mapping on 

chromosome 6q and identified several variants of ectonucleotide 

pyrophosphatase/phosphodiesterase (ENPP1) to be associated with obesity. This finding 
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was replicated in some (Böttcher et al., 2006; Bochenski et al., 2006; Meyre et al., 2007; 

Prudente et al., 2007; Valli-Jaakola et al., 2008; Jenkinson et al., 2008; González-Sánchez et 

al., 2008) but not all subsequent studies (Lyon et al., 2006; Weedon et al., 2006; Grarup et 

al., 2006; Seo et al., 2008). 

Despite the heterogeneity of samples and obesity-related phenotypes investigated in these 

studies it remains an open question if ENPP1 is a true positive finding. The recently 

published GWAs for obesity and diabetes do not support the role of ENPP1 in the aetiology 

of obesity or NIDDM. However, one should note that even more consistently associated 

genes may not light-up among the top hits of a GWA as recently reviewed by Frayling et al. 

(2007) for NIDDM. Altogether, both linkage scans for childhood and early onset obesity were 

not (Saar et al., 2003) or not convincingly successful (Meyre et al., 2004) in identifying 

candidate genes for obesity. 

Following Altmüller et al. (2001), most genome-wide scans are not able to detect “significant” 

linkage as defined by Lander and Kruglyak (1995). The results of Saar et al. fit within this 

category. Both the relatively small sample size and the fact that the scan was based on 

sibling pairs might mainly account for the discouraging outcome. Due to the presumably 

large genetic heterogeneity of the phenotype obesity, the reliance on single sibling pairs 

entails the disadvantage that different genetic variants may only be present in a limited 

number of families. Even for major genes this will reduce the chances to observe a high LOD 

score. The identification of major genes is more likely in large pedigrees with several affected 

family members. Whereas genome-wide linkage analyses were useful instruments identifying 

relevant genes for monogenetic disorders, they mainly failed in the search of candidate 

genes for complex disorders like obesity. This conclusion is supported by the study of 

Saunders et al. (2007), who performed a meta-analysis of 37 published genome-wide linkage 

scans. Despite having substantial statistical power even for smaller genetic effects, they did 

not identify specific loci for BMI or obesity.  The FTO gene locus on chr.16q12.2 showed 

nominal evidence for linkage in the pooled analysis. As FTO is one of the most convincing 

genetic findings in obesity and as the study has sufficient statistical power, one would have 

estimated a larger linkage signal. 

Reasons might be that microsatellite - based linkage scans are not suitable for the detection 

of small genetic effects expected for obesity or heterogeneity of genetic loci. 
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4.1.2 Identification of genetic variants involved in body weight regulation 

using a genome-wide association study (GWA) for extreme, early 

onset obesity 

GWA studies offer a new conceptual framework to identify common genetic variants 

underlying common diseases (Thomas et al., 2006). In 2007, the detection and publication of 

genes/SNPs for complex disorders like NIDDM increased rapidly (.e.g. Scuteri et al., 2007; 

Zeggini et al., 2007; Scott et al., 2007; Frayling et al., 2007; Sladek et al., 2007).  

We performed a GWA for early onset (extreme) obesity. 440,794 SNPs from the Genome-

Wide Human SNP Array 5.0 (Affymetrix) were genotyped in 487 extremely obese young 

German individuals and 442 healthy lean German controls. The most promising markers 

were followed up using a family-based association approach based on 644 independent 

families with at least one obese offspring and both parents for confirmatory analyses. We 

aimed to identify and subsequently confirm the 15 SNPs with a minor allele frequency (MAF: 

=10 %), which provided the lowest p-values in the GWA by four genetic models: additive, 

recessive, dominant and allelic. Six SNPs in FTO (fat mass and obesity associated gene) 

within one LD block including the GWA SNP with the lowest p-value (rs1121980; nominal 

p=1.13x10-7, corrected p=0.0494) belonged to the 15 SNPs showing the strongest evidence 

for association with obesity. For our confirmatory analyses we genotyped 11 of these 15 

SNPs in 644 independent families (of the six FTO SNPs we chose only two representing the 

linkage disequilibrium block). For both of the two FTO SNPs the initial association was 

confirmed (both Bonferroni corrected p<0.01). However, none of the nine non-FTO SNPs 

revealed significant transmission disequilibrium in the family study.  

Altogether, our GWA study for extreme early onset obesity substantiated that variation in 

FTO strongly contributes to the development of early onset obesity. FTO is one of the genes 

picked up in GWA studies for NIDDM (Frayling et al., 2007; Sladek et al., 2007) where an 

adjustment for BMI revealed that the effect was more likely due to this quantitative phenotype 

(Frayling et al., 2007). In a replication study investigating 13 samples with 38,759 individuals 

and a meta-analysis, Frayling et al. (2007) showed that the A-allele of the variant rs9939609 

was associated with an increased risk to develop obesity. These results were independently 

supported in 8,000 individuals from different populations (Dina et al., 2007) and in a GWA 

study for obesity-related traits in an epidemiological cohort (Scuteri et al., 2007). According to 

Frayling et al. (2007), the risk for being obese is increased by 31% for carriers of a single 

copy of the risk allele. This risk is doubled for homozygous carriers (67%), whereas the 

average weight gain is approximately 3.0 kg among them. One can estimate that about one 

sixth of the population of European descent is homozygous for the risk allele. Therefore, the 
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link between FTO and obesity seems to be one of the strongest genotype-phenotype 

associations detected by GWA studies (Barabasi, 2007).  

Ioannidis et al., (2007) re-analyzed the data from three GWA studies on type 2 diabetes 

(Scott et al., 2007; Saxena et al., 2007; Frayling et al., 2007) and found that for 5 of the 11 

genetic variants that are considered as ‘‘confirmed’’ susceptibility loci for NIDDM there was 

still moderate to very large between-study heterogeneity across the different GWA 

investigations. For FTO rs8050136, the random effects summary odds ratio yielded a weak 

p= 0.015, as compared with the impressive p = 1.3x10-12 originally reported indicating a large 

between-study heterogeneity (77%). Despite this heterogeneity, the Wellcome Trust 

investigators have indeed found that this variant is a susceptibility marker for increased body 

mass index and obesity (Frayling et al., 2007). Following Frayling et al. (2007), susceptibility 

to NIDDM might be mediated through the effect on body mass index and is not an 

independent effect which might explain part of the inconsistency seen for different 

populations. Thus, the observed heterogeneity for association to NIDDM is also explained by 

the study design of the three GWA investigations. For example, Saxena et al. (2007) used a 

tightly matched case-control sample in the discovery phase, where cases and controls had 

been matched for body mass index and thus it is not surprising that there was no residual 

effect of this FTO variant on the risk of NIDDM.  

