
The ellipticity (H/V -ratio) of Rayleigh surface waves

Dissertation
zur Erlangung des akademischen Grades doctor rerum naturalium

(Dr. rer. nat.)

vorgelegt dem Rat der Chemisch-Geowissenschaftlichen Fakultät der
Friedrich-Schiller-Universität Jena

von Master-Mechanics Tran Thanh Tuan
geboren am 09. Sep 1980 in Hanoi, Vietnam



Gutachter:

1. Prof. Dr. Peter Malischewsky, FSU Jena

2. Prof. Dr. Frank Scherbaum, University of Potsdam

3.
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Zusammenfassung

Seit langem ist bekannt, dass die von Erdbeben hervorgerufenen Zerstörungen in menschlichen
Ansiedlungen erheblich von den lokalen Bodeneigenschaften und von anderen Faktoren wie
die unregelmäßige Oberflächentopographie und die Untergrundmorphologie abhängen. Eine
der effektivsten Verfahren zur Charakterisierung der Untergrundeigenschaften ist die H/V -
Methode, die eine Abschätzung des Verhältnisses der Fourieramplitudenspektren der horizon-
talen (H ) und vertikalen (V ) Komponenten der von der natürlichen Bodenunruhe erzeugten
und mit einer einzelnen Station aufgezeichneten Schwingungen liefert.

Indem angenommen wird, dass die am meisten dominanten Beiträge der natürlichen Bo-
denunruhe von den Oberflächenwellen stammen, obwohl die exakte Zusammensetzung von
den speziellen Gegebenheiten abhängen kann, ist das Ziel dieser Dissertation ein tieferes
Verständnis des Verhaltens des H/V -Verhältnisses von Rayleighwellen, und sie trägt somit
zur weiteren Entwicklung dieser etablierten H/V -Methode bei. Die in der Dissertation ange-
wandte Methode zum Studium des H/V -Verhältnisses von Rayleighwellen führt von ein-
fachen zu komplexen Modellen. Die Komplexität dieser Modelle reicht vom einfachen Modell
”homogener Halbraum” zum allgemeinsten Modell ”inhomogene Schicht über homogenem
Halbraum”.

Die Dissertation konzentriert sich auf die Spitzen und Täler der H/V -Kurven, die
eine wichtige Rolle beim H/V -Formalismus spielen, und wie bestimmte Parameter diese
beeinflussen. Zusätzlich studiere ich auch die Bewegung eines individuellen Teilchens.
Es ist gut bekannt, dass die Teilchenbewegung im homogenen Halbraum immer retro-
grad ist, und ich zeige in dieser Dissertation, dass prograde Bewegung für das Modell
”Impedanzoberfläche”, welches einer dünnen Schicht über einem Halbraum entspricht, nicht
möglich ist. Dagegen wird prograde Bewegung im Modell ”Schicht mit festem Boden”
beobachtet, welches ein Spezialfall des Modells ”Schicht über Halbraum” für sehr hohen
Impedanzkontrast ist. Es werden Karten konstruiert, die die Frequenzbeziehungen der
Spitzen und Täler von H/V mit den Modellparametern demonstrieren, und es werden An-
wendungen dieser Karten für das Studium von Naturkatastrophen vorgeschlagen.

Der ”Oskulationspunkt” der Phasengeschwindigkeitskurven ist der Punkt, wo sich die in-
dividuellen Kurven von zwei Moden zu kreuzen scheinen. Ich zeige in dieser Dissertation,
dass der Oskulationspunkt auch ein Punkt ist, an dem das H/V -Verhältnis seine Eigenschaft
ändert: von zwei Spitzen zu einer Spitze und einem Nullpunkt. In der Umgebung dieses Punk-
tes ist das Verhalten von H/V sehr empfindlich: es kann sich dramatisch ändern bei einer sehr
kleinen Änderung irgendeines Parameters. Diese Eigenschaft wird analytisch bewiesen für
das Modell ”Schicht mit festem Boden”, und einige der wichtigsten Klassen von Oskulation-
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ii ZUSAMMENFASSUNG

spunkten werden mit einfachen Formeln beschrieben. Für das allgemeine Modell ”Schicht
über Halbraum” kann nur eine Näherungsformel für die Menge der Oskulationspunkte
angegeben werden.

Die Dissertation ist auch der Bestimmung von H/V einer einfallenden Raumwelle gewidmet,
die aus der Tiefe des Substrats kommt, z. B. von einem Erdbeben. Ich zeige die Ähnlichkeit
von H/V in diesem Szenarium mit H/V von einer einfallenden Raumwelle mit turbulentem
Noise. Es stellt sich heraus, dass diese beiden H/V -Verhältnisse dann identisch sind, wenn
die Scheingeschwindigkeit mit der Rayleighwellengeschwindigkeit übereinstimmt. Allerdings
ist diese Bedingung nur theoretischer Natur, weil die Scheingeschwindigkeit der einfallenden
Raumwellen immer größer ist als die S-Wellen-Geschwindigkeit im Halbraum, die für die
Rayleigh-Oberflächenwellen eine obere Grenze darstellt.

Für die inhomogene Schicht benutze ich eine Technik von Vrettos zur Bestimmung der Eigen-
werte und Eigenfunktionen. Das Ergebnis wird mit dem Modell einer homogenen Schicht
verglichen, in dem die Parameter der Mittelwert von denjenigen im Modell der inhomogenen
Schicht sind. Für die numerische Überprüfung des inhomogenen Modells wird Herrmanns
(1994) [22] Programmpaket für Oberflächenwellen benutzt, das für die Berechnung synthetis-
cher Noise-Daten in einem homogenen Vielschichtmodell über einem Halbraum entwickelt
wurde. Die Ergebnisse stimmen gut mit den theoretischen Resultaten überein.



Abstract

It has long been observed that damage to human settlements during earthquakes depends
greatly both on the local properties of the soil, and on other features such as irregular surface
topography and underground morphology. One of the most efficient ways to define the soil
properties is the H/V -method, which yields an estimation of the ratio between the Fourier
amplitude spectra of the horizontal (H ) to vertical (V ) components of the ambient noise
vibrations recorded at one single station.

Considering that the most dominant contributions to ambient vibrations are known to come
from surface waves, although the exact composition may change depending on the particular
site, the aim of this thesis is to more deeply investigate the behavior of the H/V -ratio curve of
Rayleigh waves, and thereby contribute to the further development of the established H/V -
method. The method of the thesis is to study the H/V -ratio of Rayleigh waves, working
from simple to complex models. The model complexity ranges from the easiest model, “ho-
mogeneous half-space”, to the most general model: “inhomogeneous layer over homogeneous
half-space”.

The thesis concentrates on the peaks and the troughs of H/V curves which play an important
role in the H/V calculation, and how specific parameters affect them. I additionally study
the motion of an individual particle. It is well-known that in homogeneous half-space, the
particle motion is always retrograde, and in this thesis I show that the prograde is impossible
in the model “impedance surface”, which is a thin layer over half-space. Prograde motion
is observed in the model “layer with fixed bottom”, which is a special case of “layer over
half-space” when the impedance contrast is very high. In studying the peaks and troughs,
I construct maps showing their frequency relationships with parameters of the model and
propose applications to the study of natural disasters.

The “osculation point” of the phase velocity curve is the point where the individual curves
of two modes seem to cross. In this thesis, I show that the osculation point is also the point
at which the H/V -ratio changes its property from having two peaks to having one peak and
one zero point. Around this point, the property of H/V -ratio is very sensitive: it can change
dramatically with a very small change of any parameter. This property is proved analytically
in the model “layer with fixed bottom”, and some of the most important classes of osculation
points are described with simple formulas. With the general model “layer over half-space”,
only an approximate formula is determined for the set of osculation points.

The thesis is also devoted to determining the H/V -ratio of a body incident wave which is
generated from deep inside the substrate, for example by an earthquake. I show the similarity
of the H/V -ratio in this scenario to the H/V -ratio of a surface wave with a turbulence noise.
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iv ABSTRACT

It turns out that these two H/V -ratios are identical if the phase velocity is that of a Rayleigh
wave. However, this condition at present exists only in theory because the apparent phase
velocity of incident body waves is always greater than S-wave of the half-space which is the
upper bound value of Rayleigh surface waves.

For the inhomogeneous layer, I use a technique from Vrettos to determine the eigenvalue and
eigenfunctions. I then compare the result with a model of the homogeneous layer in which
the parameters are the mean value of those for the inhomogeneous layer model. To check the
numerical calculations for the inhomogeneous model, I use a surface wave package distributed
by Herrmann (1994) [22], which was created to construct synthetic data generating from the
noise of a multi-homogeneous-layer over a half-space, and the results agree well with the
theoretical results.
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Introduction and Motivation

There are many cities built on soft sediments, and a large number of them are unfortunately
located in seismic areas, emphasizing the need for a careful and reliable assessment of site
amplification phenomena. This issue has long been addressed by scientists and engineers
who have developed many techniques to identify the main characteristics of site responses
for soft deposits (i.e., resonance frequencies and amplification factor). Beside the classical
geophysical and geotechnical tools (such as seismic refraction, seismic reflection, boreholes,
penetrometers, etc.) which suffer severe limitations in urbanized areas, mainly because of
their cost and their environmental impact that is less and less accepted by communities
(use of explosives, drilling, etc.), the H/V technique, based on ambient noise recordings,
has become more and more popular over the last decades. This technique, first applied by
Nogoshi and Igarashi in 1971 [44] and popularized by Nakamura (1989 [40], 1996 [41], 2000
[42]), offers a convenient, practical and low-cost tool to be used in urbanized areas. It uses
information about the peak and trough frequency of the H/V -ratio curve (the spectral ratio
between horizontal and vertical components) of microtremors measured at the ground surface
to estimate fundamental periods and amplification factors of a site. One question which
must be addressed here is: what is the meaning of the H/V peak and trough frequency, and
under what conditions is it allowed to assume the approximate equivalence of the H/V peak
frequency and the peak frequency of the transmission response of a medium? These questions
turn out to be surprisingly challenging theoretically even for very simple models and they
have only rarely been addressed in the literature (e. g. Malischewsky and Scherbaum, 2004
[35], Malischewsky et al., 2008 [38]). To answer these questions, we need to more deeply
understand the properties of H/V -ratio curve.

Since microtremors observed at the ground surface are thought to consist of body and surface
waves with their proportions unclarified, it is unclear what constitutes the peak and trough of
H/V -ratio curve. However, Lachet and Bard (1994) [29] indicated with numerical simulation
that the H/V -ratios at the longer periods were governed by fundamental mode Rayleigh
waves. In addition, based on f-k analysis of ambient vibration, Scherbaum et al. (2003) [50]
found strong evidence for treating H/V -ratios as Rayleigh wave ellipticities. Based on these
facts, in this thesis, I study mainly the ellipticity of Rayleigh waves, concentrating on the
peak and trough frequency.

The S-wave resonance in soft surface layers is a key parameter to be determined, and many
experimental works (Tokimatsu 1997 [55], Scherbaum et al. 2002 [49], Parolai et al. 2004
[46], Bonnefoy-Claudet et al. 2006 [9], Souriau et al. 2007 [3], etc.) have found that the H/V
spectral ratios and H/V peak frequency agree fairy well with the natural site frequency. It
is then necessary to know when the peak frequency of the Rayleigh wave ellipticity can be

xi



xii INTRODUCTION AND MOTIVATION

regarded as the natural site frequency.

Objectives

The objective of this thesis is to answer all the questions addressed above. Achieving this
objective requires building better knowledge of the peaks and troughs of the Rayleigh H/V -
ratio curve, especially regarding their amplitudes, frequencies and to what degree they depend
on different parameters. Since a typical H/V spectral ratio of the ambient noise vibrations
recorded at one single station often shows a peak and sometimes a trough from which some
important information about the structure are retrieved – such as the S-wave velocity of the
layer, the impedance contrast or the Poisson’s ratio – it is also important to find the link
between information about the peaks and trough, and parameters of the structure. This will
help seismologist to determine necessary information from the H/V spectral ratios.

Thesis outline

The thesis consists of four chapters.

The first chapter is devoted to Rayleigh waves in homogeneous half-space (HS) and a half-
space deposited by a thin layer called “impedance wave”. The H/V -ratio of Rayleigh waves
in homogeneous half-space has been studied thoroughly in (for example) Malischewsky and
Scherbaum (2004) [35], and it has been shown that the Rayleigh wave is always non-dispersive
and the particle motion is always retrograde. In this chapter, I only recall some basic prop-
erties of plane waves and the important features of the H/V -ratio of Rayleigh waves in
half-space, which is considered as the first simple model. The next step is for “impedance
wave” model, which is a half-space deposited by a thin layer. It was investigated by Tier-
sten (1969) [54] and Bövik (1996) [12]. Tiersten used the elastic theory of a thin plate to
replace the homogeneous boundary conditions in the surface of half-space by special non-
homogeneous boundary conditions. In this chapter, I use these special boundary conditions
in a low frequency to simulate an approximation of the behavior of Rayleigh waves, and I
prove that although the Rayleigh waves are dispersive in this model, the motion of the par-
ticles is always retrograde, the same as in half-space. The H/V -ratio curve might have a
maximum, but no singularity or zero points are observed.

The behavior of Rayleigh waves in a layer with a stress-free surface and fixed bottom with
both homogeneous and inhomogeneous material is studied in Chapter 2. Some features of
the H/V -ratio of this model have been studied, e.g in Giese (1957) [19]. In this chapter
I demonstrate that the H/V -ratio does not depend on the density of mass, and with the
homogeneous layer, I determine formulas for the frequency of the singularity and the zero-
point with the condition of Poisson’s ratio of the layer in which the singularity or the zero
point exists. I then derive a general picture showing the retrograde and prograde motion of
the particles. From the numerical calculations, simple linear formulas for singularity and zero
point frequency are presented from which we can calculate the broad range of frequency for
prograde motion.

In the third chapter, I study the most general model, “layer over half-space” (LOH). Donat
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Fäh et al. (2002) [17] shows that the H/V -ratio can be used to determine reasonable S-
wave velocity models for a site, if the structure is characterized by a large velocity contrast
between bedrock and sediments, and as long as the site can be approximated by a layered
structure. Therefore, a thorough theoretical understanding of Rayleigh surface waves of
even a single layer over half-space is not only of theoretical, but also of considerable practical
interest. There is a rich literature on the H/V -ratio which is discussed in detail by Bonneyfoy-
Claudet et al. (2006) [10], and a list of which may be found in Kudo (1995) [27], Bard
(1998) [4], Stephenson (2003) [53], Malischewsky and Scherbaum (2004) [35] and Bonnefoy-
Claudet (2004) [8]. In 2002, Malischewsky et al. [33] proposed to use the H/V -ratio in non-
destructive testing with acoustic surface waves and in 2004, Malischewsky and Scherbaum [35]
specified the exact formula of H/V for a 2-layer model of compressible media to investigate
its properties for several models. In this chapter, by using the exact H/V -ratio formula of
Malischewsky, I focus on the analysis of some more difficult properties of the H/V -ratio. The
half-space in this model is always homogeneous, but the layer can be inhomogeneous. The first
section is for the homogeneous layer and I use the exact H/V -ratio formula to investigate the
H/V -ratio curve, concentrating on the peak and trough frequency, which are key parameters
in the H/V -method. Since the phase velocity is another key parameter and has the greatest
affect on the H/V -ratio, the first results of this section are a simple formula of the derivative
of the phase velocity curve at zero frequency. This formula can classify three states of phase
velocity curve at zero frequency: normal, anomalous or zero dispersion, depending on the
parameter systems. The first peak of the H/V curve, especially its amplitude and frequency,
plays an important role in the H/V -ratio method, so it is necessary to know whether it is a
singularity with very high amplitude or only a maximum point. In the H/V spectral ratio,
it usually has a sharp peak, but sometimes it exhibits a broad peak (Giulio et al. 2006 [20]).
This broad peak may be connected with the maximum point of the H/V -ratio curve. In
this section, I present a simple formula condition of the structure parameters defining the
existence of singularity or only maximum point. Although this formula is constructed on
numerical calculation, its accuracy is very good.

In the analysis of local seismic hazards, dynamic ground shaking and permanent ground
failure are the two most important effects, at least with respect to building and lifelines.
Dynamic ground shaking is the important factor for building. Ground shaking refers to the
amplitude, frequency, composition and duration of the horizontal and vertical components
of the vibration of the ground produced by seismic waves arriving at a site. These effects
depend largely on the local geological ground condition. With the high impedance contrast
between the deposit and the bedrock of the site, the singularity frequency is approximately
the resonant frequency of the S-wave of the layer which is considered as the “dangerous”
frequency. However, the properties may vary among and within sites, so it is necessary to
determine the dangerous ranges of frequency for all possible structures by observing whether
the peak frequency of the H/V spectral ratio is close to the resonant frequency of the S-wave
in the layer. For this reason, I present several maps of peak and trough frequency of the
H/V -ratio curve of Rayleigh waves dependent on particular parameters. The parameters
here are the Poisson’s ratio and the impedance contrast which represent the conditions at
each site. From these maps, some applications are proposed such as defining the parameters
of the site by the information of peak and trough frequency in H/V spectral ratio.

The second section in Chapter 3 is devoted to the inhomogeneous layer. In this section, I keep
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the density of mass and the Poisson’s ratio in the layer constant and let the shear modulus
vary. Three functions of shear modulus in the layer are investigated. The linear variation of
shear modulus in the layer has already been studied by Newlands and Stoneley (1950) [39],
and in this section I study the linear, quadratic and the third polynomial form of shear wave
velocity using the Vrettos technique (1990) [57]. The effect of inhomogeneity on the H/V -ratio
is studied, and I compare the peak and trough frequencies between the actual inhomogeneous
layer model with the simple equivalent homogeneous model to determine when we can use
the simple model to replace the complicated one while maintaining reasonable accuracy.

In the last section in Chapter 3, I study the H/V -ratio of body incident waves (SV wave
and P wave) which might be generated from the deep depths of the Earth. The H/V -ratio
formulas of these body incident waves are presented, and by using these formulas, I show
that, in most cases, the H/V peak frequencies are close to the S-wave resonant frequency
of the layer. I also point out the theoretical similarity between H/V -ratio of incident body
waves and of the Rayleigh surface waves.

The osculation point is one of the important features of the phase velocity curve. This is the
point at which two curves of different modes seem to cross each other. In this thesis, I show
that the osculation point of the fundamental mode is a special point at which the H/V -ratio
curve changes its property from having two singularities to having one singularity and one
zero point. This phenomenon is proven analytically for LFB and shown numerically for LOH.
In Chapter 4, the osculation point of the phase velocity curve is analytically investigated for
the model “layer with fixed bottom” by using the ray theory of Tolstoy & Usdin [56], and
numerically for the model “layer over half-space”. For “layer with fixed bottom”, three of
the most important classes of osculation point are found with simple forms, and for “layer
over half-space”, an approximate formula for osculation point is presented.



Chapter 1

Two simple models

In this chapter, we will begin to investigate Rayleigh waves with the simplest model, “homo-
geneous half-space”, which has been very thoroughly investigated. When analyzing seismic
diagrams, seismologists found a new kind of wave whose velocity was less than the transver-
sal wave speed. This wave has the facial property, meaning that the oscillation amplitude
strongly decreases with depth. The dissipation of energy of this wave is slower than for longi-
tudinal and transversal waves. These two latter waves propagate from the stimulating source
center, such as an earthquake, in every direction, while the surface wave only concentrates on
the surface and propagates in 2D-space. Thus, we can consider it as a plane wave far from
the source center. In 1885, Lord Rayleigh (England) predicted, from theory, the existence of
elastic surface waves.

1.1 Plane waves

It will be convenient to recall something about the plane wave, which constitutes the Rayleigh
wave. A plane displacement wave propagating with phase velocity c in a direction defined by
the unit propagation vector p is represented by

u = f(x · p − ct)d . (1.1)

In this equation d and p are unit vectors defining the directions of motion and propagation,
respectively. The vector x denotes the position vector, and x · p = constant describes a
plane normal to the unit vector p. Eq. (1.1) thus represents a plane wave whose planes of
constant phase are normal to p and which propagates with velocity c.

In the absence of body forces the components of the displacement vector in a homogeneous,
isotropic, linearly elastic medium are governed by the following system of partial differential
equations:

µ∇2u + (λ+ µ)∇∇ · u = ρü , (1.2)

where λ and µ are Lame’s elastic constants, and ρ is the mass density. The vector operator
∇ is defined as

∇ = i1
∂

∂x1
+ i2

∂

∂x2
+ i3

∂

∂x3
, (1.3)

1
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and ∇2 is the Laplacian. We will substitute the expression for the plane wave, Eq. (1.1),
into the system of field equations (1.2). After some transformations, we obtain

[
µd + (λ+ µ)(p · d)p − ρc2d

]
f

′′

(x · p − ct) = 0 ,

or

(µ− ρc2)d + (λ+ µ)(p · d)p = 0 . (1.4)

Since p and d are two different unit vectors, Eq. (1.4) can be satisfied two ways only:

either d = ±p , or p · d = 0 .

If d = ±p , we have d · p = ±1 , and Eq. (1.4) yields

c = cL =

(
λ+ 2µ

ρ

) 1

2

. (1.5)

In the case that the motion is parallel to the direction of propagation, the wave is called a
longitudinal wave. The components of the rotation ∇∧ u are

eklm∂lum = eklmpldmf
′

,

and thus

∇∧ u = (p ∧ d)f
′

(x · p − ct) = 0 .

The rotation thus vanishes, which has motivated the alternative terminology irrotational
wave. This type of wave is also often called a dilatational wave, a pressure wave, or a P-wave
(primary, pressure).

If p 6= ±d, both terms in (1.4) vanish independently, yielding

p · d = 0 c = cT =

(
µ

ρ

) 1

2

. (1.6)

Now the motion is normal to the direction of propagation, and the wave is called a transverse
wave. This type of wave is often called a rotational wave, a shear wave, or an S-wave
(secondary, shear).

We can consider a decomposition of the displacement vector in Eq. (1.2) of the form

u = ∇ϕ+ ∇∧ ψ , (1.7)

where

∇ · ψ = 0 . (1.8)

Substitution of the displacement representation (1.7) into Eq. (1.2) yields

µ∇2[∇ϕ+ ∇∧ ψ] + (λ+ µ)∇∇ · [∇ϕ+ ∇∧ ψ] = ρ
∂2

∂t2
[∇ϕ+ ∇∧ ψ] . (1.9)
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Since ∇ · ∇ϕ = ∇2ϕ and ∇ · ∇ ∧ ψ = 0 , we obtain, upon rearranging terms

∇[(λ+ 2µ)∇2ϕ− ρϕ̈] + ∇∧ [µ∇2ψ − ρψ̈] = 0 . (1.10)

Clearly, the displacement representation (1.7) satisfies the equation of motion if

∇2ϕ =
1

c2L
ϕ̈ (1.11)

and

∇2ψ =
1

c2T
ψ̈ , (1.12)

which are the phase velocity of the longitudinal and transverse wave, respectively.

The stresses can be determined by Hooke’s law

τi,j = λǫkkδij + 2µǫij (1.13)

with the strain-displacement relations

ǫij =
1

2
(ui,j + uj,i) . (1.14)

Although the scalar potential ϕ and the components of the vector potential ψ are generally
coupled through the boundary conditions, which still causes substantial mathematical com-
plications, the use of the displacement decomposition generally simplifies the analysis. To
determine the solution of a boundary-initial value problem, one may simply select appropri-
ate particular solutions of Eqs. (1.11) and (1.12) in terms of arbitrary functions or integrals
over arbitrary functions. If these functions can subsequently be chosen so that the bound-
ary conditions and the initial conditions are satisfied, then the solution to the problem has
been found. The solution is unique by virtue of the uniqueness theorem, which will not be
discussed here.

A plane harmonic displacement wave propagating with phase veloctiy c in a direction defined
by the unit propagation vector p is represented by

u = Ad exp [ik(x · p − ct)] , (1.15)

where i =
√
−1 and it is understood that the actual displacement components are the real

or imaginary parts of the right-hand side. The amplitude A may be real or complex, but it
is independent of x and t. ω = kc is the circular frequency and k is the wave-number. These
quantities are related to the period T and the wavelength λ by ω = 2π/T and k = 2π/λ,
respectively.

Eq. (1.15) is a special case of (1.1). Thus we have two types of plane harmonic waves:
longitudinal and transverse waves, propagating with phase velocities cL and cT , respectively.
Since the wavenumber k does not appear in the expression for the phase velocities, plane
harmonic waves in an unbounded homogeneous, isotropic, linearly elastic medium are not
dispersive.
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1.2 The homogeneous half-space (HS)

Rayleigh waves propagating over the surface of homogeneous and inhomogeneous elastic half-
spaces are a well-known and prominent feature of wave theory. They are vector waves, which
are confined to the region near the surface, and are polarized in the sagittal plane. This
means that the displacement has a horizontal component, which is parallel to the direction
of propagation, and a vertical component directed into the half-space. The dimensionless
ratio of these components of H/V at the surface, the so-called ellipticity, is an important
parameter which reflects fundamental properties of the elastic material. In this section, the
2D-Rayleigh wave motion is described in a Cartesian coordinate system with its origin located
on the surface of the half-space. The x1-axis points in the direction of propagation, while the
x3-axis is directed into the half-space.

1.2.1 Eigen-value problem

The Rayleigh waves equation can be found in many textbooks such as [24], [6], [2], [14] but
we consider the expression of the potentials

ϕ = Ae−px3eik(x1−ct) (1.16)

and

ψ = [0, Be−qx3eik(x1−ct), 0] , (1.17)

respectively. A and B are integral constants. Substitution of the potentials Eqs. (1.16) and
(1.17) into (1.11) and (1.12), respectively, yields

p = k

(
1 − c2

α2

) 1

2

, q = k

(
1 − c2

β2

) 1

2

(1.18)

in which β and α are the shear-wave and the longitudinal-wave velocity, respectively.

Substituting the potential expressions into (1.7) yields the displacements

u1 = U1(x3)e
ik(x1−ct) , (1.19)

u2 = 0 ,

u3 = U3(x3)e
ik(x1−ct) (1.20)

with

U1(x3) = ikAe−px3 + qBe−qx3 ,

U3(x3) = − pAe−px3 + ikBe−qx3 (1.21)

and wave number k, phase velocity c, and the time t. The real part of p is supposed to be
positive, so that the displacements decrease with increasing x3 and tend towards zero as x3

tends towards infinity.
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Substitution of Eqs. (1.19)-(1.20) into the stress formula (1.13) yields

τ13 = S13(x3)e
ik(x1−ct) , (1.22)

τ33 = S33(x3)e
ik(x1−ct) (1.23)

with

S13(x3) = µ
(
U

′

1(x3) + ikU3(x3)
)
,

S33(x3) = (λ+ 2µ)U
′

3(x3) + ikλU1(x3) . (1.24)

The prime ()′ denotes differentiation with respect to x3 and λ, µ are Lame’s constants of the
half-space.

