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Abstract

Differential algebraic equations (DAEs) of the form Ei = Az + f are considered.
The solutions = and the inhomogeneities f are assumed to be distributions (general-
ized functions). As a new approach, distributional entries in the coefficient matrices
E and A are allowed, in particular, this encompasses the case where the coefficient
matrices are time-varying but not continuous. Since a multiplication for general
distributions is not possible, the smaller space of piecewise-smooth distributions
is introduced. A restriction can be defined for the space of piecewise-smooth dis-
tributions, this restriction is used to study DAEs with inconsistent initial values;
basically, it is assumed that some past trajectory for z is given and the DAE is
activated at some initial time. If this initial trajectory problem always has a unique
solution, then the DAE is called regular. This generalizes the regularity for classical
DAEs (i.e. a DAE with constant coefficients).
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1 Introduction

1.1 Aims and main results of the paper

A differential algebraic equation (DAE) is an equation of the form
Eit=Ax+f

where E, A are in general rectangular matrices and f is some inhomogeneity.
The aim of this paper is to develop a solution theory for distributional DAEs,
i.e. distributions as introduced by Schwartz [19] are considered as solutions z,
as inhomogeneities f and as entries of the coefficient matrices F and A. For
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general distributions a multiplication within the space of distributions is not
possible; therefore, a smaller space, the space of piecewise-smooth distributions
Dpweee, is introduced (Definition 1). It is shown that it is possible to define a
multiplication within Dy (Theorem 4) and also a distributional restriction
(Definition 8), the latter is used to formulate initial trajectory problems (Def-
inition 14) which allows to study solutions with inconsistent initial values.
For the constant coefficient case, it is well known that regularity of the matrix
pair (E, A) is an important concept with respect to existence and uniqueness of
solutions; this concept is generalized for distributional DAEs (Definition 15).
Necessary conditions for regularity (Theorem 17, Theorem 18) as well as suffi-
cient conditions (Theorem 20, Theorem 23) are given. The sufficient conditions
can be summarized in the condition that the matrix pair (F, A) can be put
into a generalized Weierstrafl form (Corollary 25).

1.2 Motiwvation for studying distributional DAESs

DAEs of the form Ez = Ax + f arise for example in modelling electrical cir-
cuits, mechanical and chemical systems (see e.g. [13, 1.1.3]), in particular, if
these models are generated automatically. If the inhomogeneity is not contin-
uous (for example, if it is generated by a switching controller) then, even for
constant coefficients, a classical solution does in general not exist and one has
to consider distributional solutions (see e.g. [13, Remark 2.32]).

The motivation to consider distributional entries in the coefficients follows
from the need to study switched DAEs, which appear in case of possible struc-
tural changes in the system. For an overview on classical switched systems
and for further motivation, see e.g. [15]. Inconsistent initial values can also be
interpreted as a result of switching. Switching yields that the coefficient ma-
trices E' and A are not continuous. Equivalent system description and normal
forms play an important role for the analysis of DAEs. Two canonical trans-
formations which do not change the qualitative solution behaviour are, firstly,
multiplication of Kt = Ax + f with some invertible matrix S from the left
and, secondly, a coordinate transformation x = Tz for some invertible matrix
T and with the new variable z. This yields the equivalent DAE

SET: = (SAT — SET')z + Sf.

If £ and A are not continuous, then it is reasonable to assume that S and
T may also be discontinuous. Hence 7" only makes sense in the distribu-
tional sense. This motivates distributional entries in the coefficient matrices.
Furthermore, linear impulsive systems (see e.g. [14]) can be rewritten as a
distributional ODE & = Az + f with distributional entries in A. For further
motivation see also the switched electrical circuit example in Section 4.



1.3 Results in the literature

Distributional solutions for linear DAEs were considered already in [1] and [21],
mainly to deal with inconsistent initial values, but no general distributional
solution theory was introduced, problems like evaluations of distributions at a
certain point (which is needed to speak of initial values) were not addressed.
A first rigorous distributional solution theory was given by Cobb in [2], he
introduced “piecewise continuous distributions” which encompass piecewise-
smooth distributions. However, the space of piecewise continuous distributions
is not closed under differentiation, and since Cobb seems to have overlooked
this fact, some of the results in [2] might need a reformulation. The space of
“Impulsive smooth distributions” as defined in [18] is a subspace of piecewise-
smooth distributions, where jumps and Dirac impulses (and its derivatives)
can only occur at time ¢t = 0. Piecewise-smooth distributions were used as an
underlying solution space for time-invariant higher order Rosenbrock systems
in [8], “time-varying” topics like inconsistent initial values and switched sys-
tems were not addressed. There is no literature on DAEs with distributional
coefficient matrices.

There have been numerous approaches to define a multiplication for distri-
butions. Konig [11] enlarged the space of distributions to define a multipli-
cation, Fuchssteiner [6] introduced the space of “almost bounded” distribu-
tions, see also [7]. This space is very similar, but not identical, to the space
of piecewise-smooth distributions and he defined an associative multiplication
which ensures that the product rule for differentiation is fulfilled. This non-
commutative multiplication is identical to the multiplication defined in this
paper for piecewise-smooth distributions, although the approach is very dif-
ferent. In [22] a commutative but non-associative multiplication was defined
for another subspace of distributions. Finally, there are several textbooks on
the topic of multiplications of distributions [3,9,17], but the results are either
too general (for example results on non-associative multiplications) or too re-
strictive (for example results on commutative multiplictaions) for the purpose
of this paper. In Remark 7 an additional literature review is carried out with
the focus on the definition of the square of the Dirac-impulse.

1.4 Organisation of the paper and notation

The paper is organized as follows. In Section 2 the classical distribution the-
ory is revised and the space of piecewise-smooth distributions is introduced.
For piecewise-smooth distributions, the Fuchssteiner multiplication and a dis-
tributional restriction are defined. Some calculation rules are presented. In
Section 3 regularity of a distributional DAE is defined, this is strongly related



to solvability of a DAE and the uniqueness of solutions. Necessary and suf-
ficient conditions for regularity are presented. Finally, in Section 4 a simple
switched electrical circuit is studied to illustrate the developed distributional
solution theory.

To improve readability all proofs are carried out in the Appendix.

The following notation is used throughout the paper. N, Z, R are the natural
numbers, integers and real number, respectively. The space of functions « :
R — R which are smooth (i.e. arbitrarily often differentiable) is denoted by
C*. The restriction fj; : R — R of some function f : R — R on some set
M C R is defined by fi := 1y f, where 1), : R — {0,1} is the indicator
function of M (i.e. 1p(t) = 1 if, and only if, ¢ € M), in particular, the
restricted function f,; is still defined on the whole of R. A function f: R — R
is called locally integrable if, and only if, f is (Lebesgue-)measurable and for
every compact set K C R the (Lebesgue-)integral [ |f| is finite. The space
of distributions is D and the space of piecewise-smooth distribution is Dy
(see the later definitions).

2 Distributions
2.1 Review of classical distribution theory

Basis knowledge of distribution theory as introduced by Schwartz [19] (see
also textbooks like [10]) is assumed and is only summarized without proofs in
the following paragraph.