As BMI is a heritable measure of obesity that can be routinely and easily measured in large 

cohorts, it is a readily accessible trait useful to screen for genetic variants associated with the 

aetiology of obesity. There have been many publications reporting association between 

common genetic variants and BMI, but few of them were reproducible in multiple populations 

(Rankinen et al., 2006). An example is SNP rs7566605, upstream of the INSIG2 gene, which 

was found to be associated with obesity as measured by BMI (Herbert et al., 2006). The 

association between increased BMI and homozygosity for the minor allele was first observed 

in data from a GWA scan of 86,604 SNPs in 923 individuals from the Framingham Heart 

Study offspring cohort. The association was reproduced in four additional study groups, but 

was not seen in a fifth cohort. To further assess the general reproducibility of this 

association, rs7566605 was genotyped in nine large cohorts from eight populations across 

multiple ethnicities (total n = 16,969). The SNP was tested for association with BMI in each 

sample under a recessive model using family-based, population-based, and case-control 

designs. Significant (p < 0.05) association was observed in five of eight study groups. 

Moreover, there was even variability in the strength of association evidence across 

examination cycles in a longitudinal assessment of the same unrelated individuals of the 

Framingham Heart Study Offspring cohort. A combined analysis revealed significant 

independent validation of this association in both unrelated (p = 0.046) and family-based (p = 
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0.004) samples. The estimated risk conferred by this allele is small, and could easily be 

masked by small sample size, population stratification, or other confounders. The validation 

studies suggest that the original association is less likely to be spurious, but the failure to 

observe an association in every data set suggests that the effect of SNP rs7566605 on BMI 

may be heterogeneous across population samples. 

The poor rate of reproducible findings in association studies in general and obesity in 

particular are likely due to stochastic variation leading to false-positive findings, 

underpowered attempts to reproduce associations with modest effects, systematic bias due 

to technical artefacts or population stratification, and perhaps true heterogeneity in effect 

across populations due to differences in genetic or environmental modifiers (Lohmueller et 

al., 2003; Clayton et al., 2005). Thus, new reports of association require rapid, well-powered 

studies to validate true associations or to identify false positives that could otherwise trigger 

costly and time-consuming investigation of spurious findings (Lyon et al., 2006). As an 

example, Loos et al. (2008) analyzed GWA-data from 16,876 individuals of European 

descent to identify common variants influencing BMI. Besides FTO, the second strongest 

association signal (rs17782313) was identified 188 kb downstream of MC4R. The finding 

was confirmed in additional 60,352 individuals. Although the functional relevance of the SNP 

is yet unknown, this finding is one of the best supported findings in obesity genetics.  

 

4.2 Investigation of candidate genes for obesity  

Findings from formal genetic studies and animal models have indicated that approximately 

50 – 80 % of BMI variance is due to genetic factors (Maes et. al 1997), a fact which has led 

to a great interest in conducting candidate gene studies for body weight regulation. The 

identification of such candidate genes can be carried out in different ways: (a) Functional 

candidate genes which are known to be involved in energy metabolism (i.e. GLUT4, involved 

in glucose metabolism) or genes known from obese animal models (i.e. the obese Bdnf+/- 

mice); or (b) positional candidates that were identified in linkage peaks via genome-wide 

scans for BMI or related phenotypes (i.e. DGAT2 in a linkage region for BMI on chromosome 

11q13).  The first milestone in the genetics of obesity was the positional cloning of the mouse 

obese gene and its human homologue leptin. Since then the genetics of obesity has rapidly 

grown. Many candidate genes presumed to be involved in body weight regulation have been 

investigated. Studies usually started with a mutation screen of the gene in obese individuals 

followed by case-control association studies for detected variants. 

Examples of functional candidate genes presented here include two studies investigating the 
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genetic impact of BDNF (Friedel et al., 2005) and GLUT4 (Friedel et al., 2002) on body 

weight regulation, whereas DGAT2 (Friedel et al. 2007) represents both a positional and 

functional candidate gene. 

4.2.1 Analysis of the role of brain-derived neurotrophic factor precursor 

gene (BDNF) as a candidate gene for body weight regulation and 

activity (Friedel et al. 2005) 

Several lines of evidence indicate an involvement of BDNF in body weight regulation and 

activity: Heterozygous Bdnf knockout mice (Bdnf+/-) are hyperphagic, obese, and hyperactive; 

furthermore, central infusion of BDNF leads to severe, dose-dependent appetite suppression 

and weight loss in rats. Altogether, this phenotype makes BDNF a suitable candidate gene 

for obesity, eating disorders, and even attention-deficit/hyperactivity disorder (ADHD). 

We screened the translated main exon of BDNF by SSCP (single strand confirmation 

analysis) and dHPLC (denaturing high pressure liquid chromatography) for mutations in a 

total of 370 German obese or underweight individuals. Three variants were identified apart 

from the previously known SNP p.Val66Met (rs6265): (i) We found the previously detected 

non-conservative amino acid substitution p.Thr2Ile (Weese-Mayer et al., 2002) in a single 

extremely obese male who inherited the mutation from his obese mother. It is unknown 

whether the Ile2 variant affects the mode of action of the signal peptide. Functional studies 

need to be conducted in order to investigate the possible effect of the mutation at Ile2 and 

how it may be linked to the clinical obesity phenotype. (ii) The novel variant c.273G>A was 

detected once in an extremely obese male. We assumed that there was no major effect 

because this mutation is silent. (iii) The 3´UTR variant c.*137A>G was detected in one 

underweight control (BMI 19.7 kg/m2). For this variant an influence on the mode of action of 

BDNF is unlikely. (iv) We did not detect an association between obesity, anorexia nervosa 

(AN) or ADHD and SNP p.Val66Met or c.-46C>T in the genomic region of BDNF. For bulimia 

nervosa (BN), we found a trend towards a potential association with -46T but we were not 

able to follow-up on this result due to our limited number of BN cases. Furthermore, the p-

value would not have been of interest if adjustments for multiple testing would have been 

performed. In case that our observation indicated a true positive signal two different 

mechanisms might explain the finding: First, the c.-46C>T variant is in linkage disequilibrium 

with a yet unknown variant or an unknown susceptibility gene directly involved in the 

aetiology of BN. Alternatively, this variant itself entails an increased risk that may result from 

an alteration in the translation efficacy (Shintani et al., 1992). No data with regard to the 

potential functional consequences of this variant are available yet. Moreover, our results 

were not in line with Ribases et al. (2003), who reported an association of the Met66-allele 
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with AN in a Spanish sample. To address some of the problems of frequently observed 

inconsistencies, parts of our data on patients with AN or BN and controls were included in a 

recent meta-analysis pertaining to the polymorphisms Val66Met and c.-46C>T. The meta-

analysis revealed an association of the Met66 variant with eating disorders as well as 

evidence for an association of the -270C (-46T) BDNF variant and age at onset of weight 

loss (Ribases et al., 2004). In conclusion, our results do not suggest a large impact of genetic 

variation in BDNF for the phenotypes AN, BN, ADHD, or obesity.  