The boundary conditions at the free-surface are

S13(0) = S33(0) = 0 . (1.25)

By substituting (1.24) into (1.25), we obtain

2pikA− (q2 + k2)B = 0 , (1.26)

[p2 − (1 − 2γ)k2]A− 2ikγqB = 0 (1.27)

with γ = β2/α2. For a non-trival solution the determinant of the coefficients of A and B
must vanish, which yields the following well-known equation for the phase velocity of Rayleigh
waves:

4pq − k2(2 − c2

β2
)2 = 0 . (1.28)

Substituting p, q from (1.18) yields

4

√

1 − c2

β2

√
1 − c2

α2
− (2 − c2

β2
)2 = 0 . (1.29)

If we substitute c = β into the left-hand side of (1.29), we obtain unity. Substitution of
c = ǫβ , where ǫ is a very small number, yields −2 [1 − γ] ǫ2, which is always negative. Hence
(1.29) has at least one real root lying between c = 0 and c = β . Achenbach [1] proved that
there exists only one positive root of (1.29). He also made a good approximation of cR/β as
a function of Poisson’s ratio ν

cR
β

=
0.862 + 1.14 ν

1 + ν
. (1.30)

There are some analytical formulas for the Rayleigh phase velocity which have been recently
proposed, and we use the Bergman formula [7]

cR
β

=
0.87 + 1.12 ν

1 + ν
, (1.31)
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and Malischewsky’s formula [34]

x(ν) =
2

3

[
3 − 3

√
h3(γ) +

2(1 − 6γ)
3

√
h3(γ)

]
(1.32)

with these auxiliary functions

h1(γ) = 3
√

33 − 186γ + 321γ2 − 192γ3 ,

h3(γ) = 17 − 45γ + h1(γ) . (1.33)

In formula (1.32), the main values of the cubic roots are to be used. Alternatively, x can be
determined by using Malischewsky’s approximation (see Pham Chi Vinh and Malischewsky
[48]), which is also valid for auxetic material with negative Poisson ratio [like the exact
formula (1.32)]:

x(ν) = 0.874 + 0.196 ν − 0.043 ν2 − 0.055 ν3 . (1.34)

Fig. 1.1 shows the root of equation (1.29) compared to the approximation of Achenbach
(1.30) and Bergman (1.31). We can see that Bergman’s approximation is very good, but

0 0.1 0.2 0.3 0.4 0.5
0.86

0.88

0.9

0.92

0.94

0.96

ν

c

β

Exact solution
Achenbach’s approximation
Bergman’s approximation

Figure 1.1: Rayleigh waves velocity as a function of Poisson’s ratio ν: exact curve (continu-
ous), Achenbach’s approximation (dashed), Bergman’s approximation (dotted)

Achenbach’s is only good for large values of ν. The Malischewsky approximation is not
displayed here because it is almost identical to the exact solution.

1.2.2 H/V -ratio

The H/V -ratio is formulated as ratio of horizontal to vertical displacement amplitudes

χ =

∣∣∣∣
U1(0)

U3(0)

∣∣∣∣ =

∣∣∣∣
ikA+ qB

−pA+ ikB

∣∣∣∣ . (1.35)
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Figure 1.2: H/V -ratio of Rayleigh waves as a function of Poisson’s ratio

From the boundary condition (1.26)-(1.27), we have

B =
2pik

q2 + k2
A . (1.36)

By substituting B in (1.36) into (1.35), we obtain

χ =

∣∣∣∣
k

p

q2 + k2 + 2pq

q2 + k2 + 2k2

∣∣∣∣ . (1.37)

Using the dispersion equation (1.29) and formulas of p and q (1.18), we have a simple formula
of H/V

χ =

√
p

q
= 2

√
1 − c2/β2

2 − c2/β2
. (1.38)

The ellipticity χ depends only on Poisson’s ratio ν. In terms of Malischesky’s formula for
phase velocity (1.32), the H/V -ratio can be expressed analytically as a function of Poisson’s
ratio ν in the form

χ(ν) =

√
1 − 2g4(ν)

1 − g4(ν)
(1.39)

with the auxiliary functions g4 defined by

g3(ν) = 17 + 3

√
33 − 24 ν̄3 +

321

4
ν̄2 − 93 ν̄ − 45

2
ν̄ , (1.40)

g4(ν) =
1

3

[
4 +

2(1 − 3 ν̄)
3

√
g3(ν)

− 3
√
g3(ν)

]
and (1.41)

ν̄ = 1 − ν

1 − ν
(1.42)
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where the main values of cubic root should be used.

This ellipticity χ(ν) is a positive function for −1 ≤ ν ≤ 0.5 as a result of retrograde par-
ticle motion (see Malischewsky et al. [36]). Fig. 1.2 shows the well-known behaviour of χ
dependent on ν for all possible values of Poisson’s ratio.

1.3 The impedance wave

The Rayleigh wave in an isotropic, elastic half-space is non-dispersive and there is only one
straight-crested surface wave propagating, but if a layer of a different material is deposited on
the half-space, an infinite number of straight-crested surface waves is possible, all of which are
dispersive, including that corresponding to the Rayleigh wave. For a thin layer, H. F. Tiersten
[54] used the approximate equations of low-frequency extension and flexure of thin plates to
account for the motion of the layer. These approximate equations enable the entire effect of
the layer to be treated as a boundary condition at the surface of the substrate. Tiersten also
showed that the accuracy of the approximation is excellent in the small frequency range. In
this section, we will use the Tiersten technique to investigate impedance waves.

1.3.1 The dispersion equation

Our model is displayed as in Fig. 1.3.1. We use index 1 for the layer and index 2 for the
half-space. The thickness of the layer is d, and it is considered to be small. The 2D-Rayleigh
wave motion is described in a Cartesian coordinate system with its origin located on the
interface between layer and half-space. The x1-axis points into the direction of propagation
while the x3-axis is directed into the half-space. As for the model “half-space”, we choose the
potential expression of the half-space as in (1.16-1.17), so the expression of the displacements
and the stresses of the half-space are the same as in (1.21) and (1.24). However, the boundary
conditions are quite different. Instead of the homogeneous conditions of the free stresses at
the surface in the model “half-space”, the stresses at the interface between the layer and
half-space of new model must be taken from Tiersten’s approximations as

S13 + ǫ1U1 = 0 , S33 + ǫ3U3 = 0 for x3 = 0 , (1.43)

with

ǫ1 = dρ1ω
2

[
1 − 4(µ1 + λ1)

2µ1 + λ1

β2
1

c2

]
and ǫ3 = dρ1ω

2 . (1.44)

µ1, α1 and ρ1 are the Lame’s constants and the density of mass of the layer, respectively.
Details of this boundary replacement can be found in [31]. Substitution the formulas of the
displacements (1.21) and stresses (1.24) into the Tiersten’s boundary condition (1.43) yields

2i
[
−gαC + rdr

2
sπf̄(C2 − 4(1 − γ1))

]
A

+
[
−C(2 − C2) + 2rdr

2
sπf̄gβ(C2 − 4(1 − γ1))

]
B = 0 (1.45)

and

[
(2 − C2) − 2Crdr

2
sπf̄gα

]
A+ 2i(−gβ + Crdr

2
sπf̄)B = 0 (1.46)
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Figure 1.3: Model ”Impedance wave”

with i =
√
−1, C = c/β1, rd = ρ1/ρ2, rs = β1/β2 for the density ratio and the impedance

ratio, respectively. γ1, γ2 are the squared ratios of the shear wave to the longitudinal wave
and they are functions of Poisson’s ratio, respectively, as

γ1 =

(
β1

α1

)2

=
1 − 2ν1

2(1 − ν1)
, γ2 =

(
β2

α2

)2

=
1 − 2ν2

2(1 − ν2)
. (1.47)

We use here a non-dimensional frequency f̄ , defined by

f̄ =
d

λβ1

, (1.48)

where d is the thickness of the layer and λβ1
is the wavelength of shear waves in the layer.

We also denote gα and gβ as

gα =

√
1 − c2

α2
2

=
√

1 − C2r2sγ2 , gβ =

√
1 − c2

β2
2

=
√

1 − C2r2s . (1.49)

The nontrivial solution for this system of equations ofA andB corresponds to the determinant
equals zero which leads to the secular equation

A0(C) +A1(C)f̄ +A2(C)f̄2 = 0 (1.50)

with abbreviations

A0(C) = (2 − C2r2s)
2 − 4gβgα ,

A1(C) = 2Crdr
4
sπ

[
C2(gβ + gα) + 4gβ(−1 + γ1)

]
,

A2(C) = 4r2dr
4
sπ

2(−1 + gβgα)(−4 + C2 + 4γ1) .
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The zero-frequency velocity

When f̄ = 0, Eq. (1.50) becomes

(2 − C2r2s)
2 − 4

√
1 − C2r2s

√
1 − C2r2sγ2 = 0 . (1.51)

Denote C̄ = C2r2s = c2/β2
2 , Eq. (1.51) becomes

(2 − C̄)2 − 4
√

1 − C̄

√
1 − C̄γ2 = 0 . (1.52)

This is the Rayleigh-wave equation of the half-space, so the phase velocity at zero frequency
is the Rayleigh wave velocity of the substrate.

1.3.2 The H/V -ratio formula

Suppose that the velocity is found and the ellipticity can be determined from

χ =
U1(0)

iU3(0)
=

ikA+ qB

−ipA− kB
. (1.53)

The relation between constants A and B can be determined from (1.45) and (1.46), so we
can have two formulas for the H/V -ratio.
From (1.45), we have

B

A
= − 2i

[
−gαC + rdr

2
sπf̄(C2 − 4(1 − γ1))

]
[
−C(2 − C2) + 2rdr2sπf̄gβ(C2 − 4(1 − γ1))

] , (1.54)

so

χ1(f̄ , ν1, ν2, rs, rd) = −C M0(C)

N0(C)r2s
(1.55)

where

M0(C) = − 2 + C2r2s + 2
√

1 − C2r2s
√

1 − C2r2sγ2 ,

N0(C) = C3
√

1 − C2r2sγ2

+ 2rdπ(−1 +
√

1 − C2r2s
√

1 − C2r2sγ2)(−4 + C2 + 4γ1)f̄ .

On the other hand, the relation between A and B can be determined from (1.46) as

B

A
= −(2 − C2) − 2Crdr

2
sπf̄gα

2i(−gβ + Crdr2sπf̄)
(1.56)

and we derive another formula of the H/V -ratio

χ2(f̄ , ν1, ν2, rs, rd) = −Cr2s
M1(C)

N1(C)
(1.57)

where

M1(C) = C
√

1 − C2r2s + 2rdf̄π(−1 +
√

1 − C2r2s
√

1 − C2r2sγ2) ,

N1(C) = M0(C) .

These two formulas of H/V -ratio, (1.55) and (1.57), are dependent on each other, i.e., each
of them can be obtained from the other and the dispersion equation.
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Proposition 1. The secular equation (1.50) can be determined from the relation:

χ1 = χ2 .

Proof. From χ1 = χ2 and the formulas (1.55) and (1.57), we have:

M1(C)N0(C)r4s −N1(C)M0(C) = 0 .

But we can express

M1(C)N0(C)r4s −N1(C)M0(C) = ∆(f̄)(−1 +
√

1 − C2r2s
√

1 − C2r2sγ2)

with ∆(C, f̄) = A0 +A1f̄ +A2f̄
2 from the dispersion equation. We always have

−1 +
√

1 − C2r2s
√

1 − C2r2sγ2 6= 0 , (1.58)

if c2 6= α2
2 + β2

2 and because of assumption that c < β2 so

∆(C, f̄) = 0 .

Zero-frequency ellipticity

When f̄ = 0, we use the second formula of the H/V -ratio (1.57) and it becomes

χ2 = − C̄
√

1 − C̄

C̄ + 2(−1 +
√

1 − C̄
√

1 − C̄γ2)
(1.59)

where C̄ = c/β2. We proved that C̄ is Rayleigh wave of the substrate when f̄ = 0 so C̄
satisfies the Rayleigh equation as

(2 − C̄)2 − 4
√

1 − C̄

√
1 − C̄γ2 = 0 (1.60)

thus,

χ2 =
2
√

1 − C̄

2 − C̄
. (1.61)

Similar to phase velocity, the H/V -ratio at zero-frequency is the H/V -ratio of the substrate,
and it depends only on γ2 or ν2.

Particle motion

It is shown in the model “half-space” that the phase velocity is non-dispersive and the particle
motion is always a retrograde ellipse. However, the phase velocity of the impedance wave
is dispersive, so we consider the possibility that the particle motion is prograde. We proved
that the ellipticity at zero frequency is positive, which means the motion at zero frequency
is retrograde. Now we will prove that H/V -ratio keeps its sign with other frequencies.



12 CHAPTER 1. TWO SIMPLE MODELS

Because the phase velocity is a continuous function of the frequency, the H/V -ratio can only
change its sign if it has a zero point or a singularity. Suppose that the H/V -ratio has a
singularity at f̄p. The corresponding phase velocity is Cp. We will use the formula χ1 of
H/V -ratio, and the condition that χ1 has singularity yields the denominator N0(C) = 0 or

C3
p

√
1 − C2

pr
2
sγ2 + 2rdπ(−1 +

√
1 − C2

pr
2
s

√
1 − C2

pr
2
sγ2)(−4 + C2

p + 4γ1)f̄p = 0 (1.62)

thus,

f̄p = −
C3

p

√
1 − C2

pr
2
sγ2

2rdπ(−1 +
√

1 − C2
pr

2
s

√
1 − C2

pr
2
sγ2)(−4 + C2

p + 4γ1)
. (1.63)

The pair (f̄p, Cp) must satisfy the secular equation (1.50). Substituting (f̄p, Cp) into the
secular equation yields

8 + C4
pr

4
s(1 + 4γ2) + 4(C2

pr
2
s − 2)

√
1 − C2

pr
2
s

√
1 − C2

pr
2
sγ2 − 4C2

pr
2
s(2 + γ2)

−1 +
√

1 − C2
pr

2
s

√
1 − C2

pr
2
sγ2

= 0 . (1.64)

The left side of this equation can be re-written by denoting y = C2
pr

2
s = c2p/β

2
2 as

P (y, γ2) =
8 + (1 + 4γ2)y

2 + 4(y − 2)
√

1 − y
√

1 − yγ2 − 4y(2 + γ2)

−1 +
√

1 − y
√

1 − yγ2
. (1.65)

We observe that the function P (y, γ2) only depends on two arguments y and γ2 and does
not depend on any parameters of the layer. This makes it much easier to determine whether
P (y, γ2) = 0 has a solution. Because γ2 ∈ [0, 0.5], and we assume that c < β2 or y < 1, we
have a picture showing the contour of P (y, γ2) as in Fig. 1.3.2. We can see that P (y, γ2) never
reaches the 0 value, except at y = 0 or c = 0. This solution is trivial, so we cannot find any
value of the phase velocity at which H/V has a singularity. That means that the H/V -ratio
does not contain any singularities for any parameter systems of layer and half-space.

By analogy, we suppose that the H/V -ratio has a zero-point at f̄z and Cz. We use the second
formula of the H/V -ratio χ2 in (1.57) and the condition for the H/V -ratio having a zero point
is M1(C) = 0 or:

Cz

√
1 − C2

z r
2
s + 2rdf̄zπ(−1 +

√
1 − C2

z r
2
s

√
1 − C2

z r
2
sγ2) = 0 .

Thus,

f̄z = − Cz

√
1 − C2

z r
2
s

2rdπ(−1 +
√

1 − C2
z r

2
s

√
1 − C2

z r
2
sγ2)

. (1.66)

Substituting this f̄z into the dispersion equation (1.50) we have:

8 + C4
z r

4
s(1 + 4γ2) + 4(C2

z r
2
s − 2)

√
1 − C2

z r
2
s

√
1 − C2

z r
2
sγ2 − 4C2

z r
2
s(2 + γ2)

−1 +
√

1 − C2
z r

2
s

√
1 − C2

z r
2
sγ2

= 0 . (1.67)
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Figure 1.4: Contour line of P (y, γ2)

The left side of this equation can be consider as a function Q(t, γ2) with t = c2z/β
2
2 . Compar-

ing Q(t, γ2) with P (y, γ2), we realize that these functions are identical. Thus, Q(t, γ2) does
not have any solutions in our domain of interest, t and γ2, or the H/V -ratio does not have
any zero points.

So, the ellipticity is always positive with all values of ν2, or the motion of the particle on the
surface is always retrograde.
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Chapter 2

Layer with fixed bottom (LFB)

Our model now is one layer with a fixed bottom. The thickness of the layer is d. The length
and the width are large enough for the surface of the layer to be considered as a plane. The
surface of the layer is free while the bottom is fixed. In this chapter, I will investigate both
the cases of homogeneous and inhomogeneous layer.

2.1 Homogeneous layer

In homogeneous case, the Poisson ratio is ν, the shear wave velocity is β, the density of mass
is ρ and they are constant in the layer. This model is a special case of model ”Layer over
half-space” (LOH) when the impedance contrast between the layer and half-space is very
high. We choose the coordinate system as in Fig. 2.1. The waves (P and SV) propagate in
the plane (x1Ox3).

2 4 6 8 10 12 14
−2

−1.5

−1

−0.5

0

0.5

1

x
3

x
1

x
2

0

x
3
=d

ν, β, α, ρ

Figure 2.1: Homogeneous bottom fixed layer

15
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2.1.1 The eigen-value problem

Suppose that the surface wave propagates along the x1-axis with the phase velocity c. The
displacement is characterized by two components, u1 and u3, while u2 = 0. The corresponding
complex amplitudes of potentials are described by

ϕ = Φ(x3) exp[i(kx1 − ωt)] ,

ψ = Ψ(x3) exp[i(kx1 − ωt)] . (2.1)

We choose a solution of Φ(x3) and Ψ(x3) which satisfies the motion equation:

Φ(x3) = A1 sin(px3) +A2 cos(px3) , (2.2)

Ψ(x3) = B1 sin(qx3) +B2 cos(qx3) , (2.3)

where

p2 =
ω2

α2
− k2 = k2

(
c2

α2
− 1

)
, q2 =

ω2

β2
− k2 = k2

(
c2

β2
− 1

)
. (2.4)

In the expression for the displacement and the stress components, which are obtained from
(2.1), the term exp[i(kx1−ωt)] appears as a multiplier. Since the exponential appears in all of
the expressions, it does not play a further role in the determination of the frequency equation
and it is therefore omitted in the following equations. Thus we write the displacement and
stress amplitudes as

U1 = ikΦ − dΨ

dx3
, (2.5)

U3 =
dΦ

dx3
+ ikΨ (2.6)

and

τ31 = ρβ2

[
dU1

dx3
+ ikU3

]
, (2.7)

τ33 = ρα2

[
dU3

dx3
+ ik(1 − 2γ)U1

]
. (2.8)

Boundary conditions at the free surface and at the fixed bottom are

τ31 = τ33 = 0 on x3 = 0 , (2.9)

and

U1 = U3 = 0 on x3 = d . (2.10)

By substituting the displacement and stress formulas into the boundary conditions (2.9)-
(2.10) we obtain a system of equations defining the constants A1, A2, B1 and B2 in the matrix
form




2igα 0 0 −1 + gβ

0 −1 + 2γ − g2
α 2iγgβ 0

i sin(gαdk) i cos(gαdk) −gβ cos(gβdk) gβ sin(gβdk)

gα cos(gαdk) −gα sin(gαdk) i sin(gβdk) i cos(gβdk)







A1

A2

B1

B2




= 0 (2.11)
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where gα = p/k =
√
γC2 − 1 , gβ = q/k =

√
C2 − 1 . The non-trivial solution corresponding

to the determinant of A1, A2, B1 and B2 to zero results in the secular equation

∆(C, f̄) = A0(C)+B0(C) sin

(
2πf̄gα

C

)
sin

(
2πf̄gβ

C

)
+C0(C) cos

(
2πf̄gα

C

)
cos

(
2πf̄gβ

C

)

(2.12)

where

f̄ = d/λβ , C = c/β (2.13)

and the auxiliary functions A0(C), B0(C), C0(C) are given by

A0(C) = − 4gαgβ(C2 − 2) ,

B0(C) = C4(4γ + 1) − 4C2(γ + 2) + 8 , (2.14)

C0(C) = − gαgβ(C4 − 4C2 + 8) .

2.1.2 Dispersion law

The secular equation (2.12) depends on the frequency f̄ , phase velocity C and Poisson’s ratio
ν. It does not depend on the density of mass. Figure 2.2 shows dispersion curves for several
modes of the layer with Poisson’s ratio ν = 1/3. We can see that each mode has a cut-off
frequency, even the fundamental mode. This is the case because a surface wave satisfying the
fixed bottom condition cannot exist at small frequencies or long wavelengths. In this small
range of frequencies, there is only the complex solution of phase velocity given by Eq. (2.12)
corresponding to the leaking wave, which we do not consider here. The phase velocity at

f̄

c

β

0.2 0.4 0.6 0.8 1

2

4

6

8

10

1mode
    0

2

Figure 2.2: Velocity curves of three modes with ν = 1/3

the cut-off frequency is observed as infinite. To find these cut-off frequencies we substitute
the phase velocity as infinity into the secular equation. When phase velocity C → +∞, the
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left-hand side of Eq. (2.12) tends to infinity and we have the approximations

A0 ≈ − 4
√
γC4 ,

B0 ≈ (4γ + 1)C4 ,

C0 ≈ −√
γC6 ,

thus

∆(C, f̄) ≈ C4
[
−4

√
γ + (4γ + 1) sin(2πf̄

√
γ) sin(2πf̄) +

√
γC2 cos(2πf̄

√
γ) cos(2πf̄)

]

≈ √
γC6 cos(2πf̄

√
γ) cos(2πf̄) .

The necessary condition of f̄ for C → +∞ is a solution of the secular equation:

cos(2πf̄
√
γ) cos(2πf̄) = 0 , (2.15)

or
[
f̄ = 1

4 + k
2

f̄ = 1
4
√

γ + l
2
√

γ , k, l ∈ N .
(2.16)

From numerical results, we can see that the singularity of the fundamental mode always
corresponds to k = 0 in (2.16). The corresponding frequency is f̄ = 0.25. This frequency
is exactly the resonant frequency of the shear wave in the layer. In figure 2.2 in which we
plot phase velocity curves with ν = 1/3, we can use the formula (2.16) to find the cut-off
frequency for other higher modes. For example, the cut-off frequency of the first higher mode
is f̄ = 0.5 corresponding to l = 0 and of the second higher mode is f̄ = 0.75 corresponding
to k = 1.

High frequency

When the frequency is very high or f̄ → ∞, the necessary condition for ∆(C, f̄) in (2.12)
converges is gα and gβ become imaginary number. If not so, since sin(x) and cos(x) do not
converge when x→ ∞, ∆(C, f̄), so ∆(C, f̄) can not converge. The above conditions lead to

C < 1 or c < β . (2.17)

We denote

t1 = i
2πf̄gα

C
, t2 = i

2πf̄gβ

C
(2.18)

and with the conditions C < 1, t1, t2 are real and

t1 → +∞ , t2 → +∞ when f̄ → ∞ . (2.19)

We transform ∆(C, f̄) as

∆(C, f̄) = A0(C) −B0(C) sinh t1 sinh t2 + C0(C) cosh t1 cosh t2

= A0(C) −B0(C)
et1 − e−t1

2

et2 − e−t2

2
+ C0(C)

et1 + e−t1

2

et2 + e−t2

2
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and we have

∆(C, f̄) ≈ et1+t2

4
[C0(C) −B0(C)] (2.20)

when f̄ → ∞. The necessary condition of C to be a solution of the secular equation when
f̄ → ∞ is

C0(C) −B0(C) = 0 . (2.21)

By substituting B0(C) and C0(C) from (2.14) into this equation we obtain the equation
defining the phase velocity of a Rayleigh wave with high frequency in “layer with fixed
bottom”:

C4(4γ + 1) − 4C2(γ + 2) + 8 + (C4 − 4C2 + 8)
√
C2γ − 1

√
C2 − 1 = 0 . (2.22)

Proposition 2. The Rayleigh wave velocity is a solution of equation (2.22).

Proof. Suppose that C = CR. Because it must satisfy the Rayleigh wave equation, we have

(2 − C2
R)2 − 4

√
1 − C2

Rγ
√

1 − C2
R = 0 , (2.23)

and therefore

(2 − C2
R)2 = 4

√
1 − C2

Rγ
√

1 − C2
R = −4

√
C2

Rγ − 1
√
C2

R − 1 .

By substituting this into (2.22) and conducting some simple algebraic transformations we
have

(2 − C2
R)2 − 4

√
1 − C2

Rγ
√

1 − C2
R = 0.

This equation exactly corresponds to the Rayleigh equation.

From this proposition we can conclude that the Rayleigh wave of half-space represents the
phase velocity when the frequency is high, and it is observed for the fundamental mode.
This fact can be predicted from the skin effect in surface waves: high-frequency waves are
concentrated within a thin layer near the surface.

2.1.3 Displacements

Suppose that we have the phase velocity. From (2.5) and (2.6) we have the displacement in
the layer

U1(x3) = ik [A1 sin(px3) +A2 cos(px3)] − q [B1 cos(qx3) −B2 sin(qx3)] , (2.24)

U3(x3) = p [A1 cos(px3) −A2 sin(px3)] + ik [B1 sin(qx3) +B2 cos(qx3)] . (2.25)
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The relation between A1, A2, B1 and B2 can be determined from three of four boundary
condition equations. After some simple algebraic transformations we obtain

U1(x3)

U3(0)
=
C2 − 2

γαC2

D(x3)

M
, (2.26)

U3(x3)

U3(0)
=
C2 − 2

C2

E(x3)

M
(2.27)

where

M = (1 − g2
β)

[
2γgαgβ sin(gαdk) + (−1 + 2γ − g2

α) sin(gβdk)
]
, (2.28)

and

D(x3) = D1 sin(gαdx3) +D2 sin(gβdx3) +D3 cos(gαdx3) +D4 cos(gβdx3) (2.29)

for

D1 = M ,

D2 = 2gαgβM/(1 − g2
β) ,

D3 = 2γgαgβ

[
−2 cos(gβdk) + (1 − g2

β) cos(gαdk)
]
,

D4 = − gαgβ(−1 + 2γ − g2
α)

[
−2 cos(gβdk) + (1 − g2

β) cos(gαdk)
]
,

and

E(x3) = E1 sin(gαdx3) + E2 sin(gβdx3) + E3 cos(gαdx3) + E4 cos(gβdx3) (2.30)

for

E1 = −D3 , E2 = D4/gαgβ , E3 = D1 , E4 = −D2/gαgβ .