The space of test functions C3° C C™ is the set of all functions ¢ : R — R
which are smooth and which have bounded support (the support supp ¢ C R of
@ is the closure of { t € R | p(t) # 0 }). The space Cg° is a topological vector
space, and a sequence (@, )nen in C5° converges to zero (in this topology) if,
and only if, there exists a compact set M C R with supp ¢, C M foralln € N
and, for each i € N, the sequence of the i-th derivatives (gpff))neN converges
uniformly to zero. The space of distributions D is the set of all linear and
continuous operators D : C5° — R. The derivative of a distribution D € D
is defined by D'(¢) := —D(¢’) for all test functions ¢ € C§° and is itself
a distribution. Every distribution D € I has an antiderivative H € D, i.e.
H' = D, and all antiderivatives of D only differ by a constant distribution
(the constant distribution is given by ¢ +— ¢ [ ¢ for ¢ € R). The space of
locally integrable functions Lo is injectively embedded into the space of
distributions via the homomorphism

Liwed frfo= (o [ f0) €D, 1)



For differentiable functions f, the distributional derivative “equals” the stan-
dard derivative, i.e. (f')p = (fp)’. Distributions induced by locally integrable
functions via homomorphism (1) are called regular distributions. The well
known Dirac impulse (also known as (Dirac-)d-function) ¢, € D at some time
t € R is given by
b : Co” — R, = (1)

and is the classical example for a distribution which is not regular. The support
supp D C R of a distribution D € D is the complement of the largest open set
on which D vanishes, i.e.

suppD::R\U{ OCR

The support of the Dirac impulse §; at t € R and of all its derivatives is {¢}
and, conversely, the following implication holds for all t € R and all D € D

O open and Vy € C° :
suppe CO = D(p)=0 |~

suppD ={t} = 3IneN3a,a,....,a, eR:D= a0 (2)

i=0
and the represantation is unique, i.e. Y77 aiéf) =>", biét(i) if, and only if|
a; = b;, 1 =1,... n. Furthermore, one can show that the only regular distri-

bution whose support has Lebesgue measure zero (for example any countable
set) is the zero distribution or in other words the support of nontrivial regular
distributions is essential. Distributions can be multiplied by smooth functions,
i.e. for all @« € C* the product aD given by (aD)(p) := D(ap), ¢ € C°,
is again a distribution. It is easy to see, that the multiplication rule for the
derivative holds, i.e.

VaeC*VD eD: (aD) =d'D+aD (3)

A simple consequence of [12, Folg. 3.24] is the following property for all &« € C*
and D € D

{Vi eNVtesuppD: oV(t) = 0} = aD=0. (4)

Note that in property (4) it is not assumed that supp o N supp D = ().
Convergence of a sequence of distributions is defined “pointwise”, i.e. a se-
quences (D, )nen € DY converges to D € D if, and only if, D, () — D(p) for
all test functions ¢ € C§°. The space D is closed with respect to this conver-
gence, i.e. if for a sequences (D,,),ep of distributions the pointwise limit exists
then this limit is a distribution or, more formally,

Vo e Gy : lim Dy(p) €R| = lim D, := (¢ — lim Dy(p)) €D. (5)
Furthermore, for all sequences (D,,)nen of distributions,

lim D,=DcD = VieN: lim DY = DO, (6)

n—oo n—oo



2.2 Piecewise-smooth distributions

Definition 1 (Piecewise-smooth functions and distributions) Let the space
of piecewise-smooth functions be given by

CIC;SV - { “= Z ﬂ[tivtiﬂ)ai

1€Z

{t; eR | i €Z } locally finite,
(vi)iez € (COO)Z .

The space of piecewise-smooth distributions is defined as

pw’

Dpwe= =4 D=fo+> D
owC { fo+>_ D VteT:D,eDAsuppD; C {t}

teT

fecx, T CR locally finite, }

For a piecewise-smooth distribution D € Dy with representation D = fp +
>ier Dy the left and right sided evaluation at ¢t € R us defined by

D(t+) = lim f(t +2).  D(t=):=lim f(t <)

The impulsive part at t € R of the above D is defined by

Dy, teT
D[t :=¢ " _
0, otherwise

and the impulsive part of D s defined by

D[] =3 D[] =Y D.

teT teT

Finally, Doy == fp = D — D[] is called the regular part of D.

It is easy to show that the representation of piecewise-smooth distributions
is unique, i.e. two piecewise-smooth distributions D;, Dy € Dpyee with cor-
responding representation Dy = fE + S, DF, k = 1,2, are equal if, and
only if, f1 = f2, vVt € T'NT? : D} = D? vVt € T\Ty : D} = 0 and
Vt € T*\T : D? = 0. Hence the definition of left and right sided evalua-
tion and of the impulsive part are well defined. It is important to notice the
condition that the set T" in the definition of Dy is locally finite, i.e. any
intersection with some compact set is finite. If this condition is not fulfilled,
it is, on the one hand, not true in general that the infinite sum of distribution
with point support (as in the definition of Dyyee) exists and, on the other
hand, there are some locally infinite sums which define a distribution, but
these distributions might have undesirable properties (see Remark 9).

An important motivation for the introductions of distributions as general-
ized functions is the property that every distribution has a derivative within
the space of distributions. This property is preserved for the smaller space of
piecewise-smooth distributions as the following proposition shows.



Proposition 2 (Derivative of piecewise-smooth distributions) Let D €
Dpweee and fo = Dreg with [ = 3z Ly, 4,0)fi for some locally finite set
{t;eR |i€Z } and some smooth f; € C*, i € Z. Then

D' = (Z ﬂ[twf/) +3 (D(t4) - D(t-))s, + DI (@)

€L €L

In particular

Piecewise-smooth distributions also have antiderivatives which are piecewise-
smooth distributions again, furthermore it is possible to make the antideriva-
tive unique.

Proposition 3 (Unique distributional antiderivative) For D € Dpyce
and tyg € R there exists a unique distributional antiderivative

H - D < Dpwcoo

to
with H = D and H(to—) = 0.

It is possible to define a multiplication for piecewise-smooth distributions as
stated in the next theorem. This multiplication is a generalization of the mul-
tiplication of functions but it is not commutative anymore.

Theorem 4 (Multiplication of piecewise-smooth distributions) For D €
Dpwee and t € R let

6D = D(t-)s;, VneN: 6D = (5" D) — 5" D,

(8)
D, := D(t+)8, VneN: D" = (Do) — D5,
Let F,G € Dyye= with representation F = fp + Yier, F[t] and G = gp +
Yiere G[t] as in Definition 1. The product of F' and G is defined by, using (2)
and (8),

FG = (fg)]D)“' Z F[t]Greg+ Z FregG[t] = (fg)D‘l'F[']Greg_l'FregG[']' (9)

teTr tela

The multiplication of piecewise-smooth distributions has the following proper-
ties, F, G, H € Dyye, f,9 € Coy:

(’L) FG e Dpwcw;

(i) fogp = (f9)p,
(i) F(GH) = (FG)H, (F+G)H =FH+GH, F(G+ H)=FG+ FH,
(iv) (FG) = F'G+ FG',



(v) supp(FG) C supp F Nsupp G,

Remark 5 Fuchssteiner [6] (see also [7]) studied the space of almost bounded
distributions, which is very similar (but not equal) to the space of piecewise-
smooth functions. He showed that the multiplication from Theorem 4 is the
only one which fulfils the following conditions:

(M1) Dpweee is an associative differential algebra,

(M2) Vf,geCn: (f9)p= fogp,
(M:?) Vt € R: ﬂ[t,oo)D(St = (St.

In fact, Fuchssteiner gave a description of all multiplications fulfilling (M1)
and (M2). These multiplications are parametrized by a set M C R and fulfil

1 5 — Ot te M
L™ TN g e R\M

Since piecewise-smooth distributions are introduced in view of an applications
to DAFEs the condition (M3) is assumed, which then uniquely defines a mul-
tiplication on Dyyeeo, namely the multiplication defined in Theorem 4. Hence
this multiplication might be called Fuchssteiner multiplication.

Remark 6 From the recursive definition (8) an explicit representation can be
deried easily, t € R, n € N, D € Dpyeoo

n - i n I3 n—i
370 = 3 (1) () ey,
=0
D&M =3 (~1) <n> DO ()5,

i=0 L

(10)

Remark 7 (Square of Dirac impulse) [t follows from the defintion of the
multiplication that F[|G[-] = 0 for all F,G € Dyyee and, in particular for
0 := do,
5% = 0.

It is interesting to compare the different approaches in the literature with re-
spect to the square of the Dirac impulse: In [23] it is claimed that it is im-
possible to define this square® . A similar result is obtained in [22, Thm. 3.9],
however, in the proof it is shown that the square of the Dirac impulse, if it

exists, must be zero which contradicts the assumptions made in that paper.
2
In [16] the equation 6% — % (l = —L L s established, where the left hand

w2 \ =z w2 x
side is considered as a “single entity”, this is motivated by quantum mechanics

where 6% appears only in this context. The square of the Dirac impulse is well

123, 3.IV]: “Im besonderen ist es nicht moglich, das Quadrat der §-Funktion 6>
zu bilden.”



defined in [11], but only in a generalized space of distributions and it is shown
that 62 is not a classical distribution. In [5] a commutative multiplication for
a subspace of distributions is defined and there the square of the Dirac-impulse
18 zero.

