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“ Aber die Kristallschale, an die der Jupiter angeheftet ist?”

“ Ja, wo ist sie jetzt? Wie kann der Jupiter angeheftet sein,

wenn andere Sterne um ihn kreisen? Da ist keine Stütze im

Himmel, da ist kein Halt im Weltall! Da ist eine andere Sonne!”

B. Brecht, Leben des Galilei



Zusammenfassung

Diese Arbeit behandelt theoretische Modelle zirkumstellarer Trümmerscheiben. Hauptau-

genmerk ist die Kombination von strukturbildenden Bahnresonanzen (mean motion reso-

nances) eines Planeten mit zirkumstellaren Kleinkörpern und strukturausgleichenden Kol-

lisionen zwischen letzteren. Es wird untersucht, ob und in welchem Maße Resonanzen das

Kollisionsverhalten beeinflussen. Hierzu werden anstelle der oft üblichen, rechenaufwendi-

gen N-Teilchen-Simulation statistische Methoden verwendet, insbesondere die Kinetische

Theorie. Diese bedarf eines höheren mathematisch-analytischen Aufwandes, kommt aber

mit vergleichsweise geringem Rechenaufwand aus.

Im ersten Teil werden Kollisionsgeschwindigkeiten und -raten für abstrakte, zirkum-

stellare Trümmerscheiben betrachtet. Abstrakt vor allem deswegen, da verschiedene Bah-

nelemente der Übersichtlichkeit halber als gleichverteilt angenommen werden, obwohl

Beobachtungen anderes nahelegen. Hauptaugenmerk ist hier jedoch nicht die Unter-

suchung konkreter, beobachteter Scheiben, sondern liegt vielmehr in der Ermittlung und

möglichst klaren Darstellung des Einflußes einer Bahnresonanz auf das Kollisionsverhal-

ten. Es zeigt sich, daß dieser sehr viel geringer als erwartet ausfällt. Die Änderungen der

Kollisionsgeschwindigkeit durch eine Resonanz, auch eine sehr starke, sind vernachlässigbar

klein. Die Kollisionsrate wird stärker beeinflußt. Sie zeigt ein hochgradig nichtlineares

Verhalten und entwickelt insbesondere ein Maximum. Aber auch in starken Resonanzen

erhöht sie sich um weniger als das 4-fache.

Im zweiten Teil der Arbeit werden zwei Modelle zur Erkärung der in Trümmerscheiben

beobachteten Strukturen entwickelt und verglichen. Eines, welches auf dem Transport

kleiner Staubteilchen durch Zugkräfte des Poynting-Robertson-Effektes und des Sternen-

windes beruht und ein anderes, das auf kaskadenartigen Kollisionen von in der Res-

onanz gefangenen Planetesimalen beruht. Beide Modelle sind analytischer Form, sie

berücksichtigen die wesentlichen Prozesse, werden dabei aber so einfach wie möglich gehal-

ten. Es zeigt sich, daß die Effizienz des ersten Szenarios wesentlich vom quantitativ nur

schwer faßbaren stellaren Wind abhängt. Szenario II hingegen wird bestimmt von den

Details des Kollisionsprozesses sowie der gesamten Kaskade.

Mit den derzeit zur Verfügung stehenden Beobachtungsdaten ist es nicht möglich, klar

zu unterscheiden, ob die beobachteten Strukturen in den zirkumstellaren Scheiben eher

nach dem ersten oder eher nach dem zweiten Modell entstehen.
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Abstract

This work considers theoretical models of circumstellar debris discs. The main focus is

the combination of mean motion resonances between a planet and circumstellar small

bodies, which create structures, and collisions among the small bodies, which smear the

structures out. It is examined to what degree resonances do influence the collisional

behaviour. Instead of the often applied, computer-intensive N-body-simulations we make

use of statistical methods, especially the kinetic theory. This requires more effort on the

mathematical-analytical side, but involves comparably low computational expense.

In the first part collisional velocities and rates for hypothetical circumstellar debris

discs are investigated. Hypothetical especially in the sense that several orbital elements

are assumed to be distributed uniformly for simplicity, although observations suggest

otherwise. The main focus here is not the analysis of certain, observed discs, but instead

the investigation and representation of the influence of a mean motion resonance on

the collisional behaviour. The results show, that this influence is much smaller than

exspected. The changes of the collisional velocity due to resonance, even a very strong

one, are negligibly small. The collisional rate is influenced more strongly. It shows a

highly nonlinear dependence and especially develops a maximum. But even for a very

strong resonance it increases by less than a factor of 4.

In the second part of this work two models aiming to explain the structures observed

in debris discs are developed and compared. One which is based upon the transport of

small dust grains by Poynting-Robertson and stellar wind drag forces, and one which is

based upon cascade-like collisions of planetesimals residing in a resonance. Both models

are analytical ones, they take into consideration the most important effects while being

kept as simple as possible at the same time. It turns out that the efficiency of the first

scenario depends heavily on the stellar wind, which is most difficult to quantify. Scenario

II is determined by the details of the collisional process and the whole collisional cascade.

With the experimental and observational data available today it is not possible to

determine if the structures in circumstellar discs originate from the first scenario or second

one.
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Chapter 1

Introduction

Circumstellar discs are nowadays known to be a common phenomenon for a great variety

of stars. Which is not surprising, since according to the theory of star formation, stars

are born within accretion discs (Strom, 1993). Those accretion discs then give rise to

planetary systems. Around young stars with ages below 10 million years planet formation

is still going on and the discs are therefore called protoplanetary ones (Safronov, 1969;

Marcy et al., 2000). At about 3 to 10 million years planet formation is concluded and

the gas of the disc dispersed (Bouwman et al., 2006). It leaves behind a main-sequence

star with a disc of small bodies and dust and possibly planets surrounding the star. In

its primordial phase the dust disc is still massive, but 10 to 60 million years later it

is diminished to a faint, optical thin, so called ‘debris disc’ (Jewitt, 1994). Due to a

violent, perturbative event or by simple aging of the disc the star can be deprived of its

circumstellar material. Surveys of Sun-like stars in the Milky Way indicate debris discs

around 10% to 20% of them (Decin et al., 2000; Meyer et al., 2007).

All of the spatially resolved discs, today about 14 of them (Meyer et al., 2007), show dif-

ferent kinds of asymmetries and structures such as inner gaps, warps or clumps (Augereau,

2004). The structures might have different origins: on the one hand singular events, e.g.

a fly-by of another star (Kalas et al., 2001) or break-up of a large asteroid (Grigorieva

et al., 2007), and on the other hand regularly recurring events, such as perturbation by

a planet residing in the disc (Mouillet et al., 1997; Liou & Zook, 1999). There have been

several attempts to explain observed structures by planetary perturbation quantitatively

(e.g. Quillen & Thorndike, 2002; Deller & Maddison, 2005; Wyatt, 2006). Unfortunately

the interaction between circumstellar discs and planets is not well known. Mostly due

to the only a small overlap of the set of stars observed in search for discs with the set

of stars observed in search for planets. That originates from the different observational

techniques applied. The search for planets is undertaken by radial velocity measurements,

direct imaging or transit observations. The radial velocity method is not hindered by cir-

cumstellar discs, it finds, however, large and close-in planets, planets too close to the star

to be connected to discs observable today. The direct imaging intrinsically only works for

young and thus bright planets around young stars, which do not host a debris disc due to

1



2 CHAPTER 1. INTRODUCTION

their age. Transits, finally, would be obscured by pronounced discs, ergo for any observed

transit, there is no significant surrounding disc. Therefore most exoplanet host stars are

discless (Greaves et al., 2004; Beichman et al., 2005; Moro-Mart́ın et al., 2007; Fiedler,

2007).

Observation of debris discs, on the other hand, is done by the search for emission

around a star in the visible (Hubble Space Telescope) as well as infrared (Spitzer Space

Telescope), submillimetre (SCUBA at James Clerk Maxwell Telescope) and even mil-

limetre (IRAM at Plateau de Bure interferometer) wavelength region. In the visible

wavelengths the scattered light from the dust grains is observed. With the debris discs

being dilute the measured flux is relatively small here, although there are some exceptions

for the denser ones of the debris discs (e.g. Heap et al., 2000). Most of the information

about discs and their structure is obtained in the far-infrared and sub-millimetre wave-

lengths. Compare e.g. Holland et al. (1998) and Su et al. (2005) for the observation of

the Vega disc. Since the spatial resolution of any optical instrument is proportional to

1/λ, the spatial resolution of the disc images taken in long wavelengths is low and only

discs several ten AU from the star and large scale structures can be seen.

In very recent observations there have been attempts to observe discs by interferometry

thus getting close enough to the star, as to be in the radial-velocity-region. For example,

the inner disc of Vega was observed by Absil et al. (2006) with CHARA/FLUOR at Mount

Wilson Observatory.

Although not very many, there do exist several stars known to host both planets and

a disc. First of all our Solar System – 8 planets plus the Edgeworth-Kuiper Belt. But

also other stars, e.g. HD 82943 (Beichman et al., 2005), HD 38529 (Moro-Mart́ın et al.,

2007) or HD 69830 (Beichman et al., 2005; Lovis et al., 2006). And last, but not least, ǫ

Eridani, where there is an inner planet observed by radial velocity measurements (Hatzes

et al., 2000) and a much further out debris disc with quite sophisticated structure in

submillimetre observations (Greaves et al., 1998, 2005).