2.1.4 H/V ratio

The H/V -ratio formula is constructed from the ratio of the horizontal displacement to the
vertical displacement on the surface

χ =
U1(0)

U3(0)
=
ikA2 − qB1

pA1 + ikB2
. (2.31)

The relation among A1, A2, B1 and B2 can be derived from three of four boundary conditions,
and there are three possible combinations, so we can have three formulas of the H/V -ratio:

χ1 =
N1 [1 − cos(gαdk) cos(gβdk)] −N2 sin(gαdk) sin(gβdk)

gα

(
1 + g2

β

)
[gαgβ cos(gβdk) sin(gαdk) + cos(gαdk) sin(gβdk)]

(2.32)

where

N1 = gαgβ

(
−3 + g2

β

)
,

N2 = 1 +
(
−1 + 2g2

α

)
g2
β ,
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and

χ2 =

(
1 + g2

α

)
gβ

[(
−1 + g2

β

)
cos(gαdk) + 2 cos(gβdk)

]

γ
(
1 + g2

β

) [
−2gαgβ sin(gαdk) +

(
−1 + g2

β

)
sin(gβdk)

] , (2.33)

χ3 = −
(1 + g2

α)gβ

[
−(−1 + g2

β) sin(gαdk) + 2gαgβ sin(gβdk)
]

γgα(1 + g2
β)

[
2 cos(gαdk) + (−1 + g2

β) cos(gβdk)
] . (2.34)

These three formulas of χ depend on each other in the sense that each of them can be derived
from one other and the secular equation, and we can obtain the secular equation by taking
χ2 = χ3 .

The first peak

For frequencies below f̄ = 0.25 there is no undamped surface-wave motion, so there is no
H/V -ratio with these frequencies. When f̄ = 0.25, the phase velocity curve has a singularity.
By substituting C = +∞ and f̄ = 0.25 into the H/V -ratio formula χ1 we obtain

χ ≈ C4√γ
[
1 − 2

√
γ sin(

√
γ
π

2
)
]
.

Hence χ→ ± + ∞ at f̄ = 0.25. The sign depends on the value of γ. The equation

1 − 2
√
γ sin(

√
γ
π

2
) = 0 (2.35)

has a solution γ = 0.373 in the region 0 < γ < 0.5 . This value corresponds to ν = 0.2026
and we conclude for the H/V -ratio at f̄ = 0.25 that

- if 0 < ν < 0.2026 then χ→ −∞

- if 0.2026 < ν < 0.5 then χ→ +∞ .

High frequency

When the frequency is very high, the phase velocity reaches the velocity of Rayleigh waves
CR = cR/β1. Substituting CR into the formula χ2 (2.33) yields

χ =
2 − C2

R

2
√

1 − γC2
R

(2.36)

and because CR satisfies the Rayleigh waves equation as

(2 − C2
R)2 = 4

√
1 − C2

R

√
1 − γC2

R ,

so χ can be transformed to

χ =
2
√

1 − C2
R

2 − C2
R

(2.37)

and we again have the formula for the H/V -ratio of model half-space. Because of CR < 1,
the H/V -ratio is positive.
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Zero-point

Unlike the model “impedance wave”, which does not have any singularities or zero points, in
the model LFB, we can observe both. The zero point occurs when the horizontal displacement
vanishes and it must satisfy the secular equation. Thus the zero-point of the H/V -ratio curve
is the solution of this system of equations:

{
∆(C, f̄) = 0
χ(C, f̄) = 0 .

(2.38)

We have proved that the secular equation ∆(C, f̄) and the three formulas of the H/V -ratio
are dependent. Thus the system of equations (2.38) is equivalent to

{
χ2(C, f̄) = 0
χ3(C, f̄) = 0 .

(2.39)

From (2.39) we have (2.38) (proved in Appendix 1). The details of (2.39) are:

{
(C2 − 2) cos(gαdk) + 2 cos(gβdk) = 0

(C2 − 2) sin(gαdk) − 2gαgβ sin(gβdk) = 0 .
(2.40)

This leads to




cos2(gβdk) = γ(1−C2)+C2/4
γ(1−C2)+1

cos2(gαdk) =
(

2
C2−2

)2
γ(1−C2)+C2/4

γ(1−C2)+1
.

(2.41)

Proposition 3. At the zero-point of the H/V-ratio curve, the phase velocity satisfies 1 <
C < 2.

Proof. - If C < 1 then

cos(gβdk) = cos
(
2π

√
C2 − 1f̄/C

)
= cosh

(
2π

√
1 − C2f̄/C

)
> 1 ,

but

γ(1 − C2) + C2/4

γ(1 − C2) + 1
< 1 .

It is nonsense so C > 1.

- Because C > 1, cos(gβdk) < 1. Therefore

γ(1 − C2) + C2/4

γ(1 − C2) + 1
< 1 ,

or C2/4 < 1 or C < 2 .

So 1 < C < 2 .
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The necessary condition of γ for the existence of a solution of (2.41) is:

γ(1 − C2) + C2/4

γ(1 − C2) + 1
> 0 ,

and because

γ(1 − C2) + C2/4 < γ(1 − C2) + 1 (since C < 2) ,

the condition becomes
[
γ(1 − C2) + C2/4 > 0

γ(1 − C2) + 1 < 0
or

[
C2(γ − 1/4) < γ

γC2 > 1 + γ .
(2.42)

- If γ < 1/4, (2.42) is automatically satisfied in the first inequality.

- If γ > 1/4, (2.42) becomes

[
C2 < γ

γ−1/4

C2 > 1+γ
γ .

Because 1 < C < 2 and both γ
γ−1/4 and 1+γ

γ are greater than 1, γ must be satisfied
γ

γ−1/4 >
1+γ

γ or γ < 1/3 .

So γ < 1/3 or ν > 0.25 .

We find the zero-point from (2.41). The simpler form of it is:





√
C2γ − 1 arccos

(√
γ(1−C2)+C2/4

γ(1−C2)+1

)
=

√
C2 − 1 arccos

(
2

2−C2

√
γ(1−C2)+C2/4

γ(1−C2)+1

)

f̄ = C
2π

√
C2−1

arccos
(√

γ(1−C2)+C2/4
γ(1−C2)+1

)
.

(2.43)

The singularity of H/V -ratio

The singularity of the H/V -ratio curve is the solution of this system of equations:

{
∆(C, f̄) = 0

1
χ(C,f̄)

= 0 .
(2.44)

This system of equations is equivalent to

{
1

χ2(C,f̄)
= 0

1
χ3(C,f̄)

= 0
(2.45)

because of the dependence between the secular equation and formulas of H/V -ratio. From
(2.45) we again obtain (2.44) (Appendix 2). The details of (2.45) are:

{
(C2 − 2) cos(gβdk) + 2 cos(gαdk) = 0

(C2 − 2) sin(gβdk) − 2gαgβ sin(gαdk) = 0 .
(2.46)
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This leads to:




cos2(gαdk) = γ(1−C2)+C2/4
γ(1−C2)+1

cos2(gβdk) =
(

2
C2−2

)2
γ(1−C2)+C2/4

γ(1−C2)+1
,

(2.47)

or





√
C2 − 1 arccos

(√
γ(1−C2)+C2/4

γ(1−C2)+1

)
=

√
C2γ − 1 arccos

(
2

2−C2

√
γ(1−C2)+C2/4

γ(1−C2)+1

)

f̄ = C

2π
√

C2γ−1
arccos

(√
γ(1−C2)+C2/4

γ(1−C2)+1

)
.

(2.48)

This is a system of equations defining the singularity frequencies of H/V -ratio curve.

2.1.5 Particle motion

In the two previous models, “half-space” and “impedance wave”, we do not observe any
possibility for prograde particle motion; the motion is always retrograde. In the model “layer
with fixed bottom (LFB)”, the H/V ratio curve has a singularity and a zero point at certain
frequencies. In these frequencies, the sense of motion changes and the particle motion can
be prograde. Fig. 2.3 shows a 2D graph of ellipticity χ as a function of f̄ and the Poisson’s
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Figure 2.3: The ellipticity for the model layer with fixed bottom (LFB) in dependence of
frequency and Poisson’s ratio: retrograde motion (dark gray) and prograde motion (light
gray)

ratio of the layer ν. It displays the sharp partition into two regions, where χ > 0 corresponds
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to retrograde particle motion (dark shading) and χ < 0 to prograde particle motion (light
shading).

The domain of prograde motion is bounded on the left by a critical point P1 with coordinates
(0.25, 0.2026) and at the top of the figure by point P3 with coordinates (0.5126, 0.5). The
critical value ν = 0.2026 follows from the equation (2.35). Unfortunately, there is no algebraic
representation of the P3 coordinates. The value f̄ = 0.5126 follows from the solution of the
system of Eqs. (2.43) when γ = 0 or ν = 0.5.

The curve P1P2 is the set of singularities which are solutions of the system of equations (2.48)
and the curve P2P3 is the set of zero points which are solutions of the system of equations
(2.43). By numerical calculation, we can approximate these two sets of solutions by simple
linear functions of Poisson’s ratio:

P1P2 : f̄ = 0.25 + 3.861 (ν1 − 0.2026) when 0.2026 ≤ ν1 ≤ 0.25 (2.49)

and

P2P3 : f̄ =

√
3

4
+ 0.318 (ν1 − 0.25) when 0.25 ≤ ν1 ≤ 0.5 . (2.50)

No prograde motion is observed for ν < 0.2026. The same critical value is observed in the
method used by Giese [19] for the determination of Poisson’s ratio from frequency when
the sense of motion changes. When ν > 0.2026, the broad band of frequency range for the
prograde motion becomes larger with higher value of ν. It can be calculated by the distance
between f̄ = 0.25 and f̄ in (2.49) and (2.50).

A critical point P2 with coordinates (
√

3/4, 0.25) is located near the center of the graph.
It is the point at which the H/V -ratio changes its properties dramatically from having two
singularities to one singularity and one zero point. The H/V -ratio in the close vicinity of P2

can have any value and χ at P2 becomes indeterminate as

χ =
0

0
for f̄ =

√
3/4 and ν = 0.25 (2.51)

with right-hand and left-hand limits

lim
f̄→

√
3/4+0

χ = 0.4089 and lim
f̄→

√
3/4−0

χ = −7.3371 . (2.52)

This remarkable jump had been noticed by Giese [19], among others, and is one example of
the problems with mode theory. The way to avoid difficulties such as this jump is to classify
the eigenfunctions or modes in another manner, as pointed out by Okal [45] in the context
of the Earth’s spheroidal modes. We have only considered the fundamental mode which is
defined in the standard manner as the wave with the lowest phase velocity. If, instead, the
branches are defined by the continuity of dc/df̄ , allowing them to cross each other, then the
discontinuity disappears.

The critical point P2 is closely connected with a so-called osculation point of dispersion curves
for fundamental and first higher modes, respectively. The properties of this kind of point will
be studied in detail in Chapter 4.
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When f̄ > 0.5126, no prograde motion is observed. This phenomenon is due to the skin effect
of the surface waves. When f̄ is large enough, our model LFB can be considered to be similar
to the model “half-space”, and it is well known that there exists only retrograde motion in
this model.

2.2 Inhomogeneous layer

In the previous section, we investigated the LFB with a homogeneous layer. There are some
remarkable features for this case. The first is that neither the phase velocity nor the H/V
ratio depends on the density of mass. The second is that the cut-off frequency for real phase
velocity is f̄ = 0.25, the resonant shear wave frequency. However, do these features still hold
for the inhomogeneous layer? To answer this question, we make the layer inhomogeneous by
continuously increasing the shear modulus, while the other parameters remain constant (Fig.
2.4).
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Figure 2.4: Inhomogeneous layer with fixed bottom model

2.2.1 The eigenvalue problem

Vrettos [57] investigated the surface waves in the half-space model with a special form of the
variable shear modulus. This form is presented as a function of the depth

µ(x3) = µ0 + (µ∞ − µ0)[1 − exp(−a x3)] , 0 < µ0 < µ∞ (2.53)

where µ0 and µ∞ are the shear modulus at the surface and at infinite depth, respectively,
and a is a constant with the dimension of inverse length. We will apply Vrettos’ idea to our
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model with the shear modulus function as in (2.54), but the domain of this function is only
0 ≤ x3 ≤ d, and

µ1 = µ(d) or a d = ln
µ∞ − µ0

µ∞ − µ1
. (2.54)

When the shear modulus is a continuous function, and under the plane strain conditions, the
governed motion equations follow two coupled differential equations:

ρ
∂2u1

∂t2
=

2µ(1 − ν)

1 − 2ν

∂2u1

∂x2
1

+ µ
∂2u1

∂x2
3

+
µ

1 − 2ν

∂2u3

∂x1∂x3
+

dµ

dx3

[
∂u1

∂x3
+
∂u3

∂x1

]
(2.55)

ρ
∂2u3

∂t2
=

2µ(1 − ν)

1 − 2ν

∂2u3

∂x2
3

+ µ
∂2u3

∂x2
1

+
µ

1 − 2ν

∂2u1

∂x1∂x3
+

2

1 − 2ν

dµ

dx3

[
ν
∂u1

∂x1
+ (1 − ν)

∂u3

∂x3

]

(2.56)

where µ = µ(x3) is defined by equation (2.54).

For steady-state plane waves of fixed circular frequency ω and wave number k propagating
in the horizontal direction of increasing x1, we set

u1(x1, x3, t) = û1(x3) exp[i(ωt− kx1)] , (2.57)

u3(x1, x3, t) = i û3(x3) exp[i(ωt− kx1)] (2.58)

where i is the imaginary unit. The factor i in front of the displacement amplitude û3 implies
that the path of a particle in the medium will be an ellipse, a property which holds for
Rayleigh waves in a homogeneous half-space.

Substituting the trial solutions (3.67) and (3.68) into the wave equation (2.55) and (2.56),
we obtain a system of couple linear differential equations for the displacement amplitudes
û1(x3) and û3(x3):

(1 − 2ν)µ
d2û1

dx2
3

+ (1 − 2ν)
dµ

dx3

dû1

dx3
+ [(1 − 2ν)ρω2 − 2(1 − ν)k2µ]û1

+ kµ
dû3

dx3
+ (1 − 2ν)k

dµ

dx3
û3 = 0 , (2.59)

2(1 − ν)µ
d2û3

dx2
3

+ 2(1 − ν)
dµ

dx3

dû3

dx3
+ (1 − 2ν)(ρω2 − k2µ)û3 − kµ

dû1

dx3
− 2νk

dµ

dx3
û1 = 0 . (2.60)

The stresses can be expressed in terms of the displacement amplitudes û1 and û3 by using
the relations of linear elasticity

σ33 =
2µ

1 − 2ν

[
ν
∂u1

∂x1
+ (1 − ν)

∂u3

∂x3

]
, (2.61)

σ13 = µ

[
∂u1

∂x3
+
∂u3

∂x1

]
. (2.62)

The free-surface conditions require vanishing traction at x3 = 0 and the fixed bottom con-
ditions require vanishing displacements at x3 = d. For the SV/P waves considered here this
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means that

for x3 = 0 : σ33 = 0 ,

σ13 = 0 ,

for x3 = d : u3(d) = 0 ,

u1(d) = 0 .

Applying (3.67-3.68) and (2.61-2.62), we obtain

for x3 = 0 : νkû1 − (1 − ν)
dû3

dx3
=0 ,

dû1

dx3
+ kû3 =0 , (2.63)

for x3 = d : û3(d) =0 ,

û1(d) =0 . (2.64)

To treat the eigenvalue problem considered here analytically, it is convenient to introduce a
subsidiary depth variable

ξ = H0 exp(−ax3) (2.65)

which transforms the interval 0 ≤ x3 ≤ d onto 0 ≤ H1 ≤ ξ ≤ H0 < 1. H0 and H1 are the
so-called inhomogeneity parameters defined by

H0 = 1 − µ0

µ∞
, (2.66)

H1 = 1 − µ1

µ∞
. (2.67)

Substituting the above transformations into the differential equations (2.59) and (2.60) we
obtain

ξ2(1 − ξ)γû
′′

1 + ξ(1 − 2ξ)γû
′

1 + [γθ − β(1 − ξ)]û1 − (1 − ξ)ξ
√
β(1 − γ)û

′

3 + ξ
√
βγû3 = 0 (2.68)

and

ξ2(1− ξ)û
′′

3 + ξ(1− 2ξ)û
′

3 + γ[θ−β(1− ξ)]û3 + (1− ξ)ξ
√
β(1− γ)û

′

1 − ξ
√
β(1− 2γ)û1 = 0 (2.69)

where

θ =
ω2ρ

a2µ∞
, β =

k2

a2
, γ =

1 − 2ν

2(1 − ν)

and ()
′

denotes differentiation with respect to ξ. The constant γ expresses the following
relation between the velocities of compression (P) and shear (S) waves, α and β, respectively:

γ =

(
β

α

)2

=
1 − 2ν

2(1 − ν)
.
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The boundary conditions transform to

for ξ = H0 : ν
√
βû1 + (1 − ν)ξû

′

3 = 0 ,

ξû
′

1 −
√
βû3 = 0 , (2.70)

for ξ = H1 : û3 = 0 ,

û1 = 0 . (2.71)

Analytical solutions for the system of differential equations (2.68) and (2.69) can be found by
using the Frobenius method [26] (extended power series method). Hence, we seek a solution
of the form

û1(ξ) =
∞∑

n=0

anξ
n+m , (2.72)

û3(ξ) =
∞∑

n=0

bnξ
n+m . (2.73)

Substitution of these expression and the derivatives into differential equations (2.68) and
(2.69) yields, after some manipulations,

∞∑

n=0

[γ(n+m)2+γθ − β]anξ
n+m −

√
β(1 − γ)

∞∑

n=0

(n+m)bnξ
n+m

=
∞∑

n=0

[γ(n+m− 1)(n+m) − β]an−1ξ
n+m (2.74)

−
√
β

∞∑

n=0

[(n+m− 1) − γ(n+m− 2)]bn−1ξ
n+m

and

√
β(1−γ)

∞∑

n=0

(n+m)anξ
n+m +

∞∑

n=0

[γ(θ − β) + (n+m)2]bnξ
n+m

=
√
β

∞∑

n=0

[(1 − γ)(n+m− 1) + (1 − 2γ)]an−1ξ
n+m (2.75)

+
∞∑

n=0

[(n+m− 1)(n+m) − γβ]bn−1ξ
n+m .

By setting the sum of the coefficients of the smallest power ξm to zero, we obtain the following
system of equations for the coefficients a0, b0:

a0

[
γm2 + γθ − β

]
− b0

[
(1 − γ)m

√
β
]

= 0 , (2.76)

a0

[
(1 − γ)m

√
β
]
− b0

[
m2 + γ(θ − β)

]
= 0 . (2.77)

Non-trivial solutions a0, b0 exist if

m4 + [θ(1 + γ) − 2β]m2 + (β − θ)(β − γθ) = 0 (2.78)
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which is the indicial equation of the system of differential equations (2.68) and (2.69). The
roots of this bi-quadratic equation are

m1,3 = ±
√
β − γθ , m2,4 = ±

√
β − θ . (2.79)

So long as they do not differ by an integer, these roots correspond to four linearly independent
solutions for û1 and û3. Henceforth, the superscript (i)(i = 1, 2, 3, 4) is used to indicate the
solutions corresponding to the root mi. For

a
(1)
0 = a

(2)
0 = a

(3)
0 = a

(4)
0 = 1 , (2.80)

we find from equations (2.76) and (2.77)

b
(1)
0 = −b(3)0 = −

√(
β − γθ

β

)
, b

(2)
0 = −b(4)0 = −

√(
β

β − θ

)
. (2.81)

The recurrence relations for an and bn may be derived by equating the sums of the coefficients
of each power of ξ for n ≥ 1. Then we obtain

F11an + F12bn = F̄1 , (2.82)

F21an + F22bn = F̄2 (2.83)

where

F11 = γ(n+m)2 + γθ − β ,

F12 = −
√
β(1 − γ)(n+m) ,

F21 =
√
β(1 − γ)(n+m) ,

F22 = γ(θ − β) + (n+m)2 ,

F̄1 = [γ(n+m− 1)(n+m) − β]an−1 −
√
β[(n+m− 1) − γ(n+m− 2)]bn−1 ,

F̄2 = −
√
β[γ − (n+m)(1 − γ)]an−1 + [(n+m− 1)(n+m) − γβ]bn−1 .

Inserting each root m into this system of equations, the coefficients an and bn are determined
successively:

an =
F̄1F22 − F12F̄2

F11F22 − F12F21
, (2.84)

bn =
F̄2F11 − F21F̄1

F11F22 − F12F21
(2.85)

with a0 and b0 given by equations (2.80) and (2.81). Thus, the complete solution for the
displacement amplitudes are

û1(ξ) =A1û
(1)
1 (ξ) +A2û

(2)
1 (ξ) +A3û

(3)
1 (ξ) +A4û

(4)
1 (ξ) , (2.86)

û3(ξ) =A1û
(1)
3 (ξ) +A2û

(2)
3 (ξ) +A3û

(3)
3 (ξ) +A4û

(4)
3 (ξ) (2.87)
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where A1, A2, A3 and A4 are integration constants. Introducing the notation

RB1(i) = ν
√
β

∞∑

n=0

a(i)
n Hn

0 + (1 − ν)
∞∑

n=0

(n+mi)b
(i)
n Hn

0 (i = 1, 2, 3, 4) ,

RB2(i) =

∞∑

n=0

(n+mi)a
(i)
n Hn

0 −
√
β

∞∑

n=0

b(i)n Hn
0 (i = 1, 2, 3, 4) ,

RB3(i) =

∞∑

n=0

a(i)
n Hn

1 (i = 1, 2, 3, 4) ,

RB4(i) =

∞∑

n=0

b(i)n Hn
1 (i = 1, 2, 3, 4)

and inserting the solutions (3.67) and (3.68) into the boundary conditions (2.63)-(2.64) we
obtain

A1RB1(1)Hm1

0 +A2RB1(2)Hm2

0 +A3RB1(3)Hm3

0 +A4RB1(4)Hm4

0 = 0 ,

A1RB2(1)Hm1

0 +A2RB2(2)Hm2

0 +A3RB2(3)Hm3

0 +A4RB2(4)Hm4

0 = 0 ,

A1RB3(1)Hm1

1 +A2RB3(2)Hm2

1 +A3RB3(3)Hm3

1 +A4RB3(4)Hm4

1 = 0 ,

A1RB4(1)Hm1

1 +A2RB4(2)Hm2

1 +A3RB4(3)Hm3

1 +A4RB4(4)Hm4

1 = 0 .

Non-trivial solutions for the integration constants A1, A2, A3 and A4 exist only if the
determinant of the coefficients is zero:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

RB1(1)Hm1

0 RB1(2)Hm2

0 RB1(3)Hm3

0 RB1(4)Hm4

0

RB2(1)Hm1

0 RB2(2)Hm2

0 RB2(3)Hm3

0 RB2(4)Hm4

0

RB3(1)Hm1

1 RB3(2)Hm2

1 RB3(3)Hm3

1 RB3(4)Hm4

1

RB4(1)Hm1

1 RB4(2)Hm2

1 RB4(3)Hm3

1 RB4(4)Hm4

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 . (2.88)

This is the characteristic equation of the eigenvalue problem considered here, and we can
write is as

∆(c, ω) = 0 . (2.89)

This equation depends on six parameters: the Poisson ratio ν, three parameters from the
function of shear modulus (µ0, µ∞ and the constant a), and the layer’s thickness and fre-
quency.

By varying the parameters µ0, µ∞ and the constant a, we obtain a wide range of real shear
modulus variations of the layer. If the shear modulus of the layer varies from µ0 on the
surface to µ1 at the bottom, the constant a must satisfy

a =
1

d
ln
H0

H1
(2.90)
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degree 1 2 3 4

β∞ 2.51 1.77 1.50 1.36

Table 2.1: The value of µ∞ corresponding to the degree of approximation polynomial function

where H0 and H1 are defined as in (2.66) and (2.67). Because µ1 ≥ µ0 or H0

H1
≥ 1, we can

choose the value of a to be arbitrarily small (but a > 0) by varying µ∞. For small values of
a, the function µ(x3) can be expanded as a Taylor’s expansion:

µ(x3) = µ0 + (µ∞ − µ0)

[
n∑

i=1

(−1)i−1 (ax3)
i

i!
+ o(ax3)

n

]
. (2.91)

If we consider that the shear modulus function in the layer is a polynomial power n, we can
choose µ∞ so that

(ad)n =

(
ln
H0

H1

)n

< 1% (2.92)

if we want the error to be less than 1%.
Table 2.1 shows values of µ∞ for several approximations. In this case, we choose the layer
with shear wave velocity on the surface β0 = 0.2 km/s, at the bottom β1 = 0.8 km/s, and
mass density ρ = 1.9 g/cm3. Figure (2.5) shows the shear modulus function with different
µ∞.

0

0.2

0.4

0.6

0.8

1

1.2
−200 0 200 400 600 800 1000 1200 1400

β∞=0.81

β∞=0.85

β∞=1

β∞=2

x
3

µ
0
=ρ β

0
2

µ
1
=ρ β

1
2

µ(x
3
)=µ

0
+(µ

∞
−µ

0
)[1−exp(−a x

3
)]

Figure 2.5: Shear modulus functions in layer
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Dispersion law

For comparison with the homogeneous model, a dimensionless frequency f̄ and a dimension-
less phase velocity C are defined:

f̄ =
d · f
β̄

, C =
c

β̄
(2.93)

where c is the propagation velocity of the surface wave and the β̄ is the mean of the shear
wave velocity over the layer

c =
ω

k
, β̄ =

1

d

∫ d

0

√
µ(x3)

ρ
dx3 . (2.94)

From the set of the eigenvalue pairs (β, θ) the relation C = C(f̄) can be calculated:

f̄ =
β∞t

2πβ̄

√
β , C =

√
θ

β

β∞
β̄

. (2.95)

In Fig. 2.6, we choose β∞ = 2000 m/s to plot velocity curves of the two first modes:
fundamental and first higher modes with several different values of Poisson ratio. From
figure (2.5) we can see that, with this value of µ∞, the shear modulus variation in the layer
can be considered to vary linearly. From eq. (2.94), the mean velocity in this case is

β̄ = 567.57 (m/s). (2.96)

We see that every mode has a cut-off frequency similar to the phase velocity curve of the
homogeneous layer. However, the cut-off frequencies shift to the right on the frequency axis
compared to the homogeneous layer. This phenomenon is due to the inhomogeneity effect.
The phase velocity at cut-off frequencies is not infinite, but β∞. When ν = 0.3525, two
velocity curves of fundamental and first higher mode seem to meet each other, and this point
is similar to the osculation point of the homogeneous layer but with ν = 0.25.