The following definition introduces the restriction of piecewise-smooth distri-
butions, which is a generalization of the restriction for functions defined by
far == 1y f for some f: R — R and some M C R. The distributional re-
striction is necessary to study inconsistent initial values for DAEs, because
inconsistent initial values mean that the actual DAE is not valid in the past,
hence it must be possible to formulate mathematically that the DAE (with
distributional solutions) holds only on the time interval [ty, 00) for some ty € R
(see Definition 14).

Definition 8 Distributional restriction Let D € Dywe has the representation
D = fp+ X ier Dt as in Definition 1 and let M C R be a locally finite union
of intervals (i.e. any compact set only intersects with finitely many intervals),
then the restriction Dy € Dpye of the piecewise-smooth distribution D to
the set M 1is

Dy = (fu)p+ Y, D

teTNM

Clearly, in the above definition, the assumption that M C R is the locally
finite union of intervals (LF'UT) ensures that fi; € Cgy,. Furthermore, TN M is
a locally finite set (even for arbitrary sets M C R), hence the above restriction
is well defined. It is easy to see that the restriction from Definition 8 has the
following properties:

(R1) The distributional restriction is a mapping
{MCR | MisaLFUI } x Dyyex — Dywew, (M, D) Dy

which is for each fixed M C R a projection, i.e. D + D, is linear and

idempotent.

(R2) For f € Cp;, and a LFUL M C R the distributional restriction fulfils

(fa)p = (fp)um,

i.e. it is a generalization of restrictions of functions.

(R3) The restriction property for trivial cases is fulfilled, i.e. for all test func-
tions ¢ € Cg°, for all distributions D € Dpye and and for all LFUIs
M C R the following two implications hold:

suppp C M = Du(p) = D(p),
suppp "M =0 = Dy(p)=0.



(R4) For any pairwise disjoint family of LEUIs (M,);eny with M := U;en M; a
LFUI and any D € Dyyee the restriction fulfils

-DM == ZDMH
1€N

in particular,
DMlUMQ - DM1 + DMQ'
Furthermore, for any disjoint LEUI sets M7, My C R the restriction fulfils

(Dany)pg, = 0.

Note that it is crucial that only piecewise-smooth distributions are considered
as the following remark shows.

Remark 9 For general distributions it is not possible to define a restriction
with the properties (R1)-(R4). As an example consider the following (well
defined!) distribution

_1)»
D:Zdnédn, dn::( ),neN.
oyt n+1

The restriction to the interval (0, 00) should then be

1
D(O,oo) = Z %5i7

keN

but it is easy to see, that there exist test functions for which the infinite sum
does not converge, hence the restriction is not defined.

2.3  Calculation rules for piecewise-smooth distributions

In this subsection some calculation rules for the restriction, multiplication
and differentiation of piecewise-smooth distributions are given. These will be
needed in later parts of this work and are also of general interest.

Proposition 10 (Multiplication and restriction) Let F,G € Dyyce and
s,t € RU {400} with s <t, then, for any e > 0,

st) = Fls G

s.8) = Fls)Glst) + Fl5]Gs—c.),

4 = FlsnGoq + Fare Gt

FG)s = Fla)Grsg + Fiaare) Glt] + Fls]Gs—c.s),

where F[£oo] = G[+oo] = 0.

10



Proposition 11 (Restrictions and derivatives) For all —co < s <t <
oo and D € Dpyyeee,

(D) = (D)) + D(s—)d, — D(t—)3:,
(Dey) = (D) ey + D(s+)8, — D(t-)éy,
(D) = (D)o + D(s+)8; — D(t+)3:,
(D) = (D)o + D(s—)8, — D(t+)3:,

where 01 = 0.

The last part of this subsection considers matrices with piecewise-smoothly
distributional entries and under which condition these matrices are invertible
and how the inverse looks like.

Definition 12 (Multiplication and invertibility of piecewise-smooth matrices)
For two matrices P € (Dpyeee)™™, Q@ € (Dpwee)™ P, n,m,p € N, with
piecewise-smoothly distributional entries the matriz product is defined in the

standard way, i.e., fori=1,... . nand j=1,...,p,

(PQ)ij = > PuQxj,
=1

where M;; denotes the (i,7)-entry of some matrizc M. A square matrix M €
(Dpweee )™ ", n € N, is called invertible (over Dyyee) if, and only if, there
exists a matriz M~ € (Dpyee )™ ™ such that

MM™*=M1*M=1,

where I € (Dpye )™ " is the (distributional) identity matriz given by

I — (ER)ID% Z:]
ij = ) .-
0, i #

Note that no notational distinction between the matrices I € R™ ", I €
(Cgsv)nxn’ and I € (DPWCOO)an s made.

Proposition 13 (Invertibility of piecewise-smooth matrices) Consider
a piecewise-smoothly distributional matriz M € (Dpyee )™ ™, n € N, with M,eq
induced by M € (Coo)™ ™", i.e. M™®p = M. Then M is invertible if,
and only if, M™® is invertible over C3, i.e. there exists P € (C5x,)"*" with
Mres(t)P(t) = P(t)M™e(t) = I for allt € R.
If M is invertible, then the inverse is given by

M~ = M} — Mg MMy, where Mgy := ((M™%)™") .

reg ~ ‘Vlreg reg’ reg

11



Note that for a matrix M™® € (C3,)™" the condition det M™5(t) # 0 for
all ¢ € R is not sufficient for invertibility over C2; . Consider for example the
1 x 1 matrix M8 given by M™8(t) =t on (—o0,0) and M*™&(t) =1 on [0, c0)
whose determinant is non-zero everywhere, but the inverse is (M*™8)~1(¢) = 1/t
on (—o0,0) and (M™8)~1(¢) = 1 on [0,00) which is not a piecewise-smooth
function because ¢ — 1/t is not part of a globally smooth function as required
by Definition 1.

3 Regularity of distributional DAEs

In this section, distributional DAEs of the form
Ei = Ax + f, (11)

where E, A € (Dpyee)™ ", myn € N, f € (Dpyeo)™ and z € (Dpye)” are
considered. Note that & := 2’ is just used for traditional reasons.

3.1 Definition of DAFE-reqularity

Definition 14 (Initial trajectory problem (ITP)) Consider the distribu-
tional DAE (11), let 2° € (Dywe=)" and to € R, then x € (Dpyeo)™ is called
a solution of the initial trajectory problem (ITP) (11) with initial trajectory
20 and initial time to if, and only if,

L(—o0,to) = x[()—oo,to)’
(E2)t9,00) = (AT 4 f)19,00)-

Now ITPs are used to define regularity of the matrix pair (£, A) in (11), in
short, (E, A) is called regular if, and only if, every ITP is uniquely solvable.
Note that the notion “regularity” is already used for distributions, therefore
in the following the notion “DAE-regularity” is used to distinguish it from the
distributional regularity. However, if the context is clear just “regularity” will
be used.

Definition 15 (DAE-regularity of (E, A)) Consider the distributional DAE
(11). The matriz pair (E, A) is called DAE-regular if, and only if, for all in-
homogeneities [ € (Dpwes )™, for all initial trajectories x° € (Dpwe)™ and for
all wnitial times ty € R the corresponding ITP has a unique solution.

Before formulating necessary and sufficient conditions for DAE-regularity, it is
shown that regularity is invariant with respect to a certain system equivalence.

12
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Proposition 16 (Regularity and system equivalence) Let S € (Do)
and T € (Dpyeeo )™ both be invertible over Dyyee and let (E,A) from (11)

be DAE-regular. Then (E, A) = (SET,SAT — SET') is also DAE-regular.
In fact, T is a solution of the ITP (11) with (E,fl) and inhomogeneity | €
(Dpwese)™, initial trajectory T° € (Dpwes )™ and initial time to € R if, and only
if, v = TT 1is the solution of the ITP (11) with initial trajectory x° = TZ°,
wnitial time tg and inhomogeneity

f = 8" fipeo) — S '[to] (AZ° — E3°)

(—Oo,to) ’

3.2 Necessary conditions for DAE-reqularity

Theorem 17 (n =m) Consider the distributional DAE (11). If (E,A) is
DAFE-reqular then n = m.