In our publication, we assumed that larger independent samples need to be assessed to 

exclude moderate genetic effects of the two investigated polymorphisms. Interestingly, 

Thorleiffson et al., (2008) identified BDNF (Val66Met) in a GWAS investigating more than 

30,000 individuals as one of seven loci that associated with measures of obesity. Therefore, 

Val66Met might be involved via a moderate or small genetic effect in the aetiology of obesity.  

Another line of evidence pertaining to the role of BDNF comes from studies showing that 

BDNF and its receptor TrkB (tyrosine kinase B) are downstream components in the MC4R-

mediated control of energy balance. Xu et al. (2003) reported that mouse mutants which 

express decreased amounts of the BDNF receptor TrkB are characterized by hyperphagia 

and maturity-onset obesity similar to MC4R mutants. This suggests a role for TrkB in energy 

balance. Additionally, Tsao et al. (2008) showed that peripheral administration of 

neurotrophin-4 (NT4), a natural ligand of TrkB, suppresses body weight and appetite in 

several murine models of obesity. Two additional studies, however, suggest that BDNF and 

TrkB are more likely related to rare monogenic obesity than to polygenic obesity: 

Gray et al. (2006) report an 8-year-old girl with hyperphagia and severe obesity, impaired 

cognitive function, and hyperactivity who harboured a de novo chromosomal inversion, 

46,XX,inv(11)(p13p15.3), a region encompassing the BDNF gene. Haploinsufficiency for 

BDNF was associated with increased ad libitum food intake, severe early-onset obesity, 

hyperactivity, and cognitive impairment. Yeo et al. (2004) described an 8-year-old boy with a 

complex developmental syndrome and severe obesity who was heterozygous for a missense 

mutation resulting in a Tyr722Cys substitution in the neurotrophin receptor TrkB. This 

mutation markedly impaired receptor autophosphorylation and signalling to MAP kinase 

(mitogen-activated protein kinase). The associated impairment in memory, learning and 

nociception seen in the proband reflects the crucial role of TrkB in the human nervous 

system. 

Altogether, BDNF and its receptor seemingly play a role in energy balance. Nicholson et al. 

(2007) showed in rats that activation of MC4R leads to an acute release of BDNF in the 

hypothalamus. This release could be a precondition for MC4R-induced effects on appetite 
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and body temperature etc., revealing that BDNF is an important downstream mediator of the 

MC4R pathway. In light of the importance of BDNF for neuronal development, it is unlikely 

that common genetic variation which results in impaired function would only affect body 

weight regulation. As demonstrated by Yeo et al. (2004) and Gray (2006), impaired function 

of the BDNF and its receptor TrkB led to both extreme obesity and serious impairments in 

memory, cognitive function and behaviour. From an evolutionary point of view, it is unlikely 

that such mutations or haplotypes will become frequent in populations. As a matter of fact, 

the authors themselves also assume that the observed mutations in BDNF and NTRK2 

(encoding TrkB) more likely result in syndromal, monogenic forms of human obesity. 

4.2.2 Involvement of two single nucleotide polymorphisms (SNPs) of the 

insulin-responsive glucose transporter 4 gene (GLUT4) in 

individuals from different weight extremes (Friedel et al. 2002) 

The insulin-sensitive glucose transporter GLUT4 is the most common glucose transporter in 

muscle and adipose tissue (Katz et al., 1995). As GLUT4 has been shown to be 

dysregulated in diabetes and obesity, it was expected that the knockout of Glut4 would result 

in abnormal glucose homeostasis. In contrast, homozygous Glut4 knockout (Glut4-/-) mice 

exhibit nearly normal glycaemia, but postprandial hyperinsulinaemia. It was shown that  

Glut4-/- mice clear glucose as efficiently as controls, but are less sensitive to insulin action. 

Besides different malfunctions they also reveal growth retardation and severely reduced 

adipose tissue deposits. According to the observed phenotype, it can be assumed that the 

Glut4 protein is not required for maintaining normal glycaemia but is essential for growth, 

cellular glucose and fat metabolism (Katz et al., 1995). Altogether, this makes GLUT4 a 

suitable candidate gene for obesity. Our study analyzed a possible association of body 

weight with two SNPs in GLUT4 in a German Caucasian population. We investigated a total 

of 388 probands: 212 extremely obese children and adolescents, 94 underweight students, 

and 82 normal-weight students. We did not detect evidence for an association of any of the 

analyzed SNP alleles in the vicinity of GLUT4 to different weight categories. Hence, there is 

no evidence suggesting that the analyzed polymorphisms are related to body weight 

regulation in our study groups. Besides common variation, our results do not exclude the 

potential body-weight related role of rare variants or mutations in the GLUT4. 

We re-analyzed all SNPs located in GLUT4 genomic region in our GWA case-control data 

set for which a more dense set of genotypes based on the Genome-Wide Human SNP Array 

6.0 (Affymetrix) is also available  (Hinney et al., 2007; described above). None of the 16 

analyzed SNPs revealed a significant p-value or a trend towards significance using a nominal 

alpha of 5% as a significance level. As this study has moderate power to detect the expected 
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effect sizes for complex traits (see Hinney et al., 2007; supplementary material) the 

contribution of common genetic GLUT4 variants to early onset extreme obesity seems 

unlikely. In light of today’s knowledge, some points might explain the negative findings of our 

initial study: 

i) The investigated variants are not functionally relevant and they are not representative for 

the GLUT4 genomic region. According to Hapmap (data release 21), there is no LD between 

the investigated SNPs and moreover, with exception of a small block encompassing the first 

two exons, there are no haplotype blocks described in GLUT4 genomic region. So, if there 

are functionally relevant mutations, the investigated variants might not have been appropriate 

to pick these up. 

ii) Because of the small sample size, our study has sufficient statistical power to detect large 

genetic effects only. In light of the small effects now expected to be the rule for complex 

diseases like obesity, statistical power/sample size are of particular importance for the 

interpretation of “negative” results. Of note, the subsequent analyses of our larger GWA  data 

sets confirmed our initial negative findings. 

iii) According to its crucial role in insulin signalling (McCarthy et al., 2007) GLUT4 might not 

be directly involved in the aetiology of obesity and its involvement in the aetiology of NIDDM 

is more likely. As our sample consists of extremely obese children and adolescents with no 

diagnosis of NIDDM, the detection of an association to NIDDM cannot be demonstrated. 