2.2.2 The eigen functions

Let us assume that (4.61) is solved and we thus have the eigenvalue in terms of (θ, β) pairs.
We proceed now to determine the corresponding eigenfunctions, i.e., the displacement distri-
butions of the particular wave modes. The variations with depth of the horizontal and vertical
displacement amplitudes are given by equations (3.67) and (3.68). The relationship among
the four integration constants A1, A2, A3 and A4 is obtained by the boundary conditions at
the surface and the bottom. From any three of four these boundary condition equations we
express, for example, A2, A3 and A4 in terms of A1 as

A2 = l1A1 , A3 = l2A1 , A4 = l3A1 . (2.97)
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(a)

(b)

(c)

Figure 2.6: Dispersion curves for three different values of Poisson’s ratio. (0) fundamental
mode, (1) first higher mode
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Û
(1)
1 Û
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Û
(1)
3

ν = 0.3525

(b)

0

1

−2 0 2

x3

d

−2 −1 0 1 2

f̄ = 0.4 f̄ = 0.7

ν = 0.43

Û
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Figure 2.7: Attenuation with depth of the horizontal and vertical displacement at represen-
tative frequencies for µ∞ = 2000m/s and three different Poisson’s ratios. (0) fundamental
mode, (1) first higher mode
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Figure 2.8: H/V -ratio curves for three different values of Poisson’s ratio. (0) fundamental
mode, (1) first higher mode
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Figure 2.9: The ellipticity for the model inhomogeneous layer with fixed bottom in depen-
dence of frequency and Poisson’s ratio: retrograde motion (dark gray) and prograde motion
(light gray)

The displacement amplitudes are normalized with respect to the vertical surface displacement
amplitude by introducing

Û1(ξ) =
û1(ξ)

û3(H0)
=

û
(1)
1 (ξ) + l1û

(2)
1 (ξ) + l2û

(3)
1 (ξ) + l3û

(4)
1 (ξ)

û
(1)
3 (H0) + l1û

(2)
3 (H0) + l2û

(3)
3 (H0) + l3û

(4)
3 (H0)

, (2.98)

Û3(ξ) =
û3(ξ)

û3(H0)
=

û
(1)
3 (ξ) + l1û

(2)
3 (ξ) + l2û

(3)
3 (ξ) + l3û

(4)
3 (ξ)

û
(1)
3 (H0) + l1û

(2)
3 (H0) + l2û

(3)
3 (H0) + l3û

(4)
3 (H0)

(2.99)

and the subsidiary depth co-ordinate ξ is transformed to

x3

d
=

lnH0 − ln ξ

lnH0 − lnH1
(2.100)

where H0 and H1 are expressed in (2.66) and (2.67). So, for given values of the inhomogeneity
parameter H0, H1 and the Poisson’s ratio ν, the variation of the amplitude attenuation with
the depth-to-thickness ratio may be computed at any frequency f̄ . Figure 2.7 illustrates
the dependence of Û1(x3/d) and Û3(x3/d) on frequency and wave mode for given values of
H0, H1 and ν. Several effects should be highlighted. The fundamental mode shapes are
similar to those of Rayleigh waves in a homogeneous half-space with high frequency. The
vertical displacement component û3 is node-free, whereas the horizontal component û1 has
one node at x3 ≈ 0.2 d. This can be explained by the fact that the penetration depth of the
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wave is about 1.5 times the wavelength in the model “a half-space”, so with a sufficiently
high frequency or short wavelength, as long as the thickness of the layer is greater than one
and a half times the wavelength, our model can be considered as a half-space. With small
frequencies, it is quite different: for example, with f̄ = 0.4, at the surface both components
have the same sign, which means the particle motion is retrograde when ν = 0.2, but it
changes to prograde motion when ν = 0.3525 and ν = 0.43.

2.2.3 H/V -ratio

The ellipticity of the particle motion on the surface is

χ =
û1(H0)

û3(H0)
. (2.101)

Figure 2.8 illustrates H/V curves with different Poisson’s ratios ν = 0.2, 0.3225, 0.43. The
main features of the H/V curve shown in this figure deserve mention. The H/V of the
fundamental mode starts from its cut-off frequency f̄ ≈ 0.33 and reaches a very large value.
In the homogeneous case, this cut-off frequency is always f̄ = 0.25, and H/V is infinite at
this frequency. When Poisson’s ratio is small, ν = 0.2, the H/V does not change its sign, and
remains positive. That means both displacement components on the surface are of the same
sign, and since they are 90o out of phase the motions of the particles are retrograde ellipses.
When Poisson’s ratio is increasing but less than 0.3525, ν = 0.35, H/V has a singularity. The
value of Poisson’s ratio ν = 0.3525 corresponds to the special case which is closely connected
with a so-called osculation point of dispersion curves for the fundamental mode and first
higher mode, respectively. When ν = 0.43, H/V has a zero point.

As for the homogeneous case, we plot a 2D graph of χ as a function of f̄ and ν (Fig. 2.9).
It displays a partitioning into two regions, where χ > 0 corresponds to retrograde particle
motion (dark shading) and χ < 0 to prograde particle motion (light shading).

Three special points P1, P2 and P3 are similar to those in figure 2.3 for the homogeneous
case, but their coordinates are different due to the inhomogeneous effects. The point P1

with coordinates (0.32, 0.22) bounds the domain of prograde motion on the left. The value
f̄ ≈ 0.32 is the maximum cut-off frequency of the fundamental mode with respect to ν, and
ν ≈ 0.22 is a critical value of ν where the H/V -ratio begins to show prograde particle motion.
In the homogeneous layer, this critical value is ν = 0.2026. The point P3 with coordinates
(0.63, 0.5) is the upper bound of the region of prograde motion. The prograde frequency
ranges from P1 to P3 and the frequency of P3 is approximately double the frequency of P1.
This characteristic is already known from the homogeneous model.

2.3 Conclusions

The model “layer with fixed bottom” is a special case of the model “layer over half-space”
which is closer to the actual structure when the impedance contrast is very large. For this
model, the dispersion equation and the H/V ratio are relatively simple: they depend only
on the Poisson’s ratio of the layer and do not depend on the density of mass. There are
some outstanding features of this model which can be used for more general models. First,
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a singularity of the H/V ratio curve exists if and only if Poisson’s ratio of the layer ν is
greater than 0.2026. The zero points start to appear when ν is greater than 0.25. The
frequency region of the particle prograde motion can be bounded by two singularities, or by
one singularity and one zero point. It is always bounded by a pole with a frequency f̄ = 0.25
and a either another pole or a zero-point for which the frequency is at most f̄ = 0.5126. These
two values of the lower-bound and upper-bound frequencies define the maximum region of
the prograde motion which will be shown in the next chapter for the model “layer over half-
space”. The retrograde motion always occurs at frequencies above f̄ = 0.5126, and for this
model there is no undamped surface-wave motion for frequencies below f̄ = 0.25. This is a
special feature of the fixed bottom model.

Because the Poisson’s ratio of the layer is the only parameter affecting the H/V ratio, it
controls the broad band of frequency for the prograde motion by a simple function of ν as in
(2.49) and (2.50). At the special value of ν = 0.25, where the osculation point of the phase
velocity curve occurs, the property of H/V ratio changes from having two singularities to
having one singularity, at f̄ = 0.25, and one zero point. Numerical calculation yields only
one osculation point for the fundamental mode but many for the higher modes. In the last
chapter, we prove that the osculation point of higher modes is at least countable and the
Poisson’s ratio corresponding to them is dense in (0, 1/3).

For the inhomogeneous layer in which the shear modulus is expressed as an exponential
function in (2.54), we show that the behaviour ofthe H/V ratio curve is quite similar to
the homogeneous case. We also show that by changing the parameters in (2.54), we can get
many forms of the shear modulus varying from the linear form to more complex forms. By
working on a particular form, we observe that, although the fundamental mode has a cut-off
frequency, both the phase velocity and H/V ratio at this frequency are finite, not infinite as
for the homogeneous case. Prograde motion exists when Poisson’s ratio is greater than ν0,
which is a little greater than 0.2026. This may be an effect of the inhomogeneity.
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Chapter 3

Layer over half-space (LOH)

The model ”layer over half-space” is a model which approximates reality. The geometry is
shown as in Fig. 3.1 and we use label 1 for the parameters of the layer and label 2 for the
half-space. All the parameters in half-space are constant, but the parameters in the layer
may not be. We will study the cases of both the homogeneous and the inhomogeneous layer.
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Figure 3.1: Homogeneous layer over half-space

3.1 Homogeneous layer

3.1.1 The eigen-value problem

The dispersion equation of Rayleigh waves for the LOH model is already presented in several
books such as Ben-Menahem and Singh (1981) [6], but I formulate it again here in order to
derive new H/V ratio formulas. These new formulas are in nature identical to Malischewsky’s
formula [35] but they are much more convenient for investigating H/V ratio properties.

41
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Model 1 Model 2 Model 3

rs = β1/β2 0.1667 0.1667 0.2473
rd = ρ1/ρ2 0.7406 0.7406 0.7391
ν1 0.4375 0.5 0.4576
ν2 0.2506 0.5 0.3449

Table 3.1: Parameters for models under consideration

We choose the expressions of complex amplitudes of potentials in the layer as

ϕ = Φ(x3) exp[i(kx1 − ωt)] ,

ψ = Ψ(x3) exp[i(kx1 − ωt)]

and the solution of Φ(x3) and Ψ(x3) which satisfies the motion equation can be expressed as

Φ(x3) =A1 sinh(p1x3) +A2 cosh(p1x3) ,

Ψ(x3) =A3 sinh(q1x3) +A4 cosh(q1x3)

where

p2
1 = k2 − ω2

α2
1

= k2

(
1 − c2

α2

)
, q21 = k2 − ω2

β2
1

= k2

(
1 − c2

β2

)
. (3.1)

The displacements of the layer are determined by the scalar and vector potentials ϕ and ψ
as in relation (1.7) (Chapter 1) as

u
(1)
1 = U

(1)
1 (x3) exp[i(kx1 − ωt)] ,

u
(1)
3 = U

(1)
3 (x3) exp[i(kx1 − ωt)]

with

U1(x3) = ikΦ − dΨ

dx3
, (3.2)

U3(x3) =
dΦ

dx3
+ ikΨ . (3.3)

The stresses are derived from displacements by Hooke’s law:

τ
(1)
13 = S

(1)
13 (x3) exp[i(kx1 − ωt)]

τ
(1)
33 = S

(1)
33 (x3) exp[i(kx1 − ωt)]

with

S
(1)
31 = ρ1β

2
1

[
dU

(1)
1

dx3
+ ikU

(1)
3

]
,

S
(1)
33 = ρ1α

2
1

[
dU

(1)
3

dx3
+ ik(1 − 2γ1)U

(1)
1

]
.
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In half-space, similar to model half-space, we choose the displacement forms as

U
(2)
1 = − i

[
B1e

−p2x3 +B2e
−q2x3

]

U
(2)
3 = B1

p2

k
e−p2x3 +B2

k

q2
e−q2x3

and stresses

S
(2)
31 = ρ2β

2
2

[
dU

(2)
1

dx3
+ ikU

(2)
3

]
,

S
(2)
33 = ρ2α

2
2

[
dU

(2)
3

dx3
+ ik(1 − 2γ2)U

(2)
1

]
.

Boundary conditions at the free surface of the layer and at the interface between the layer
and the half-space are

τ31(−d) = τ33(−d) = 0 (3.4)

for the free-surface condition and

U
(1)
1 (0) = U

(2)
1 (0) ,

U
(1)
3 (0) = U

(2)
3 (0) ,

S
(1)
13 (0) = S

(2)
13 (0) , (3.5)

S
(1)
33 (0) = S

(2)
33 (0) ,

for the continuous displacements and stresses at the interface. Substituting formulas for
displacement and stresses inthe layer and half-space into six boundary conditions (3.4)-(3.5),
we obtain a homogeneous system of six equations with respect to the six integral constants
A1, A2, A3, A4 and B1, B2 as

[M ] · [v] = 0 (3.6)

with

[M ] =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

2ieα cosh(eαdk) −2ieα sinh(eαdk) h1 sinh(eβdk) −h1 cosh(eβdk) 0 0

−h1 sinh(eαdk) h1 cosh(eαdk) 2ieβ cosh(eβdk) −2ieβ sinh(eβdk) 0 0

0 k ieβk 0 1 1

eαgβk 0 0 igβk −gβgα −1

2ieαgβk 0 0 h1gβk −2if1gβgα −if1h2

0 h1k 2ieβk 0 f1h2 2f1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(3.7)

and

[v] = [A1, A2, A3, A4, B1, B2]
′

. (3.8)
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Setting the determinant of the matrix [M ] to zero results in the secular equation

∆(C, f̄) = 0 (3.9)

with

∆(C, f̄) = A0(C) +B0(C) sinh(
2πf̄eβ

C
) sinh(

2πf̄eα

C
) + C0(C) sinh(

2πf̄eα

C
) cosh(

2πf̄eβ

C
)

+D0(C) cosh(
2πf̄eα

C
) sinh(

2πf̄eβ

C
) + E0(C) cosh(

2πf̄eβ

C
) cosh(

2πf̄eα

C
) (3.10)

where the auxiliary functions are

A0(C) = 4β1h1

[
2(−1 + β2)h1 − f1(2 + h1)(2β2 − h2) + f2

1 (4β2 − h2
2)

]
,

B0(C) = 4β2
1

[
4(−1 + f1)2β2 − (−2 + f1h2)

2
]

h2
1

[
(−1 + β2)h

2
1 − 2h1f1(2β2 − h2) + f2

1 (4β2 − h2
2)

]
,

C0(C) = eβf1β3C
4r2s , (3.11)

D0(C) = eαf1β4C
4r2s ,

E0(C) = −A0(C) − β1f
2
1 (4β2 − h2

2)C
4

with these notations:

C =
c

β1
, f̄ =

df

λβ1

, eα =
√

1 − C2γ1, eβ =
√

1 − C2 ,

gα =
√

1 − C2γ2r2s , gβ =
√

1 − C2r2s ,

h1 = e2β + 1, h2 = g2
β + 1, f1 =

1

r2srd
,

β1 = eαeβ , β2 = gαgβ ,

β3 = −4e2αgβ + gαh
2
1, β4 = −e2βgα + gβh

2
1 .

For the real solution of (3.9), the phase velocity c must be less than β2, which is the shear
wave velocity of the substrate. If c > β2, it causes either A0(C) or C0(C), D0(C) to become
a complex number and in this case, the solution of (3.9) can not be a real number.

3.1.2 Dispersion of zero-frequency Rayleigh waves

Surface acoustic waves (SAW) play an important role in the study of the elastic properties
of thin films, which have a huge number of applications in modern industry (see e. g. the
monograph of Kundu [28]). The same is true for the larger-scale investigation of the Earth’s
interior by seismic surface waves. Like the properties of a thin layer deposited on a substrate,
it is well known that the properties of the Earth’s crust have a strong influence the dispersion
characteristics of Rayleigh waves. A deeper theoretical analysis of the dispersion of Rayleigh
waves also implies the investigation of the derivative of the phase velocity with respect to
frequency for zero frequency. This is of considerable practical interest because the value of
the derivative at zero frequency controls the character of dispersion: normal, anomalous or
zero dispersion. Several papers have been devoted to the approximation of the influence of a
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thin layer on the dispersion of Rayleigh waves. Tiersten [54] for example, introduced special
boundary conditions in order to obtain a low-frequency approximation, while Bövik [12] used
a perturbation technique in which the field variables were expanded in the layer thickness in
the normal direction. This procedure leads to so-called O(h) boundary conditions, where h
stands for the layer thickness. Recently, Baron et al. [5] published a general expression for the
derivative of the phase velocity at zero frequency by expanding the secular determinant into
a Taylor series. This expression goes back to a similar formula of Shuvalov and Every [52].
These formulae are very general but not very convenient for practical use in the laboratory
where we sometimes need to quickly determine the phase velocity’s derivative in dependence
on elastic parameters. Here, we fill this gap by presenting a simple analytical formula for
that derivative for the Rayleigh-wave fundamental mode.

When frequency equals zero, or f̄ = 0, the secular equation becomes

∆(C, 0) = A0(C) + E0(C) = 0 . (3.12)

Substituting A0(C) and E0(C) from (3.11) into (3.12) yields

h2
2 − 4gαgβ = 0 , (3.13)

or

(C̄2 − 2)2 − 4
√

1 − C̄2

√
1 − γ2C̄2 = 0 (3.14)

where

C̄ =
c

β2
(3.15)

and its relation to C is C̄ = Crs. From now on, in this section, we will use C̄ instead of C
as usual. Eq. (3.14) is the Rayleigh wave equation for the model “half-space”, so at zero
frequency, the phase velocity is the Rayleigh wave velocity of the half-space.

The Taylor expansion of (3.9) into powers of f̄ for f̄ = 0 is:

∆(C̄, f̄) = A0(C̄) +A1(C̄)f̄ +Q2(C̄)f̄2 + o(f̄3) = 0 (3.16)

where

A0(C̄) = (C̄2 − 2)2 − 4
√

1 − C̄2

√
1 − γ2C̄2 ,

A1(C̄) = 2rsrdπC̄

[
C̄2(

√
1 − C̄2 +

√
1 − γ2C̄2) + 4r2s(γ1 − 1)

√
1 − C̄2

]
,

A2(C̄) = 4r2sr
2
dπ

2(
√

1 − C̄2

√
1 − γ2C̄2 − 1)

[
C̄2 + 4r2s(γ1 − 1)

]
, (3.17)

P2(C̄) = A2(C̄) + 8π2r2srd(2
√

1 − C̄2

√
1 − γ2C̄2 + C̄2 − 2)

(
2
r2s(1 − γ1)

C̄2
− γ1

)
,

Q2(C̄) = P2(C̄) − 2A0(C̄)π2

(
1 + γ1 + 4r2s

γ1 − 1

C̄2

)
,
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γ1 =
1 − 2ν1

2(1 − ν1)
.

In the section “The impedance wave”, we determined the secular equation of the impedance
wave by the Tiersten boundary condition to be

A0(C̄) +A1(C̄)f̄ +A2(C̄)f̄2 = 0 . (3.18)

Bövik [12] proposed what he called the O(h) boundary conditions, where h is the thickness
of the layer, and derived another form ofthe secular equation:

A0(C̄) +A1(C̄)f̄ + P2(C̄)f̄2 = 0 . (3.19)

The secular equation of Rayleigh waves for a layer over half-space is a function of two variables:
phase velocity C̄ and frequency f̄ , so the derivative of this function at f̄ = 0 is

(
dC̄

df̄

)

f̄=0

= −∂∆

∂f̄
/
∂∆

∂C̄

∣∣∣∣
C̄=C̄(0)

. (3.20)

By using the Taylor expansion of ∆(C̄, f̄) as in (3.16), we obtain

(
dC̄

df̄

)

f̄=0

= −A1(C̄)
dA0(C̄)

dC̄

∣∣∣∣∣
C̄=C̄(0)

(3.21)

where C̄(0) refers to the Rayleigh-wave velocity for the zero-frequency, which is identical
to the velocity of the half-space. Only A0(C̄) and A1(C̄) appear in (3.21), so all three
approximations of the secular equations from Tiersten, Bövik and the Taylor expansion give
the same result for the first derivative of the phase velocity curve at zero frequency. Using
(3.17), the derivative of the phase velocity is finally obtained as

dC̄

df̄

∣∣∣∣
f̄=0

=
1

2
πrd(1 − x)3/2(x− 2)2

K1(rs, ν1, ν2)

K2(ν2)
(3.22)

where rs = β1/β2 is the ratio of the shear-wave velocities in the layer and the half-space,
respectively, and rd = ρ1/ρ2 is the corresponding density ratio. The Poisson ratios of the
layer and the half-space are ν1 and ν2, respectively. The entity x, defined by x = c22/β

2
2 ,

refers to the Rayleigh-wave velocity of the half-space c2, which is identical with c for f̄ = 0.
Clearly x is a function of ν2 alone, and Malischewsky’s formula for half-space velocity (see
Malischewsky [34]) can be profitably used for its determination:

x(ν2) =
2

3

[
3 − 3

√
h3(γ2) +

2(1 − 6γ2)
3

√
h3(γ2)

]
(3.23)

where γ2 = 1−2ν2

2(1−ν2) and with the auxiliary functions

h1(γ2) = 3
√

33 − 186 γ2 + 321 γ2
2 − 192 γ3

2 ,

h3(γ2) = 17 − 45 γ2 + h1(γ2) . (3.24)
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In the formula (3.23), the main value of the cubic roots are to be used. Alternatively, x can be
determined by using Malischewsky’s approximation (see Pham Chi Vinh and Malischewsky
[48]), which is also valid for auxetic materials with negative Poisson ratios [like the exact
formula (3.23)]:

x(ν2) = 0.874 + 0.196 ν2 − 0.043 ν2
2 − 0.055 ν3

2 . (3.25)

Finally, the functions K1 and K2 are given by:

K1(rs, ν1, ν2) =
8r21
ν1 − 1

+
8x− 8x2 + x3

1 − x
, (3.26)

K2(ν2) =
8(1 − x2)

1 − ν2
− 16x+ 32x2 − 20x3 + 3x4 (3.27)

and the derivation of the phase velocity for the zero frequency can be simply determined by
combining (3.26) - (3.27). It can be demonstrated after some algebra that our formula (3.22)
is identical with the formula of Baron et al. [5] up to a factor 2, which must be a misprint. It
should be noted that our formula is implicitly contained in the formulae of Tiersten [54] and
Bövik [12] as well. For completeness, we specify the quadratic term Q2 in expansion (3.16),
which is closely connected to the second derivative of the phase velocity

C̄ ′′(f̄)
∣∣
f̄=0

= −
2Q2 + 2dA1

dC̄
C̄ ′(f̄) + d2(A0)

dC̄2
C̄ ′2(F )

dA0

dC̄

. (3.28)

The quadratic dispersion has been calculated by Shuvalov and Every [52]; however, the
generality of their result does not permit a simple comparison with our explicit formula. The
formula of the second derivative shows the difference among Tiersten, Bövik and our Taylor
expansion secular equations in the quadratic terms A2, P2 and Q2.

Classification of dispersion at zero frequency

It is interesting to know whether the dispersion curve starts at zero frequency with normal,
anomalous or zero dispersion in dependence on material parameters. This can be simply
tested by setting the derivative to zero. From (3.22) we see that we have to search for roots
of K1 = 0, which leads with (3.26) to

r2s
ν1 − 1

+ g(ν2) = 0 (3.29)

where the auxiliary function g is given by

g(ν2) =
1

8

8x− 8x2 + x3

1 − x
. (3.30)
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M1 M2 M3

ν1 0.25 0.3925 0.47
ν2 0.25 0.25 0.25
rs 0.75 0.9 0.9
rd 0.4208 0.4208 0.4208

dC̄
df̄

∣∣∣
f̄=0

-0.1970 0 0.0790

Table 3.2: Model parameters for the models M1, M2, M3 with the derivatives of C̄ for f̄ = 0

Further, we observe that K2(ν2) is negative for all ν2. It follows that the classification of
dispersion for zero-frequency can be written as

r2s
ν1 − 1

+ g(ν2) > 0 → normal dispersion ,

r2s
ν1 − 1

+ g(ν2) < 0 → anomalous dispersion , (3.31)

r2s
ν1 − 1

+ g(ν2) = 0 → zero dispersion .

We observe that this classification depends on the shear-wave contrast and the Poisson ratios,
but not on the density contrast.

Graphic representation

In order to demonstrate the influence of the different parameters, we have constructed isolines
K1 = 0 for ν2 = −1, 0, 0.25, 0.4 and present them in dependence on ν1 and rs in Fig. 3.2.
The regions left and right from the corresponding isolines belong to normal dispersion and
anomalous dispersion, respectively. The position of three models with different dispersion at
zero frequency M1 (normal), M2 (zero), M3 (anomalous) is indicated in Fig. 3.2. The model
parameters are given in Table 3.1.2.

Fig. 3.2 shows that for ν2 = 0.25 anomalous dispersion is only possible in the right upper
corner of the graphic, i. e. for higher values of rs and ν1. Higher values of rs denote a small
shear-wave contrast between layer and half-space. If the half-space is auxetic with a negative
Poisson ratio, the range of anomalous dispersion becomes much greater. Finally, Fig. 3.3
presents the dispersion curves in the vicinity of the zero frequency belonging to the models
M1, M2, M3.

In Fig. 3.4 we compare Tiersten, Bövik and our Taylor expansion phase velocity curves with
the exact curve in the small range of frequency for the two models M1 and M3. Although
all the curves have the same slope at f̄ = 0, the Tiersten curve shows a good approximation
in a very small range of frequency, and the Bövik curve and Taylor expansion show better
approximations in a larger range of frequencies. This difference is due to the effect of the
second derivatives which are controlled by the quadratic terms A2, P2 and Q2.
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Application for synthetic data

It is an experimental challenge to obtain phase velocities for very low frequencies. In order
to confirm our theoretical results, we present here a comparison using synthetic data for
a two-layer model. These data were obtained by generating a stationary stochastic wave
field similar to those which are routinely used in applying ambient vibration/microtremor
methods [see e. g. Wathelet et al. (2008) [60]]. The model parameters are β1 = 150 m/s,
ρ1 = 1.5 g/cm3 and thickness d = 15 m for the layer and β2 = 350 m/s and ρ2 = 2 g/cm3

for the half-space. Poisson’s ratio is about 0.25 for the layer and the half-space as well. The
synthetic data were analyzed by f-k analysis [see e. g. Capon (1969) [13]] and with the Spatial
Autocorrelation Method (SPAC) [see e. g. Aki (1957) [2]]. The slowness for the data as a
function of frequency is presented in Fig. 3.5 together with the exact dispersion curve and
our approximation. We observe a good coincidence up to 2.2 Hz.