This result is quite intuitive because, if n > m then there are more vari-
ables than equations, so the system is underdetermined, hence uniqueness of
solutions can not be expected. If n < m then there are more equations than
variables, hence the system is overdetermined and there exists inhomogeneities
for which solutions do not exist. The next necessary conditions for regularity
are more of technical nature.

Theorem 18 (Derivative and impulse array) Consider the distributional
DAE (11) with (E, A) DAE-regular.

(i) Define the derivative array of order p € N as a block matrix
pH1xp+2

M? € ((Dyye )™ ")

with, fori=1,...,p+1,7=1,....,p+ 2,

. (P gl _ (T 1) g6
('M )1:] <J_2> ]_ 1 ?

with the convention that (8) =1 and (_"k) = ( " ) =0 fork>0,n€eN,

) n+k
i.e.
[ _a E
—A E—A E

MP =1 _ar pr_on OF' — A E

_/.1(17) E(P)_];A(P'l) pE(p-l)_'@’) A-2) (g) E(p-2)_. <§)A(P'3) B

Then MP(t+) and MP(t—) have full row rank for all p € N and t € N.

13



(i) Define the impulse array of order (p,q), p,q € N, as a block matriz

p+1lxqg+1

N € (™)
with, fori=1,...,p+1,5=1,...,q+1,
(NP9), ;= (—1)/ ((Zj:DE(H) + (Zj:f)A(jfifl)) :

with the convention that (7') =0 for all k €N, i.c.

E—(E'+A) E"+A ... (_1)q(E(q) + A@,]))
—E 2 + A --- (_1)q—1(qE(q—1) + (g — 1)A(q—2))

NP —
(=1)PE -+ (1) ((Z)E[H) + (q;l)Amwa))

Then for all p € N there exists ¢ € N such that NP1(t+) has full row
rank for allt € R.

Remark 19 Applying Theorem 18 to the time-invariant case both conditions
reduces to the simple condition that all matrices

-A FE
—-A FE
—-AFE

—-AFE

have full row rank. Actually, this condition is equivalent to classical reqularity
of time-invariant DAFEs [26].

3.8 Sufficient conditions for DAE-regularity

Theorem 20 (Concatination and additional impulses) Consider a fam-
ily of distributional DAEs (11) with the corresponding matriz pairs (E;, A;),
1€ 7.

(1) If (Fo, Ao), (E1, Ay) are DAE-regular, then
(B, A) = (EO(foo,tl) + Eity 00), Ao(—o0tr) T Al[tl,oo)>

is also DAFE-reqular for all t; € R.
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(i1) If (E;, A;), i € Z, is DAE-reqular and { t; € R | i € Z } is a locally finite

set, then

(Ea A) = (Z Ei[ti,tiﬂ)’ Z Ai[tivtiﬂ))
i€Z €L

s also DA FE-regular.
(111) If (Eo, Ao) is DAE-regular, then

(E,A) = (Eo+ E7lt], Ao + Aqt])

is also DAFE-reqular for all t € R.
(iv) If (Ey, Ao) is DAE-regular, then

(E,A) = (Ey+ Ei[], Ao + Au[])
15 also DAFE-reqular.

Corollary 21 Consider the distributional DAE (11), then (E,A) is DAE-
reqular if, and only if, (Ereg, Areg) 15 DAE-regular.

Remark 22 The Corollary 21 does not state that the impulses in E and A
have no influence on the solutions, in fact, the proof of the Theorem 20 reveals
that the impulsive parts of E and A are preserved in an altered inhomogeneity.
In general, the presence of Dirac impulses and its derivatives in E and A yield
solutions which might depend also on the derivatives of the initial trajectory.

Finally, some special distributional DAEs, namely distributional ordinary dif-
ferential equations (ODEs) and pure distributional DAEs are studied and it
turns out that these are DAE-regular.

Theorem 23 (Regularity of ODEs and pure DAEs) Consider the dis-
tributional DAE (11). If (E,A) = ([, A) or (E,A) = (N,I), where N €
(Dpweee )" ™ is such that Nyeg is a strictly lower triangular matriz, then (E, A)
1s DA E-reqular.

Remark 24 (Distributional ODEs) The solution behaviour of a distribu-
tional ODE & = Ax + f differs significantly from the solution behaviour of a
classical ODE. Firstly, the solution of the I'TP can depend on deriwatives of the
wnitial trajectory, so the “dimension” of the solution space can be larger than
the size of the system. Secondly, it can be shown that for the free homogeneouos
distributional ODE & = Ax, there exists, analogously as in the classical case, a
fundamental solution @y, € (Dpyee)™ ", with to € R such that Ao )[-] = 0,
i.e. every solution has the form x = &y x¢ and x(ty—) = xo € R". However,
different to the classical case, the fundamental solution need not to be an in-
vertible matriz. As an example, consider the distributional ODE & = —dgx
where all solutions are given by x = 1(_o 0)pTo for xg € R.
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Finally the sufficient conditions can be summarized in the following way.

Corollary 25 (Generalized Weierstrafl form) Consider the distributional
DAFE (11). If there exist invertible matrices S, T € (Dyyweoe)™™", a locally finite
set { t; €R | i € Z }, a family of matrices J; € (C3y)" ™, 1 € Z,0<n; <n
and a family of strictly lower triangular matrices N; € (ngv)("_"i)x(”_”i), 1 EZL
such that

I J;
((SET)yeg; (SAT — SET")1eq) = Z ,Z ,
icz | N =/ I
[tistiv1) [tistit1)

then (E, A) is DAE-regular.

Remark 26 For time-invariant DAEs, i.e. E, A € R™"™ the previous results

show that DA E-reqularity is identical to the classical reqularity, defined by the
condition det(AE — A) € R[AJ\{0}.

4 A simple electrical circuit example with distributional solutions

Consider the simple circuit shown in Figure 4. In the circuit, C' > 0 is the

]
O

t=0

i

C

Fig. 1. A simple example circuit with a switch.

capacity of the capacitor, R > 0 is the resistance of the resistor and v : R — R
is the input voltage. The state variables are i, and u. which are the current
through the capacitor and the voltage over the capacitor, respectively. Before
time t = 0, the switch is on the right side, i.e. the capacitor is bypassed. At
t = 0, the switch moves to the left and the capacitor starts charging. After
some time, the switch is moved back and the capacitor is bypassed again. The
corresponding DAE reads as
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where

01
(1)0], teR\0,1),
o L
= . At =
00 I
1
0 , te]|0,1)
1R

and

(8) teR\[0,1),

(—z?(t)) , te[0,1).

Under the assumption that the input voltage satisfies u = 1, the solution for
the voltage u. over the capacitor is given uniquely by

ft) =

o, t € R\[0,1),
uC(t)_{1—eEé, telo,1).

Independently of the switch, the current i, must fulfil the equation
Cul, = i..

Since the solution of u. has a jump, there is no classical solution for i.. How-
ever, if one allows for distributional solutions the equations are solvable and
the (distributional) current i. is given by

io =i+ (e® —1) 4,
| —
=uc(1+)—uc(l-)

where ;%% is the regular part of the distribution given by
0, t e R\[0,1),
=10 o
zerc,  tel0,1)

and 07 is the Dirac impulse at t = 1.
Another way to find a solution is by transforming the DAE (locally) into the
so called Weierstral normal form [24] (see also [13, Thm. 2.12]) via

(01 10
. teR\[0,1), : t € R\[0, 1),
_éo] \[0, 1) _00] \[0, 1)
St)=1 T(t) =1
-1 1
L f] te€0,1), _010], te0,1).
0L 75 1
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The resulting DAE with (E, ;1) = (SET,SAT — SET’) is then given by

o
, teR\|0,1),
Lo \0,1)
E(t) =
10
, tel0,1)
00
and )
10
, t € R\[0,1),
01 00
Aree(t) = A= A" 4+ d;.
D 1-C
(-1 < 0
RC D e |0,1),
01

Note that A now contains a Dirac impulse. Actually, the transformed DAE is
not much simpler, but in general a DAE in Weierstrafl form is easier to solve,
here the transformation is just done to illustrate that impulses can occur in
the coefficient matrices. The unique solution of EZ = Az + Sf is given by
(again the input signal u is assumed to be constant and equal to one)

(8) teR\[0,1),

2" (t) = z=zp°+ ) d1.