Given the many upcoming GWA studies that include BMI and NIDDM associated phenotypes 

and which are well powered even for moderate or small genetic effects, it should be possible 

to elucidate the role of GLUT4 soon. Until today, there is no hint for an association of GLUT4 

and obesity or NIDDM in published studies. 

iv) Two recent findings reveal that GLUT4 might be involved in body weight regulation via the 

TBC1D1 gene. The potential importance of TBC1D1 in linking insulin, exercise and energy 

status signalling with GLUT4 membrane traffic is heightened by the discovery of Stone et al., 

(2006) who reported variant Arg125Trp to be involved in severe female obesity. In contrast, a 

mutation in the same gene was recently shown to be protective for high fat diet (HFD) 

induced obesity. As Chadt et al. (2008) describe, a loss-of-function mutation occurring in the 

lean Swiss Jim Lambert-mice (SJL) leads to a truncated protein and, therefore, markedly 

reduced blood glucose levels as compared to carriers of a control allele. This result might 

point to Tbc1d1 as the missing link between Glut4 translocation and glucose uptake, further 

studies are warranted to show whether Glut4 translocation is affected by this mutation.      
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4.2.3. Investigation of Diacylglycerol O-acyltransferase homolog 2 gene 

(DGAT2) as a positional and functional candidate gene for early 

onset obesity (Friedel et al. 2007) 

DGAT2 is a promising candidate gene for obesity because of its function as a key enzyme in 

triglyceride metabolism and because of its localization on chromosome 11q13, a linkage 

region for extreme early onset obesity detected in our sample (Saar et al., 2003). Dgat2 

knockout mice (Dgat2-/-) are lipopenic, their total carcass triglyceride content is reduced by 

93% (Stone et al., 2004). In contrast to Dgat1-/- mice, where Dgat2 is able to compensate 

the role of Dgat1 in triglyceride synthesis (Smith et al., 2000), Dgat1 was unable to 

compensate for the absence of Dgat2 in Dgat2-/- mice. These results indicate that Dgat2 

might be the major enzyme of triglyceride synthesis in mice (Stone et al., 2004). Based on 

both positional as well as on functional arguments, we hypothesized that genetic variations in 

DGAT2 also alter triglyceride synthesizing activity of the protein in humans. Genetic 

variations leading to a gain of function of DGAT2 may thus be associated with obesity, 

whereas variations entailing a reduced function might result in underweight. 

Accordingly, we performed a mutation screen in 93 extremely obese children and 

adolescents and 94 healthy underweight controls. Association studies were performed 

subsequently in samples of up to 361 extremely obese children and adolescents and 445 

healthy underweight and normal weight controls. Additionally, we tested for linkage and 

association using nuclear families at four common variants in the 165 families of our initial 

genome scan. The mutation screen revealed 15 DNA variants, four of which code for non-

synonymous exchanges: p.Val82Ala, p.Arg297Gln, p.Gly318Ser and p.Leu385Val; ten 

variants were synonymous. Additionally, the small biallelic trinucleotide repeat rs3841596 

was identified. None of the case control and family-based association studies showed 

evidence for an association of investigated variants or their haplotypes in the genomic region 

of DGAT2 to obesity. In conclusion, our results do not support the hypothesis of an important 

role of common genetic variation in DGAT2 for the development of obesity in our sample. 

Thus, in case of an influence of genetic variation in DGAT2 on body weight regulation, it 

might either be conferred by the less common variants (MAF < 0.1) or the detected, rare non-

synonymous variants. In contrast, Choi et al. (2007) presented data demonstrating that 

suppression of hepatic Dgat2 in rats with antisense oligonucleotides decreased plasma 

triglycerides (TG) and protected against fat-induced insulin resistance. Additionally, treatment 

of ob/ob mice with the DGAT2 antisense oligonucleotide resulted in a significant decrease in 

weight gain, adipose weight and hepatic TG content (Liu et al., 2008). These findings 

indicate that the majority of TG destined for secretion by liver is synthesized by DGAT2 and 
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suggests that DGAT2 may be a therapeutic target for treatment of hypertriglyceridemia, 

hepatic steatosis and obesity.  

Even though we observed no evidence relating common genetic variation within the DGAT2 

gene with obesity, the lessons from DGAT-deficient mice (Smith et al., 2000; Stone et al., 

2004) and suppression experiments (Choi et al., 2007) still suggest that DGAT-inhibition may 

be a good strategy for the treatment of obesity. Both DGAT2 and its functional homologue 

DGAT1 would be excellent targets for small molecule inhibitors; Matsuda and Tomada 

(2007) refer to more than 30 selected inhibitors of fungal and plant origin. As an example, 

Lee et al (2006) report the inhibition of DGAT1 by alkamides isolated from the fruits of Piper 

longum and Piper nigrum; whereas Chung et al. (2005) reported first in vitro inhibition 

experiments with betulinic acid from Alnus hirsuta. Altogether, DGAT inhibitors of natural and 

synthetic origin have been identified, but their selectivity toward DGAT1 and DGAT2 remains 

to be clarified.  

Nonetheless, enthusiasm for the potential benefits of DGAT inhibition must be tempered by 

the reality that newly identified therapeutic targets rarely enter the stages of clinical trials. As 

a first step towards a potential application in humans, studies on the degree and the 

additional consequences/ side effects of DGAT inhibition are required. 
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4.3 Investigation of the influence of functional relevant MC4R-

variants on weight loss during a lifestyle intervention program 

(Reinehr et al., 2009) 

Approximately two percent of extremely obese children and adolescents are carriers of 

functionally relevant mutations in the MC4R (Hinney et al. 1999). By now more than 80 

functionally relevant missense mutations in the MC4R are known. Most of them lead to a 

partial or complete loss of function of the receptor (Ho et al. 1999; Vaisse et al. 2000; Farooqi 

et al. 2000, 2003; Kobayashi et al. 2002; Hinney et al. 2003) and therefore, to weight gain 

and obesity. The aim of this study was to investigate impact and extent of weight changes 

after lifestyle intervention in children with MC4R mutations. Additionally, weight changes after 

the lifestyle intervention program “Obeldicks” (Reinehr et al., 2007) between children with 

and without MC4R variations were compared in a two-year longitudinal study.  