Most of the explanations proposed for the origin of the observed structures in the

discs consider the latter as a disc of individual particles, where each single grain is treated

separately, and make so called N-body simulations. Those models are not able to treat

the collisional interaction within the disc (Liou & Zook, 1999; Kuchner & Holman, 2003;

Deller & Maddison, 2005). On the other hand, if the collisions are modelled, then the

discs are assumed to be rotationally symmetric and undisturbed (Krivov et al., 2006;

Thébault & Augereau, 2007).

A model more realistic from the physical point of view needs to take into consideration

both the asymmetries and the collisions and thus descibe a perturbed and at the same

time colliding disc.



Chapter 2

Background

This chapter will provide the basic facts and background knowledge about debris discs in

general, resonances in special and give a short overview of collisional dynamics necessary

for the analysis we are going to perform in the following chapters.

2.1 Debris Discs

2.1.1 Nomenclature

A debris disc, in the frame of this work, consists of dust and small bodies as well as

planetesimals.

We call the smallest solid bodies of a size of about or below 1µm dust, small bodies are

labelled those with a size up to 1m, planetesimals those of the order of 1km, planets are

the largest, circumstellar bodies and hundreds of kilometres in diameter, they have their

own gravitational field, sufficient to make long-term influences on the other components.

The numerical limits are a matter of convention, they should not be taken as sharp

boundaries, but rather understood as a rough orientation in the orders of magnitude.

2.1.2 Origin

According to the theory, debris discs are a by-product of star – and possible planet –

formation. Therein a cloud of interstellar gas starts to collapse after a destabilizing per-

turbation, it fragments, and creates a protostar. The latter accretes from its surrounding

envelope and this way develops into a real, “adult” star. Due to angular momentum

preservation the envelope flattens and after the star’s accretion phase remains as a cir-

cumstellar disc. Because this disc may give rise to one or more planets it is called a

protoplanetary one. Within the disc star formation repeats itself en miniature, there

are instabilities, accretion and chemical processes leading to the growths of smaller and

larger grains, later on planetesimals and finally planets. After about 107 years most of

the original gas has been used up in such processes, the rest is erased from the disc by

3



4 CHAPTER 2. BACKGROUND

photoevaporation, radiation pressure and other dissipative processes and leaves behind a

developed, “adult” disc consisting of, not necessarily planets, but definitely small, solid

bodies and dust grains.

Therefore, according to the theory of their formation every star should own a disc.

But even after the conclusion of planet formation the disc is subject to further devel-

opment. The solid components tend to collide and break each other up into smaller pieces.

Thus they create a collisional cascade leading to a grinding of particles from kilometre to

micrometre size. Due to radiation pressure the submicron particles are no longer bound

to the primary and leave the system as β-meteoroids.

The collisional cascade permanently creates new small particles and thus steadily

replenishes the dust disc and makes it a long lived one. But once all the large parent

bodies have been broken down the disc will diminish and leave a disc-less star behind. In

addition to this aging process the disc can also be destructed by strong perturbations e.g.

from a stellar fly-by or tumbling of the disc in a multiple star system.

2.1.3 Dynamics

While in a planetary system the star harbours most of the mass and the planets the

angular momentum, the small bodies and dust cover most of the area and are by far the

most numerous.

Dynamically the system is dominated by the gravitational force of the primary, which

compels the other bodies to Keplerian orbits around it.

However, the star not only creates the gravitational field in which the disc particles

move it also emits the products of its hydrogen burning. First there is the radiation,

which illuminates the disc but also carries momentum. When hit by a photon coming

from the star any body is accelerated away from the latter. The thus executed force, the

so called radiation pressure, is given as

Frad =
I

c
A

r

r
, (2.1)

where A is the illuminated area, I the flux irradiated onto A and c the speed of light. I

depends on the angular size of A with respect to the star and therefore is a function of

distance to the star, I = f(r) ∼ r−2. So the radiation pressure can be characterized by

the dimensionless and distance independent β-ratio

β :=
Frad

Fgrav
(2.2)

and be included into the treatment of the disc in the simple reduction of the effective

stellar mass,

Meffective = (1 − β)M∗ . (2.3)

Somewhat more tricky is the so called Poynting-Robertson drag. This is an effect of

motion through a radiation field. The star emits the radiation isotropically and radially.
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But the dust grains are orbiting it, meaning there is a tangential velocity of the dust with

respect to the stream of photons. So the stellar radiation hits the dust sideways instead

of radially and this in turn leads to friction and deceleration of the dust. In principle the

PR effect can be compared to motion in a viscous medium. The strength of the effect is

not a function of distance to the star only, but fundamentally depends on the dust grains’

orbital velocity. It is given by

FPR = −I

c
A

v

c
. (2.4)

Contrary to Frad FPR is not directed along the position but the velocity vector and thus

not parallel to the gravity. Consequently it cannot be rewritten in an “effective” formula

like (2.3).

With both radiation pressure and Poynting-Robertson drag being relativistic forces,

the flux in (2.1) and (2.4) is a special-relativistic one. Let I0 be the intensity felt by a

particle at rest and vr its radial velocity then the intensity felt by an moving particle is

I = I0

√

1 − v2
r

c2
≈ I0

(

1 − v2
r

2 c2

)

for vr ≪ c .

The strength of both radiative forces is proportional to the size of the particle it acts

upon. If s is the latter’s diameter both forces grow with s2, meaning the larger the particle

the stronger their effects. On the other hand, the gravitational force is also at work and

a function of the particle size, it is proportional to the mass which is density × volume.

The volume, however, grows with s3. So obviously only for small particles will radiative

forces and gravity be comparable. The larger the particles become the more dominant

the gravitational influence will be.

In conclusion we have to consider radiation pressure and PR drag only for the smallest

bodies in the debris disc, for larger asteroids or even planets, they can be neglected.

The small bodies and especially the dust grains are also affected by the stellar wind,

meaning the stream of particles emitted from the star, such as protons, electrons, or α-

particles. It causes a further friction and deceleration of the particles. Depending on

the activeness of the star this effect might be as strong as the PR drag. It is the one

most difficult to quantify since the stellar wind can only be observed indirectly by X-ray

scattering, and might lead to contradicting results, compare Augereau & Beust (2006) to

Strubbe & Chiang (2006), who found two mass-loss rates, differing by a factor of 30, for

one and the same star.

All these radiation and drag forces are functions of the particle size, but depend heavily

on characteristics of the host star, its mass, luminosity or mass-loss rate.

We will consider PR and wind drag in more detail later.

2.1.4 Observation

There are two basic means of observing populations of dust. First is the scattered light

from the star. This can in principle be observed in any wavelength the star emits in. But
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Figure 2.1: Spectra of two debris discs. Left: Vega’s disc, the first one ever discovered.

The star itself is not plotted here (Aumann et al., 1984). Right: Hipparcos star HIP95270

with a very prominent infrared excess from its debris disc (Rhee et al., 2007).

the light scattered by the dust is much more faint than that coming dircetly from the star,

which is why coronographic or interferometric observations are the only sensible ones.

The second means of observing dust is via its thermal emission. As the dust is con-

stantly heated by the star it has a certain temperature Tdust larger that 0 K, but con-

siderably smaller than the stars effective temperature Teffective. According to Planck’s

law

Bλ(T ) =
2hc2

λ5

1

ehc/kTλ − 1
(2.5)

it will emit continuous radiation with a maximum at λmax = f(T ).

That is why in the case of a star with a disc its spectrum will not only show the stars’

characteristic lines, the maximum in its continuum at λmax(Teffective) but also an additional

maximum at λmax(Tdust). Because of this additional maximum the measured intensity –

in astrophysical context referred to as the flux – exceeds the one expected from the star

alone. And because of its position in the infrared it is know as infrared excess.

Depending on the brightness of the star and the amount of dust present, the IR

excess may even surmount the stellar emission in this part of the spectrum. Obviously,

this observation of dust works best at wavelengths corresponding to the dust temperature.

Sadly the spatial resolution is rather bad, often the beamsize is comparable to the angular

size of the disc.

The first such observation of circumstellar discs reaches back to the 1980’s. The

InfraRed Astronomical Satellite (IRAS) made measurements which resulted in

the first detection of a debris disc around the star α Lyra, also know as Vega (Aumann

et al., 1984).
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Figure 2.2: Submillimetre images (850µm) of spatially resolved debris discs from the

SCUBA array. Left: Vega again (Holland et al., 1998), right: ǫ Eridani (Greaves et al.,

2005). The latter image covers 70” in both directions, the contour lines are drawn at 40%,

66% and 90% of the maximum flux.

2.1.5 Examples

In our Solar System we are able to directly observe the small bodies. Known populations

of them are the Asteroid Main Belt between Mars and Jupiter, the Edgeworth-Kuiper Belt

outside Neptune’s orbit or the Oort Cloud surrounding the whole Solar System. Dust is

difficult to observe in the Solar System because of the brightness of all the other objects.

In spite of this we know that there exists the Zodiacal Light, located in the inner Solar

System and consisting of very small sized objects and dust.

Hundreds of debris discs have been found around other stars, although only 14 of

them have been spatially resolved so far (see circumstellardisks.org). Among the first

ones for which such a spatially resolved image was published, was again Vega (Holland

et al., 1998).

Vega is an A0 V star on the northern hemisphere, its distance about 7.8 parsec.

The left panel of Fig. 2.2 shows the submillimetre image of Vega taken with SCUBA

at the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. In this image a bright

clump north-west of the star’s position can be seen. Later images at lower wavelength,

however, show a rotationally symmetric disc (Su et al., 2005). A possible explanation is

that at different wavelengths we observe different particle sizes. The small ones are more

strongly affected by the drag forces than the larger ones and thus their distribution is less

structured.