=t erCc — 1
(00—6@), Le0,1),

1
R

Now it is easy to verify that Tz is equal to the solution found above.

5 Conclusion

To study time-varying DAEs of the form Fix = Az + f with jumps in the
coefficients, the space of piecewise-smooth distributions was introduced as a
solution space. With this space it is also possible to allow for distributional
entries in the coefficient matrices. The well known concept of regularity for
classical DAEs (i.e. DAEs with constant coefficients) was generalized, neces-
sary and sufficient conditions were given for the regularity of matrix pairs
(E, A) with piecewise-smoothly distributional entries. It seems that even for
the classical time-varying case (i.e. E' and A are smooth matrices) some of the
conditions are new, in particular there is no general definition of regularity
for time-varying DAEs. The presented framework is particularly suitable for
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studying switched DAEs, for example Theorem 20(ii) states that switching
between regular systems yields a new regular system, and in general, without
the presented framework it seems difficult to study switched DAEs at all.
Although regular DAEs play an important role, there are cases were non-
regular DAEs also arise in applications, for example rectangular descriptions
of systems. It seems that the “behavioral approach”, surveyed in [25], in com-
bination with piecewise-smooth distributions as solutions will be a fruitful
future research topic. Furthermore, for regular distributional DAESs, questions
of control theory can be addressed and since the solution space as well as the
control signal space are larger (they can include Dirac impulses) new methods
and results are likely. Finally, the proposed distributional framework can be
used to study reliability of linear networks, for example it is possible to study
the situation that the failure of one component (which results in a new system
description) induces impulsive solutions, which might destroy the system in
reality.
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A Appendix: Proofs

A.1  Proof of Proposition 2

By (3) it is, for every i € Z,

/ !/
(ﬂ[ti,ti+1)fi)ﬂ) = <fi(1[ti7ti+1)>D)
= fi,<ﬂ-[ti7ti+1))ﬂ) + f’L(]]-[tl,OO) - :H-[ti+1,oo))D
= (ﬂ[ti,ti+1)fi/)ﬂ) + flétz - f15t¢+1
== (]]-[ti,ti+1)fi,)ﬂ) + fz(tz)(gtl - fi(ti+1)5t,'+1'

/

Now (7) follows from f;(t;) — fi—1(t;) = D(t;+) — D(t;—). Finally, (2) implies
that D[] is again a locally finite sum of distributions with point support,
hence D’ € Dpyeoe.
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A.2  Proof of Proposition 3

As already mentioned, every distribution D € D has a distributional an-
tiderivative and all antiderivatives only differ by a constant. It is first shown,
that every distributional antiderivative H of a piecewise-smooth distribution
D € Dywe~ is a piecewise-smooth distribution. Consider the representation
D = fo+ > cr Dt € Dpyee as in Definition 1. Let g : R — R be a antideriva-
tive of f, then g € C3,. For a fixed t € T" and by (2), D; can be written
as

nt . i
Dt = Z afﬁg )7
=0

where n; € Nand !, ..., a* € R. Clearly, one antiderivative of D; is given by

ne ) -
(L), + D it

Now let

teT
and, for t € T',

5t = Zaiat(iil)a
i=1

then Hy = hp+ Y ier Bt € Dpywee is a distributional antiderivative of D. Since
all other antiderivatives only differ by a constant, all antiderivatives of D are
piecewise-smooth distributions. Let

H = H, — Hi(to—)1gp

then H is the only distributional antiderivative with the property H(to—) = 0.

qed

A.8  Proof of Theorem 4

First observe that in (9) locally finiteness of 7% and Ty together with (5)
ensures that indeed >;c7, Fltlgp = F[-]gp and Xcq, foG[t] = foG[].

(i) Clearly, fg € C35,, hence it remains to show that Y-,c. F[t|gp and 31, foG]t]

pw>

are piecewise-smooth distributions. From the definition it follows that

Vt € Tp: supp(F[t]gn) C {t}
Vi € Tg: supp(foGlt]) C {t}

which shows that F'G' € Dpycee.
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(ii) This directly follows from the definition since fp[-] =0 = gp[-].
(iii) Simple calculations show the validity of these properties.
(iv) This part of the proof consists of four steps.
Step 1: It is shown that (f¢)p = fo'gp + fogn’.
Let f = Yiez Lips i) fi and g = ez Lt 1,40)9i With fi, 95 € C, 0 € Z,
and locally finite { t; € R | i € Z }. Note that both representations use
the same intervals, but this is no restriction of generality. Then, by (7),

(Fo)' = (z ﬂ[ti,mﬂ(figi)’) + 2 (Ftt)g(tir) = f(ti=)g(ti=)) b
and

fo'gp = (Z ]]-[ti,tiJrl)fi/gi) + Z (f(ti+) - f(ti_))(stigm)v
D

1€EZL 1€EZ

fogn' = (Z ]l[ti,tiﬂ)figi/) + Z Jp (Q(tﬂf) - g<ti_))5ti-
D

€L 1EZL

Since (fig:)' = fi'gi + figi', 0,90 = g(ti—)ds,, and fpdy, = f(ti4)0;, for all
1 € 7, the assertion of Step 1 is shown.
Step 2: 1t is shown that (Flt]gp) = F[t|'gp + F[tlgp for all t € Tp.
Since F[t] is by (2) a finite sum of a Dirac impulse and its derivatives, it
suffices to consider the case F[t] = 515”) for some n € N. Now the assertion
follows directly from (8).
Step 3: Tt is shown that (fpG[t]) = fo'G[t] + fG[t] for all t € Tg.
As in Step 2 it suffices to consider G[t] = 6\ for some n € N. Now the
assertion follows again from (8).
Step 4: (FG) = F'G + FG' is shown.
Since Tr and T are locally finite it follows from Step 2 and 3 that
/
(Flgn) = F[V'g0+ Flgo'

(foG1) = 'l + foGLY
Expanding the products yields
(FG) = (fg)o' + (F[]gn)" + (foG[])
and

F'G+FG =(fo)gp+ (fo) G[1+ F['gp + FI]'G[]
+ fogo’ + foGl]+ Fllg' + FLGLT.

Hence

(FG), - (F,G + FG,) = (fg)ﬂ)l - (f]D)/g]D) + ngD,) - FH/GH - FHGH/
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The regular parts of F[-]' and G[-|' are zero, hence F[-]'G[] = 0 and
F[-]G]-) = 0. Using the equality from Step 1 now yields the assertion.
(v) This follows from

supp FG = supp ( fogn + foG[] + F[gn)
C (supp fp Nsupp gn) U (supp fo N supp G[])
U (supp F'[] N supp gn) U (supp F[-] N supp G[])

= (supp fp Usupp F[-]) N (supp gp U supp G[*])
= supp F Nsupp G.