Among 514 obese German children and adolescents 18 (4%) carriers with 10 functionally 

relevant mutations were identified, 1 (0.2%) had a mutation with unknown relevance and 14 

(2.7%) children carried variations not leading to reduced receptor function. The children with 

and without MC4R mutations did not significantly differ at baseline with respect to any 

anthropometrical marker, cardiovascular risk factor, or hormone profile. Both children with 

and without MC4R mutations reduced their degree of overweight at the end of the 

intervention and they did not differ in their overweight reduction at the end of the intervention. 

However, the maintenance of weight loss after intervention among children with MC4R 

mutations leading to reduced receptor function was less stable in comparison to children 

without such mutations. In contrast, Hainerova et al. (2007) reported on four MC4R mutation 

carriers who underwent a weight reduction program and were able to maintain their weight 

loss ten months after the program. In either case, studies with larger sample sizes are 

warranted to specifically test this hypothesis. In conclusion, children with MC4R mutations 

leading to reduced receptor function are able to lose weight in a lifestyle intervention but 

might have greater difficulties to maintain this weight loss potentially supporting the impact of 

these mutations on weight status.  

With regard to other genetic variants, there is also no clear evidence to indicate if specific 

allelic variations may influence the outcome of weight loss programs. At present, three 

studies have addressed this question. Soerensen et al. (2006) investigated 42 SNPs in 26 

candidate genes in 648 adults on a hypocaloric diet with high or low fat content for ten weeks 

in eight clinical centres in Europe and did not identify any genetic polymorphisms as 

predictors of weight loss. In a second study, Arkadianos et al. (2007) modified the diet of half 
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of the participants (43 of 86) of a weight management program according to their genetic 

profile (24 SNPs in 19 genes, nutrigenetic subgroup). In contrast to Soerensen et al. (2006) 

they detected improved weight management and weight loss after 300 days follow-up for the 

nutrigenetic group. However, as the sample size is very small, the outcome of this study 

needs to be discussed critically and requires independent validation. Reinehr et al. (2009) 

genotyped 293 obese children attending a weight reduction programme and found that CC-

homozygotes at SNP rs7566605 in the vicinity of INSIG2 lost less weight in a lifestyle 

intervention.  

In principle, the identification of genetic variants associated with lower or higher success 

rates after intervention could enable clinicians to adapt interventions to specific patient 

groups and to study the impact of different genetic variants on weight loss management in 

children and adolescents. Altogether, the available evidence to support this idea is very 

sparse. Soerensen et al. (2006) and Arkadianos et al. (2007) investigated polygenic effects 

of 42 and 24 SNPs on weight loss and its maintenance in 648 and 43 individuals and 

reported contrary findings. Moreover, the functional relevance of most of the polymorphisms 

genotyped in both studies is unknown. As a consequence, this might have contributed to the 

negative findings of the first study. For future studies it is demanded that only polymorphisms 

with robust evidence for an involvement in body weight regulation (e.g. SNPs in or near FTO, 

MC4R and maybe INSIG2) should be investigated. Due to the small estimated effect sizes 

for polygenes, these studies should be conducted in sufficiently large samples. 

In contrast to the studies cited above, Reinehr et al. (2009) and Hainerova et al. (2007) 

investigated MC4R which is also a well supported major gene for obesity. Because 

functionally relevant MC4R-mutations occur in only 2-5% of extremely obese children and 

adolescents it is difficult to sample larger numbers of mutation carriers. As a consequence, 

the sample sizes in both studies were small – the resulting power problem, however, might 

be in part compensated by the larger effect size of MC4R mutations. As both studies 

reported contrary results, larger samples and meta-analyses are needed to elucidate the 

effect of functionally relevant MC4R mutations on weight loss and its maintenance. As a 

primary hypothesis, such studies should follow-up the results of Reinehr et al. (2009), 

suggesting that carriers of functionally relevant MC4R mutations seem to lose body weight 

similar to non-carries but might have larger difficulties to maintain this weight loss.  

Weight loss via dieting and physical activity is one of the widely used strategies 

recommended for obese individuals, e.g. carriers of functionally relevant MC4R mutations, 

but so far, little is known about the medium and long-term implications and side effects of an 

intentional weight loss. Although weight loss is known to improve metabolic and 
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cardiovascular risk factors, specific risks associated with acute and specifically rapid weight 

loss and its long-term implications have rarely been studied. The same is true for obese 

children for whom short-term success of weight loss interventions is well documented while 

data on long-term outcomes after intervention is lacking. One frequent adverse effect of 

intentional weight loss is a regain of a significant amount of weight. The repeated loss and 

regain of body weight is called “weight cycling”. The molecular mechanisms underlying 

weight regain following cycles of dietary deprivation and refeeding are still poorly understood 

(Kochan et al., 2006).  

In adults, Soerensen et al. (2005) report results of an observational study where those 

subjects who intended to lose weight and actually lost weight over a 6 year period had an 

86% increased risk of death over a 25 year follow up period compared to those who did not 

intend to loose weight or intended to loose weight but did not proceeded to indeed lose 

weight. Thus, data on the long-term effects of intentional weight loss especially in integrated 

programs clearly need to be collected and analysed.  

In an attempt to summarize the available evidence, Simonsen et al. (2008) conducted a 

review comprising studies on intentional weight loss and mortality. Of the studies evaluated, 

two found decreased mortality with intentional weight loss, three found increased mortality, 

and four found no significant associations between intentional weight loss and total mortality. 

Thus, the long term effects of intentional weight loss remain unclear.  