Variation of first derivative to other parameters

Each parameters has a certain effect on the derivative of the phase velocity with respect to
frequency for zero frequency, so it can affect on phase velocity curve state at zero frequency.
We have

d2C̄

df̄drs

∣∣∣∣
f̄=0

=
1

2

πr2(1 − x)3/2(x− 2)2

K2(ν2)

dK1

drs
= 8πrdrs

(1 − x)3/2(x− 2)2

K2(ν2)

1

ν1 − 1
> 0 (3.32)

and because K2(ν2) < 0 for every value of ν2 and ν1 − 1 < 0, d2C̄
df̄drs

∣∣∣
f̄=0

is always positive.

By analogy, we have that

d2C̄

df̄dν1

∣∣∣∣
f̄=0

=
1

2

πr2(1 − x)3/2(x− 2)2

K2(ν2)

dK1

dν1
= 4πrdr

2
s

(1 − x)3/2(x− 2)2

−K2(ν2)

1

(ν1 − 1)2
> 0 . (3.33)
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We can easily see that d2C̄
df̄dν1

∣∣∣
f̄=0

is always greater than 0. Thus dC̄
df̄

∣∣∣
f̄=0

is an increasing

function of ν1 and rs or the slope of the phase velocity curve at f̄ = 0 increases with increment
of ν1 or decrement of impedance contrast.

Although ν2 and rd do not play important roles in the behavior of the phase velocity curve,

by numerical calculation we can show that the condition for d2C̄
df̄dν2

∣∣∣
f̄=0

> 0 with all possible

parameters is rs < 0.2931. In practical usage, we often choose rs satisfying this condition.

3.1.3 Displacements

Suppose that the eigenvalue is found. From (3.2) and (3.3) we have the displacement ampli-
tudes of the layer and the half-space, which are

U
(1)
1 (x3) = ik [A1 sinh(p1x3) +A2 cosh(p1x3)] − q1 [A3 cosh(q1x3) +A4 sinh(q1x3)]

(3.34)

U
(1)
3 (x3) = p1 [A1 cosh(p1x3) +A2 sinh(p1x3)] + ik [A3 sinh(q1x3) +A4 cosh(q1x3)]

(3.35)

and

U
(2)
1 (x3) = − i

[
B1e

−p2x3 +B2e
−q2x3

]
,

U
(2)
3 (x3) = B1

p2

k
e−p2x3 +B2

k

q2
e−q2x3 (3.36)
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with p1, q1 and p2, q2 from (3.1), respectively. The displacement amplitudes are normalized
with respect to the vertical surface displacement amplitude by introducing

Ũ
(1)
1 (x3) =

U
(1)
1 (x3)

U
(1)
3 (−d)

, Ũ
(1)
3 (x3) =

U
(1)
3 (x3)

U
(1)
3 (−d)

, (3.37)

Ũ
(2)
1 (x3) =

U
(2)
1 (x3)

U
(1)
3 (−d)

, Ũ
(2)
3 (x3) =

U
(2)
3 (x3)

U
(1)
3 (−d)

. (3.38)

Each normalized displacement amplitude is a function of the frequency and the depth. The
detail of these functions are presented in Appendix 3.

3.1.4 H/V -ratio

The H/V -ratio is formulated as the ratio of horizontal to vertical displacement amplitudes
at the surface

χ =
U

(1)
1 (−d)

U
(1)
3 (−d)

. (3.39)

In terms of the formula of U
(1)
1 (x3) and U

(1)
3 (x3) in (3.34) and (3.35) and the relation between

the integral constants A1, A2, A3, A4 in (4.61), we can determine the H/V -ratio formula.
Because the relation between A1, A2, A3, A4 can be obtained from five of six boundary
conditions (4.61), we can have at least five different formulations of the H/V -ratio. We will
use two formulae which are rather simple in appearance. The first one is

χ1 =
h1

2eα

A(C)

B(C)
(3.40)

where

A(C) = t1 sinh

(
2πf̄eα
C

)
+ t2 sinh

(
2πf̄eβ
C

)
+ t3 cosh

(
2πf̄eα
C

)
− t3 cosh

(
2πf̄eβ
C

)
,

B(C) = t1 cosh

(
2πf̄eα
C

)
+ t2t4 cosh

(
2πf̄eβ
C

)
+ t3 sinh

(
2πf̄eα
C

)
− t3t4 sinh

(
2πf̄eβ
C

)

(3.41)

with the auxiliary functions

t1 = (−4f1gαgβ + 2gαgβh1 − h1h2 + f1h
2
2)/eα ,

t2 = 2eβ [4(−1 + f1)gαgβ + h2(2 − f1h2)] /h1 ,

t3 = 2gβ(−2 + h2), t4 =
h2

1

4eαeβ
.

The second formula is

χ2 =
M(C)

N(C)
(3.42)
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where

M(C) = h1k1 cosh

„

2πf̄eα

C

«

+ 2k2 cosh

„

2πf̄eβ

C

«

−

h1

eα

k3 sinh

„

2πf̄eα

C

«

+ 2eβk3 sinh

„

2πf̄eβ

C

«

,

N(C) = − 2k3 cosh

„

2πf̄eα

C

«

+ h1k3 cosh

„

2πf̄eβ

C

«

+ 2eαk1 sinh

„

2πf̄eα

C

«

+
h1

eβ

k2 sinh

„

2πf̄eβ

C

«

and

k1 = h1 [2 + 2(−1 + f1)gαgβ − f1h2] ,

k2 = 2 [−h1 + (−2f1 + h1)gαgβ + f1h2] ,

k3 = f1gα(−2 + h2) .

In [35], Malischewsky and Schebaum published an H/V -ratio formula, and they used this
formula to compare with a simple H/V -ratio formula from Love [30] for incompressible media.
However, the formula of Malischewsky and Scherbaum is rather complicated in form and
would not be suitable for us to study other properties of ellipticity.

The zero-frequency H/V ratio

When f̄ = 0, using formula (3.42) of H/V ratio we have

χ2|f̄=0 =
h1k1 + 2k2

(h1 − 2)k3

∣∣∣∣
C=C(0)

= − h2 − 2gαgβ

gα(h2 − 2)

∣∣∣∣
C=C(0)

. (3.43)

Furthermore, C(0) is a solution of Rayleigh equation, so we have

h2
2 − 4gαgβ = 0

or gαgβ = h2
2/4. Substituting gαgβ into (3.43) we have

χ2|f̄=0 =
h2

2gα

∣∣∣∣
C=C(0)

=
2 − C̄2

2
√

1 − C̄2γ2

∣∣∣∣∣
C̄=C̄(0)

(3.44)

with C̄ = Crs = c/β2 and because C̄(0) is Rayleigh wave of substrate, we have

(2 − C̄2)2 = 4
√

1 − C̄2

√
1 − C̄2γ2 .

Substituting this equation into (3.45) we finally derive

χ2|f̄=0 = 2

√
1 − C̄2

2 − C̄2

∣∣∣∣∣
C̄=C̄(0)

. (3.45)

This is the H/V ratio formula of the substrate.
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Figure 3.6: H/V curve of Model 1 in Table 3

The first peak

A typical curve of the H/V ratio has a singularity and a zero point. Fig. 3.6 shows an
H/V ratio curve with the parameters of Model 1 in Table 3. In this figure, the darker
area corresponds to area in which the particle motion is prograde, the other to the area of
retrograde motion. When f̄ = 0, the ellipticity is the ellipticity of the half-space and is
positive. When f̄ ≈ 0.2434 the H/V ratio reaches an infinite value, or the vertical motion
vanishes. This causes the particle motion to change its direction to prograde, and when
f̄ ≈ 0.4876 the horizontal motion vanishes and the particle motion changes back to retrograde
motion.

However, the H/V ratio curve does not always have a singularity or a zero point. In the
model “layer with fixed bottom” which is a special case of the current model “layer over
half-space”, we proved that its H/V ratio curve has singularity if the Poisson’s ratio ν is
greater than 0.2026 and has zero point if ν greater than 0.25. The first singularity of the
H/V ratio of LFB always occurs at f̄ = 0.25, if it exists. For model LOH the condition of
existence of singularity and zero point is similar, but not identical to model LFB. With the
extreme case when the impedance contrast is very high, rs ≈ 0, the condition of existence
singularity and zero point of LOH comes back to the condition in LFB and the singularity
occurs at the resonance frequency of the shear wave of the layer, f̄ = 0.25, while the zero
point start to occur at f̄ =

√
3/4. But with higher rs or moderate impedance contrast, the
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condition of existence of singularity of LOH should be

rs < F (ν1) (3.46)

where

F (ν1) = A(ν2, rd) arctan [B(ν2, rd)(ν1 − 0.2026)] (3.47)

with the auxiliary functions

A(ν2, rd) = 0.297 + 0.061 rd − 0.058 r2d + 0.170 ν2 − 0.589 rd ν2

+ 0.373 r2d ν2 − 0.284 ν2
2 + 0.817 rd ν

2
2 − 0.551 r2d ν

2
2 ,

B(ν2, rd) = 29.708 − 42.447 rd + 23.852 r2d − 14.309 ν2 + 75.204 rd ν2

− 59.881 r2d ν2 + 121.370 ν2
2 − 246.328 rd ν

2
2 + 170.027 r2d ν

2
2

where ν1, ν2 are Poisson ratio of the layer and the half-space, respectively. The impedance
contrast is rs = β1/β2, and rd = ρ1/ρ2 is the ratio between density of mass of the layer and
the half-space. This formula was determined by enormous numerical calculation and it can
be applied to 0 < ν2 < 0.5 and 0.3 < rd < 0.9 at a very good approximation (often less than
one or two percents of error). The value 0.2026 in formula (3.47) is the solution of equation

1 − 2
√
γ sin(

√
γ
π

2
) = 0 (3.48)

with γ = (1−2ν1)/2/(1−ν1). This equation is from the model “layer with fixed bottom”, and
we already analytically proved that the singularity exists only if ν1 > 0.2026 (in Malischewsky
et al. (2008)[38]). After deeper investigation, we can see that the function F (ν1) barely
depends on ν2 and only slightly depends on rd. The maximum difference of F (ν1) on ν2 is
only about 0.55% and on rd is about 3.3% in the whole range of rd from 0.3 to 0.9 and ν2

from 0 to 0.5.

Information about the S-wave velocity of the bedrock is contained in the peak of the H/V ratio
at the fundamental frequency of resonance. This peak is mainly controlled by the velocity
contrast between bedrock and sediment; the higher the contrast, the large the amplitude of
the H/V ratio at the resonant frequency (Donat Fäh et. al 2002 [17]). When rs > F (ν1),
the H/V ratio curve does not have a singularity, but presents a maximum point which often
occurs near the resonant frequency f̄ = 0.25. Fig. 3.7 shows the frequency of singularity and
the maximum point with different impedance contrast and Poisson’s ratio of the layer. The
density ratio and Poisson’s ratio of the half-space was chosen as in Model 3 in Table 3. Here
f̄ = d/λβ1

is the ratio of the thickness of the layer to the wavelength of S-wave of the layer,
and we chose argument f̄p/0.25 because when rs = 0, which corresponds to the model “layer
with fixed bottom”, we proved that it equals 1 ([38]). In other words, when the impedance
contrast is very high, the frequency of the first peak is the S-wave resonance frequency of the
layer. In this figure, the blue line is the curve of the function F (ν1), which shows when H/V
ratio has singularity or only maximum point. In this case, after applying the formula (3.47)
with our chosen ν2 and rd we get:

F (ν1) = 0.291 arctan [18.147(ν1 − 0.2026)] . (3.49)
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The continuous red region is for the domain having a singularity of H/V, and the dotted brown
one is for the maximum. In Bonney-Claudet et al. (2008) [11], it states that “Focusing on the
fundamental mode, the vanishing of the vertical component occurs at a frequency Fr which
is very close (i.e, less than 5% different) to the fundamental resonance frequency for S-waves
only if the S-wave impedance contrast exceeds a value of 4”. This statement was supported
in some other works such as Narayan (2002) [43]. From this figure, we can easily see that the
value of f̄p/0.25 near 1 and within a 5% difference lies in the region of high value ν1 and the
impedance contrast. This is in agreement with other observations. We still observe another
region of maxima that attain this value of f̄p/0.25. Because in practical data, we get only
the finite peak, not the singularity, this region deserves more investigation. We also see that
on the blue curve of F (ν1), the frequency of the peak reaches its highest value. This was
once discussed in Malischewsky and Scherbaum (2004) [35], who plotted a figure of the peak
versus the impedance contrast. In that paper, he chose ν1 = 0.4375, and he realized that
there was a value of β2/β1 ≈ 2.6 where the frequency of the peak reached its highest value.
At that time, this value was still strange to him and required additional investigation. But
from our figure (3.7) we can see this point is on the blue curve, where the property of H/V
changes and the particle motion changes, and the value β2/β1 ≈ 2.6 can be obtained from
equation (4.22) when ν1 = 0.4375. It gives β2/β1 = 2.5637, which is very close to the value
of 2.6 that Malischewsky presented.

Zero point

The value of Poisson’s ratio of the layer where the H/V curve starts to have a zero point
is 0.25. This value corresponds to rs = 0. With ν1 < 0.25, the H/V curve has only the
minimum point. By analogy to the singularity point, when the impedance contrast rs > 0
there must be condition between rs and ν1 for the existence of a zero point as

rs < G(ν1) . (3.50)

The general form of G(ν1) is more complicated than that of F (ν1). In particular cases such
as the Model 3 in Table 3, the curves of functions F (ν1) and G(ν1) are plot in Fig. 3.8.
Because the Poisson’s ratio of the half-space ν2 and the density ratio rd do not much affect
the behaviour of the H/V curve, in most cases F (ν1) and G(ν1) divides the domain of ν1 and
rs into four regions. These regions correspond to four different states of the H/V ratio. In
region R1 where rs is less than both F (ν1) and G(ν1), the H/V ratio has both a singularity
and a zero point. This is the most interesting region, and it is close to the actual model
with high impedance contrast (exceeding 2.5) and a large value of Poisson’s ratio of the layer,
ν1 > 0.25. The three other regions R1, R2 and R3 correspond to three unimportant states of
the H/V ratio, especially the regions R2 and R4 where H/V ratio curve has two singularities
and two zero points, respectively.

By numerical calculation, we can find an approximation for the boundary of the region R1

which is a combination of function F (ν1) and G(ν1) and is defined by

rs < min[F (ν1), G(ν1)] . (3.51)

We call this function K(ν1), and it can be expressed as

K(ν1) = C(ν2, rd) arctan [D(ν2, rd)(ν1 − 0.25)] (3.52)
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with the auxiliary functions

C(ν2, rd) = 0.3058 − 0.0471 rd + 0.0092 r2d − 0.0839 ν2 + 0.2918 rd ν2

− 0.2673 r2d ν2 + 0.1538 ν2
2 − 0.6098 rd ν

2
2 + 0.5056 r2d ν

2
2 ,

D(ν2, rd) = 65.9858 − 91.2188 rd + 47.6980 r2d + 137.1766 ν2 − 342.7329 rd ν2

+ 249.2955 r2d ν2 + 67.7489 ν2
2 + 223.5938 rd ν

2
2 − 253.4675 r2d ν

2
2 .

The accuracy of this approximation is not so good as for the function F (ν1), for which the
error is often less than 1 or 2 percent: the error of the function G(ν1) can be up to 5 percent.
In figure (3.9), we plot the contour of the zero point and minimum frequency of the H/V ratio
curve. The green curve is the curve of function G(ν1), the continuous red lines correspond
to the contour lines of the zero point, and the dotted brown lines to the contour lines of
the minimum. At rs = 0 (corresponding to model “layer with fixed bottom”) the zero point
starts at ν1 = 0.25 with f̄z =

√
3/4 ≈ 0.433 and as proof, in that model, the frequency of the

zero point in this case is

f̄z = 1.4136 + 1.2736 ν1 (0.25 < ν1 < 0.5) .

In contrast to the figure of the contour of the peak, with the trough contour, low values of
f̄z concentrate around the curve of the existence of the zero condition.
When ν1 < 0.25, the H/V ratio does not have a zero point, but the minimum point and its
position hardly depends on the value of rs; it only depends on the value of the Poisson ratio
of the layer ν1. However, in this region, ν1 < 0.25, the minimum point is very vague. This
means that although it is the minimum point mathematically, it does not differ much from
its vicinity points in magnitude.

The Fig. (3.10) shows the contour of f̄z/f̄p. The blue curve is the curve of function F (ν1),
while the magenta curve is the curve of function K(ν1), when both zero point and singularity
exist, and in this particular case, it is

K(ν1) = 0.2717 arctan [35.5473(ν1 − 0.25)] . (3.53)

In some papers such as Konno and Komachi (1998) [25] or Stephenson (2003) [53], it was
already noted that the ratio between trough and peak is around 2, and this can be used to
obtain the resonant frequency. This is illustrated by one part of the figure in the region where
H/V has both an infinite peak and a zero point with high values of the Poisson ratio of the
layer and high impedance contrast. This region of the trough map is similar to the region
on the peak map when the peak frequency is very near the resonant frequency of S waves
in the layer. On the other hand, we can observe this value in the region where the Poisson
ratio of the layer is small, and H/V has a maximum point and a minimum point. In fact,
when ν1 < 0.25, the H/V ratio has a minimum point, but this point is very vague because its
magnitude is not much less than the other points in its vicinity. That may be the reason why
one may not notice this minimum point in measurements. The minimum point is vague not
only in the region of ν1 < 0.25 but also in the region R2 where the H/V ratio has two peaks.
So in practice, the above figure of the contour of f̄z/f̄p is valid only in the region R1. With
this observation, our numerical result is totally in accordance with result of Stephenson.
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Figure 3.9: Contour of f̄z
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Application from peak and trough frequencies

The existence of non-consolidated sedimentary deposits in the shallow part of a geological
structure may increase the seismic hazard, because there is the possibility of amplification of
seismic waves in certain frequency bands due to the velocity contrast between soft and stiff
materials. An especially dangerous situation occurs when the resonant frequency coincides
with the natural periods of the buildings, and as a result additional effects of resonance appear
on the edifices. For this reason, Petermans (2006) [47] used ambient noise vibrations coupled
with 1D modelling to identify risky areas of a pilot zone of Brussels in different earthquake
scenarios. Also, Delgado (2000) [15] constructed a map showing the resonant frequency of
the soft soil in the Segura river valley (SE Spain). This frequency has been determined from
the H/V ratios of microtremors measured at 180 sites in the valley. In these two studies,
the resonant frequency is assumed to be the peak frequency of the H/V ratio curve and the
thickness of the layer can be found by the simple relation F0 = Vs/4H, where F0 is the H/V
ratio peak frequency, Vs is the shear wave velocity of the layer and H is the thickness of
the layer. However, this assumption is only true when the impedance contrast and Poisson’s
ratio of the layer are high enough (see Fig. 3.7). In practice, soil conditions are often
variable even within a relatively small areas such as a town, so the map 3.7 is helpful for us
when interpreting the resonant frequency of the layer, which is considered as the dangerous
frequency, from the peak frequency of the H/V ratio. In addition, information from the H/V

Figure 3.11: Tokimatsu[1997] [55]

spectral ratio of a noise measured from a single station can give us some information about
the parameters of the structure. Fig. 3.11 is an example of H/V spectral ratio: it shows the
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measured data and theoretical curves of the H/V ratio. There seems to be good agreement
between them at the peak and trough frequencies. One question addressed here is that of
what information we can extract from the peak and trough frequencies of an H/V spectral
ratio. In this section, I create maps showing the relation between the frequencies of the peak
and the trough, the Poisson’s ratio of the layer, ν1, and the impedance contrast rs. From
these maps, and by locating the peak and trough frequencies of measured H/V ratio, we can
obtain the Poisson’s ratio and impedance contrast.

Fig. 3.12 is such a map for the region R1 showing the most interesting areas, and is close to a
practical model. It shows the contour line of the frequency of peak f̄p/0.25 as a function of
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Figure 3.12: Contour of f̄p/0.25 as a function of rs and f̄z/f̄p in region R1

rs and the ratio of trough frequency to peak frequency f̄z/f̄p. From this map we can obtain
information about the impedance contrast if we know the frequency of peaks and troughs
from the measurement data. For example, if f̄p/0.25 from measurements is 1 and f̄z/f̄p is
2, we can estimate the impedance contrast of the structure rs to be about 0.25. The above
comment about the minimum point does not clearly apply in the region R2 and R3, so we
will concentrate on the region R1, where the H/V ratio has both an infinite peak and a zero
point (Fig. 3.12). From this map, we can obtain the value of rs if we already know the
value of the trough/peak and f̄p/0.25. Figure 3.13 shows the map for the region R3 for which
the H/V ratio has no peak and no zero point but a maximum and a minimum. The blue
part corresponds to the region of ν1 < 0.25 where the minimum is very vague. The pink
part delineates the rest, where both the maximum and minimum are clear. However, this
map is not appropriate for applying the H/V -method, because the H/V ratio curve does not
exhibit a sharp peak, which makes it difficult to identify the fundamental frequency. This
fact is already reported in some papers such as Haghshenas et al. (2008) [21] and Petermans
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Figure 3.13: Contour of f̄p/0.25 as a function of rs and f̄z/f̄p in region R3

et al. (2006) [47]. The figures in 3.14 are similar to 3.12 and 3.13, but instead of rs we plot
versus ν1.

3.1.5 Particle motion

It is well established in textbooks that Rayleigh waves propagating over the surface of a
homogeneous elastic half-space feature retrograde particle motion (see e.g. Achenbach [1]
and Kaufman and Levshin [24]). In the model “impedance surface”, we proved that there
is no possibility for prograde particle motion. However, in the inhomogeneous half-space
retrograde or prograde motion is possible depending on the frequency range. In chapter 2
of model “layer with fixed bottom”, we pointed out that prograde motion exists and that
it can occur in the range of frequency f̄ = 0.25 to 0.5126. Because that this model is a
particular case of the model “layer over half-space” when the impedance contrast is very
high, we will consider here the prograde and retrograde particle motion of LOH. Similar
to model LFB, because of the skin effect of surface waves, and recalling that the Rayleigh
motion is retrograde in the homogeneous half-space, prograde motion should be expected only
in a certain range of frequencies f̄ . Fig. 3.15 shows the regions of prograde and retrograde
motion of an incompressible structural model (see Model 2 in Table 3). This figure from
Malischewsky et al. (2008) [38] shows the influence of rs and f̄ on the domain of prograde
motion. The region of prograde Rayleigh motion (χ < 0) is shown in red. The fine structure
of positive H/V -values in the domain of retrograde motion is shown in shades of blue, with
lighter shades corresponding to higher values. For very low rs (i.e. for a high shear-wave
contrast), we observe prograde motion approximately in the interval 0.25 ≤ f̄ ≤ 0.5126,
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Figure 3.14: Contour of f̄p/0.25 as a function of ν1 and f̄z/f̄p.
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Figure 3.15: 2D graph of the domain of prograde motion (red) as a function of f̄ and rs for
the incompressible Model 2 (Table 3)

which is already observed in the model LFB. The value f̄ = 0.25 is the so-called fundamental
frequency of the site β1/4d and the f̄ = 0.5126 is very close to the double site frequency
β1/2d. The fundamental site frequency is important in seismic hazard assessment as it is
connected with the shear-wave resonance in the layer. In this figure, the curve P10 represents
the singularity and 0P3 for the zero point. The domain of prograde motion is bounded either
by two zero points, by two singularities, or more commonly by a singularity and a zero point.
The maximum range of this domain is bounded by P1 and P3. The points P1 and P3 with
the corresponding frequencies f̄ = 0.25 and f̄ = 0.5126, respectively, are shown in Fig. 2.3
which shows the domains of prograde and retrograde particle motion of model LFB. In Fig.
3.15, because we choose the layer to be incompressible or ν1 = 0.5, the frequency f̄ of P3 is
0.5126. With other values of Poisson’s ratio of the layer ν1, the frequency of P3 is

f̄P3
= 0.25 + 3.861 (ν1 − 0.2026) when 0.2026 ≤ ν1 ≤ 0.25 (3.54)

and

f̄P3
=

√
3

4
+ 0.318 (ν1 − 0.25) when 0.25 ≤ ν1 ≤ 0.5 (3.55)

which are found in Chapter 2 of the model LFB.

The condition ν1 > 0.2026 is required for the existence of prograde particle motion. Other-
wise, the H/V -ratio curve does not have any singularity or zero point and the particle motion
is always retrograde. Fig. 3.16 shows the domain of prograde motion of Model 3 in Table 3
with many values of ν1 from 0.21 to 0.499. Fig. 3.16 is organized as in Fig. 3.15. The red
part is for singularities and the black part is for zero-points. The domain of prograde motion
is white and that of retrograde motion is grey. The domain of prograde motion is bounded
by the contour χ = 0 for ν1 = 0.499. Thus the domain of prograde motion is maximal for an
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Figure 3.16: 2D graph of the domain of prograde motion (white) as a function of f̄ and rs
for different values of ν1 (contours) and for rd and ν2 of Model 3 (Table 3)

P
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Figure 3.17: 2D graph of the domain of prograde motion (white) on the interface as a function
of f̄ and rs for different values of ν1 (contours) and for rd and ν2 of Model 1 (Table 3)
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incompressible layer. The contour of χ = 0 becomes smaller for lower Poisson’s ratios and
disappears for ν1 < 0.2026.