A.4  Proof of Proposition 10

Let M C R be one of the four intervals with boundaries s and ¢, then by
linearity of the restriction

(FG)M = (FregGreg)M + (FregGH)M + (F[']Greg)M-

First observe that (FiegGreg)m = (Freg)m(Greg) - Furthermore,
(FusGlDat = (FeghwiGlIat)  + (P GlIar) |+ (FegGl0))

where the term (FregG[']R\MDM is zero, because FiegG/[-|r\as is a distribution
with zero regular part and whose support is a locally finite set contained
in R\ M, hence the restriction to M is zero by definition. Since the support
of (Freg)mG[-]a 1s a locally finite set and is contained within M the outer
restriction does not change it. Finally, the support of (Fieg)r\amG[]as is also a
locally finite set and is contained in {s, ¢}, hence, if s < t,

(FreeG)ar = (Freg) wGlat + (Freg)mnr (Gls) + GIt])
Analogously,
(F[']Greg)M = F[']M<Greg)M + (F[S] + F[t])M(Greg)R\M'

Now let M = (s,t), then (G[s] + G[t]), =0 = (F[s] + F[t]), , hence the
assertion is shown in this case. For M = [st) it is (G[s] + G[t])M = Gls]
and (F[s] + F[t]), = F[s]. From (10) it follows that the term (Fies)snG[s]
depends only on the value ((Freg)R\M>(i)(s+), i € N, which is zero for all

i € N, hence (Freg)r\mG[s] = 0. Also from (10) it follows that F'[s](Greg)r\1r =
F[5]G(s—c,s) for any e > 0. This shows the assertion for M = [s,t). Analogous
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arguments show the validity of the assertions for M = (s,t] and M = [s, t].
If s =t, then

(FG)poi = (FO)[s] = (FuGIDIs) + (F1IG)l
= FregG[s] + F[5]Ghreg
= F[s]G[s] + Fre
= F[SZG[M} + F(t,t—i—a)G[S] + F[S]G(S—avs)

(575+5)G[S] + F[S] Greg(s—e,S)

A.5  Proof of Proposition 11

Let Dyeg = (Eiez ]l[ti,ti+1)fi)m for some locally finite set { t;, € R | i € Z } and
fi € C*, i € Z. Assume, without restriction, that s,t € {¢; | i € Z }. From
(7) follows

(D))’ = (D)jsty = (D[s,t) (ti+) = Disy (h—)) Ot

- (Z (D(ti"‘) - D@F))%)
1EL [5.,t)

= (D[s,t)<s+> - D[s,t)(s_)) 53 + (D[s,t) (t+> - D[s,t) (t_>) 5t
— (D(s+) = D(s-))d;
= —D(t—)d; + D(s—)Js.

This shows the first formula. Since D[r] = D'[r] — (D(T—l—) — D(T—))5T for
all 7 € R the other three formulae follow easily. aed

A.6  Proof of Proposition 13

If M*™# is invertible over CS;’V then

MM~ = (Mg + M[]) (Mo — Mg M[|M,})

reg ~ *''reg reg
= Mrengzgl _MrengzglMHMr;gl + M[]Mr;é - M[]MrzglM[]Mrzglg’
=T =0 =0

where the last zero follows from the fact the product of two piecewise-smooth
distributions with zero regular part is zero. An analogous calculation shows
M~'M = I. Hence sufficiency is shown.
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Now assume that M is invertible over Dpycoo, i.e. there exists a matrix M ! €
(Dpweee )™ ™ such that MM~ = 1. Let M~! = (M™1),ee + M~![], then
I=MM"" = (Meg + M[])((M ™ )seg + M [])
= Myeg(M ™ )reg + Myeg M [] + M[J(M ™) yeg -

=H

Since H[-| = H and I[-] = 0, it follows that H must be zero. This implies
J = Mreg(M_l)reg — (Mreg(M—l)reg>D

where (M) € (Cg)™*" is such that (M™')g = (M~1)™8;. Hence M
is invertible over C3y with inverse (M ~hree, Finally, from H = 0 and the
invertibility of M, it follows that

M7 = = (Mieg) "M (M ™ )reg = =M M[] Mg,

reg reg’

hence M~ is unique.
A.7 Proof of Proposition 16

It will be shown that every I'TP
Ex = AT+ f, T(cooto) = T(—sopo)s

with ¢y € R, 2° € DP e f € Di.c, has a unique solution.
Step 1: Existence of a solution.
Let  be the solution of the ITP

El’ = Al‘ + f, x(—oo,to) = x?—oo,to)7

where

_ o-1F -1 150 0
f =5 fipoo) — S7'[to] (AZ° — Ei )(m,to)

and 9 = T7°. Tt will be shown that 7 := T 'z is the desired solution. First
observe that, by Proposition 10,
F—oote) = (T7'0)(o0t0) = T(Zoo0)¥(=00it0) = Tcvorte) (T ) (=o0t0) = F(-o0.0)-

(_Oo7t0) (—OO,t())

Hence it remains to show that

(E%)[tmm) = (gf)[to,w) + f[to,OO)v
which is equivalent to

STHED) (9,000 = S™HAT) rg,00) T S flto00)-
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Note that from Proposition 10 and Property (R4) it follows that, for any
M € (Dpyex)™ " and h =1 or h = n,

S™ My 00) = (57 My, oo>)( soito) F (57" Mity 00 )to,00)
- O + S[to OO tO OO)
— (S IM)[to,oo) — S_l[tO]M(—oo,to)~

Hence Z must fulfil

(STMET)t9,00) — S t] (BT) (~oo.t0)
= (57 AT tg,00) = S o) (AT) (-co,t0) + (57" itoro0) = S [to] f-o0,t0)-
From 0 = (T!'T) = (T7YT + T~'T" it follows, that
(Tfl)/ — _TflTlel’
hence -
S'Ex = ST'SET(T ') = Ex — ET'T 'z
and N
S'AZ = STHSAT — SETT ‘v = Ax — ET'T 'x.

Since, by assumption, (E),,00) = (AT)[t,00) T flto,00)» it Temains to show that

fitoo0) = ST ) (BT) (—o06) =S [t0) (AZ) (—oo,to) + (S ™" Fitorce) = S [to] fi—corto)-

Together with Proposition 10 and Proposition 11 this follows from

(E:.f)(—oo,to) - E Oot())x Ooto

(2
= Elooro) ( Ooto O(to—)5t0>
= Eoot0) (oo t0) = (ET°)(-o00);
(AZ) (“oot) = (AT") (“ooto)s
(5™ Pttosser = S~ to) fi-sort0) = Sy fito:00) = ™" fito o0,
and the definition of f.

Step 2: Uniqueness of a solution.
Let Z; and Zs be two solutions of the ITP

OO Jto)

Ef=AZ+f, T—oote) = T(—ooro)
for some ty € R, 7° € D7, ooc fe D Then z := Ty — Ty is a solution of

the ITP
EzZ=AZ, Z_wu) =0.
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It will be shown that z = T'Z is a solution of the ITP
FEzZ = AZ, Z(,oo,to) = 0,

it then follows from the DAE-regularity of (£, A) that z = 0, hence Z = 0 and
the uniqueness of solutions is shown.

Clearly, 2(—oot,) = 0, hence it remains to show that (E2)p,00) = (A2)g,00)- It
is, by Proposition 10,

O — (Eg)[to,oo) - (;15)”0700)
= Stg,00) (B2 = Az)jty,00) + S[to] (B2 — Az)(—co o)
= S(EZ — AZ)[to,oo) + 0,

hence (EZ){tO’OO) = (AZ)[to,oo)- qed
A.8 Proof of Theorem 17

Step 1: m < n

Seeking a contradiction assume m > n. Let £ = E*¢p + E[], where E™8 €
(Coo)™ ™. Let rp : R — N,t v rp(t) := rk £™8(t), then there exists an open
Interval J C R such that rg is constant on J (see e.g. [13, Thm. 3.25]) and
Erg|; is smooth. Let r := r(t) for some ¢ € J, then r < n < m. In particular,

there exists an invertible S € (C*°(J — R))™ ™ such that

E

~

E
SEI'eg

J = O(m—n—'r) xn
O(m—n) XN

O(m—n)xn

for some E € (C®(J — R))™" (Dolezal’s Theorem, [4]) and corresponding
E € (C(J — R))™". Without restriction, it can be assumed that inf,c; det S(t) >
0 and E;[-] = Ay[-] = 0 (if these conditions are not fulfilled a reduction of
the size of the open interval J yields these properties). Hence it is possi-

ble to extend the matrix function S to the whole time interval R such that
S € (C®)™™ and S! € (C>)™*™ exists and

Ey Ay
Es Ap
where E1, A7 € (Dpwe=)™ ™ and (Es); = 0. By Proposition 16 the pair

(SE,SA) is still DAE-regular, in particular the DAE must have a local solu-
tion on the interval J for all inhomogeneities. Let Ay = Ay + As[-] for some
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Ay® e (C3)tm=mxm=n) Tt now follows that Ay® ‘J must have full row rank,

because otherwise there would exist ¢ € J and an invertible matrix M € R™*™
such that the last row of MSA(t+) and of MSE(t+) is zero, hence for ev-
ery inhomogeneity f with f(t4) # 0 any ITP with ¢, < ¢ would not have a
solution. Firstly, this implies m < 2n. Secondly, by Dolezal’s Theorem there
exists a matrix function 7" € C*(J — R)™*" such that