With regard to the implications of dietary weight loss, its regain and the impact of genetic 

factors on success in a lifestyle intervention program (as described by Reinehr et al. 2009), 

the long term consequences should be thoroughly assessed especially in the group of 

children and adolescents carrying functionally relevant MC4R mutations. 
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4.4 Perspectives of molecular genetic research in human obesity 

(Hebebrand et al., 2003) 

Since the identification of leptin in 1994 (Zhang et al., 1994) obesity research is a fast 

growing research field. From the very beginning until today, research approaches and 

dogmas changed. Following the research era of monogenes detected in large pedigrees we 

now search for polygenes in huge samples of independent subjects. Discussions on how to 

define obesity, which phenotypes to investigate and how many individuals to ascertain are 

recurring themes of genetic research in human obesity. Hebebrand et al. (2003) critically 

reflected approaches to detect mutations and polymorphisms predisposing to the 

development of obesity and related phenotypes and provided outlines for the future. Topics 

considered were a) the impact of the investigated phenotype, b) the question whether to 

invest in quantity or quality (i.e. the more precise phenotyping, of the assessed individuals), 

c) differences in ascertainment schemes, d) potential benefits of conducting studies in 

different species as well as e) a discussion of the candidate gene approach in comparison to 

genome scans and f) finally issues of genotyping.  

With regard to phenotypes, we pleaded in 2003 for investigating not only the undoubtedly 

relevant anthropometric and endocrinological variables but to include also behavioural and 

sensory phenotypes like eating behaviour or differences in the perception of taste. 

It is commonly assumed that the better specific subgroups are delineated at the phenotypical 

level, the more homogeneous the underlying genetic factors will turn out to be. Precise 

phenotyping might be a prerequisite for identifying genes in the first place. On the other 

hand, not all conceivable phenotypes with a potential relevance in body weight regulation 

can be assessed in every individual who is willing to participate in a molecular genetic study. 

Both the endurance of the proband and the costs for phenotyping represent limiting factors. 

Thus, it might currently make most sense to first identify genes relevant in weight regulation 

in a very large phenotypically homogeneous but not too specifically characterized study 

group. Afterwards the effect of specific alleles should be tested in samples well characterized 

for specific behavioural, physiological and endocrinological phenotypes. 

There are several recent publications that support this consideration: As an example, the first 

GWA study for NIDDM, conducted on 1924 cases and 2938 controls of a UK consortium 

(WTCCC, Frayling et al., 2007) revealed the currently most interesting candidate gene for 

obesity: FTO. The finding was replicated in 13 cohorts with 38,759 participants most of which 

stemmed from population based studies analysing BMI as a continuous trait. Since then, the 

association of first intron variants of FTO and BMI has been confirmed in many studies (e.g. 



                                                                                                                                Discussion
   

 
 

 
 

- 91 -

Sladek et al., 2007; Hinney et al., 2007; Kring et al., 2008; Qui et al., 2008). As the functional 

impact of FTO on body weight regulation is still unclear, the latest studies focus on more 

specialised phenotypes in smaller samples to figure out the possible function: Andreasen et 

al. (2008) showed that low physical activity might accentuate the effect of FTO rs9939609 on 

body fat accumulation, Tschritter et al. (2007) found that FTO-SNPs seem to be associated 

with cerebrocortical insulin resistance in humans. Wahlen et al. (2008) detected an 

association of rs9939609 to fat cell lipolysis. Klöting et al. (2008) revealed a potential inverse 

relationship between obesity and FTO gene expression in visceral adipose tissue in humans. 

The investigation of these more specialized phenotypes might help to narrow down the 

functional implications of FTO on obesity by stimulating ideas for functional in vitro and in 

vivo studies. 

In 2003, we also pointed out the importance of expert cooperations to delineate the genetic 

mechanisms involved in body weight regulation of different species. Especially the findings of 

Ashrafi et al. (2003) who used genome-wide RNAi analysis of Caenorhabditis (C.) elegans to 

identify 305 and 112 gene leading to decreased and increased fat storage were promisinng. 

It was shown that pathways of energy homeostasis are highly conserved between human, 

worm (C. elegans), fruit fly (Drosophila melanogaster) and zebrafish (Danio rerio; Schlegel 

and Stainier, 2007). Because of the redundancy of the complex processes regulating the 

uptake, transport, catabolism and synthesis of nutrients, these species are useful to support 

exploration, identification and investigation of new pharmaceutical targets for metabolic 

diseases like obesity or NIDDM. During the last years, research in these organisms made a 

valuable contribution to basic research of metabolic processes (i.e. characterization of the 

central insulin/insulin-like growth factor signalling pathway in Drosophila and C. elegans), but 

it did not drive the identification of candidate genes for human obesity (Schlegel and Stainier, 

2007).    

For the candidate gene approach, we envisioned two strategies in 2003: first, to analyse 

linkage regions when the number of putative genes has been narrowed down; second, to 

investigate genes that are involved in relevant pathways, e.g. derived from animal models. 

Ideally, both approaches should be combined, because - as illustrated above - linkage 

studies cannot readily lead to the detection of minor gene effects or infrequent major gene 

effects. The candidate gene approach has led to the identification of the most monogenes for 

obesity, but when research switched to elucidate the role of oligo- and polygenes, it became 

less effective. This might also be due to the lack of good validation or confirmation studies for 

many of these genes. The current literature abounds in association studies claiming a new 

finding for which follow-up evidence frequently is either negative or equivocal (Rankinen et 

al., 2006). Many of the positive results must be viewed critically because multiple tests were 
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performed to achieve the respective ‘significant’ result. It is crucial that negative findings are 

also published; hence, every effort should be made to encourage researchers to publish their 

findings. Open access journals like BMC and PLoS that publish peer reviewed articles 

independent of the outcome if otherwise scientifically sound are a first step towards avoiding 

publication bias. 

As suggested in 2003, high throughput technology now offers the chance to genotype 

thousands of samples every day. Genome-wide association studies became reality and the 

HapMap project contributed to databases that facilitated the selection of SNPs to tag 

haplotypes in order to improve the efficiency of association studies. As already foreseen five 

years ago, a substantial proportion of the work is currently shifting from lab to computer work. 

Therefore, enhancements in biostatistics and computational sciences are a still developing 

field in the genetics of complex diseases.  

In light of the vast number of SNPs and haplotypes, the possibility of false-positive results 

due to multiple testing becomes an even greater challenge. Therefore, new methods to 

correct for genome-wide testing of markers have been proposed (e.g. Lange et al., 2004; 

Rakovski et al., 2008). The validation and confirmation of initial, positive findings in 

additional, independent samples becomes more and more a basic requirement for 

publication in peer reviewed journals. As a promising alternative to traditional designs, 

adaptive procedures that flexibly allow for design changes in order to achieve a stabilized 

power characteristic while controlling the overall type I error and using the information 

already collected are one option to address such challenges (e.g. Scherag et al., 2003; 

2009). 