3.1.6 H/V -ratio in the depth

The surface waves propagation concentrates near the surface, and it is well known that the
penetration depth of the Rayleigh waves in a homogeneous half-space is about 1.5 times the
wave length. Thus, studying the ellipticity in the depth has significant meaning in practice.
For example, Malischewsky [37] presented an analytical approach and an approximation for
the ellipticity of Rayleigh wave in a homogeneous half-space at infinitive depth in terms
of Poisson’s ratio. From the displacement amplitudes in the layer and in the half-space
(Appendix 3) we can formulate the ellipticity of Rayleigh waves in the depth as

χ(L)(x3) =
Ũ

(1)
1 (x3)

Ũ
(1)
3 (x3)

when − d ≤ x3 ≤ 0 (3.56)

and

χ(H)(x3) =
Ũ

(2)
1 (x3)

Ũ
(2)
3 (x3)

when 0 ≤ x3 ≤ ∞ . (3.57)

Particularly, on the interface between the layer and half-space, the H/V -ratio is

χ(I)(x3) =
T (x3)

M(x3)
(3.58)

where

T (x3) = T0 + T1 sinh(
2πf̄eβ
C

) sinh(
2πf̄eα
C

) + T2 sinh(
2πf̄eα
C

) cosh(
2πf̄eβ
C

)

+ T3 cosh(
2πf̄eα
C

) sinh(
2πf̄eβ
C

) + T4 cosh(
2πf̄eβ
C

) cosh(
2πf̄eα
C

) , (3.59)

M(x3) = M0 +M1 sinh(
2πf̄eβ
C

) sinh(
2πf̄eα
C

) +M2 sinh(
2πf̄eα
C

) cosh(
2πf̄eβ
C

)

+M3 cosh(
2πf̄eα
C

) sinh(
2πf̄eβ
C

) +M4 cosh(
2πf̄eβ
C

) cosh(
2πf̄eα
C

) (3.60)

with

T0 = 2eαeβgβh1(2 + h1)(−2 + h2) ,

T1 = gβ(8e2αe
2
β + h3

1)(−2 + h2) ,

T2 = − eβ(−2 + h1)h2
1(2gαgβ − h2) ,

T3 = 4eαe
2
β(−2 + h1)(2gαgβ − h2) ,

T4 = − T0;
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and

M0 = − 2eαeβh1 [2gαgβ(2 − 4f1 + h1) + h2(−2 − h1 + 2f1h2)] ,

M1 = h2
1(4f1gαgβ − 2gαgβh1 + h1h2 − f1h

2
2) + 4e2αe

2
β [4(−1 + f1)gαgβ + h2(2 − f1h2)] ,

M2 = − 4e2αeβgβ(−2 + h1)(−2 + h2) ,

M3 = eαgβ(−2 + h1)h
2
1(−2 + h2) ,

M4 = eαeβ(2h1(2 + h1)(2gαgβ − h2) − f1(4 + h2
1)(4gαgβ − h2

2)) .

Fig. 3.17 shows a 2D-graph of the prograde and retrograde domain on the interface as a
function of f̄ and rs for different values of ν1 (contours) and for rd and ν2 of Model 3. The
Poisson’s ratio in this figure ν1 from 0.01 to 0.499 with the jump is 0.01. These contour lines
divide the domain into two regions: the gray region corresponds to retrograde motion, and
the white region to prograde motion. The black curves are for the singularities and the red
curves are for the zero points. The point P1 with coordinates (0.43, 0) is the special point
which lies on the contour line of ν1 = 0.25. When ν1 < 0.25 the H/V -ratio on the interface
always has a zero-point no mater what the impedance contrast is, but when ν1 > 0.25,
the H/V curve has either one singularity or one zero point depending on the impedance
contrast. For each ν1 > 0.25, there exists a value of rs = rs(ν1) so that H/V has singularity
if rs < rs(ν1) and a zero-point if rs > rs(ν1). The function of rs(ν1) is an increasing function
of ν1, and has a maximum at about rs = 0.4 at ν1 = 0.5 or where the layer is incompressible.
Hence, with low impedance contrast, e.g lower than 2.5, the H/V -ratio on the interface has
only one zero point without any singularity. This conclusion is similar to that for H/V on
the surface which never has a singularity with such a low impedance contrast. Comparing

0 Interface depth=6 x d

0.25

0.35

0.45

f̄s

Figure 3.18: Peak frequency of H/V -ratio curve with respect to the depth

the two 2D-graphs 3.17 and 3.16, we can conclude that the peak frequency of the H/V -ratio
increases with depth. On the surface, it is about f̄ = 0.25, which is the resonance frequency
of shear wave in the layer, but on the interface, it is about f̄ = 0.4 to f̄ = 0.43. Fig. 3.18
illustrates this conclusion for the singularity frequency of the H/V -ratio curve as a function
of depth. In this figure we choose high ν1 and rs as Model 1 in Table 3 to be sure that there
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are singularities on the interface. The frequency of singularity increases dramatically in the
layer but less in the half-space.

3.2 Inhomogeneous layer over half-space

Margery Newlands and Stoneley [39] studied the Rayleigh waves in a two-layer heterogeneous
medium with the rigidity of the layer increasing linearly for both incompressible and com-
pressible material. However, the linear variability of the shear modulus in the layer sometimes
does not fit well the actual models. Recently, Vrettos [57] [58] investigated an inhomogeneous
half-space where the shear modulus varies as a function of the depth

µ(x3) = µ0 + (µ∞ − µ0)[1 − e−ax3 ] , 0 < µ0 < µ∞ (3.61)

where µ0, µ∞ is the shear modulus at the surface and at infinitive depth, respectively, and
a is a constant with the dimension of inverse length. This is an exponential function, so it
increases quickly from µ0 to a value approximating µ∞ in a certain depth. We have

µ(x3) ≈ µ∞ when x3 >
2π

a
(3.62)

with the error less than one one-thousandth. Thus we can consider this inhomogeneous half-
space model as an inhomogeneous layer over homogeneous half-space where the thickness of
the layer is 2π/a and the shear modulus of the homogeneous half-space is µ∞. This is a
reasonable approximation model which seems to be close to the actual models. However,the
numerical results are quite different from what we expect. For example, the H/V curve shows
a maximum only at a very high frequency which is far from the resonance frequency of the
shear wave in the layer. This can be explained by the mean value of the shear wave in the
layer, which is calculated by

β̄1 =
1

d

∫ d

0

√
µ(x3)

d
dx3 . (3.63)

The mean value is so large that the equivalent impedance contrast r̄s = β̄1/β∞ is greater
than 0.9. If we consider this model as a homogeneous LOH with impedance contrast rs = r̄s,
then this large value of rs only gives an H/V curve with a broad maximal. This is consistent
with numerical results from Vrettos.

To avoid this problem, and to obtain a model which is close to reality, we will use Vrettos’s
idea but study an inhomogeneous layer over a homogeneous half-space. The modulus of
the shear wave in the layer is as in formula (3.61), but the domain of this function is only
0 ≤ x3 ≤ d, in which d is the thickness of the layer and

µ1 = µ(d) or ad = ln
µ∞ − µ0

µ∞ − µ1
. (3.64)

The shear modulus of the half-space is µ2, which is greater than µ0 and µ1. The Poisson’s
ratio in the layer is ν1 and in half-space is ν2. The densities of mass are ρ1 and ρ2, respectively.
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The procedure of finding the secular equation is similar to that in the model “inhomogeneous
LFB” for the layer. In the layer we have

uL
1 (x1, x3, t) = û1(x3) exp[i(ωt− kx1)] , (3.65)

uL
3 (x1, x3, t) = iû3(x3) exp[i(ωt− kx1)] (3.66)

where i is the imaginary unit. The factor i in front of the displacement amplitude û3 implies
that the path of a particle in the medium will be an ellipse, a property which holds for
Rayleigh waves in a homogeneous half-space. The displacement amplitudes in the layer are
similar to (3.67) and displayed as

û1(ξ) =A1û
(1)
1 (ξ) +A2û

(2)
1 (ξ) +A3û

(3)
1 (ξ) +A4û

(4)
1 (ξ) , (3.67)

û3(ξ) =A1û
(1)
3 (ξ) +A2û

(2)
3 (ξ) +A3û

(3)
3 (ξ) +A4û

(4)
3 (ξ) (3.68)

where A1, A2, A3 and A4 are integration constants. The functions û
(j)
i (ξ) with i = 1, 3 and

j = 1 − 4 are presented in (2.72). ξ is the subsidiary depth variable as

ξ = H0 exp(−ax3) (3.69)

with H0 = 1 − µ0/µ∞.
The stresses in the layer are

σL
33 = i

2µ(x3)

1 − 2ν1

[
−aξ(1 − ν1)û

′

3 − kν1û1

]
,

σL
13 = µ(x3)

[
−aξû′

1 + kû3

]
. (3.70)

In the half-space we choose the displacement as

uH
1 (x1, x3, t) = U1(x3) exp[i(ωt− kx1)] , (3.71)

uH
3 (x1, x3, t) = iU3(x3) exp[i(ωt− kx1)] (3.72)

with U1(x3) and U3(x3) satisfying the motion equation as

U1(x3) = C1e
−kgαx3 + C2e

−kgβx3 , (3.73)

U3(x3) = − gαC1e
−kgαx3 − C2

gβ
e−kgβx3 (3.74)

where C1, C2 are the integral constants in the half-space. The stresses in half-space are

σH
33 = i

2µ2k

1 − 2ν2

[
C1(g

2
α − ν2(g

2
α + 1))e−kgαx3 + C2(1 − 2ν2)e

−kgβx3

]
,

σH
13 = − kµ2

[
2C1gαe

−kgαx3 + C2(gβ +
1

gβ
)e−kgβx3

]
. (3.75)

Boundary conditions at the free surface of the layer and at the interface between the layer
and the half-space are

σL
13 = σL

33 = 0 at x3 = 0 or ξ = H0 (3.76)
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and at x3 = d or ξ = H1 = 1 − µ1/µ∞

U1(d) = û1(H1) ,

U3(d) = û3(H1) ,

σH
13(d) = σL

13(H1) ,

σH
33(d) = σL

33(H1) . (3.77)

Substituting displacement amplitudes and stresses of the layer and half-space into six
boundary conditions yields a system of equations with respect to six integral constants
A1, A2, A3 A4 and C1, C2 as

[M ] · [v] = 0 (3.78)

with [v] is the integral constant vector and the matrix [M ] is

[M ] =




RB1(1)Hm1

0 RB1(2)Hm2

0 RB1(3)Hm3

0 RB1(4)Hm4

0 0 0

RB2(1)Hm1

0 RB2(2)Hm2

0 RB2(3)Hm3

0 RB2(4)Hm4

0 0 0

RB3(1)Hm1

1 RB3(2)Hm2

1 RB3(3)Hm3

1 RB3(4)Hm4

1 t3HD1 t3HD2

RB4(1)Hm1

1 RB4(2)Hm2

1 RB4(3)Hm3

1 RB4(4)Hm4

1 −t4HD3 −t4HD4

RB5(1)Hm1

1 RB5(2)Hm2

1 RB5(3)Hm3

1 RB5(4)Hm4

1 −e−kgα −e−kgβ

RB6(1)Hm1

1 RB6(2)Hm2

1 RB6(3)Hm3

1 RB6(4)Hm4

1 gαe
−kgα e−kgβ/gβ




(3.79)

where

RB1(i) = ν1

√
β

∞∑

n=0

a(i)
n Hn

0 + (1 − ν1)
∞∑

n=0

(n+mi)b
(i)
n Hn

0 (i = 1, 2, 3, 4) , (3.80)

RB2(i) =
∞∑

n=0

(n+mi)a
(i)
n Hn

0 −
√
β

∞∑

n=0

b(i)n Hn
0 (i = 1, 2, 3, 4) , (3.81)

RB3(i) = ν1

√
β

∞∑

n=0

a(i)
n Hn

1 + (1 − ν1)
∞∑

n=0

(n+mi)b
(i)
n Hn

1 (i = 1, 2, 3, 4) , (3.82)

RB4(i) =
∞∑

n=0

(n+mi)a
(i)
n Hn

1 −
√
β

∞∑

n=0

b(i)n Hn
1 (i = 1, 2, 3, 4) , (3.83)

RB5(i) =
∞∑

n=0

a(i)
n Hn

1 (i = 1, 2, 3, 4) , (3.84)

RB6(i) =
∞∑

n=0

b(i)n Hn
1 (i = 1, 2, 3, 4) (3.85)

and

HD1 = g2
α − ν2(g

2
α + 1) , (3.86)

HD2 = 1 − 2ν2, HD3 = 2gα, HD4 = gβ + 1/gβ , (3.87)

t3 =
√
β

1 − 2ν1

1 − 2ν2

µ2

µ1
, t4 =

√
β
µ2

µ1
(3.88)
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where β = k2/a2.

A nontrivial solution of the constants corresponds to the determinant of matrix [M ] equals
zero which leads to the secular equation of this model as

∆(c, f) = 0 . (3.89)

For numerical calculation, we choose a model which is close to reality with these parameters:
the shear wave velocity at the surface is β0 = 200 m/s; at the interface, β1 = 800 m/s;
in the half-space, β2 = 2000 m/s; the density of mass is ρ1 = 1.9 g/cm3 in the layer and
ρ2 = 2.1 g/cm3 in half-space, and the thickness of the layer is d = 20 m. We will investigate
the effect of the inhomogeneous layer on the phase velocity and on the ellipticity by choosing
several different forms of µx3

in the layer, providing that they satisfy µ(0) = µ0 and µ(d) = µ1.
As discussed in the model “inhomogeneous LFB”, we can derive various approximate forms
of µ(x3) by choosing a suitable µ∞ as in Table 2.1. In this section, we will work on the
approximations given below G(x3) of µ(x3) as
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Figure 3.19: Three approximation of shear modulus in the layer: linear G1(x3)(continuous),
quadratic G2(x3) (dashed) and third power polynomial G3(x3)(dotted)

- linear function

G1(x3) = µ0

(
1 + 15

x3

d

)
with µ∞ = 3000 m/s , (3.90)

- quadratic polynomial

G2(x3) = µ0

[
1 + 30.566

x3

d
− 15.566

(x3

d

)2
]

with µ∞ = 850 m/s , (3.91)

- third power polynomial

G3(x3) = µ0

[
1 + 50.472

x3

d
− 62.195

(x3

d

)2
+ 26.723

(x3

d

)3
]

with µ∞ = 810 m/s .

(3.92)
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The relative error for these above approximations can be calculated as

δi =

∫ d
0 |µ(x3) −Gi(x3)|dx3∫ d

0 µ(x3)dx3

(i = 1, 2, 3) (3.93)

are 1%, 3.1% and 1.29%, respectively. Fig. 3.19 shows the three above approximation
functions.

Fig. 3.20 shows the effect of the inhomogeneity on the phase velocity and H/V ratio curves.
In this figure we choose ν1 = 0.4375 and ν2 = 0.2506. From the figures of phase velocity and
H/V ratio curves we can see that the complexity of the inhomogeneity increases the value
of phase velocity, and although it does not have much affect on the zero point frequency, the
effect on the singularity frequency is remarkable. It tends to reduce the frequency region of
prograde motion which lies between the the singularity and zero point.

To evaluate the difference between Vrettos’s technique and Newlands’s technique, we plot the
phase velocity curves on a two-layer heterogeneous medium where the rigidity of the layer is
of linear variability by using these two techniques. The parameters of the model are chosen
from Newlands and Stoneley (1950) [39] with the thickness of the layer set at 37.5 km and
its rigidity increasing linearly from 2.3 × 1011 to 4.53 × 1011 dynes/cm2. The rigidity of the
half-space is constant and equals 6.47×1011 dynes/cm2. The density of mass of the layer and
half-space are 2.72 and 3.40 g/cm3, respectively. The Poisson’s ratios are equal for both layer
and half-space and are 0.2308. With Vrettos’s technique, we use µ∞ = 10× 1011 dynes/cm2.
This value is high enough so that the rigidity form of the layer as in (3.61) is very close to the
linear form. The error between them which is defined similarly as in (3.93) is 1.84 per cent.
Figure (3.21) shows three velocity curves by using Vrettos’s and Newlands’s techniques and
by using a package of Herrmann’s program (1994) [22], which is very powerful for generating
synthetic data. The x-axis is the wave-length of the Rayleigh wave multiplied with the
thickness of the layer. The agreement between Vrettos’s and Newlands’s techniques is very
good in this small range of the wavelength. The phase velocity curve plotted by Herrmann’s
program shows that the Vrettos’s technique is more advanced than that of Newlands.

In practical measurement, when we work on the actual model with continuous shear wave
velocity in the layer, one commonly used approximation for the interpretation of H/V ratios
is based on the assumption of the single soft layer over a half-space showing a strong contrast.
There are two common approaches for the simplification of a structure. The first one is to
form the weighted average ofthe velocities of the layers as follows:

β̄ =
1

d

∫ d

0
β(x3)dx3 . (3.94)

The second approach is based on the concept that the average velocity can be computed in a
way such that the travel time in an average model corresponds to the sum of the travel times
in the single layers of the actual model, or

1

β̄
=

1

d

∫ d

0

dx3

β(x3)
. (3.95)
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Figure 3.20: Phase velocity and H/V ratio curves of G1(x3), G2(x3) and G3(x3)
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To decide which approximation model is better, we will compare the peak and the trough
frequencies of the actual model with the two simple homogeneous LOH models with the
equivalent shear modulus as in (3.94) and (3.94).

Fig. 3.22 shows the deviation of the singularity and zero point frequencies defined as
fp1

−fp2

fp2

and
fz1

−fz2

fz2
where fp1

and fp2
are frequencies of singularity of the equivalent homogeneous

LOH with formula (3.94) and of the actual inhomogeneous model, respectively, of three above
shear moduli: G1(x3), G2(x3) and G3(x3). In Fig 3.22(a, c), we choose ν1 = 0.4375 and let
the impedance contrast rs vary. With sucha high Poisson’s ratio ν1, the H/V curve has a
singularity with rs up to 0.4 or when the impedance contrast exceeds 2.5. This value was
already shown in Fig. 3.16. We can see that the deviation of the singularity frequency is
rather small (less than 10%) and the coincidence is quite good around rs = 0.3. Fig. 3.22(b,
d) is similar to Fig. 3.22(a, c) but instead of letting the impedance contrast vary, we fix
rs = 1/6 and let ν1 vary from 0 to 0.5, and we have similar good deviation for the singularity
frequency.
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Figure 3.22: ν1 = 0.4375 for figure a, c and rs = 1/6 for figure b, d

Although the deviation of the singularity is not big, often less than 10%, the deviation of
the zero point frequency is remarkable. Hence, in practical calculations, we can replace
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Figure 3.23: Deviation of singularity frequency between the actual model and the simple
equivalent model ”Layer over half-space” with the average shear wave velocity of the layer is
calculated by (3.95)

a complicated inhomogeneous model by a simple homogeneous one with the average shear
wave velocity of the layer as in (3.94) if we want to find the singularity with similar results.
The equivalent model shows the frequency of the zero point as less than the actual model. As
we know that higher rs reduces the frequency of zero point, we can conclude that the mean
of the impedance contrast r̄s is greater than the actual ′′r′′s . On the other hand, if we want
to use an equivalent homogeneous model for an inhomogeneous actual model, we should take
an equivalent impedance contrast which is less than the mean impedance contrast from the
real model. Fig. 3.23 is similar to the Fig. 3.22(a) but the average phase velocity of the
equivalent simple model is given by formula (3.95). We can see that the deviation between the
real model and the equivalent model applying (3.95) is almost double that for the equivalent
model applying (3.94). We see the same phenomenon for similar figures with Figs. 3.22(b, c,
d). This fact can lead to the conclusion that the first way of taking the average shear velocity
for the layer of the simple equivalent model is better than the second way, in that it gives a
better approximation of the peak frequency.

3.2.1 Application for synthetic data

To illustrate that we can use the simple model “Layer over half-space” to replace a complex
model with reasonable accuracy, we will work on a structure with two homogeneous layers over
half-space. Because synthetic H/V -ratio data was used to constrain the velocity solutions
from the H/V -ratio inversion, and it agrees well with the observed data curve, especially in
the frequency range between the peak and the first trough of the H/V -ratio curve, (Donat
Fäh et al. 2002 [17]), we therefore make synthetic data for the H/V -ratio for this model. We
assume that this synthetic H/V curve is also of a simple model “one layer over half-space”
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Thickness P-wave S-wave Density
(m) (m/s) (m/s) (g/cm3)

1st layer 7.8 310 193 2
2nd layer 20 1112 694 2
Half-space 0 2961 2086 2

Table 3.3: Parameters for the ”two-layer over half-space” model in Liegé, Belgium

with constant parameters, and, by applying some of the maps given above, we obtain results
for the simple structure from information about the peak and trough in the synthetic H/V
curve. Afterward, we will compare the calculated results with the average actual results.

The parameters of the structure are in Table 3.2.1. These parameters are from the Liege
site in Belgium and they are presented in Wathelet 2005 [59]. Synthetic data for H/V -ratio
of this model was created by Matthias Ohrnberger in 2007 as presented in Fig. 3.24(a). It
shows a clear peak at a frequency of about fp = 5.1 Hz and a trough at about fz = 9.8 Hz.
If the thickness of the structure and the average of the shear wave velocity in two layers are
derived from the bore-hole cores, we can determine the other parameters from the synthetic
H/V -ratio data and our maps. In this case, we assume that the thickness of the layer is
d = d1 + d2 = 27.8 m and the average shear wave velocity is

β̄ =
β1d1 + β2d2

d
= 553.43 (m/s) .

This information gives us the ratio of trough to peak frequency and ratio of the peak frequency
to the resonant frequency of the layer as

f̄z

f̄p
=
fz

fp
= 1.9216 and

f̄p

0.25
= 1.0247

with the dimensionless frequency f̄ = df/β̄. Fig. 3.24(b,c) depicts two maps that are similar
to those in Fig. 3.12 and Fig. 3.14(a). They show the contour lines of f̄p/0.25 in relation
to f̄z/f̄p and Poisson’s ratio of the layer ν1 or S-wave velocity contrast rs. Comparing the
contour line of f̄p/0.25 = 1.0247 and value of f̄z/f̄p = 1.9216 gives us the value of the Poisson’s
ratio of the layer as 0.485 and the impedance contrast of the simple model as 0.269. From
the parameters of the actual model, we have the average of Poisson’s ratio and impedance
contrast as 0.4579 and 0.2653, respectively. These values are very close to the results from
the maps: the relative error is only 1.3% for Poisson’s ratio and 6% for impedance contrast.

3.3 Incident body waves

As site amplifications occurring during actual earthquakes essentially involve incoming body
waves, it is clear that the horizontal and vertical components of body waves are both highly
sensitive to site conditions. The proportion of body wave in the noise wavefield is still unclear
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Figure 3.24: Synthetic H/V -ratio data and two maps defining the value of Poisson’s ratio
and S-wave velocity contrast



78 CHAPTER 3. LAYER OVER HALF-SPACE (LOH)

and is summarized in Bonneyfoy-Claudet et al. (2006) [9]. This depends on the location of
the noise source and the distance between the noise source and the receiver. Jerez (2004)
[23] compared between microtremor H/V spectral ratio and theoretical results by using the
surface forces with the ratio of horizontal to vertical force between 0.75 and 1.5 concluded that:
the shape of the Nakamura’s ratio appears to be mainly determined by the fundamental and
higher Rayleigh modes except around the predominant peak where the Love and body waves
have the highest weight. So the main question to address here is the relation between H/V -
ratios derived from earthquake recordings and H/V -ratios derived from ambient vibration
recordings, especially around the peak frequency.

In this chapter, we continue concern a simple horizontally 2-layered structure with one soft
layer over a half-space, and its response to obliquely incident S and P-plane waves. The
parameters of the model and the coordinates is shown in Fig. 3.1.

3.3.1 Formulas of H/V -ratios of incident body waves

Incident SV-wave

Suppose that an plane SV wave coming from in deep half-space to the interface between the
layer and the half-space. This wave can be expressed in the potential form:

ψ̃0(x, z) = A0d exp
[
ik

(H)
SV (x1 sin θ − x3 cos θ)

]
(3.96)

where θ is the incident angle, d is the vector defining the directions of motion and k
(H)
SV is the

wave number of the incident SV-wave in the half-space. By the reflection and refraction, this
incident SV-wave generates the upcoming and down-going systems of P-wave and SV-wave
in the layer and down-going systems of P-wave and SV-wave in the half-space. The incident
angles of these plane wave systems are based on the Schnell’s law and the magnitudes depends
on the reflection and refraction ratio and the magnitude of the incidence. Different from the
Rayleigh wave which the phase velocity has to be found, the apparent phase velocity for
incident SV-wave depends on the incident angle θ and the velocity of SV-wave in half-space
β2 as

c =
β2

sin θ
or C =

c

β1
=

1

rs sin θ
(3.97)

where β1 is the S-wave velocity in the layer and rs = β1/β2 is the shear wave velocity contrast.
The H/V -ratio formula is found by the potential method which is presented in Appendix 4
and it is

χSV = i
eβ
eα

TSSV

MSSV
(3.98)

with the abbreviations are

eα =
√

1 − C2γ1, eβ =
√

1 − C2 ,

gα =
√

1 − C2γ2r2s , gβ =
√

1 − C2r2s ,

h1 = e2β + 1, h2 = g2
β + 1, f1 =

1

r2srd
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and

TSSV = eαh1(−2 + f1h2) cosh

(
2πf̄eα
C

)
+ 2eα(h1 − f1h2) cosh

(
2πf̄eβ
C

)

+gα

[
h1(−2f1 + h1) sinh

(
2πf̄eα
C

)
+ 4eαeβ(−1 + f1) sinh

(
2πf̄eβ
C

)]
,

MSSV = gα

[
−2eβ(2f1 − h1) cosh

(
2πf̄eα
C

)
+ 2eβh1(−1 + f1) cosh

(
2πf̄eβ
C

)]

+2eαeβ(−2 + f1h2) sinh

(
2πf̄eα
C

)
+ h1(h1 − f1h2) sinh

(
2πf̄eβ
C

)
.

The incident angle should be smaller than the critical angle so that all above wave systems
exist. The condition for θ is

sin θ < min
[
1/

√
r2s ,

√
γ2,

√
γ1/r2s

]
. (3.99)

Because we works on the model of soft layer over half-space or r2s < 1, so the condition (3.99)
become

sin θ < min
[√

γ2,
√
γ1/r2s

]

or

C > max

[
1√
γ2r1

,
1√
γ1

]
. (3.100)

From the formula of H/V -ratio (3.98), we can realize that when C > 1√
γ2rs

, gα becomes an

imaginary number and by condition of phase velocity (3.100), H/V -ratio is always a complex
value.

Incident P-wave

The P body incident wave has the potential form

ϕ̃0(x, z) = A0d exp
[
ik

(H)
P (x1 sin θ − x3 cos θ)

]
(3.101)

with the apparent phase velocity

c =
α2

sin θ
or C =

1√
γ2rs sin θ

. (3.102)

By analogy with the SV-wave, we have the formula of H/V -ratio at the surface

χP = i
eβ
eα

TSP

MSP
(3.103)
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with the abbreviations are

TSP = gβ

[
2eαh1(−1 + f1) cosh

(
2πf̄eα
C

)
− 2eα(2f1 − h1) cosh

(
2πf̄eβ
C

)]

+h1(h1 − f1h2) sinh

(
2πf̄eα
C

)
+ 2eαeβ(−2 + f1h2) sinh

(
2πf̄eβ
C

)
,

MSP = 2eβ(h1 − f1h2) cosh

(
2πf̄eα
C

)
+ eβh1(−2 + f1h2) cosh

(
2πf̄eβ
C

)

+gβ

[
4eαeβ(−1 + f1) sinh

(
2πf̄eα
C

)
+ h1(−2f1 + h1) sinh

(
2πf̄eβ
C

)]
.