AT =1[01I]onJ

and it is possible to extend 7" on the whole axis, such that 7" € (C*>)"*" with
T—1 € (€)™ " (possible by reducing the size of .J). Now let

. B Ey| Ay A
(E,A) := (SET, SAT — SET"y = | | " 72|, |7 72| |,
E21 E22 A21 A22

then (E, A) is DAE-regular by Proposition 16 and
Ey1y =0, Boy =0, Ay =0, Ap; =1y,

furthermore, the size of Ey; is n X (2n — m). Since m > n was assumed it
follows that Ei; has a strictly smaller size than F and has more rows than
columns. On the interval J the system (E, A) reads as

Enz + Bz = Anz + A2z + fi,
O = Z + f27

where fl S (Dpr‘x’)n> f2 S (Dpw(f“’>m_na z1 € (Dpwco")Qn_ma 2 € (Dpr"O)m_n-
If 2m = n, then the above equation is equivalent to

fi = Awafo — Erafy  on J,

hence it is only solvable on the interval J if the inhomogeneity is not chosen
arbitrarily. Hence 2m > n. In this case, substituting 2z, in the above equation
by fo yields that the system (E, A) has a local solution on the interval J if]
and only if, the system (F1;, A11) has a local solution on the interval J. Let
(E°, A% := (E, A) and (E', A') := (Ey;, A1p) with size m® x n® := m x n and
m! x n! :=n® x (2n® —m?). It is now possible to repeat the above arguments
to get a sequence of matrix-pairs (E*, A%), i € N, with strictly decreasing size
m’ x n' such that 0 < m! < m*~! and 0 < n* < m*!. Clearly, this is a
contradiction.

Step 2: n <m

Seeking a contradiction assume n > m. With analogous arguments as in the
first step it is possible to find an open interval J C R and invertible matrices
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S e (C®)~ ", T € (C>)™*™ such that

o Ey En| |4 A
(B, A) = (SET,SAT — SET') = | | 7" 72, |7 7
E21 E22 AZ] A22

is DAE-regular and
FEi12; =0, Ey»;=0, A12J =0, A22J =1;.

To get this result it was used that S~* [ﬁ;z must have full column rank on
J, because otherwise there would exist a component of the solution vector z
which does not “appear” in the DAE on J and hence the ITP could not have
a unique solution. The size of Ej; is (2m — n) X n, from which follows that
29m > n. The system (E, A) restricted to J reads as

Ens =Anxsa+ fi
Eoy 2 = A2y + 22 + fo.

If 2m = n then only the equation
29 = Agnz1 — Fo121 + fo

remains, which is clearly not uniquely solvable (with a given initial trajectory)
on the interval J, because z; can be altered on J and together with the cor-
responding 2z it is still a solution of the same I'TP. Hence 2m > n. Similar as
in the first step it is now again possible to construct a sequence of systems
(E', AY), i € N, with strictly decreasing size m’ X n’ such that m’ > n’ and
0 < m' < m'!. This is a contradiction.

A.9 Proof of Theorem 18

(i) Taking successively the derivative of the equation Fi = Az + f yields
EFi—-Ax=f

Ei+ (B — A)i— Az = f
Ei + (2B — A)i + (B — 243 — Az = f"
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(i)

and it follows inductively that, for all p € N,

x
, f
r !/
MP : = !
2P '
(p)
x(p""l) f
and, in particular, for all t € R,
x(tt)
ft£)
z(tt)
f'(t)
MP(tt) : = .
2@ (t£)
7o)
2P+ (k)

Since (E, A) is assumed to be DAE-regular there exists a solution for any
given right-hand side, hence MP(t+) and MP(t—) must both have full
row rank.

For a fixed ¢y € R consider the impulsive part of the DAE (11) at t¢:

(Et)[to] = (Az + f)[to]
or, equivalently,
E(ty,00)t[to] = Atto,00)T[to] = Alto](—oo.ty) — Eltold(ooto) + flto] =: flto].

The right-hand side can be assumed to be arbitrary, and since (E, A) is
DAE-regular it follows that the operator

(E % _A)to : (Dpwc“’)n - { Dto € (DpchO)n | supp Dtg C {to} },
T = E(to,w)x‘[t()] - A(to,w)x[to]

must be surjective. Assume
s
zlto) = xiby,
i=0

for some p € N and zg, z1,...,2, € R", then

p+1

ANEDD $z‘—15t(é)7
i=0
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where z_; := x(t+) — x(t—). Using (10), one gets

p+1 j o ‘ -
gy 00yito] = Agpocrlto] = D D (—1) (1) ED (to+) 25100 "
j=0i=0
P J
= 22 (D () Aty
7=01=0
p+1

I
Mw

() B

1

I
o
<.
I

i—

M@

1
p i
S (1P () A )

] 7

[e=]

1=

p+1

— Zazéﬁg = flto]

where
ag Tr_1
RE+2n 5 L NPHLPHL (704 "
(p+1 Lp

Note that, in particular, for ¢« =0,1,....,p+1

Qo r—
a1 NP (0 4) Lo
a; Tp
Since ag,ay, ..., are given by f [to] they can be arbitrary. Hence there

must exists ¢y € N such that N%% has full row rank, otherwise not all
values for ag can be “produced”. In general, for every ¢ € N there must
exists ¢; € N such that N%% has full row rank to guarantee that every

vector (ag,aj,...,a; )" can be obtained. This proves the theorem.

qed

A.10 Proof of Theorem 20
(i) If ¢ty > ty, then the ITP for (E, A) is identical to the ITP for (£, A,),

hence only ¢y < #; needs to be considered. For z° € (]D)pwcoo)" and
f € (Dpye=)" let z' be the unique solution of the ITP (Ey, Ao), 2(_, 1) =
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(i)

(iii)

x?_oo’to) with inhomogeneity f and let x be the unique solution of the ITP
(E1, A1), T(—oopy) = x%_oo7t1) with inhomogeneity f.

It will be shown that x is also the unique solution of the ITP (E, A),
T(Cooit) = T o) First observe that (oo r) = () = 0o 4 De-
cause ty < t;. Secondly, the following equivalences hold (using Proposi-
tion 10)

(Ejj)[to o00) — (ASL’ + f) [to,00)
& (ED)to ) = (AT + gty A (B2 p00) = (AT + fity,00)
(E0$ )[to t1) (on + f)[to t1) A (Elj:)[t1700) = (A1$ + f)[tLOO)'

The last expression is true by the definition of 2! and z, hence z is a
solution of the ITP.

It remains to show that x is unique. Assume there is another solution
Z. Since, by definition, T(_s ) = :E((J_oo,to) = T(—oo,ty), it Temains to show
that T, 1) = Tpger) and T, o) = gy 00)- Let 2 and Z be the solutions of
the ITP (Eo, Ao), 2(—oot1) = T(—ooitr) A Z(—ooty) = T(—o0,t1), TESP., then

(Eod)to,t) = (Bod)to,t) = (Ao + fito,e) = (Aoz + fito.n)

and

(Eog)[to,tl) = (E(]%)[to,tl) = (AOf + f)[to,tl) = (A03+ f)[to,tl)‘

Hence z and 7 are also solutions of the ITP (Ey, Ag), Z(—o0,tg) = T(—oo0,to) =
x?_oo’to) and Z(_ootg) = T(—oo,ty) = x?_oo’to), resp. Since (FEy, Ap) is DAE-
regular it follows that z = Z and therefore xy, ;) = Ty, 1) Finally, observe
that « and & are solutions of the ITP (E1, A1), T(—oot)) = T(—oouy) and
3:( o) = T(—ooty), Tesp. Since (Ey, Ay) is DAE-regular and x(_s0 ) =
T(—ooy), it follows that » = 7.