Now and then, we announced the commercialization of molecular genetic findings in obesity. 

And indeed, diagnostic tests based on specific polymorphisms or mutations became 

commercially available (e.g. deCODE, IntegraGen). Unfortunately, however, in some of 

these cases the consumer is misguided to believe that genotyping of a particular 

polymorphism will allow for the detection of the ‘fat gene’ indicating questionable business 

strategies of the provider. In our opinion, the consumer/patient should have access to 

molecular genetic testing after having been informed of potential implications. Clearly, only 

those tests should be made available that pertain to variants whose functional relevance has 

been established unequivocally and which occur with a frequency large enough to warrant 

the application of such tests. In our opinion, this is still only the case for MC4R mutations, 

which occur in up to 2–4% of extremely obese patients – FTO might be another candidate. 

An individual should obtain a clear grasp of the implications of such a finding for 

herself/himself, for other family members and potentially for future offspring. The individual 
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should also obtain a feeling of to what extent her/his obesity results from a specific mutation 

or polymorphism. Conducting a randomized clinical trial, Rief et al. (2007) assessed the 

positive and negative outcomes of informing obese individuals about the genetic aetiology of 

being overweight. In the case of participants with a family history of obesity the consultation 

which included genetic information resulted in long-term improvements of negative mood.  

With regard to predictive genetic testing Cauchi et al. (2008) assessed the combined effect of 

SNPs identified in GWAs for NIDDM in a large French sample comparing NIDDM and normal 

glucose tolerant individuals. After adjustments for age, BMI and gender, subjects with at least 

18 risk alleles (14.5% of French NIDDM subjects) had approximately 9-fold higher risk of 

developing NIDDM compared to the reference group. The estimated AUC (area under the 

curve) under the ROC (receiver operating characteristic) curve of a diagnostic test which also 

included genetic and non-genetic factors was 0.86. 

Janssens et al. (2006) critically discussed such inferences with regard to public health 

implications and applications. They conclude that predictive genetic testing would be useful 

when the value it adds to existing interventions outweighs the additional personal and social 

costs. This requires a complete evaluation of the test’s performance characteristics, including 

sensitivity and specificity; it’s positive and negative predictive value in the population to be 

tested; the likelihood ratio of positive and negative test results; and the rates of false positive 

and false negative test results. These data are only part of the evidence base needed to 

recommend a test, which also includes information about effectiveness relative to existing 

alternatives, side effects, and costs. A risk ratio, odds ratio or population attributable risk 

alone which is currently most widely reported in genetic association studies cannot predict 

the potential usefulness for genetic testing. Ultimately, genetic discoveries may lead to better 

understanding of the disease process and to better therapeutic and preventive interventions. 

In the meantime, scientists and the media are responsible for accurately and carefully 

interpreting the implications of studies of genetic associations for the benefit of the general 

public.  
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5. Summary and Conclusion 

The overall objective of this thesis was to study genetic mechanisms of body weight 

regulation. Two genome-wide approaches to identify chromosomal regions/candidate 

genes/genetic variants involved in body weight regulation were applied. Saar et al. (2003) 

presented the first genome-wide linkage scan for early onset obesity and detected 

suggestive evidence for linkage. Similar to other genome wide linkage scans for obesity, 

however, we did not identify a candidate gene for obesity. One reason might be that 

microsatellite-based linkage scans are not suitable for the detection of small genetic effects 

expected for obesity. In contrast, the first genome-wide association study for early onset 

obesity presented in Hinney et al. (2007) led to the re-identification of FTO, the currently best 

supported candidate gene for obesity. Thus, our investigation underlines two things: first, 

GWAs are in principle suitable to detect genes with small to modest genetic effect sizes, and 

second, with our relatively small but well defined sample of cases (early onset obese children 

and adolescents) and controls (adults with normal weight or underweight) it is possible to 

detect the same effects which required genotyping of several thousand population based 

unselected probands for body weight. 

Moreover, this thesis comprised the examination of three candidate genes for obesity. 

Mutation screens and association studies investigating BDNF as a candidate gene for body 

weight regulation and activity (Friedel et al., 2005) revealed that there is no association 

between genetic variation in BDNF and obesity, eating disorders or ADHD. Similarly, in a 

study of SNPs in GLUT4 in samples from different weight extremes (Friedel et al., 2002), we 

did not detect association with obesity. In light of today’s knowledge, the study had some 

methodological problems; but we were able to support our negative conclusions by 

reassessing our GWA data set for the GLUT4 genomic region. Finally, mutation screening 

and association studies for DGAT2 as a positional and functional candidate gene for early 

onset obesity on chromosome 11q13 (Friedel et al., 2007) also revealed no association with 

obesity. Of note, this study led to the detection of four rare non-synonymous changes that 

might be relevant for underweight and warrant further research. 

Performing a MC4R-mutation screen in 514 obese children and adolescents we detected 18 

(3.5%) carriers of 10 functionally relevant mutations. These individuals underwent a weight 

reduction program and we observed that carriers of functionally relevant MC4R mutations 

are able to reduce their body weight, but that they seem to have difficulties to sustain this 

weight loss over time. Of course, this finding needs to be validated in larger study groups – 

and as long as the implications of dietary weight loss and weight regain as well as the long 

time consequences are unknown, it should be critically discussed if obese children and 
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adolescents, especially carriers of functionally relevant mutations, can benefit from dietary 

weight loss. 

Common obesity is caused by a complex interplay of genetic background and environmental 

factors. While monogenic forms of obesity are well understood, GWAs now seem to offer the 

option to detect oligo- and polygenes. As these genes are typically characterized by small to 

modest genetic effect sizes but are more common they might be more important than 

monogenes with regard to clinical implications. 

Personalized medicine with predictive genomic profiling to identify risk factors and to allow 

for personalized nutrition and to come up with lifestyle health recommendations is one 

application of genetic research. That this goal, based on today’s knowledge, is still fantasy 

was recently shown by Janssens et al. (2008) who performed a meta-analysis of data from 

the literature on purchasable genetic tests. The authors show that there is insufficient 

scientific evidence to conclude that genomic profiles are useful in measuring genetic risk for 

common diseases or in developing personalized diet and lifestyle recommendations for 

disease prevention.  