The condition of θ for every incident angles do not exceed the critical angle is

sin θ0 < min
[
1/
√
γ2, 1/

√
r2sγ2,

√
γ1/(r2sγ2)

]
,

and due to γ2, r
2
s < 1, so

sin θ0 <

√
γ1

rs
√
γ2

or C >
1√
γ1

. (3.104)

In addition, if the incident angle is real then from (3.102) we have

C =
1√

γ2rs sin θ
>

1√
γ2rs

, (3.105)

which make the final condition of phase velocity is

C > max

[
1√
γ2rs

,
1√
γ1

]
. (3.106)

This condition is the same with one of SV-wave incidence (3.100).

When f = 0

With Rayleigh surface waves, when the frequency equals zero, or f̄ = 0, the phase velocity
becomes the phase velocity of Rayleigh wave of the half-space and the H/V ratio is the H/V
ratio of the half-space. However, with body incident wave, the phase velocity is arbitrary;
it depends on the incident angle and the type of incident wave. Substituting f̄ = 0 into the
formula of H/V ratio of P-wave (3.103) yields

H/VP |f̄=0 =
2gβ

h2
=

2
√

1 − c2/β2
2

2 − c2/β2
2

. (3.107)

This is exactly the H/V ratio formula for the half-space, but in this case, the phase velocity
is not the Rayleigh wave but arbitrary.

By analogy, substitute f̄ = 0 into (3.98) we gain the H/V ratio of SV incident wave at zero
frequency as

H/VSV |f̄=0 =
h2

2gα
=

2 − c2/β2
2

2
√

1 − c2/α2
2

. (3.108)
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If c takes the value of Rayleigh wave for the half-space, that means it satisfies the Rayleigh
equation for the half-space, as

h2
2 − 4gαgβ = 0

then the H/V at f̄ = 0 is the same for both P-wave and SV-wave.

When frequency is large

P-wave

If C < 1/
√
γ1 then

H/VP |f̄→∞ =
h1

2eα
=

2 − c2/β2
1

2
√

1 − c2/α2
1

. (3.109)

And if C takes the value of Rayleigh wave of the layer, that means it satisfies

h2
1 − 4eαeβ = 0

then when f̄ → ∞ the H/V of P-wave is the same with Rayleigh wave. If C > 1/
√
γ1 then

H/V ratio is a trigonometric function of f̄ , so it may have infinity number of changing the
sign or number of zero point.
When C <

√
2 then H/VP |f̄→∞ > 0 and vise versa.

SV-wave

If C < 1/
√
γ1 then

H/VSV |f̄→∞ =
h1

2eα
=

2 − c2/β2
1

2
√

1 − c2/α2
1

. (3.110)

This formula is exactly the one of P-wave incidence.

3.3.2 Real incident angles

We have proved that for both P or SV-incident wave, the condition of phase velocity to satisfy
the critical incident angles and being real is

C > max[
1√
γ2rs

,
1√
γ1

] . (3.111)

With this condition of phase velocity C, H/V -ratio of both P and SV-incidences are complex.
We will only investigate the real part of H/V -ratio and we will concentrate on the first peak
and zero point and compare them to those of Rayleigh wave.

Contrast to Rayleigh wave, the phase velocity in this case is arbitrary, not dependent on
frequency, and it depends on the incident angle. The smaller the incident angle is, the
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bigger the phase velocity C is and when the incident wave is normal to the interface between
layer and half space, the apparent phase velocity tends to infinity. From the formula of the
condition for apparent phase velocity (3.111) we can see that, when one of the layer or half
space becomes incompressible, that means γ1 or γ2 tends to zero, that makes C tends to
infinity.

We showed that the Poisson’s ratio of half-space ν2 and densities of mass ratio rd do not
play important role in H/V -ratio of ambient noise. This fact keeps being true with incident
body waves, although ν2 affects on the critical angle, so we will only investigate property
of H/V -ratio in dependence with Poisson’s ratio of the layer ν1 and impedance contrast
rs. The incident angle of the incoming body wave depends on the location of the source.

0 20 40 60 80
0.252

0.253

0.254

0.255

0.256

0.257

0.258

θ (Degree)

f̄ p

P−wave

ν
1
=0.1

ν
1
=0.3

ν
1
=0.4

ν
1
=0.49

(a)

10 20 30 40 50 60 70 80
0.25

0.255

0.26

0.265

0.27

0.275

0.28

θ (Degree)

f̄ p

P−wave

β
2
/β

1
=2

β
2
/β

1
=3

β
2
/β

1
=4

β
2
/β

1
=6

(b)

5 10 15 20 25
0.22

0.23

0.24

0.25

0.26

0.27

θ (Degree)

f̄ p

SV−wave

ν
1
=0.1

ν
1
=0.3

ν
1
=0.4

ν
1
=0.49

(c)

5 10 15 20 25
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

θ (Degree)

f̄ p

SV−wave

β
2
/β

1
=2

β
2
/β

1
=3

β
2
/β

1
=4

β
2
/β

1
=6

(d)

Figure 3.25: Peak frequency of H/V -ratio of incident body waves

With different incident angle, as long as it is less than the critical one, the H/V -ratio on
the surface changes its properties. However, the peak and trough frequency are the most
important parameter so we will concentrate on their variation. We use parameters of Model
3 (Table 3) with ν1 = 0.4576, rs = 0.2473, ν2 = 0.3449, rd = 0.7391. Figure 3.25.a shows
the peak frequencies of H/V -ratio of incident P-wave depending on the incident angle with
several cases of different ν1 = 0.1, 0.3, 0.4, 0.49 when we fix other parameters. Figure
3.25.b is similar to 3.25.a but we fix ν1 = 0.4576 and let the impedance contrast varies. In
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(a) (b)

(c) (d)

Figure 3.26: Ratio between peak and trough frequencies of H/V -ratio of incident body wave

these two figures, the critical angle is approximately 90o and we can see that, in the case of
incident P-wave, Poisson’s ratio of the layer ν1 does not affect much on the peak frequency,
the maximum relative deviation is only about 2%. However, the impedance contrast has
remarkable influence on peak frequency. With high impedance contrast, e.g. β2/β1 = 6, peak
frequency of H/V -ratio is very close to S-wave resonant frequency of the layer, f̄ = 0.25, but
with low impedance contrast, the different between them can go up to 10%. Figure 3.25.c and
3.25.d have the same manner with 3.25.a and 3.25.b but they shows the peak frequency of
incident SV-wave instead of P-wave. With incident SV-wave, the critical angle for this model
is only approximately 29o and peak frequency changes dramaticly when the incident angle is
closely near to the critical one. However, if the incident angle is not close to the critical one,
e.g θ < 20o for this case, the peaks of H/V -ratio curve exhibit at frequency surrounding the
S-wave resonant frequency of the layer. Similar to the case of incident P-wave, the Poisson’s
ratio of the layer does not affect much on the peak frequency but the impedance contrast
really does.

The role of the trough frequency in H/V method is remarkable and it has been proven in
Konno and Ohmachi (1998) [25] and it is reported that the ratio between the trough and
peak frequency to be 2 with high Poisson’s ratio ν1 and high impedance contrast. We can see
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this statement again in Fig. 3.26.a and 3.26.b which plot this ratio for incident P-wave. Fig.
3.26.b shows clearly that this ratio reaches closer to value 2 with higher impedance contrast.
However, this ratio of incident SV-wave behaves complicatedly and it does not often to be
2. This behaviour can be explained by the fact that, the H/V -ratio curve of incident SV-
wave exhibits a very vague minimum point while one of incident P-wave often exhibits a zero
point.

3.3.3 The relation between body wave and Rayleigh wave

One of well-known features of Rayleigh surface waves is that: the phase velocity is always
less than shear wave of the half-space. If it is not so, there is only the leaking wave which is
not interested in this thesis. With this condition, the H/V -ratio of Rayleigh waves is real.
We already proved that the H/V -ratios of body incident waves are always complex when the
incident angle is satisfied not to exceed the critical one. To get real value of H/V -ratio for
body incident waves, some of wave systems in the layer or in the half-space must be vanished.
From the formula of H/V -ratio of SV and P-incident wave (3.98) and (3.103) we have the
condition of phase velocity for H/V -ratio of SV-incident wave to be real is

C <
1√
γ2rs

, (3.112)

and of P-wave incident wave is

C <
1

rs
. (3.113)

However, due to the formulas of phase velocity (3.97) and (3.102) of body incident wave, we
can not find a real value of incident angles for these conditions. These conditions of phase
velocity hold only with imaginary value of incident angles which do not happen in reality.
But if we still assume that the incident angles can be imaginary numbers, there is relation
among H/V -ratios of Rayleigh waves and body incident waves.

Proposition 4. At Rayleigh wave velocity CR, the H/V-ratios of P and SV-incident waves
are equal.

Proof. From the formulas of H/V -ratio of the body waves (3.98) and (3.103) and assume
that they are equal, we have

χSV = χP (3.114)

or

TSSV ·MSP = TSP ·MSSV . (3.115)

But after some simple algebra manipulations, we have

TSSV ·MSP − TSP ·MSSV = ∆(CR, f̄) (3.116)

where ∆(C, f̄) is expressed as in (3.10). Due to

∆(C, f̄) = 0
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is the dispersion equation of Rayleigh wave and since CR is Rayleigh wave so we have

TSSV ·MSP − TSP ·MSSV = ∆(CR, f̄) = 0

or

χSV = χP . (3.117)

Proposition 5. At Rayleigh wave velocity CR, the H/V-ratio of SV-incident waves equals
H/V-ratio of Rayleigh waves.

Proof. We use the formula χ1 in (3.40) for H/V -ratio of Rayleigh wave and assume that

χ1 = χP (3.118)

or

2eβTSP ·B(C) = h1A(C)MSP . (3.119)

But after some simple algebra manipulations, we have

2eβTSP ·B(C) − h1A(C)MSP =
2gβ

eα
∆(C, f̄) (3.120)

where ∆(C, f̄) is expressed as in (3.10). Due to

∆(C, f̄) = 0

is the dispersion equation of Rayleigh wave and since CR is Rayleigh wave so we have

2eβTSP ·B(CR) − h1A(CR)MSP =
2gβ

eα
∆(CR, f̄) = 0

or

χ1 = χP . (3.121)

Since at Rayleigh wave phase velocity, all of three formulas of Rayleigh wave, P-wave and
SV-wave get the same values, so we can use the H/V -ratio formulas of P and SV-incident
body waves for H/V -ratio of Rayleigh surface wave. This kind of connection between body
wave incidents and Rayleigh waves has been already reported by Malischewsky 2000 [32] but
for the model ”homogeneous half-space”.
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3.4 Conclusions

Because the dispersion equation and H/V -ratio formula for this model depend not only on
the Poisson’s ratio of the layer, as in model LFB, but also on other parameters such as the
impedance contrast, the Poisson’s ratio of the half-space and the ratio between the density
of mass of the layer and half-space, it becomes difficult to investigate the behaviour of H/V -
ratio curve. However, each parameter plays a different role in determining the peak and
trough of the H/V -ratio curve, which are the key features used in the H/V method. I
have observed that the Poisson’s ratio of the half-space and the density ratio do not play
an important role in most investigations. This fact has also been noted in some papers, e.g.
[35], [38]. However, the Poisson’s ratio of the layer ν1 and the impedance contrast rs are
key parameters affecting the peak and the trough of the H/V -ratio curve. High values are
often used for these parameters in practical applications with the assumption that the H/V
spectral ratio has a peak and its frequency is very close to the resonant frequency of the layer.
In this chapter, I show that this assumption is true, and I find more detailed conditions of ν1

and rs for this assumption. Condition (3.47) states when the H/V -ratio curve has singularity
and condition (3.52) states when the H/V -ratio has both singularity and zero point. These
two conditions help us to divide the domain of ν1 and rs into four regions corresponding to
four states of the H/V -ratio curve: having two singularities, having two zero points, having
one singularity and one zero point and having only maximum and minimum. For each region,
the maps of the peak and trough frequencies are made and these maps will help us to find
Poisson’s ratio ν1 and impedance contrast rs from the peaks and troughs in the H/V spectral
ratio measured from a single station. From these maps, we confirm that we can consider the
frequency of the peak in the H/V spectral ratio to be the resonant frequency of the shear
wave in layer with reasonable error if the Poisson’s ratio ν1 is high enough (e.g. greater than
0.4) and the impedance contrast is high. However, if ν1 is not so high, for example about 0.3,
the error becomes remarkable even when impedance contrast is high.

The peak frequency of the H/V -ratio in depths below the surface was also investigated, and
found to increase with the depth to the interface. The peak frequency of H/V -ratio curve
in the half-space is relatively stable. A figure showing the prograde and retrograde particle
motion in the interface is made and we observe that the singularity only exist if ν1 > 0.25
and with high enough impedance contrast. If the impedance contrast is low, e.g less than 2.5,
the H/V -ratio curve in the interface has only zero point without singularity. This conclusion
is the same for the H/V -ratio curve in the surface.

For the inhomogeneous layer, we continue to investigate the layer with exponential variation
of the shear modulus as in (3.61). By changing the parameters we obtain many types of
variation. We particularly study three simple forms of shear modulus in the layer: the linear,
the quadratic and the third power polynomial, and compare the effect of the inhomogene-
ity. Because of the simplicity of the homogeneous layer, we compare the peak and trough
frequency of the inhomogeneous case with the that of homogeneous layer which takes the
average value of the inhomogeneous model. The deviation between these is good enough for
the peak frequency but is too high for the trough. This leads to the conclusion that we can
use the simple homogeneous model for the inhomogeneous and apply the above maps we
made above to calculate the average value.

The H/V -ratio of the incident body wave is also investigated and it shows that the first peak
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frequency is very close to the S-wave resonant frequency of the layer in most cases, especially
in the case of high impedance contrast. This conclusion fortifies the H/V method in using
the H/V peak frequency to infer the shear wave of the layer. I also prove that when the
apparent phase velocity of incident body wave equals Rayleigh wave velocity, the H/V -ratio
of these two waves are identical. However, this condition exists only in theoretical manner
because the apparent phase velocity of incident body wave is always greater than Rayleigh
wave velocity.
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Chapter 4

Osculation points

The dispersion curve is a main factor affecting the behaviour of the H/V -ratio. But one set
of features, namely the osculation points, has not yet been investigated thoroughly enough
with respect to H/V. The osculation point has been investigated in some papers such as Okal
(1978) [45], Thomas Forbriger (2003) [18]. In this thesis, I have found the following important
phenomenon: at the osculation point the H/V -ratio changes its property from having two
peaks to having one peak and one zero-point. This phenomenon is proven analytically for
the model ”layer with fixed bottom” and checked numerically for the model ”layer over half-
space”. That is why it is important to carefully study the osculation point of the dispersion
curve. In this chapter, we use ray theory to demonstrate the existence of the three most im-
portant and interesting classes of osculation points for the model ”Layer with fixed bottom”.
The formulae are analytically proven and are simple enough for practical calculations. It
turns out that the number of osculation points is infinite. While the fundamental mode has
only one osculation point, the higher modes often have more than one. For the model “layer
over half-space”, an approximate formula for the osculation points is presented.

4.1 Layer with fixed bottom

Tolstoy and Usdin [56] investigated the dispersion equation by ray theory. Corresponding to
the model ”Layer with fixed bottom” they gave the secular equation as

y =
−2t1x±

√
4t21x

2 − (1 + x2)2 + t22(1 − x2)2

(1 + x2) + t2(1 − x2)
(4.1)

where

x = tan(
kdgβ

2
) = tan(

f̄πgβ

C
), y = tan(

kdgα

2
) = tan(

f̄πgα

C
) , (4.2)

gα =
√
C2γ − 1, gβ =

√
C2 − 1 , (4.3)

t1 =
(1 − g2

β)2 + 4g2
αg

2
β

4gαgβ(1 − g2
β)

, t2 =
(1 − g2

β)2 + 4

4(1 − g2
β)

. (4.4)

89
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In (4.1), the sign (+) corresponds to non-retrograde motion, which they called M2 mode, and
the sign (-) corresponds to M1 mode.

The osculation point is the point at which two modes M1 and M2 meet each other. From
this condition we obtain the equations defining the osculation points

4t21x
2 − (1 + x2)2 + t22(1 − x2)2 = 0 (4.5)

and

y =
−2t1x

(1 + x2) + t2(1 − x2)
. (4.6)

Eq. (4.5) leads to

(t22 − 1)x4 + 2x2(2t21 − t22 − 1) + (t22 − 1) = 0 . (4.7)

This is a quadratic equation of x2, and we have

∆′ = (2t21 − t22 − 1)2 − (t22 − 1)2 = 4(t21 − 1)(t21 − t22) . (4.8)

The condition for (4.7) having a solution is ∆′ ≥ 0, but we will determine the special solution
of (4.7) corresponding to ∆′ = 0 or

[
t21 = t22
t21 = 1 .

(4.9)

4.1.1 The case: t21 = t22

If t21 = t22, (4.7) becomes

(t22 − 1)x4 + 2x2(t22 − 1) + (t22 − 1) = 0 . (4.10)

1. If t21 = t22 6= 1,
(4.10) leads to: (x2 + 1)2 = 0 ⇒ x2 = −1 ⇒ tan(sh/2) = ±i ⇒ sh/2 = ±i∞. It is
nonsense.

2. If t21 = t22 = 1,

- if t2 = 1

⇒(1 − g2
β)2 + 4 = 4 − 4g2

β ⇒ (1 − g2
β)2 + 4g2

β = 0

⇒(2 − C2)2 + 4C2 − 4 = 0 ⇒ C4 + 2C2 = 0 ⇒ C = 0

It is nonsense.

- if t2 = −1

⇒(1 − g2
β)2 + 4 = −4 + 4g2

β ⇒ (2 − C2)2 − 4C2 + 12 = 0

⇒C4 − 8C2 + 16 = 0 ⇒ C = 2.
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Substituting C = 2 into t1 in (4.4) we get:

t1 =
6γ − 1

−
√

3
√

4γ − 1
= ±1

⇒ 36γ2 − 12γ + 1 = 3(4γ − 1) ⇒ (3γ − 1)2 = 0 ⇒ γ = 1/3

⇒ y =
1

x
⇒ x · y = 1 ⇒ tan(

f̄πgα

C
) tan(

f̄πgβ

C
) = 1

⇒ f̄π(gα + gβ)

C
= π

(
k +

1

2

)
⇒ f̄ =

√
3

2

(
k +

1

2

)
, k = 0, 1, 2, . . .

Finally, the formula of osculation points in this case is

C = 2, f̄ =

√
3

2

(
k +

1

2

)
k = 0, 1, 2, . . . (4.11)

When γ = 1/3 or ν = 0.25, the phase velocity curve has an infinite osculation point. The
osculation point of the fundamental mode belongs to this class corresponding to k = 0 or
f̄ =

√
3/4. This point was discussed by Sezawa and Kanai [51] when they investigated the

discontinuity in the dispersion curves of Rayleigh waves of the model LOH having a ratio of the
rigidity of the layer to the substrate of 1/∞. This paper showed that the fundamental mode
and the first higher mode of phase velocity curves are discontinuous, but if the discontinuous
part of one curve joins to the other, it becomes continuous. Okal [45] also discussed this
problem, and dealt with it by redefining the fundamental mode not by the minimum phase
velocity value condition, but by the continuous of the derivative of the phase velocity curve.
With this criterion, we accept that the two curves of two modes can cross each other.

4.1.2 The case: t21 = 1, t22 6= 1

From formula of t1 (4.4) we have:

[
(1 − g2

β)2 + 4g2
αg

2
β

]2
= 16g2

αg
2
β(1 − g2

β)2

⇒ (1 − g2
β)2 = 4g2

αg
2
β

⇒ (2 − C2)2 = 4(C2 − 1)(C2γ − 1)

⇒ C2 =
4γ

4γ − 1
.

The condition for an existent solution is γ > 1/4. This is the condition for C2 > 0.
From (4.7) ⇒ x2 = 1, and from (4.4) ⇒ t1 = sign(2γ − 1), and because γ < 1/2, therefore
t1 = −1.
From (4.6) and because x2 = 1 ⇒ y = −t1x = x = ±1. From formulas of x and y (4.2) and
because of gα > gβ , we obtain:

{
f̄π
C gα = π

4 + kπ
f̄π
C gβ = π

4 + kπ + lπ (k = 0, 1, 2 . . . , l = 1, 2, . . .)
(4.12)
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or

{
f̄π
C gα = −π

4 + kπ
f̄π
C gβ = −π

4 + kπ + lπ (k = 1, 2 . . . , l = 1, 2, . . .) .
(4.13)

4.1.3 Solutions of (4.12)

From condition γ > 1/4, we can limit the value of k and l. From gα and gβ in (4.12), we have

gβ

gα
=

√
C2 − 1

C2γ − 1
=

1 + 4(k + l)

1 + 4k

and because C2 = 4γ/(4γ − 1) we obtain:

1

(1 − 2γ)2
=

(
1 + 4(k + l)

1 + 4k

)2

. (4.14)

With the condition that 1/4 < γ < 1/2

⇒ 0 < (1 − 2γ)2 ≤ 1

4
⇒ 2 ≤ 1 + 4(k + l)

1 + 4k
< +∞

⇒ 4l

1 + 4k
> 1 ⇒ l > k +

1

4
(k = 0, 1, 2, . . .) .

From (4.14)

⇒ γ =
2l

1 + 4(k + l)
⇒ C =

√
4γ

4γ − 1
=

√
8l

4(l − k) − 1

and from the formula for gα in (4.12), we obtain: f̄ =
√
l(1 + 4k + 4l)/2 .

The general solution of (4.12) is

{
l > k + 1

4 (k = 0, 1, 2, . . .)

γ = 2l
1+4(k+l) , C =

√
8l

4(l−k)−1 , f̄ =

√
l(1+4k+4l)

2 .
(4.15)

4.1.4 Solution of (4.13)

Analogous with (4.13), the solution of (4.13) is:

{
l > k − 1

4 (k = 1, 2, 3, . . .)

γ = 2l
4(k+l)−1 , C =

√
8l

4(l−k)+1 , f̄ =

√
l(4k+4l−1)

2

(4.16)

Proposition 6. The set of solutions of the second class is dense in (0, 1/3) of Poisson’s ratio
interval.
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Proof. For every value of 0.25 < γ < 0.5 (or 0 < ν < 1/3), we can find a pair of integers
(kn, ln) (n ∈ R) with kn < ln satisfying

γn =
2ln

1 + 4(kn + ln)
⇒ γ when n⇒ +∞

because of the fact that the rational set Q is dense in irrational set R.

For example, if γ =
√

2/5, we can choose kn = 7678 and ln = 10000, and then |γ−γn| < 10−5.
However, this osculation point belongs to a very high mode which does not exist in practice.
Rather, we can consider the Poisson’s ratio of the layer to be a simple rational number, and
we will always find a reasonable kn and ln so that γ = γn.

4.1.5 Numerical results

With k = 0, l = 1 in (4.15) we have

γ =
2

5
, C =

√
8

3
, f̄ =

√
10

2
= 1.5811 ,

and with k = 1, l = 3 in (4.16) we have

γ =
2

5
, C =

√
8

3
, f̄ =

√
10

2
= 1.8708 .

We can easily observe that there is some pair of (k, l) values in (4.15) and (4.16) which give
the same γ and C but different f̄ . Thus, for such values of γ, the phase velocity curves have
more than one osculation point.

4.1.6 Get the Tolstoy’s formula again from LBF’s secular equation

The secular equation of the model LFB is

A0(C) +B0(C) sin(gαdk) sin(gβdk) + C0(C) cos(gαdk) cos(gβdk) = 0 (4.17)

where A0(C), B0(C) and C0(C) are presented in (2.14). We denote

y = tan(gαdk/2), x = tan(gβdk/2)

and we have

A0(C) +B0(C)
2y

1 + y2

2x

1 + x2
+ C0(C)

1 − y2

1 + y2

1 − x2

1 + y2
= 0 (4.18)

or

y2
[
(A0(C) − C0(C)) + (A0(C) + C0(C))x2

]

+ 2y [2xB0(C)] +
[
A0(C) + C0(C) + x2(A0(C) − C0(C))

]
= 0 . (4.19)
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This is a quadric equation of variable y and its solution is

y =
−2xB0(C) ±

√
δ′

[A0(C) − C0(C)] + [A0(C) + C0(C)]x2
(4.20)

with

δ
′

= 4x2B0(C)2 − (A0(C)2 − C0(C)2)(1 + x4)

+ x2
[
(A0(C) − C0(C))2 + (A0(C) + C0(C))2

]
. (4.21)

Denote

t1 = B0(C)/C0(C), t2 = −C0(C)/A0(C)

and note that γ = 1+g2
α

1+g2

β

so we can again get formula (4.1).

4.2 Osculation points of LOH

Similar to the model LFB, we can obtain the equations defining two modes M1 and M2

of the dispersion curves for model LOH as in [56]. However, these two equations are both
complicated and cumbersome, and it is almost impossible to get such simple formulas defining
the osculation point as we have in the model LFB. In this section, we will use our observation
regarding the special property of the osculation point to find such a formula. The key property
is that the H/V -ratio changes from having two singularities to having one singularity and
one zero point at the osculation point. This property is analytically proven for model LFB
and numerically checked for model LOH.