The star with the most elaborated disc found so far is ǫ Eridani. It is a K2 V star at

a distance of 3.22 parsec. The star itself holds some scientific interest. The publication of

it’s first spectrum reaches back to the 1930s (Raphael, 1937). It has a mass of M∗ = 0.8M⊙

and a luminosity L∗ = 0.3L⊙ (Guenther & Demarque, 1986; Saumon et al., 1996). Its
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star M∗/M⊙ L∗/L⊙ Ṁ∗/Ṁ⊙ ap/AU Mp/MJ τ0

ǫ Eri 0.80 0.3 30 3.4 0.86 sin i

40 0.1 (10−4)

AU Mic 0.59 0.3 10 . . . 300 ?? ?? ??

Table 2.1: Relevant data of star, disc and planet for ǫ Eri and AU Mic. For references see

text.

mass-loss rate was determined by Wood et al. (2002) to be 30Ṁ⊙. It is known to host

a planet (Hatzes et al., 2000) with a projected mass M sin i of 0.86 Jupiter masses and

orbiting at 3.4 AU.

ǫ Eridani’s circumstellar disc was resolved at the same time with the same instrument

as Vega’s (Greaves et al., 1998) revealing a disc which is even more structured than Vega’s.

Most striking is an inner gap at a distance of 30 AU from the star and about 6 clumps at

35 to 105 AU. However, follow-up observation from the same group of authors, Greaves

et al. (2005), showed that only 3 of the clumps are associated to the star, the others are

background objects, neither comoving with ǫ Eridani nor rotating around it. That second

paper of Greaves et al. and some others (Liou et al., 2000; Ozernoy et al., 2000; Quillen

& Thorndike, 2002; Deller & Maddison, 2005) proclaime a second, further out planet at

about 40 AU with an orbital period of 280 or more years. It is believed to be responsible

for the observed structure. The radial velocity planet it is too far in to shape the disc at

several tens of AU .

The most thoroughly studied disc, however, is that of β Pictoris. The star itself is of

spectral type A5V and resides 19.3 parsec from the Solar System. The disc was discovered

by IRAS observations also, about the same time as Vega’s (Smith & Terrile, 1984). More

than 200 papers have been written about it until now, a review is given by Lagrange et al.

(2000). The biggest difference of this disc to the two previous ones is the edge-on view,

i.e. the disc is lying in the viewplane. Observations have shown a prominent warp (see

e.g. Heap et al., 2000, and references therein) and unpaired bright spots (Telesco et al.,

2005). Both structures are often associated with planets residing within the disc, recently

Freistetter et al. (2007) proposed a system of 3 planets.

Only 4 years ago a disc was discovered around the dwarf star AU Microscopii. It could

not be resolved in submillimetre, but in near infrared wavelength (Kalas et al., 2004). The

disc is seen edge-on and shows a brightness asymmetry between the north-west and south-

east wing. AU Mic is a M1V dwarf star at 9.0 parsec. It has a stellar mass of 0.59 solar

masses and a luminosity of L∗ = 0.3L⊙ (Pagano et al., 2000). It is one of the most active

nearby stars (Smith et al., 2005), which means that there is a strong, but not necessarily

constant stellar wind. Three recent papers, Augereau & Beust (2006); Strubbe & Chiang

(2006); Fitzgerald et al. (2007), tried to quantify the wind and construct appropriate

models to fit the observed spectrum, obtaining very different results. Whereas the first
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Figure 2.3: Left: Coronographic image of the β Pictoris disc, obtained with STIS at

Hubble Space Telescope (Heap et al., 2000). It sums light of wavelengths 0.2 . . . 1µm.

The flux is normalized to the maximum flux, to enhance the warp. Right: Infrared image

(1.63µm) of the AU Microscopii disc obtained at the Keck II Telescope, exemplifying the

radial substructure (Liu, 2004). A and C mark brightness enhancements at 25 AU and

31 AU , B a depletion at 29 AU .

authors claim a mass-loss rate of 300 times that of the Sun, the second claim that it is

slightly below 10 times the solar loss rate for the second ones. The reason is that there are

lots of flares from the star and it is not clear how frequent they are precisely. Augereau

& Beust (2006) used their own, recent HST measurements, whereas Strubbe & Chiang

(2006) analysed publicly available and thus measurements that are a few years old. This

large range given for the stellar properties of course leads to very different results for the

amount of circumstellar material.

2.2 Resonance

In basic mechanics a resonance occurs when in an enforced libration the eigenfrequency

of the system is equal to that of the exciter. Then the amplitude of the enforced libration

rises steeply – to infinity if there is no damping – and the dispersion function diverges.

In celestial mechanics a resonance is the description for the phenomenon when in the

orbital motion of two bodies around their mutual primary there is a commensurability

in at least one parameter of their orbits. This commensurability leads to a symmetry in

their motion and especially in the regular repetition of certain geometrical configurations,

which in turn gives a net effect, a summation of otherwise small forces to the orbits.

Resonances exist in a variety of regimes of motion, such as the mean motion, secular or

Kozai resonances, and thus have a variety of effects, such as spin-orbit-coupling, secular

precession, libration of the axis of nodes, increase or decrease of inclination, eccentricity

or semimajor axis. The effects can be both stabilizing or destabilizing, depending on the

type of resonance. What they all have in common is that they change the dynamics of

the system dramatically compared to a similar nonresonant one and that there always is
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Figure 2.4: Sketch of the orbital motion in an external 3:2 mean motion resonance. The

star is the light grey dot in the centre, the planet the black one and the small body

(asteroid or dust grain) the small grey one.

a certain combination of angles, called the resonant argument, which librates around a

certain value. The which angles are involved and where the centre of libration is, depends

on the resonance type.

2.2.1 Mean Motion Resonance

In this work we will focus on mean-motion resonances. This means that the mean mo-

tion n, corresponding to the orbital frequency, of two bodies has the simple, algebraic

connection,

n1

n2

=
p

p + q
,

where p, q are integers.

Here the resonant argument Φ is a combination of mean longitude λ and longitude of

pericentre ω,

Φ = (p + q)λ1 − pλ2 − qω1 .

It librates around a certain value Φ0, often close to 0◦, 180◦, or 270◦, with a given amplitude

A, referred to as the libration width (Murray & Dermott, 1999; Kuchner & Holman, 2003;

Wyatt, 2006). Fig. 2.4 depicts a small body in a 3:2 mean motion resonance with a planet.

Here Φ0 = π and A was set to zero.

In the case of the primary 1:1-resonance (p = 1, q = 0), corresponding to Trojan

satellites, the resonant argument simplifies to

Φ = λ1 − λ2

with λ2 = λp

and librates around the Φ0 = ±π/3, which corresponds to the motion in the vicinity of

the Lagrange points L4 and L5.

In such a mean-motion resonance between a planet and small bodies in a surrounding

debris disc the planet plays the role of the exciter enforcing a density wave in the disc.

Now this density wave, not the individual small bodies, is comoving with the planet during

the latter’s orbital motion.
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2.2.2 Resonant Locking

To explore the physical workings of a resonance we consider a planet on a circular orbit

and a small body, an asteroid for example, in a slightly eccentric orbit with a somewhat

larger semimajor axis, its orbital velocity therefore being being smaller than the planet’s.

Further let their orbital periods be near a commensurability, thus leading to repeated,

regular conjunctions. Now consider those conjunctions taking place shortly before the

apocentre. When the planet is approaching the asteroid the latter feels the additional

gravitational force of the planet from a different direction than that of the primary. The

planet’s gravity can be split up into one component acting in the direction of the primary

and a component tangential to the orbit. Just before conjunction the second component

acts in retrograde direction, afterward conjunction in prograde direction with respect to

the asteroid’s orbits. Since the asteroid is nearing its apocentre it is slowing down at this

time, which means the tangential force just after conjunction can affect it for longer than

the one before. This means there is a net-force in the direction of the apocentre, resulting

into conjunctions nearer to the apocentre after each fly-by. See Fig. 8.5 of Murray &

Dermott (1999) for a schematic illustration of these forces.

If, however, the conjunction takes place slightly after the apocentre passage the as-

teroid will speed up again. Now the retrograde tangential force is the longer acting one,

pulling the asteroid backwards, and again the next conjunction will take place nearer to

the apocentre.

For conjunctions exactly at the apocentre both tangential forces, prograde and retro-

grade one, will act for the same time intervals and thus compensate each other. They will

no longer change the small body’s orbit. It will only be affected by radial gravitational

forces now. This situation then is described as a ‘resonant lock’. The described resonant

locking mechanism works for conjunctions at pericentre, too. Those resonances, however,

are not stable.

The efficiency of resonant capture and locking depends on some system parameters,

especially the planet-to-star mass ratio Mp/M∗ and on the orbital parameters of the small

body. Resonant capture is not or hardly possible for highly eccentric particles, because

as they near their apocentre and thus slow down, they also diverge from the planet. Thus

the latter’s influence lessens after conjunctions and there is no resulting force towards the

stable apocentre conjunction. The problem has been readressed lately by Quillen (2006).

To obtain definite, numerical values for the upper limit on eccentricities for resonance

capture quite sophisticated numerical techniques are necessary and the result depends

strongly on various parameters, such as e.g. stellar and planetary mass, asteroid’s size or

inclination.
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2.2.3 Consequences

Once locked into a resonance there are no more shear forces onto any small body from the

planet but an interplay of centrifugal forces at the fly-bys, enhanced gravity at conjunction

and diminished gravity at opposition. If the conjuction takes place at apocentre, i.e. the

largest distance between both orbits, the two gravity variations are neglectable and the

resonant configuration is a stable one. For conjunctions at pericentre the resonance leads

to close encounters of the small body with the planet and thus the latter will scatter and

eject the small body from its orbtit.