In sum, this work is part of a puzzle that might lead to evidence-based, personalized 

medicine which will be based on a solid scientific base by investigating the molecular genetic 

mechanisms of body weight regulation with regard to confirmed findings in independent large 

samples and by more carefully addressing methodological flaws. 
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Zusammenfassung und Schlussfolgerungen 

Das übergeordnete Ziel dieser Arbeit war es, die genetischen Grundlagen der 

Körpergewichtsregulation zu untersuchen. Es wurden zwei unterschiedliche genomweite 

Ansätze zur Identifizierung von in die Gewichtsregulation involvierten chromosomalen 

Regionen/Kandidatengenen/Genvarianten angewendet. Mit Saar et al. (2003) wurde die 

erste genomweite Kopplungsanalyse für frühmanifeste Adipostas vorgestellt, in der wir 

„suggestive evidence“ für Kopplung detektieren konnten. Wie in vielen anderen 

Kopplungsstudien konnten wir kein validiertes Gen für Adipositas identifizieren. Grund hierfür 

könnte sein, dass Mikrosatelliten-basierte Kopplungsstudien nicht geeignet sind, die kleinen 

genetischen Effekte, die wir bei Adipositas erwarten, zu detektieren. Im Gegensatz dazu 

führte die erste genomweite Assoziationsstudie für frühmanifeste Adipositas (Hinney et al., 

2007) zur Re-Identifizierung von FTO, dem derzeit am besten validierten Kandidatengen für 

Adipositas.  

Damit bestätigen unsere Studien zwei Punkte: Erstens, GWAs sind prinzipiell geeignet, 

Gene mit kleinen bzw. moderaten Effekten zu detektieren und zweitens: es ist möglich, mit 

unserem relativ kleinem, aber gut definierten Kollektiv aus Fällen (Kinder und Jugendliche 

mit frühmanifester Adipositas) und Kontrollen (normal- und untergewichtige gesunde 

Erwachsene) die gleichen Effekte zu detektieren,  für die in bevölkerungsbasierten (für 

Körpergewicht unselektierten) Ansätzen mehrere tausend Individuen genotypisiert werden 

müssen.  

Weiterhin wurden in dieser Arbeit die Analysen dreier Kandidatengene für Adipositas 

zusammengefasst. Die Untersuchung des BDNF als Kandidatengen für Adipositas und 

Aktivität mittels Mutationsanalyse und nachfolgende Assoziationsstudien (Friedel et al., 

2005) ergab keinen Hinweis auf die Assoziation genetischer Varianten im BDNF mit 

Adipositas, Essstörungen oder ADHS. Im Rahmen der Analyse von SNPs im GLUT4-Gen in 

Kollektiven unterschiedlicher Gewichtsklassifikation (Friedel et al., 2002) konnte ebenfalls 

keine Assoziation zu Adipositas detektiert werden. Im Lichte des heutigen Wissens hatte 

diese Studie einige methodische Probleme; allerdings konnten wir die Negativergebnisse 

durch die re-Analyse unserer GWA-Daten für die genomische Region des GLUT4 

bestätigen. Schlussendlich konnte mittels Mutationsanalyse und Assoziationsstudien am 

DGAT2-Gen, einem positionellen and funktionellen Kandidatengen für frühmanifeste 

Adipositas auf Chromosom 11q13 (Friedel et al., 2007) ebenfalls keine Assoziation zu 

Adipositas gezeigt werden. Allerdings wurden im Rahmen dieser Studie vier seltene nicht-

synonyme Varianten identifiziert, die für Untergewicht relevant sein könnten und weitere 

Analysen erfordern. 
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Mittels Mutationsanalyse des MC4R-Gens bei 514 adipösen Kindern und Jugendlichen 

konnten wir 18 (3.5%) Träger von 10 funktionell relevanten Mutationen identifizieren. Die 

untersuchten Individuen nahmen an einem Gewichtsinterventionsprogramm teil und wir 

konnten feststellen, dass die Träger funktionell relevanter Varianten zwar in der Lage waren, 

Ihr Körpergewicht zu reduzieren, allerdings im Vergleich zu den anderen Teilnehmern 

größere Probleme hatten, ihren Gewichtsverlust längerfristig zu halten. Dieser Befund sollte 

vorerst in einer größeren Studiengruppe bestätigt werden. Solange die Auswirkungen von 

diätinduziertem Gewichtsverlust und erneuter Gewichtszunahme sowie deren 

Langzeitwirkungen unbekannt sind, sollte kritisch diskutiert werden, ob adipöse Kinder und 

Jugendliche, besonders die Träger funktionsrelevanter Mutationen, wirklich von 

diätinduziertem Gewichtsverlust profitieren.  

Adipositas entsteht durch das komplexe Zusammenspiel der genetischen Ausstattung mit 

Umweltfaktoren. Während die monogenen Formen der Adipositas gut erforscht sind, bieten 

GWAs nun die Möglichkeit, oligo- und polygene Effekte zu identifizieren.  Da diese Gene 

typischerweise durch kleine bis moderate genetische Effektstärken charakterisiert dafür aber 

wesentlich häufiger sind, kann man annehmen, dass sie im Hinblick auf die klinischen 

Implikationen wichtiger als die Monogene sind. 

Personalisierte Medizin, prädiktives genetisches Profiling zur Identifizierung von 

Risikofaktoren und Empfehlungen für eine personalisierte Ernährung und einen gesunden 

Lebensstil ist eine Anwendungsmöglichkeit der Genforschung. Das diese Ziel auf der Basis 

heutigen Wissens noch immer Phantasie ist, zeigten Janssens et al., (2008). Sie führten eine 

Metaanalyse der Literatur zu käuflich erhältlichen Tests durch. Die Autoren konnten zeigen, 

das derzeit noch ungenügend wissenschaftliche Hinweise existieren, die genomisches 

Profiling als nützliches Werkzeug zur Bestimmung des genetischen Risikos allgemeiner 

Erkrankungen bzw. personalisierte Diäten und Hinweise zum Lebensstil zur 

Krankheitsprävention rechtfertigen würden.  

Zusammenfassend lässt sich sagen, dass diese Arbeit Teil eines Puzzles ist, das vielleicht 

zu evidenzbasierte, personalisierter Medizin und Ernährung führt, die auf einer soliden 

wissenschaftlichen Basis aus der Analyse der genetischen Mechanismen der Adipositas 

unter Berücksichtigung bestätigter Ergebnisse in unabhängigen großen Studiengruppen und 

dem sorgfältigen Umgang mit methodischen Schwierigkeiten ruht. 
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