Fig. 3.8 shows the domain of Poisson’s ratio ν1 and impedance contrast rs for the four
states of the H/V -ratio. From the above observation, we can see that the curve Z1O is the
collection of the osculation points because it is the border of the region R1 and R2. This
curve is a part of curve Z1Z2 for which the formula is presented in (3.52). Our problem here
is that we have to find the coordinate of the point O which is the upper bound of curve Z1O.
This point separates the curve Z1Z2 into Z1O and the curve OZ2 which is a collection of
points with similar properties to those of the osculation point. At these similar points, the
H/V -ratio changes its state from having one singularity to having two zero points. Let ν0 be
the Poisson’s ratio value of the point O. The set of osculation points (ν0

1 , r
0
s of model LOH

is presented as

r0s = C(ν2, rd) arctan
[
D(ν2, rd)(ν

0
1 − 0.25)

]
(4.22)

ν0
1 < ν0

with the auxiliary functions

C(ν2, rd) = 0.3058 − 0.0471 rd + 0.0092 r2d − 0.0839 ν2 + 0.2918 rd ν2

− 0.2673 r2d ν2 + 0.1538 ν2
2 − 0.6098 rd ν

2
2 + 0.5056 r2d ν

2
2 ,

D(ν2, rd) = 65.9858 − 91.2188 rd + 47.6980 r2d + 137.1766 ν2 − 342.7329 rd ν2

+ 249.2955 r2d ν2 + 67.7489 ν2
2 + 223.5938 rd ν

2
2 − 253.4675 r2d ν

2
2 .
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The condition ν0
1 < ν0 is similar to the condition of 0 < ν < 1/3 in model LFB. For model

LOH, the value of ν0 depends on Poisson’s ratio of the half-space ν2 and the density ratio rd.
By numerical calculation, we can represent the function ν0(rd, ν2) in a simple form,

ν0(rd, ν2) = 0.3019 + 0.0511 rd − 0.0183 ν2 − 0.0444 rd ν2 , (4.23)

which shows very good accuracy – about 2 percent error – in the domain of 0.3 < rd < 0.9
and 0 < ν2 < 0.5. The maximum and minimum values of function ν0(rd, ν2) are 0.353 and
0.2929, respectively. These values are very close to 1/3 = 0.333, which is the upper bound of
ν in model LFB.
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General conclusions and
perspectives

In the framework of investigating the ellipticity of Rayleigh surface waves, the objective of
this thesis was to improve some aspects of the theoretical basis of the H/V method. The
H/V -method, based on ambient noise recordings, has become more and more popular over
the last decades, as it offers a convenient, practical and low-cost tool to be used in urbanized
areas. The simple horizontal-to-vertical Fourier amplitude spectral ratio is used to determine
site response parameters. Although the theoretical basis of this method is still unclear, the
ability of the H/V -method to provide a reliable information related to site response has been
repeatedly shown in the past (Nakamura, 1989 [40]; Lachet and Bard, 1994 [29]; Kudo, 1995
[27]; Bard, 1998 [4]). In this thesis, considering that the most dominant contributions to
ambient vibrations are known to come from surface waves, although the exact composition
may change depending on the particular site, I study characteristics of the ellipticity of
Rayleigh waves which are actually analysed in the H/V -method. Studying the ellipticity of
Rayleigh waves gives a better fundamental theoretical understanding about this method.

In studying this issue, several models with increasing complexity have been investigated.
Although the real model is very complicated, in some cases it can be approximated by a
simpler model which makes it easier to study. This observation has been reported in Fäh et
al. (2001) [16]. In this thesis, I begin from the simplest model “homogeneous half-space” and
worked up to the model “inhomogeneous layer over half-space”, which is nearest to reality,
and tried to answer the following questions:

1. What is the relationship between the H/V peak frequency and the peak frequency
of the transmission response of a medium where the shakeability of the site would
be expected to be enhanced? Under what conditions is it allowed to assume their
approximate equivalence?

2. What is the role of the trough frequency in the H/V spectral ratio to the H/V -method,
and how can it be used?

3. When does the H/V -ratio curve have a sharp peak, and when only a broad maximum
point? When does it have both a sharp peak and a clear trough? Which parameters
affect most this character?

4. What is the frequency bound of the prograde particle motion?
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5. How the inhomogeneity affects on the peak and trough frequency of the H/V -ratio
curve compare to the homogeneous case?

6. What (primarily) controls the variation of phase velocity at zero frequency? When the
phase velocity curve has osculation points?

7. How does the incident body wave affect the H/V -ratio?

The most prominent of the above questions is that of the relationship between the H/V peak
frequency and the S-wave resonant frequency of the layer, and when we can assume their ap-
proximate equivalence. These questions turn out to be surprisingly challenging theoretically,
even for very simple models and they have only rarely been addressed in the literature (e. g.
Malischewsky and Scherbaum, 2004 [35], Malischewsky et al., 2008 [38]). In this thesis, by
studying the ellipticity of the model “layer with fixed bottom”, I analytically prove that we
can approximate the S-wave resonant frequency of the layer with the H/V peak frequency
when the impedance contrast between the layer and the substrate is high enough. This con-
clusion has been noted in numerical calculations and recorded data such as in Tokimatsu 1997
[55], Scherbaum et al. 2002 [49], Parolai et al. 2004 [46], Bonnefoy-Claudet et al. 2006 [9],
Souriau et al. 2007 [3]. However, when the impedance of the layer and the substrate is not so
high, the relationship between the H/V peak frequency and the S-wave resonant frequency
of the layer becomes much more complicated. In this case, we can not simply assume that
they are approximately equal. I found that this relationship is sensitive to Poisson’s ratio of
the layer and the variation of the impedance contrast; however, it only depends slightly on
Poisson’s ratio of the half-space and the density of mass. In this thesis, I present some maps
showing this relationship in dependence on the key parameters. From these maps, we can
infer the S-wave resonant frequency of the layer from peak frequency of H/V spectral ratio.

The role of the trough frequency has been reported to be useful and applicable as in Konno
and Ohmachi (1998) [25]. In this thesis, I integrate trough frequency information along with
peak frequency information into one map in dependence on key parameter such as Poisson’s
ratio of the layer or impedance contrast. From these maps, I propose a way to infer the
Poisson’s ratio of the layer and the impedance contrast by observing informations from the
H/V spectral ratio.

The maps considered above are not only for the cases in which the H/V -ratio curve has
singularities and zero-points, but also for the cases in which it has maximum and minimum
points. I also present in this thesis two simple functions of model parameters classifying when
the H/V -ratio curve has sharp peaks or a only broad maximum point, and when it has a
zero-point or only minimum points. These functions were determined by enormous numerical
calculations, but they show a very good approximation.

The singularity and zero-point frequencies are associated with the particle motion in the
sense that the direction of this motion changes at these frequencies. With the simple model
“homogeneous half-space”, it is well-known that the motion of a particle at the surface is
always retrograde. The prograde motion starts to be observed in the model “layer with fixed
bottom”, which is a special case of the more general model “layer over half-space” when the
impedance contrast is very high. By studying this model, I found the bound of the prograde
motion frequency band in relation to the thickness and shear wave velocity of the layer. These
bound frequency values depend on Poisson’s ratio of the layer, and can be used to infer this
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ratio.

If the layer is inhomogeneous, in some cases, we can approximate this inhomogeneous layer
with a simple homogeneous layer without any great difference in the peak frequency of the
H/V -ratio curve. In this thesis, I only consider the inhomogeneous layer in which the shear
modulus varies while the other parameters remain constant. The simple homogeneous re-
placed layer takes an equivalent shear modulus which can be calculated either by the mean
of the shear wave velocity or by the mean travel time of the S-wave in the layer. I illustrate
that taking the equivalent shear modulus by the first method gives a better approximation
of the peak frequency than is given by the second method.

The phase velocity is a key factor affecting the H/V -ratio, and it is well-known that at the
zero frequency, the phase velocity takes on the characteristics of the Rayleigh wave of the
half-space. The slope of the phase velocity at zero frequency decides whether it decreases or
increases at this frequency. In this thesis, I present a simple formula of this slope dependent on
different parameters. However, only the impedance contrast and Poisson’s ratio of the layer
and half-space affect the sign of the slope, and we can easily use this formula to determine
that the surface wave will exhibit normal, anomalous or no dispersion at the zero frequency.

The osculation point is a special feature of the phase velocity curve where two separate modes
seem to meet each other. I find a special property of the H/V -ratio of fundamental mode at
this point: the H/V -ratio curve changes its property from having two singularities to having
one singularity and one zero point. This property is analytically proven in the simple model
“layer with fixed bottom” and numerically illustrated in model “layer over half-space”. I also
present the exact formulae of the three most interesting classes of osculation points of the
model “layer with fixed bottom” and an approximated formula of the osculation point for
the model “layer over half-space”.

Although it is not the aim of this thesis to resolve questions about the content of ambient
noise (body waves and surface waves), I also study the effects of body waves on the H/V
spectral ratio. It turns out that, the first peak frequency of H/V -ratio contributed by the
incident body wave is very near to the S-wave resonant frequency of the layer in most the
cases. I also found that the H/V -ratio of incident body wave becomes identical with that
of the Rayleigh wave if their velocities are equal. This happens only in theory, because the
apparent velocity of the incident body wave is always greater than those of the Rayleigh
surface waves.

These are the main results which I obtain in this thesis. However, there are many problems
which are not addressed in this thesis, and could be addressed and resolved in the future.
The first that I would mention here is the determination of the first higher mode. Although
the peak frequency of the first higher mode is presented in this thesis by a simple formula for
the model “layer with fixed bottom”, there has been nothing achieved for the model “layer
over half-space”. This problem should be solved in the future because the first higher mode
affects the H/V spectral ratio in some cases such as in Konno and Ohmachi (1998) [25], in
which it was reported that the H/V spectral ratio does not show a clear trough because the
peak frequency of the first higher mode is close to the trough frequency of the fundamental
mode, and it may contribute some energy to the H/V spectral ratio.

The second issue is that we approximate a complex inhomogeneous layer by a homogeneous
layer with the equivalent shear modulus calculated by taking the mean shear wave in the whole
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layer. However, this procedure can only be applied when the other parameters are constant.
If they are not, we need to find a better procedure to find the equivalent parameters in order
to use all results of simple model “homogeneous layer over half-space” which were found in
this thesis.

The last issue which I can address here is: in some cases, the model “layer over half-space”
is not enough to explain the more complicated H/V spectral ratio which has, for example,
more than one peak and more than one zero point. We need a more complex model to explain
this phenomenon such as “two layers over half-space”. Although this model is complicated
to investigate, the model “two layers with fixed bottom” is simple enough to do, and the
knowledge of this model can give us a general look on the more complex model. One example
for this model is to solve the problem of velocity inversion when the shear wave velocity does
not increase with depth as in typical case but decrease with depth. We can have this situation
when a hard thin artificial layer lies on soft soil, as is very popular in urban areas.



Appendix

Appendix 1

By substituting the auxiliary A0(C), B0(C) and C0(C) from (2.14) into the secular equation
(2.12) we have

∆(C, f̄) = (1 + g2
α)∆1(C, f̄) + γ∆2(C, f̄) (4.24)

with

∆1(C, f̄) = −2gαgβ + (−1 + g2
β) [sin(gαdk) sin(gβdk) − gαgβ cos(gαdk) cos(gβdk)] (4.25)

and

∆2(C, f̄) = − 2gαgβ(−3 + g2
β) [1 − cos(gαdk) cos(gβdk)]

+
[
2 + (−2 + 4g2

α)g2
β

]
sin(gαdk) sin(gβdk) . (4.26)

Because χ2(C, f̄) = 0 and χ3(C, f̄) = 0 and from their formulas (2.33)-(2.34) we have

sin(gαdk) =
2gαgβ

−1 + g2
β

sin(gβdk) , (4.27)

cos(gαdk) = − 2

−1 + g2
β

cos(gβdk) . (4.28)

Substituting sin(gαdk) and cos(gαdk) from (4.27) into ∆1(C, f̄) (4.25) and ∆2(C, f̄) (4.26)
yields

∆1(C, f̄) = −2gαgβ

[
1 − sin2(gβdk) − cos2(gβdk)

]
= 0 (4.29)

and

∆2(C, f̄) = −8gαgβC
2

−1 + g2
β

[
γ(1 − C2) + C2/4 − cos2(gβdk)(g(1 − C2) + 1)

]
. (4.30)

In (2.41) we have

cos2(gβdk) =
γ(1 − C2) + C2/4

γ(1 − C2) + 1
(4.31)

which gives ∆2(C, f̄) = 0. Thus, ∆(C, f̄) = 0.
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Appendix 2

Because 1/χ2(C, f̄) = 0 and 1/χ3(C, f̄) = 0 and from their formulas (2.33)-(2.34) we have

sin(gβdk) =
2gαgβ

−1 + g2
β

sin(gαdk) , (4.32)

cos(gβdk) = − 2

−1 + g2
β

cos(gαdk) . (4.33)

Substituting sin(gβdk) and cos(gβdk) from (4.32) into ∆1(C, f̄) (4.25) and ∆2(C, f̄) (4.26)
yields

∆1(C, f̄) = −2gαgβ

[
1 − sin2(gαdk) − cos2(gαdk)

]
= 0 (4.34)

and

∆2(C, f̄) = −8gαgβC
2

−1 + g2
β

[
γ(1 − C2) + C2/4 − cos2(gαdk)(γ(1 − C2) + 1)

]
. (4.35)

In (2.47) we have

cos2(gαdk) =
γ(1 − C2) + C2/4

γ(1 − C2) + 1
(4.36)

which gives ∆2(C, f̄) = 0. Thus, ∆(C, f̄) = 0.

Appendix 3

The normalized horizontal displacement amplitude of the layer in LOH is given by given by

Ũ
(1)
1 (x3) =

N(x3)

H(x3)
(4.37)

where

N(x3) = eβN1 cosh (eβkx3) +N2 cosh (eαkx3) +N3 sinh (eβkx3) +N4 sinh (eαkx3) (4.38)

for

N10 = 2eαgβ(−2 + h2)h
2
1 ,

N11 = 8e2αgβ(−2 + h2)eβ ,

N12 = h2
1

(
4f1gαgβ − 2gαgβh1 + h1h2 − f1h

2
2

)
,

N13 = − 4eαeβ
(
4f1gαgβ − 2gαgβh1 + h1h2 − f1h

2
2

)
,

N14 = − 2eαgβh
2
1(−2 + h2) ,

N1 = N10 +N11 sinh (deαk) sinh (deβk) +N12 sinh (deαk) cosh (deβk)

+N13 cosh (deαk) sinh (deβk) +N14 cosh (deαk) cosh (deβk) ,
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N20 = 4h1eαeβgβ(−2 + h2) ,

N21 = gβ(−2 + h2)h
3
1 ,

N22 = − eβh
2
1 (4(−1 + f1)gαgβ + h2(2 − f1h2)) ,

N23 = 2eαe
2
β (4(−1 + f1)gαgβ + h2(2 − f1h2)) ,

N24 = − 4eαeβgβh1(−2 + h2) ,

N2 = N20 +N21 sinh (deαk) sinh (deβk) +N22 sinh (deαk) cosh (deβk)

+N23 cosh (deαk) sinh (deβk) +N24 cosh (deαk) cosh (deβk) ,

N30 = 2eαe
2
βh1 (4(−1 + f1)gαgβ + h2(2 − f1h2)) ,

N31 = eβh
2
1

(
4f1gαgβ − 2gαgβh1 + h1h2 − f1h

2
2

)
,

N32 = 8e2αe
2
βgβ(−2 + h2) ,

N33 = − 2eαeβgβh
2
1(−2 + h2) ,

N34 = 4eαe
2
β

(
−4f1gαgβ + 2gαgβh1 − h1h2 + f1h

2
2

)
,

N3 = N30 +N31 sinh (deαk) sinh (deβk) +N32 sinh (deαk) cosh (deβk)

+N33 cosh (deαk) sinh (deβk) +N34 cosh (deαk) cosh (deβk) ,

N40 = 2eβh1

(
4f1gαgβ − 2gαgβh1 + h1h2 − f1h

2
2

)
,

N41 = 4eαe
2
β (4(−1 + f1)gαgβ + h2(2 − f1h2)) ,

N42 = − 4eαeβgβh1(−2 + h2) ,

N43 = gβh
3
1(−2 + h2) ,

N44 = eβh
2
1 (4(−1 + f1)gαgβ + h2(2 − f1h2)) ,

N4 = N40 +N41 sinh (deαk) sinh (deβk) +N42 sinh (deαk) cosh (deβk)

+N43 cosh (deαk) sinh (deβk) +N44 cosh (deαk) cosh (deβk) ,

and

H = −eα(−2 + h1)(H1 cosh (deαk) +H2 cosh (deβk)

+H3 sinh (deαk) +H4 sinh (deβk)) (4.39)

for

H1 = − 2eβ(4f1gαgβ − 2gαgβh1 + h1h2 − f1h
2
2) ,

H2 = eβh1(4(−1 + f1)gαgβ + h2(2 − f1h2)) ,

H3 = 4eαeβgβ(−2 + h2) ,

H4 = − h2
1gβ(−2 + h2) .

The vertical displacement amplitudeis given by:

Ũ
(1)
3 (x3) =

K(x3)

H(x3)
(4.40)
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where

K(x3) = K1 cosh (eβkx3)+ eαK2 cosh (eαkx3)+K3 sinh (eβkx3)+K4 sinh (eαkx3) (4.41)

for

K10 = 2h1eαeβ (4(−1 + f1)gαgβ + h2(2 − f1h2)) ,

K11 = h2
1

(
4f1gαgβ − 2gαgβh1 + h1h2 − f1h

2
2

)
,

K12 = 8e2αeβgβ(−2 + h2) ,

K13 = − 2eαgβh
2
1(−2 + h2) ,

K14 = − 4eαeβ
(
4f1gαgβ − 2gαgβh1 + h1h2 − f1h

2
2

)
,

K1 = K10 +K11 sinh (deαk) sinh (deβk) +K12 sinh (deαk) cosh (deβk)

+K13 cosh (deαk) sinh (deβk) +K14 cosh (deαk) cosh (deβk) ,

K20 = 2eβh1

(
4f1gαgβ − 2gαgβh1 + h1h2 − f1h

2
2

)
,

K21 = 4eαe
2
β (4(−1 + f1)gαgβ + h2(2 − f1h2)) ,

K22 = − 4eαeβgβh1(−2 + h2) ,

K23 = gβh
3
1(−2 + h2) ,

K24 = − eβh
2
1 (4(−1 + f1)gαgβ + h2(2 − f1h2)) ,

K2 = K20 +K21 sinh (deαk) sinh (deβk) +K22 sinh (deαk) cosh (deβk)

+K23 cosh (deαk) sinh (deβk) +K24 cosh (deαk) cosh (deβk) ,

K30 = 2eαgβh
2
1(−2 + h2) ,

K31 = 8e2αgβ(−2 + h2) ,

K32 = h2
1

(
4f1gαgβ − 2gαgβh1 + h1h2 − f1h

2
2

)
,

K33 = 4eαeβ
(
−4f1gαgβ + 2gαgβh1 − h1h2 + f1h

2
2

)
,

K34 = − 2eαgβh
2
1(−2 + h2) ,

K3 = K30 +K31 sinh (deαk) sinh (deβk) +K32 sinh (deαk) cosh (deβk)

+K33 cosh (deαk) sinh (deβk) +K34 cosh (deαk) cosh (deβk) ,

K40 = 4e2αeβgβh1(−2 + h2) ,

K41 = eαgβh
3
1(−2 + h2) ,

K42 = eαeβh
2
1 (4(−1 + f1)gαgβ + h2(2 − f1h2)) ,

K43 = 4e2αe
2
β (4(−1 + f1)gαgβ + h2(2 − f1h2)) ,

K44 = − 4e2αeβgβh1(−2 + h2) ,

K4 = K40 +K41 sinh (deαk) sinh (deβk) +K42 sinh (deαk) cosh (deβk)

+K43 cosh (deαk) sinh (deβk) +K44 cosh (deαk) cosh (deβk) .
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The normalized horizontal displacements in the half-space is

Ũ
(2)
1 (x3) = −e(gα+gβ)kx3

T (x3)

M

D

H(x3)f1
(4.42)

where

M = M0+M1 sinh (deαk) sinh (deβk) +M2 sinh (deαk) cosh (deβk)

+M3 cosh (deαk) sinh (deβk) +M4 cosh (deαk) cosh (deβk) (4.43)

for

M0 = − 2eαeβh1 (2 + h1 − 2f1h2) ,

M1 = 4e2αe
2
β (−2 + f1h2) + h2

1 (−h1 + f1h2) ,

M2 = 4e2αeβgβ(−2 + h1) ,

M3 = − eαgβ(−2 + h1)h
2
1 ,

M4 = − eαeβ
[
−4h1 + 4f1h2 + h2

1(−2 + f1h2)
]

and

D = D0 +D1 sinh (deαk) sinh (deβk) +D2 sinh (deαk) cosh (deβk)

+D3 cosh (deαk) sinh (deβk) +D4 cosh (deαk) cosh (deβk) (4.44)

for

D0 = 4eαeβgβh1 (−2h1 + f1(2 + h1)) ,

D1 = gβ

(
16e2αe

2
β(−1 + f1) + (2f1 − h1)h

3
1

)
,

D2 = − eβf1(−2 + h1)h
2
1h2 ,

D3 = 4eαe
2
βf1(−2 + h1)h2 ,

D4 = − 4eαeβgβh1 (−2h1 + f1(2 + h1))

and

T (x3) = T1e
gβkx3 + T2gβe

gαkx3 (4.45)

for

T10 = − 2eαeβh1(2 + h1 − 2f1h2) ,

T11 = 4e2αe
2
β(−2 + f1h2) + h2

1(−h1 + f1h2) ,

T12 = 4e2αeβgβ(−2 + h1) ,

T13 = − eαgβ(−2 + h1)h
2
1 ,

T14 = eαeβ
[
4h1 − 4f1h2 + h2

1(2 − f1h2)
]
,

T1 = T10 + T11 sinh (deαk) sinh (deβk) + T12 sinh (deαk) cosh (deβk)

+ T13 cosh (deαk) sinh (deβk) + T14 cosh (deαk) cosh (deβk) ,
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T20 = 2eαeβgαh1(2 − 4f1 + h1) ,

T21 = − gα

[
8e2αe

2
β(−1 + f1) + (2f1 − h1)h

2
1

]
,

T22 = − 4e2αeβ(−2 + h1) ,

T23 = eα(−2 + h1)h
2
1 ,

T24 = 2eαeβgα

[
−h1(2 + h1) + f1(4 + h2

1)
]
,

T2 = T20 + T21 sinh (deαk) sinh (deβk) + T22 sinh (deαk) cosh (deβk)

+ T23 cosh (deαk) sinh (deβk) + T24 cosh (deαk) cosh (deβk) .

Vertical displacement in the half-space is given by

Ũ
(2)
3 (x3) = e(gα+gβ)kx3

K(x3)

M

D

H(x3)f1
(4.46)

where

K = T1e
gβkx3gα + T2e

gαkx3 . (4.47)

Appendix 4: Incident SV-wave

By reflection and refraction, the SV incident wave generates the upward and downward
systems of P-wave and SV-wave in the layer and downward systems of P-wave and SV-wave
in the half-space. Hence, the expression of complex amplitudes of potentials in the layer are

ΦH(x3) = L1 sinh(p1x3) + L2 cosh(p1x3) , (4.48)

ΨH(x3) = L3 sinh(q1x3) + L4 cosh(q1x3) (4.49)

and in the half-space

ΦL(x3) = A1 exp(−p2x3) , (4.50)

ΨL(x3) = A2 exp(−q2x3) +A0 exp(q2x3) (4.51)

for

p1 = keα , q1 = keβ ,

p2 = kgα , q2 = kgβ .

The amplitude of displacements in the layer are

U
(L)
1 (x3) = ikΦ(L)(x3) −

dΨ(L)(x3)

dx3
, (4.52)

U
(L)
3 (x3) =

dΦ(L)(x3)

dx3
+ ikΨ(L)(x3) (4.53)

and in the half-space

U
(H)
1 (x3) = ikΦ(H)(x3) −

dΨ(H)(x3)

dx3
, (4.54)

U
(H)
3 (x3) =

dΦ(H)(x3)

dx3
+ ikΨ(H)(x3) . (4.55)
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The amplitude of stresses in layer can be expressed due to amplitudes of displacement as

S
(L)
31 = ρ1β

2
1

[
dU

(L)
1

dx3
+ ikU

(L)
3

]
, (4.56)

S
(L)
33 = ρ1α

2
1

[
dU

(L)
3

dx3
+ ik(1 − 2γ1)U

(L)
1

]
(4.57)

and in half-space as

S
(H)
31 = ρ2β

2
2

[
dU

(H)
1

dx3
+ ikU

(H)
3

]
, (4.58)

S
(H)
33 = ρ2α

2
2

[
dU

(H)
3

dx3
+ ik(1 − 2γ1)U

(H)
1

]
. (4.59)

The boundary conditions are free at the surface of the layer, and the continuity of the dis-
placements and stresses between the layer and half-space at the interface are given by

S
(L)
31 (−d) = S

(L)
33 (−d) = 0

and

U
(L)
1 (0) = U

(H)
1 (0) ,

U
(L)
3 (0) = U

(H)
3 (0) ,

S
(L)
13 (0) = S

(H)
13 (0) ,

S
(L)
33 (0) = S

(H)
33 (0) .

By substituting the displacement and stress formulas of the layer and half-space into these
six boundary conditions yields, after some simple algebraic modification:

[M ][l] = [n] (4.60)

with vector [l] = [L1, L2, L3, L4, A1, A2]
′, which is a column vector of the unknown integration

constants. The matrix [M ] with the size 6 × 6 is

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

2ieα cosh(eαdk) −2ieα sinh(eαdk) h1 sinh(eβdk) −h1 cosh(eβdk) 0 0

−h1 sinh(eαdk) h1 cosh(eαdk) 2ieβ cosh(eβdk) −2ieβ sinh(eβdk) 0 0

0 i −eβ 0 −i −gβ

eαgβ 0 0 igβ gβgα −igβ

2ieαgβ 0 0 −h1gβ 2if1gβgα f1gβh2

0 h1 2ieβ 0 −f1h2 2if1gβ

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(4.61)

and the column vector [n] is

[n] = A0 · [0, 0, −gβ, igβ, −f1gβh2, 2if1gβ ]′ . (4.62)
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The H/V ratio is formulated by

χSV =
U

(L)
1 (−d)

U
(L)
3 (−d)

=
iL2 cosh(eαdk) − eβL3 cosh(eβdk) − iL1 sinh(eαdk) + eβL4 sinh(eβdk)

eαL1 cosh(eαdk) + iL4 cosh(eβdk) − eαL2 sinh(eαdk) − iL3 sinh(eβdk)
. (4.63)

The integration constants L1, L2, L3, L4 can be found in relation to A0 by (4.60). After
substituting these into (4.63) we obtain the H/V ratio formula for the incident SV body wave
as in (3.98).
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[11] Bonnefoy-Claudet S., A. Köhler, C. Cornou, M. Wathelet, and P.-Y. Bard
(2008). Effects of Love waves on microtremor H/V ratio. Bulletin of the Seis-
mological Society of America 98(1), pp. 288-300.

109



110 BIBLIOGRAPHY
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