The lack of shear forces means that the angular momentum and subsequently the semi-

major axis of the small body are preserved. A resonance stabilizes the orbit’s semimajor

axis against any other perturbances at the so called resonant semimajor axis ares,

ares =

(

p + q

p

)2/3

ap . (2.6)

Here ap is the planet’s semimajor axis and p and q are the two integers of the resonance.

If “particles” are small dust grains rather than planetesimals, ares is shifted by a factor of

(1 − β)1/3.

Regarding the inclinations there is a similar effect on them as was on the apocentre

distance of conjunctions. If the small body’s orbit is inclined to the planet’s the latter’s

gravity will exert a shear force directed towards the plane of the planetary orbit. Thus,

within a mean-motion-resonance the inclination will gradually start to decrease. For the

eccentricities the story is an entirely different one. The small bodies are subject to the

radiation pressure which propels them away from the star. Since at the same time the

angular momentum is preserved, the only way to cope with the additional energy is an

enhancement of the eccentricity. According to Liou & Zook (1997) it grows as

e2(t) =
q

3p

[

1 − exp

(

− 3p

p + q
Bt

)]

(2.7)

with B = 2GM∗β/(ca2) . (2.8)

In real, physical systems a resonant lock will never be perfect. There will most certainly

be slight deviations in the conjunctions, inclinations and semimajor axes. In order to

describe the perfection or imperfection of a resonance we introduce the libration width

A. This is the half width of the interval in which the resonant argument Φ may librate,

Φ0 − A ≤ Φ ≤ Φ0 + A

In a perfect resonance A would be zero, for not so perfect ones it will be larger, up to the

value of π, where there is no resonance at all anymore.

Figure 2.5 gives an impression of these consequences of the resonance for three of a

small body’s orbital elements as well as the resonant argument. The results were obtained
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Figure 2.5: Consequences a resonant capture, obtained by numerically integrating the

equations of motion. Example star is ǫ Eridani (M∗ = 0.8 M⊙), planetary data are

Mp = 0.1 Mjup, ep = 0.005, ap = 40AU . The small body was captured in a 3:2 resonance.

by integrating a massless particle’s equation of motion numerically using a prefabricated

RADA integrator (Everhart, 1974, 1985).

Applying all these consequences to a whole disc of small bodies perturbed by a planet

and being caught in resonances the result – in the idealized case – is the following: The

orbits of the small bodies will be aligned, they will all have the same semimajor axis, orbit

in the plane of the planet and their eccentricities will be growing. Consequently the overall

structure of the disc of small bodies will be reshaped and not be rotationally symmetric

anymore. There will be regions of enhanced number density and regions depleted of

material. Depending on the parameters of the resonance and orbital parameters of the

small bodies this leads to the creation of different structures such as clumps, arcs or rings.

Fig. 2.6 and 2.7 show some scatterplots for different eccentricities, libration widths and

resonances (p + q)/p.

Looking at the first order resonances, i.e. q = 1, we see that a (p + q)/p resonance

produces p clumps. It becomes clear why when we follow the motion a resonant particle

with nonzero eccentricity in a reference frame comoving with the planet. There the

particle’s path has p turning points, or even loops for high eccentric ones (cf. p. 325 of

Murray & Dermott, 1999).
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Figure 2.6: Scatterplots of a 3:2 resonance. It shows a snapshot of the resonant population,

projected into the planets’s orbital plane. In the left panel the maximum eccentricity is

0.2, in the right one it is 0.5, libration width in both cases is A = 0.1π. The coordinate

system is in units of ap, the planet is located at (1,0), the star at (0,0).

2.2.4 Examples

Capture in mean motion resonance is known to be a common phenomenon in the Solar

System. Examples are groups of Near Earth Objects caught in 3:1 and 7:2 resonance

(Gladman et al., 2000, and references therein) or the various resonances of the Main Belt

with Jupiter, among the the Hilda group in a 3:2 or the Koronis family in 5:2 resonance.

The resonances in the Main Belt are inner one with Jupiter. Many of them are destabiliz-

ing, removing material from the locations a ≈ ares. This resulted in the Kirkwood Gaps

– regions in the Main Belt depleted of material (Kirkwood, 1867, and references therein).

Last, but no least, there are the Twotinos and Plutinos in the Edgeworth-Kuiper Belt

which reside in 2:1 and 3:2 resonance with Neptune, respectively (Chiang & Jordan, 2002).

It is generally assumed that similar structures exist in discs around other stars, too.

The azimuthal substructure observed in some debris discs, as shown for ǫ Eridani above,

is usually attributed to resonances with embedded planets. Thus resonances in debris

discs can be used as tracers for otherwise nonobservable planets.

2.3 Collisions

The overall dynamics of a debris disc are dominated by the star and the planets, but

the small bodies in there interact in the form of collisions. These are more difficult to

describe and model adequately than the resonances. The physics of collisions depend not

only on kinematic and geometrical parameters but also on a multitude of parameters of

projectile and target, e.g. their size, chemical composition, porosity, crystalline phase and

so on. Experiments in order to study the details of collisions are only possible for smaller

particles, up to a size of a few centimetres (Nakamura, 2002; Kadono et al., 2005, and
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Figure 2.7: Scatterplots of some other resonances. For each one the star is at (0,0), the

planet at (1,0). Top panel: 2:1 resonance with maximum eccentricity 0.2, but A = 0.1π

(left) and 0.4π (right). Middle panel: First order resonances with larger p. 4:3 on the left

(emax = 0.3, A = 0.1π) and 16:15 on the right (emax = 0.1, A = 0.01π). A and emax are

chosen to show clumpy structure most suitably. Bottom panel: Higher order resonances

(q > 1), 3:1 on the left and 7:2 on the right (emax = 0.3, A = 0.1π both cases).

references therein). Thus theoretical descriptions are needed in order to extrapolate the

data up to sizes of several hundred kilometres typical for astronomical ensembles.

2.3.1 Types of Collisions

Depending on the collisional velocity Vimp and impact angle there are different types of

collisions. For very low velocities the collisions are elastic, i.e. the colliders only change

direction and speed.
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At higher Vimp and a wide collision angle the projectile may stick to the target after

collision (sticking collision), this is especially important for particle growth in protoplan-

etary discs.

If the impact velocity sufficiently large, the collisions are destructive and produce a

variety of fragments. The mildest forms are erosive or cratering collisions, where only a

small amount of material is chopped off, but the largest part of the target is left intact.

By definition, the mass of the largest fragment is larger than half the mass of the original

target. If the largest fragment’s mass is smaller, the collision is called catastrophic or

cataclysmic. This again has two types: the shattering, which destroys the target but keeps

the fragments in a swarm near the centre of mass at collision. In constrast, a dispersing

collision both destroys the target and disperses the fragments in space. In the regime of

the small particles, which are not gravitationally bound, there is no difference between

shattering and dispersing collisions. Once the target is broken up by a collision there is

no more binding force to keep the fragments together and they start to disperse in space.

For the larger, gravity bound bodies a dispersing collision needs a higher kinetic energy

at collision, i.e. a higher impact velocity, than a shattering one (Benz & Asphaug, 1999).

Because in addition to the binding forces of the target, also the attractive gravitational

force has to be overcome.

In debris discs there is no decelerating/damping gas, so that the collisional velocities

are all above the destruction treshold in any case. Thus all collisions are catastrophic one.

2.3.2 Description

In this work we will confine ourselves to catastrophic collisions, i.e. the kinetic energy

Q at collision is always larger than the shattering and dispersing border, Q∗
S and Q∗

D,

respectively. The first analytic description of such collisions was given by Dohnanyi (1969).

Therein he considered a balance equation for the number density of colliding particles of

the form

dn(s)

dt
= − ( loss by erosion ) − ( loss by catastrophic collisions )

+ ( gain by erosion and break-up of larger ones )

He found that this can be satisfied by a power law,

n = Nm−1−α, (2.9)

a result which was in good agreement with observations of the Solar System’s asteroids.

“1 + α” is called the population index. It can be shown that if it is smaller than 5/3 the

large particles are overabundant, the material loss dominates and a steady-state cannot

be reached. If, in contrast, 1 + α > 2 the erosion dominates and likewise a steady-state is

not possible. The actual value was determined by Dohnanyi to be

1 + α = 11/6 . (2.10)
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In Dohnanyi’s frame of reference this result is independent of other physical parameters

to 1st order.

More recent models of colliding ensembles are hydrodynamical codes as well as im-

provements of Dohnanyi’s statistical approach. Benz & Asphaug (1999) describe a hy-

drodynamical code which describes the whole size range of the ensembles. It gives easy

access to the fragments’ parameters such as size, velocity and angular momentum, but

it is based upon the knowledge of the density of flaws, the stress tensor and equation of

state of the colliders. It assumes compact, crystalline structures, not allowing porous or

amorphous material.

The statistical approaches are not hindered by such constrains. For them the descrip-

tion of velocity and momentum is not as straightforward, the observed size distribution

is reproduced very well, though.

Campo Bagatin et al. (1994) refined Dohnanyi’s simple approach by considering the

effect of finite maximum and minimum masses, mmin and mmax, respectively. Already

Dohnanyi himself pointed out that (2.9) is only true far from the ends of the distribution.

If finite borders are incorporated the simple power law size distribution turns “wavy”.