Consider the ITP (E, A), ¥(—sor) = f(o_oom) for some initial trajectory
€% and 7y € R. Without restriction of generality it may be assumed that
to < 7o < t1 (just by changing the indices). Let 2° be the solution of the
ITP (Eo, Ao), 201y = &l vomy) a0d, for i € N, let 2! be the solution
of the ITP (Eiy1, Ait1), xéf;ml) = x%_oo,tiﬂ). Then z = lim; o 2° is
a well defined distribution and it follows by inductively repeating the
same arguments as in (i) that z is the unique solution of the ITP (E, A),
T(—o0,0) = &(_somy)- Hence (E, A) is DAE-regular.

Consider the ITP (Eg+ E1[t], Ao+ Ai[t]), T(—ooe) = x((]_oo’to) for some 2° €
(Dpweee )™, to € R and with a inhomogeneity f € (Dpyee)™. Clearly, if tg >
t this ITP is identical to the ITP (Ey, Ag) with the same initial trajectory
and inhomogeneity. Hence it remains to consider ¢y < t. Let & be the
solution of the ITP (Ey, Ao), T(—ooty) = m?_oo7t0) with inhomogeneity f
and let = be the solution of the ITP (Ep, Ao), T(—cot) = T(—ooy) With
inhomogeneity f = f + A;[t]2 — Fy[t]z. It will be shown that z is the
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unique solution of the ITP (E, A), #(_co ) = Z{_4, 1) With inhomogeneity

[. First observe that o(_sc 1)) = T(—o0,tg) = a:?_oo,to)

. Secondly,

= (BoT) o) = (Eof)[to,t) = (AoZ + fitot)
= ((Ao + Aift])z + f)

((Eo + By [t])i“) o)

[to,t)

and, because T (_o 1) = T(—oo,);

((Eo + E1 [t]) ) Eo.T) [t,00) + E1 [t]x

= (
= (Ao + fitoo) + Er[1)2
(A()l’ + f + Al[] )[t,oo)

= ((Ao + Ayt ])$+f)[t,oo>'

Hence it remains to show uniqueness of the solution x. Therefore, let T
also be a solution of the ITP (E, A), T(_aory) = ¥{_o ) With inhomo-
geneity f. With the same arguments as above it follows that Z(_ ) =
T(—ooit) = .f?(_ooﬂg). Now

((Eo + By [t])f) o) — ((Ao + Aift])x + f)
& (Boid)joo) = (Ao + fitoo)

[t,00)

and the same for T, hence z and 7 are both solutions of the ITP (Ey, Ay),
T(—oot) = L(—o0,) With inhomogeneity f . Because (Ey, Ag) is DAE-regular
it follows that x = 7.

(iv) Let T = {t; e R |i € Z } be a locally finite set such that E\[| =
Yiez Erlti] and Ay[] = ¥,ez Ai[ti]. Furthermore, let Ey = E,, ;19 = A
and, for k£ € N, By = Ep + El[tk], E_ 1 =F_+ El[t_k], Ak—H =
AL+ A [tx], A=A 1+ A [t_g]. Then it follows inductively from (iii)
that (E;, 4;) is DAE-regular for all i € Z. Finally,

(Eo+ Er[-], Ao+ A1) = (Z Eitt, 4,01)5 Z W[t tig1) )

€L iE€EZ

and regularity follows from (ii).

qed

A.11  Proof of Theorem 23

By Theorem 20 it suffices to consider the impulse free case, i.e. E[-] = 0 and
Al]=0.
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The distributional ODE case, i.e. (E,A) = (I, A).

Let A™® € (Cg5)™™ such that Ap®* = A, = A and consider the standard
homogeneous ODE & = A™8zx. Let ¢(-,tg) : R — R™" ¢, € R, be its fun-
damental solution, i.e. ¢(-,ty) is absolutely continuous, ¢(-,tg)" = A™8¢(-, o)
and ¢(to, to) = I [20, C.4].

It will be shown first, that ¢(-,ty) is piecewise-smooth as in Definition 1. Let
T={n€R |[i€Z } bealocally finite set such that A™* = 3,7 Aif, .,,)
for some family of smooth matrices (A;);cz. For t € R and i € Z let ¢;(-, 1)
be the fundamental solutions of & = A;xz. Then ¢;(+,t) is smooth for all i € Z
because each A; is smooth. Since the ODEs & = A™8x and & = A;x are identi-
cal on the interval [7;, 7;41) the fundamental solution restricted to this interval
are also identical if the initial time fulfils ¢ € [7;, 7;11), hence ¢(s,t) = ¢;(s, )
for all s,t € [t;, t;41). For a fixed ¢y € R this yields ¢(t,ty) = ¢;(t,t;)p(t, to)
where i € Z is chosen such that t € [t;,t;11). Now it follows that

P+ t0) = (¢i<'7ti)¢<ti>t0)>

ieZ [tiyti+l)’

which shows that ¢(-, %) is piecewise-smooth. Note furthermore, that each
¢i(+,t;) is invertible with ¢;(-, ;)™ € (C>)™*™, this shows that the inverse
&(+, to) ™! is also piecewise-smooth.
It will be shown now that the I'TP

_ .0
L(—o0,t0) = L(—o0,t0)>

i’[tmoo) = (A:L' _I_ f)[to,oo)y

where 20, f € (Dpwe)™ and to € R, has the unique solution

_ .0 ) 20 (o — ] R
2=y + (00 002 00) + 6,101 [ 90 10)5S)

t,00)

It must first be shown, that @, o) = (A2)[,,00)- Proposition 10, Proposition 11
and ¢(, tO)]/D) = Agb(, tO)]D) y1€1d

Fhoce) = —2%(to— )8y, + <¢(.7t0)/ﬂ)x0(to—> + (¢('7tO)D/t qb(-,to)ﬁlf)/) tt0,00)

0

+ | 9l to)oto=) (1) + (0(-,ta)o [ 6 t0)5'F ) (ta=) | 3

=I

=0

= (400 tooa®(to=) + A(oto)s [ o t)5' S +F)

0
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and, since Alty] =0,

(A:L’ + f)[to,oo)

I
/N
o
&
=)

[to,oo)

which shows that x is a solution of the ITP.
It remains to show that the proposed solution is unique. Assume that x,,x9 €
(Dpwee)™ are solutions of the same ITP, then e = 1 — x fulfils ooty = 0
and

é[to,oo) = (Ae)[tom).
Note that é_cty) = 0 = (A€)(—ooy), hence e is a solution of ¢ = Ae with
e(to—) = 0 and it must be shown that e = 0 is the only solution of é = Ae
with e(tgp—) = 0. Let e € (Dpywe )™ be any solution of é = Ae with e(tp—) =0
and let 1 := ¢(-,to)p"e. Then, since e = ¢(-, to)p7,

e = A¢(-, to)pn +o(-, to)p1,
=Ae=¢é

hence

7 = 0.
This implies that 7, as an distributional antiderivative of zero, is a constant
distribution and since n(ty—) = e(ty—) = 0 it follows that n = 0. This shows
that e = 0 and it is shown that x as given above is the only solution of the
ITP.
The pure distributional DAE case, i.e. (E,A) = (N,I) with Nyeg a strictly
lower triangular matrix.
First observe that (IN&)f,00) = Nitg,00) %, S0 the ITP

L(—o0,to) = x?—oo,to)’
(N@)tg,00) = (@ + [)ito,00)5

can equivalently reformulated into a distributional DAE without explicit initial
condition:

]Vitpj’: =x+ fitpa

where Niy, = Ny 00) and figp = —x?ﬁoo,to) + fito,00)- The matrix Nj, is still a
strictly lower triangular matrix. Consider the operator

d . n n .
Nitp a (DPWCOO) — (DpWCoo) s €T +— Nitpl’,
and its powers

(Nip $) =z >z, VieN: (N L)t =2 (Nyp &) ((Nitp %)’(m)) .
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Then, since Ny, is a strictly lower triangular matrix, the operator Njg, % is
nilpotent, i.e. there exists v € N such that (N %)” is the zero operator. From
this it follows that the operator

(Nitp % —I) . (]D)pwcoo)n — (Dpwcoo)n, T — Nitpft — X
is bijective with inverse
v—1
—1 i
(Nitp % _[) - - Z(Nitp %) .

1=0

Hence the unique solution of the ITP is given by

T (N[tmOO) %)i (_x((]—oo,to) - f[tﬂvoo)) :
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