Meaning when compared to (2.9), where there was no mmin, the grains just above this

threshold (m >∼ mmin) are more abundant, because they cannot be destroyed by the

somewhat smaller ones anymore. They can, however, destroy the slightly larger ones very

well, so those are less abundant than according to (2.9). And so on. The further we

get away from mmin, the flatter the wave becomes and the distribution approaches the

underlying power law.

A second refinement was given by Durda & Dermott (1997), who considered the size

dependence of the break-up energy per volume Q∗
D. In Dohnanyi’s work it was implicitly

assumed to be constant,

Q∗
D ≡ constant. (2.11)

This energy, however, is a function of the particle size. Durda & Dermott (1997) describe

a power law dependence

Q∗
D ∼ sk, (2.12)

and found that the exponent is a function of size itself,

k = f(s). (2.13)

This originates in the change of the binding mechanisms along the size scale from km to

µm sized bodies. Among the larger planetesimals gravity binds them (‘gravity regime’)

and k > 0, among the small dust grains chemical and van-der-Waals forces bind them

(‘strength regime’) and k < 0. Dohnanyi’s implicit value k = 0 is just the transition be-

tween the strength and gravity regimes. Since α depends on QD, it is thus size dependent,

too.
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2.3.3 Consequences

Collisions do play an important role in sustaining a debris disc. At any time material,

especially in the form of very small dust grains, is lost due to radiation pressure, PR

or wind drag, evaporation in the vicinity of the star or gravitational scattering by other

particles. Collisional grinding ensures that the size range of circumstellar material stays

complete and stable over a long time.

On the other hand, collisional grinding also causes the disc to “age”. It does break up

big particles with β ≈ 0 into smaller ones with nonzero β, or even β > 0.5. Where the

first ones then fall victim to drag forces and are removed slowly, the latter are below the

blow-out limit in size and leave the system immediately. Thus collisions result in a loss

of disc material and consequently a decay of the debris disc (see e.g. Löhne et al., 2007).

2.4 Goal of This Work

In order to understand better the origin and evolution of planetary systems we want

to study the structure of as many of them as possible. Unfortunately, observation of

extrasolar planetary systems is even more complicated than that of the Solar System.

The planets themselves can be found either by radial-velocity measurements, transits or

direct imaging. Where the first is biased to large, close-in planets (Hot Jupiters), the

second is biased to large ones at a special viewing geometry and the third one to bright,

young planets. Terrestial planets are not observable today, but might be in the near future,

e.g. by CoRoT or Darwin/TPF. Asteroids around other stars are not observable at all.

The dust, however, is observable, as mentioned before. Observation of circumstellar dust

together with a vast theoretical background may make indirect observation of extrasolar

asteroid belts and planets possible. Therefore our understanding of the connection of

planets, asteroids and dust must be as elaborated as possible.

Collisions are grinding down asteroids, thus producing dust. And resonances pile up

material to clumps and certain structures of enhanced particle density, which in turn

leads to an enhanced brightness. However, rather high collisional velocity may lead to an

expulsion of the material from the resonance and destruction of the structures.

Therefore in this work we will combine resonant dynamics with collisional interaction.

We will use analytic treatments and as much generality as possible in order to make our

results applicable to as many systems as possible. We will not study the features and

characteristics of a individual small body population to the smallest detail feasible. We

will instead make a parameter study of fiducial ones, which can be used as a stencil when

studying an individual, observed debris disc.

We will determine how and to what extent resonances change the collisional veloc-

ities and rates of circumstellar small bodies. Further we will investigate how resonant

structures might arise and examine two different scenarios of the origin of observable dust

populations at resonant clumps.



Chapter 3

Collisional Velocities and Rates

3.1 What is Kinetic Theory?

Circumstellar discs are often treated by the particle in a box method or n-body codes with

a variety of modifications such as e.g. multiannulus treatment (e.g. Thébault & Augereau,

2007). Those methods treat a swarm of individual particles, following the motion and

evolution of each and every one to then combine them to a disc. In many of these codes

a rotationally symmetric disc is an essential assumption. In the case of mean motion

resonances, however, this is violated totally, as the disc particles locked in a resonance

group into clumps, arcs or other highly nonrotationally symmetric structures.

If we additionally want to treat collisions among the disc particles, further problems

arise. N-body codes usually can treat only up to ∼ 104 particles, which is far too few to

treat collisions amongst them. There are nonetheless methods to incorporate collisions,

e.g. by an inflated radius of the particles (Thébault et al., 2003). That, however, leads to

other problems because not all the scaling laws are independent of the particle size, as is

shown in Durda & Dermott (1997).

In order to combine collisions with resonances consistently, we will use a kinetic ap-

proach, which means, we will not treat groups of individual particles but continuous

distributions n(p,q), which contain all the necessary information. p and q are vectors

of the phase space, they contain e.g. mass, position or velocity. Later we will arrange

them so that p contains the essential, useful variables and q the ones to be averaged over.

Integrating the distribution over both,

∫∫

n(p,q) dp dq = n (3.1)

gives the total number of particles n in the ensemble.

Since their actual number is of no consequence as long as there are enough to justify

19
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the use of statistical methods, we introduce normalized distributions φ,

n(p,q) = nφ(p,q) (3.2)
∫∫

φ(p,q) dp dq = 1 . (3.3)

Following Krivov et al. (2005), we denote by φ(x, y, ...)dxdy... the fraction of particles in

the disc with arguments [x, x+dx], [y, y+dy], ... . Thus we can consider an unconstrained

number of disc particles and include certain asymmetries of the ensemble.

The derivation of the distribution is accomplished by solving the equation of balance

between losses and gains of disc particles, the so called Master Equation,

dn

dt
=

(

dn

dt

)

gain

−
(

dn

dt

)

loss

−∇ · (ṙn) . (3.4)

The last term describes transport of material through the disc. It is important in young,

still gas-rich discs only. It can be neglected here since ṙn is approximately zero compared

to the two other terms and the disc is collision dominated.

Material is lost to some extent by radiation pressure or PR drag also, but mainly by

collisions. The collisional outcome then is the main source for material gain in debris disc.

In terms of the distribution of targets n(p) and projectiles n(pp),

n(p) =

∫

n(p,q) dq (3.5)

n(pp) =

∫

n(pp,qp) dqp (3.6)

the loss term cam be written as
(

dn

dt

)

loss

(p) = n(p)

∫

n(pp) . . .∆(p,pp) dpp . (3.7)

Crucial for any further calculation is the evaluation of the integration kernel ∆(p,pp),

from here on called ∆-integral. But the ∆-integral is not an instrument to solve (3.4)

solely, it also gives direct access to some properties of the ensemble, most notably those

we are seeking: the collisional velocity and rate of the resonant ensemble.

3.2 Assumptions and Preconditions

This work will exclusively deal with debris discs, meaning they will be at least some

tens of millions of years old. Consequently they will be fully developed, all accretion

and planet formation processes have long been concluded. The primary will be a single,

main-sequence star, radiating steadily and with a luminosity L∗ scaling with its mass,

L∗ ∼ M3.8
∗ .
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Orbiting around it will be one, and only one planet on a stable orbit. We are well aware

that many stars are in multiple systems and that in at least some dozen systems more

than one planet is present around the primary. We neglect those cases here, because in

the case of a close binary with a circumbinary disc both stars will act as one primary and

not alter the dynamics in the disc. In the case of wide binaries or even a disc around only

one of them the interaction of both stars will perturb the disc more strongly than any

planet could, meaning there will be no resonant structures there. The case of multi-planet

systems is similar. If two or more of them perturb the disc in equal measure they will

prevent any pronounced resonant structure from developing. If, on the other hand, there

is a multi-planet system in a situation is similar to the Solar System, only one planet

will disturb the circumstellar disc, the others will not influence it. For example Neptune

influences the Kuiper Belt creating populations like Plutinos and Twotinos, the other

seven planets, even the much larger Jupiter, are irrelevant here.

Further, this single planet will have a circular orbit, i.e. ep ≡ 0. Again, for the Solar

System, this assumption is natural. For many other systems where planetesimals are

expected to be trapped in resonances as a result of planetary migration, it is reasonable,

too, since dissipative forces that cause migration tend to circularize the planetary orbit

(Wyatt, 2003). If, instead, capture of dust particles is considered, and therefore the

mechanism of resonant capture is dust transport by dissipative forces rather than planet

migration, resonance capture is known to be most efficient for less eccentric planets.

Quillen (2006), among others, numerically investigated the dependence of the dust capture

probability on ep. She found that resonant capture is only possible if (Mp/M∗)
−1/3ep ∼ 1,

where Mp and M∗ are the masses of the planet and the star, respectively. Furthermore,

even if capture occurs, already a low planetary eccentricity of ∼ 0.05 smears a clumpy

resonant structure to a rotationally symmetric ring (Reche et al., 2008).

Gas will be present in the disc in traces only, if at all, it will have no dynamical

influence. The orbital motion of the small bodies in the disc will be purely Keplerian.

The material in the disc has been thoroughly processed by accretion, disruption and

possibly re-accretion before, it is therefore described as second generation or in other

words: debris.

All bodies in the disc are assumed to be solid, justified by the collisional processing,

and spherical, which actually is a simplification. But since we consider whole ensembles

and not individual bodies, this can be viewed as the average over the shapes of all members

of the ensemble in question.

All particles in an examined ensemble will be in a mutual resonance. Each will be an

external, mean-motion resonance, thus

ares
>∼ ap .

Upon collision both colliders will leave the ensemble. Either because they have been

disrupted into smaller fragments and do not exist anymore or because their orbits are

changed so that they no longer reside in that resonance.
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Figure 3.1: Angular variables in 2D.

Further, we confine our analysis to small inclinations, i <∼ 10◦. One reason for that is

that orbital inclinations of small bodies in the Solar System and other planetary systems

have this order of magnitude. Another reason is that higher inclinations drastically reduce

the probability of resonance capture or make the resonant orbits unstable (e.g., Wisdom,

1983; Jancart et al., 2003; Gallardo, 2006). Already Wisdom (1983), who explored the

phase space in the vicinity of mean motion resonances, found chaotic behaviour in slightly

inclined orbits (i = 10◦), where the same orbits were stable at zero inclination. More

recent analysis of the three-dimensional dynamics back up Wisdom’s conclusion. While

Gallardo (2006) describes a drop in the strength and changes in stability of the resonance

for highly inclined (i = 40◦) orbits, Jancart et al. (2003) investigated the resonance

capture probability in dependence on the particles’ inclination. In a series of simulations

with the same initial semimajor axis and eccentricity where capture was always possible

for inclinations below 10◦, they found it to be only sometimes possible between 10◦ and

40◦, totally impossible for inclinations above 40◦. We will compute collisional velocities

by simply assuming i = ip = 0, and take into account corrections due to small non-

zero inclinations only in the calculations of collisional rates. Thus we can assume a

2-dimensional geometry as shown in Fig. 3.1. The current position of the planet will not

be of interest for our calculation. Therefore we introduce overlined variables, measured

with respect to the planet:

ω ≡ ω − λp,

λ ≡ λ − λp.

The resonant argument for a particle in mean motion resonance with the planet in this

reference frame reads

Φ = (p + q)λ − qω.

Thus the planet appears implicitly only and we can fully concentrate on the resonant belt.



3.3. RESONANT BELT 23

3.3 Resonant Belt

3.3.1 System

We will consider the following system. There is a massive body, which we will call planet,

orbiting the primary, referred to as a star, and a disc of objects (small bodies or dust),

orbiting the same primary. The motion of each of the objects in 3D is described by six

Keplerian orbital elements

a , e , i , ω , Ω , λ, (3.8)

which stand for the semimajor axis, eccentricity, inclination, argument of pericentre,

longitude of ascending node, and mean longitude, respectively. Instead of λ, either the

mean anomaly M or the true anomaly θ can be used. The elements of the planet will be

marked with a subscript p.

3.3.2 Simplifications

In addition to the general assumptions explained in Sec. 3.2, we need to make some

technical simplifications for this calculation. First we assume all particles to have the

same “typical” radius. This is justified by the fact that we want to focus on geometrical

effects caused by resonance locking, rather than on the size or shape distribution effects.

As long as we consider macroscopic objects, whose dynamics is purely gravitational and

therefore independent of their size, this assumption does not imply any loss of generality.

It would be a simplifying assumption for dust, the motion of which is affected by radiation

pressure and is therefore size-dependent.

Both the libration amplitude A and the maximum eccentricity emax depend, in a

complex way, on the mechanism of resonant trapping (Poynting-Robertson effect, planet

migration, etc.). Furthermore, even for a given trapping mechanism, both quantities

depend on a multitude of physical parameters: planet mass, strength of stellar wind, order

of the resonance, etc., see e.g. Fig.4.4 later in this work. Throughout our investigation,

we assume that both A and emax can be “pre-determined” by a dedicated dynamical study

of a system of interest, and therefore treat them as free parameters.

Additional, less important simplifications, are introduced as appropriate.

3.3.3 Distributions

In 2D, four instead of orbital elements fully describe the particle’s motion:

a , e , θ , ω.

As for the whole resonant ensemble a ≡ ares it is a parameter here and only three remaining

elements represent the phase space variables.
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We now introduce the distributions of this variables. The mean longitude λ is dis-

tributed uniformly, and the distribution of the true anomaly θ follows from the Kepler

equation:

φ(ω, θ) = φ(ω, λ)

∣

∣

∣

∣

∂λ

∂θ

∣

∣

∣

∣

ω

= φ(ω, λ)
r2

a2
√

1 − e2
,

where λ on the right-hand side should be calculated from θ by means of standard formulas

of Keplerian motion

λ = ω + M, (3.9)

M = E − e sin E, (3.10)

tan
E

2
=

√

1 − e

1 + e
tan

θ

2
. (3.11)

Within the resonance, where Φ0 − A < Φ < Φ0 + A, the distributions of ω and λ

(or θ) are not independent. Assuming the distribution of the resonant argument Φ to be

uniform within the libration width, we obtain

φω(ω, λ) =
1

2π

1

2A
H [Φ0 − A < Φ < Φ0 + A] , (3.12)

where H [cond] is a Heaviside function, which equals one if the evaluation of cond re-

turns true and zero if cond returns false. If needed, e.g. to examine a certain observed

population, H [.] can be replaced by a more realistic distribution, e.g. sinusoidal.

Particles caught in a resonance may have eccentricities between zero and a maximum

value emax. To keep the analysis simple, we assume a uniform distribution between these

two borders,

φe(e; emax) =
1

emax

H [e < emax]. (3.13)

This simplification, just like the one for the resonant argument made above, can always

be lifted by replacing the Heaviside function with a more realistic distribution. Because

of e2 ∼ exp(−t), see Eq. (2.7), the eccentricities grow quickly for small e and slowly for

larger ones, thus building a maximum of the distribution near e = emax. That is confirmed

by observations: The Plutinos, which are in 3:2 resonance with Neptune, are piled from

e ≈ 0.1 . . . 0.3 (Morbidelli et al., 2003).

Figure 3.2 gives a visual impression of how the distribution (3.12) describes a resonant

population. Plotted is the distribution of Cartesian coordinates φxy(x, y) calculated from

φω(ω, λ) by the virtue of

φxy(x, y)|dxdy| = φω(ω, λ)|dω dλ|. (3.14)

The upper plots, drawn for a small libration width A, show “loopy”, pretzel-like

structures, well-known to be typical of the synodic motion of resonant particles (cf. Murray
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Figure 3.2: Density distribution (3.12) of objects for single eccentricity values, locked in a

4:3 resonance. The grey scale is arbitrary; the darker the grey, the higher the “density” of

objects. The star at (0,0) and the planet at (1,0) are shown with large and small circles.

From left to right: dependence on eccentricity, e = 0.1, 0.25, 0.5, and 0.75. From top to

bottom: dependence on the libration amplitude, A = 0.1π (18◦), 0.3π (54◦), and π (180◦).

& Dermott, 1999; Kuchner & Holman, 2003). The middle panels show how a larger

libration amplitude dithers the distribution. Finally, the lowest panels with A = 180◦

that correspond to a nonresonant case become rotationally-symmetric. Note that the

distributions are not radially uniform even in this case: the particle density is higher at the

inner and outer edges of each ring. Mathematically, the density there becomes infinitely

large, because the radial velocity of particles vanishes in pericentres and apocentres.

Fig. 3.3 shows the complete spatial density distribution, including (3.13) for different

resonances, libration widths and maximum eccentricities. Instead of loopy structures

there are clumps now, which are sometimes more pronounced, e.g. top left, sometimes

smeared an fuzzy, e.g. top right. The larger emax and the larger the libration width A,

the more fuzzy the structures become.
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Figure 3.3: Complete density distributions (3.12) combined with (3.13) of resonant en-

sembles, the very same ones as Fig. 2.6 and 2.7. For each one the star is at (0,0), the

planet at (1,0). Top panel: 3:2 resonance with maximum eccentricity 0.2 (left) and 0.5

(right), libration width in both cases is A = 0.1π. Second panel: 2:1 resonance with max-

imum eccentricity 0.2, but A = 0.1π (left) and 0.4π (right). Third panel: 4:3 (emax = 0.3,

A = 0.1π) and 16:15 resonance (emax = 0.1, A = 0.01π). Bottom panel: Higher order

resonances (q > 1), 3:1 on the left and 7:2 on the right (emax = 0.3, A = 0.1π both cases).
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3.4 Collisions

3.4.1 Collision Condition

In the frame of our model, the disc particles collide, when their positions coincide. Phys-

ically speaking these are face-on collisions. Grazing collisions, where the radius of target

and projectile must be kept in mind will not be considered explicitely here. As they

tend to propel both colliders from the ensemble in question they will be destructive in our

sence, too (see sec. 3.2). Thus, in terms of radius vectors, the collision condition is trivial:

r1 = r2, meaning that distances and true longitudes ω + θ of both particles coincide:

r1 = r2 (3.15)

ω1 + θ1 = ω2 + θ2. (3.16)

By applying the equation of conic section and solving for ω2 and θ2, we get

ωc
2 = θ1 − θc

2 + ω1 (3.17)

cos θc
2 =

1

e2

[

a2

a1

1 − e2
2

1 − e2
1

(1 + e1 cos θ1) − 1

]

, (3.18)

which splits up into two solutions (“+” and “−”) since the arc cosine is not unique. They

are

ω+
2 = θ1 − θ+

2 + ω1, θ+
2 = arccos [cos θc

2] (3.19)

and

ω−
2 = θ1 − θ−2 + ω1, θ−2 = 2π − arccos [cos θc

2] . (3.20)

Here we mark particle #1 as projectile an #2 as target. At this point we break the

symmetry between the two colliders, although they are perfectly equal from the physical

point of view. From the mathematical one they are not. So may the projectile have a

circular orbit, the target may not. In the case of e2 = 0, r2 will equal a2 for all θ2 and

Eq. (3.15) must be solved for θ1, a θc
2 does not exist.

Further mathmatical problems arise if e1 > e2. Then the part of orbit 1 which is near

apocentre is outside of orbit 2 and collision is impossible for any θ2 if θ1 ≈ π. The solution

of (3.15) and (3.16) is the empty set.

We will have to keep this in mind when evaluating the ∆-integrals.

3.4.2 Relative Velocity at Collision

To compute the relative velocity V k
imp(e1, ω1, θ1 , e2, ω2, θ2) of two colliding particles,

we start with calculating the velocity vector of either particle. Consider a Cartesian

coordinate system centred on the star and with the x-axis pointing towards the particle’s
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present position, but not rotating with the radius vector. The particle’s position and

velocity in this system are

r =

(

r

0

)

, (3.21)

v =

(

vr

vφ

)

=

√

GM

a(1 − e2)

(

e sin θ

1 + e cos θ

)

. (3.22)

Denoting the velocity vectors of two colliders by v1 and v2, the k-th power of the relative

velocity is

V k
imp = |v1 − v2|k. (3.23)

Therefore, the relative velocity can be calculated by simply applying Eq. (3.22) to both

colliders, which makes it obvious that Vimp = Vimp(e1, θ1, e2, θ2). Furthermore, at collision,

θ2 is determined by e1, θ1, and e2, see Eq. (3.18). Therefore, the impact velocity depends

on three arguments only:

Vimp = Vimp(e1, θ1, e2). (3.24)

We refrain from giving an explicit form of V k
imp here, because it is rather lengthy and

obtained by a straightforward calculation. It can be found in Appendix B

3.5 General Formalism

3.5.1 Splitting of Variables

The formalism of the ∆-integrals originates from Krivov et al. (2005), it was further

developed in Krivov et al. (2006). Following these papers, we now arrange all phase space

variables into “useful” ones p that we keep and “dummy” ones q that we will average over

to reduce the mathematical complexity of our problem. For our calculations, we choose

p = (e), q = (ω, θ). (3.25)

Keep in mind that a is a parameter, not a phase space variable. We average over the angles,

because we do not want to consider ‘snapshots’ of the disc and analyse the geometry but

rather investigate how the resonant ensemble as a whole behaves. At this point we keep

e, the individual eccentricity of the single particles, because the value of that essentially

influences the ensemble. As Figs 3.2 and 3.3 show, higher eccentricity will lead to more

pronounced clumps on the one hand and on the other hand it allows higher momentary

velocities and thus possibly higher collisional velocities.

Later we will also average over e and thus make statements about the whole resonant

ensemble, including all eccentricities in [0, emax].
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3.5.2 ∆-integrals

The collision condition (3.15), (3.16) is given in p and q, but we need p only. Therefore

we average over the unneeded ones and turn Dirac’s δ into ∆,

∆(p1,p2) ≡
∫

q1

∫

q2

δ (r1 − r2)φq(q1)φq(q2)dq1dq2. (3.26)

Higher momenta of such functions defined at the collisional point can be obtained by

adding the relative velocity Vimp(p1,q1,p2,q2),

∆(k)(p1,p2) ≡
∫

q1

∫

q2

V k
imp (p1,q1,p2,q2) δ (r1 − r2) φq(q1)φq(q2)dq1dq2.

(3.27)

Each of them already includes the collisional condition through the factor δ(r1 − r2).

Krivov et al. (2005, 2006) have shown that using the ∆-integrals the mean value of

V k
imp (p1,q1,p2,q2), averaged over all q-variables, can be expressed as

V k
imp(p1,p2) =

∆(k)(p1,p2)

∆(0)(p1,p2)
. (3.28)

With our choice of variables and setting k = 1, Eq. (3.28) takes the form

Vimp(e1, e2) ≡ ∆(1)(e1, e2)

∆(0)(e1, e2)
, (3.29)

which gives the average collisional velocity between two overlapping rings of particles: one

with eccentricity e1 and another one with eccentricity e2. In which the angular elements

of particles distributed in accordance with the resonance condition. An analysis of the

dimensions shows that with this denominator Vimp(e1, e2) is indeed given in m/s and

(3.28) gives the proper, physical collisional velocity.

3.5.3 Meaning of ∆-integrals

According to Krivov et al. (2005), ∆(0) can be interpreted as the reciprocal of an “effective

interaction volume”. Consider again two rings formed by two subsets of particles with

given eccentricities e1 and e2. If S1 and S2 are the surface areas of the rings e1 and e2, and

S12 the area of their intersection, then the zeroth integral ∆(0)(e1, e2) is approximately

∆(0)(e1, e2) ≈
S12

S1S2

.

Fig. 3.4 shows a comparison of the actual interaction volume

S12 = πa2
(

min
(

(1 + e1)
2, (1 + e2)

2
)

− max
(

(1 − e1)
2, (1 − e2)

2
))

and the ∆(0) integral for a 2:1 resonance, once for a weak (A = 0.5π) and then a strong

one (A = 0.1π), a = 1 in all calculations.
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Figure 3.4: Comparison of exact interaction volume (grey) and ∆(0) (black, for two dif-

ferent libration widths) for a 2:1 resonance, e2 is set to 0.1.

In the previous section we explained the interpretation of the ratio ∆(1)/∆(0) as the

collisional velocity. The integral ∆(1) can be interpreted directly, too. Since ∆(1) =

Vimp ×∆(0) ∼ velocity/volume, ∆(1) gives, after multiplication by the number of particles

and their collisional cross section, the collisional rate,

R(e1, e2) = NσVimp(e1, e2)∆
(0)(e1, e2) (3.30)

= Nσ∆(1)(e1, e2). (3.31)

More precisely, this will be the rate of collisions between those particles of the disc with

eccentricity e1 and those with eccentricity e2.

Later on in this work there will be further comparisons of results obtained with our

formalism and those from other methods.

3.5.4 Evaluation of ∆-integrals

For the actual calculation of any ∆-integral we insert (3.24) and (3.25) into (3.27):

∆(k)(e1, e2) =

∫

ω1

∫

ω2

∫

θ1

∫

θ2

V k
imp(e1, θ1, e2)

× δ (r1 − r2) (3.32)

× φω(ω1, θ1) φω(ω2, θ2) dω1dω2 dθ1dθ2.

The δ-function should now be expressed through orbital elements:

δ (r1 − r2) = J−1δ (ω1 − ω2) δ (θ1 − θ2) , (3.33)

where the Jacobian

J =

∣

∣

∣

∣

∂r2

∂ (ω2, θ2)

∣

∣

∣

∣

explicitly reads

J =
r3

a

e2

1 − e2
2

| sin θ2| = a2 e2(1 − e2
2)

2| sin θ2|
(1 + e2 cos θ2)3

. (3.34)
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Incorporating this into (3.32) and paying respect to the collision condition, we get

∆(k)(e1, e2) =

∫

ω1

∫

ω2

∫

θ1

∫

θ2

V k
imp(e1, θ1, e2)

× 1

a2

(1 + e2 cos θ2)
3

e2(1 − e2
2)

2| sin θ2|
δ (ω2 − ωc

2) δ(θ2 − θc
2)

× φω(ω1, θ1) φω(ω2, θ2) dω1dω2 dθ1dθ2. (3.35)

This is the general, explicit version of Eq. (3.27), the numerical solution of which

would be possible, the 4-time integration making in cumbersome, however.

3.5.5 Transformation of ∆-integrals

Here, we will transform Eq. (3.35) to a form more suitable for efficient numerical calcula-

tions.

Two out of four integrations in Eq. (3.35), those over ω2 and θ2, can be done immedi-

ately with the help of the two-branch collision condition. Since cos θ+
2 = cos θ−2 = cos θc

2

and | sin θ+
2 | = | sin θ−2 | = | sin θc

2| we obtain:

∆(k)(e1, e2) =
1

a2e2(1 − e2
2)2

∫ 2π

0

dθ1
(1 + e2 cos θc

2)
3

| sin θc
2|

×
∑

±

V ±

imp
k
(e1, θ1, e2)

∫ 2π

0

dω1φω(ω1, θ1)φω(ωc
2, θ

c
2). (3.36)

The superscript “c” of ωc
2 and θc

2 will be omitted from now on. We stress, however, that

both are functions of e1, ω1, θ1, and e2, as calculated from Eqs (3.17) and (3.18). We insert

the distribution function φω, (3.12), and the solution of the collision condition (3.18) –

(3.20). The ∆-integral now takes the form

∆(k)(e1, e2) =
(1 − e2

1)
1/2(1 − e2

2)
1/2

16π2A2a2

∫ 2π

0

dθ1
1

|e2 sin θ2|(1 + e1 cos θ1)

×
∑

±

V ±

imp
k
(e1, θ1, e2)

∫ 2π

0

dω1 H1 H2 (3.37)

where the Heaviside functions

Hj = H [Φ0 − A < Φj < Φ0 + A] , j = (1, 2) (3.38)

describe libration of resonant arguments Φ1 and Φ2 around Φ0 (e.g. π or 0).

The integral
∫

dω1H1H2 is analytically solvable. In principle we only need to find an

analytic expression of the overlap of the two intervals where H1 and H2 both render one.

In Appendix B of Queck et al. (2007) this is done with the help of the shift function ∆χ.

It is measured modulo 2π and explicitly reads

∆χ = {(p + q) [M(e2, θ2) − M(e1, θ1)] − p(θ2 − θ1)}2π . (3.39)
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M = M(e, θ) is the mean anomaly given by Eqs. (3.10)–(3.11). ∆χ is the difference of

deviations of the respective resonant arguments Φ of the two colliders from the centre of

libration Φ0 . As you can see, the centre of libration itself is ruled out here, thus its actual

value is of no consequence.

The result obtained for
∫

dω1H1H2 in Queck et al. (2007) consists of two branches.

The first one is
∫ 2π

0

dω1H1H2 = 2 A

(

1 − |∆χ|
2A

)

H

[

1 − |∆χ|
2A

]

1 +
|∆χ|
2A

≤ π

A
. (3.40)

It is always taken for A ≤ π/2.

The other branch of the integral is

∫ 2π

0

dω1H1H2 = 2 A
(

2 − π

A

)

, 1 +
|∆χ|
2A

≥ π

A
. (3.41)

Note that |∆χ| ≤ π and A ≤ π. In the nonresonant limiting case A = π we obtain
∫

dω1H1H2 = 2A.

The final result for the first branch is:

∆(k)(e1, e2) =
(1 − e2

1)
1/2(1 − e2

2)
1/2

8π2Aa2

×
∫ 2π

0

dθ1
1

|e2 sin θ2|(1 + e1 cos θ1)

×
∑

±

V ±

imp
k
(e1, θ1, e2)

(

1 − |∆χ±|
2A

)

× H

[

1 − |∆χ±|
2A

]

, (3.42)

and similar to that for the second branch. The only remaining integral is evaluated

numerically using a Monte-Carlo method.

The above calculation assumes that the distribution of the resonant argument within

the libration band is uniform, Eq. (3.12). If necessary, it can be repeated with a more

realistic distribution. It is sufficient to replace the Heaviside function in Eq. (3.12) by

another function f({Φ−Φ0}2π), for instance a trigonometric one or a Gaussian, and re-do

the calculation (3.36) – (3.42).

3.5.6 Limiting Cases of ∆-integrals

We consider two limiting cases of special interest of the ∆-integral: the perfect resonant

lock A = 0 and the equality of the eccentricities of the colliders e1 = e2. The first part is

a rather academic problem, in real astrophysical ensembles there will always be certain

deviations. It will be, however, a good check for our numerically solved integrals with

small, nonzero A. In the second case, e1 = e2, we need to be sure there exists a finite
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limit so that ∆(k)(e1, e2) can be smoothly continued for all e1, e2 as the physics demand.

Eq. (3.42) and its counterpart for A > π/2 in that form are not valid for e1 ≡ e2.

We follow the analysis given in Appendix B of Queck et al. (2007) and begin with the

limit A → 0 and start at Eq. (3.40):

lim
A→0

∫ 2π

0

dω1H1H2 = 4 A2 δ(∆χ), (3.43)

which completely eliminates the A dependence, since the prefactors of the integral (3.37)

and (3.42) contain A−2. Thus the A → 0 limit of the ∆-integral is finite,

lim
A→0

∆(k) < ∞ .

Furthermore, the δ-function immediately resolves the remaining integral over θ1 to an

explicit expression. Since

δ(∆χ(θ1)) =
∑

i

∣

∣

∣

∣

∂∆χ(θ1)

∂θ1

∣

∣

∣

∣

−1

δ(θ1 − θ
(i)
1 ), (3.44)

the only task left is the calculation of the θ
(i)
1 which are given as the roots of the equation

∆χ(θ
(i)
1 ) = 0. In practice, the calculation of Eq. (3.44) is cumbersome, as it requires the

inversion of the Kepler equation (3.10).

We now turn to the second part, the e2 → e1 limit, confining our analysis to the case

∆(1). Considering the collision condition (3.18) for the case e1 = e2 – and remembering

a1 = a2 = ares – we find that

cos θc
2 = cos θ1,

meaning collision is only possible if

θc
2 = ±θ1.

With this result and the other half of the collision condition (3.17) there are two branches

of the limit e2 → e1 of (3.35). They render

lim
e2→e1

Vimp
+

|e2 sin θ2
+| = 0, (3.45)

lim
e2→e1

Vimp
−

|e2 sin θ2
−| =

2
√

1 − e2
1

Vkepler. (3.46)

Here, the “±” branches of the collision condition have slightly different meaning than in

(3.19)–(3.20). With the superscript “+” we denote the case θ2
c → θ1, and with “−” we

denote θ2
c → −θ1. For the remaining nonzero “−” branch, equation (3.43) has to be

evaluated. The condition ∆χ(θ
(i)
1 ) = 0 is satisfied at θ

(1)
1 = 0 and θ

(2)
1 = π.

The integral ∆(1) is again finite, except when

∂∆χ(θ1)

∂θ1

∣

∣

∣

∣

θ1=θ
(i)
1

= 0, (3.47)
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because

δ (∆χ(θ1)) = 0 (3.48)

for all θ1 then.

Setting e1 = e2 =: e⋆ and inserting sin θ
(i)
1 = 0 it reduces to

(p + q)
∂M(e⋆, θ1)

∂θ1

∣

∣

∣

∣

θ1=θ
(i)
1

= p. (3.49)

The case with θ
(2)
1 = π does not have a solution, while for θ

(1)
1 = 0 the equation takes the

form

√
1 + e⋆

(1 − e⋆)3/2
=

p + q

p
. (3.50)

Evaluating that for some examples of (p, q) we get

(p, q) = (1, 1) gives e⋆ = 0.31

(p, q) = (2, 1) gives e⋆ = 0.19

(p, q) = (3, 1) gives e⋆ = 0.14

(p, q) = (3, 2) gives e⋆ = 0.24.

Eq. (3.44) implies that ∆(1) is infinite at those points e1 = e2 = e⋆ – since now

δ(∆χ(θ1)) is 0 and according to(3.42) ∆(1) ∼ A−2. This singularity is an integrable one,

though. After averaging over both arguments the ∆-integral will be finite again.

It does, however, have a maximum there. They will be illustrated later in this work

(cf. Figs 3.9 or 3.10 ). As a result, the maxima seen later in this work for small, non-zero

A (Fig. 3.10) will not grow infinitely large when A → 0.

There is an explicit analytic representation of this limit for some special cases. E.g. if

q ≥ 1 the limit of the perfect resonance and minuscule eccentricities is

lim
A→0,e1→0,e2→0

∆(1) =
Vkepler

2π2a2
. (3.51)

We note that all of the equations in this section hold for the case q = 0 (1:1 resonance,

Trojans) as well, except when an explicit 1/q appears. In particular, q = 0 in Eq. (3.50)

leads to e⋆ = 0, which agrees with Fig. 3.12.

So far, we considered the limiting cases of the integral ∆(1). Of course, ∆(0) is not less

important, because it is needed to calculate the collisional velocity, see Eq. (3.29). For

k = 0 the ”+” branch (Eq. (3.45)) diverges when e1 → e2. Therefore, ∆(0) also diverges,

and the collisional velocity (3.29) goes to zero (see Fig. 3.5). As it should as θ1 = θ2 also,

and thus both orbits coincide and make collisions impossible.
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3.5.7 Properties of ∆-integrals

The analysis of the equations of the above sections allows us to establish several useful

properties of the ∆-integrals, and therefore the collisional velocities and rates.

1. The ∆-integral is symmetric with respect to its arguments. Although it is not quite

evident from (3.35), one can use Eq. (3.18) to change the integration variable from θ1

to θ2. The result will be identical to ∆(e2, e1), and therefore ∆(e2, e1) = ∆(e1, e2). Of

course, we have also tested the symmetry numerically.

2. As Eq. (3.42) readily shows, the transformed ∆ integral depends on the libration

width A, but does not depend on the libration centre Φ0.

3. It is possible to calculate limiting cases of Eq. (3.42) and to get an idea of how

large the effect of resonance on collisional velocities and rates could be (Sec. 3.5.6). The

limit of the ∆-integral at A → 0 is finite, and close to the values obtained in the following

sections with small, but non-zero A.

4. The same holds for the limit of the ∆-integral at e1 → e2: it is finite and is not far

from the values calculated for close, but not equal e1 and e2.

3.6 Collisional Velocities

3.6.1 Collisional Velocity for the Subsets of Particles with e = e1

and e = e2

In this section, we show numerical results for the collisional velocity Vimp(e1, e2), calculated

with the aid of (3.29) and (3.42). Recall that this velocity is the average collisional

velocity between two subsets of particles in the resonant family: one with eccentricity e1

and another one with eccentricity e2.

In the left and right columns of figure 3.5 shows this velocity as a function of one of

its two arguments, with the second argument fixed to e2 = 0.1 and e2 = 0.2, respectively.

The velocity is measured in units of the circular Keplerian velocity, Vkepler ≡
√

GM/a.

The major effect seen in these plots is that Vimp(e1, e2) decreases from e2 at e1 = 0 to zero

at e1 = e2 and then increases again.

The panels show three 1st order resonances of different strength, weak ones at the top

and strong ones at the bottom. Different curves correspond to different resonance numbers

p and q. Although the resonant lock does affect the velocities, is it somewhat surprising

that the effect is rather subtle and makes comparably small quantitative difference to the

nonresonant case.

Fig. 3.6 depicts the velocity in the e1-e2-plane. The upper panel for a strong resonance

shows, as expected, a sharp minimum along the line of equal eccentricities and an extended

area of low collisional velocity where both eccentricities are low, e1, e2 ∼ 0 . . . 0.2. As far

as other regions of the plane are concerned, the effects are highly non-linear. Particularly
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Figure 3.5: Cuts through the contour plots of collisional velocity Vimp(e1, e2) (in units of

Vkepler) for fixed e2. Left panels: a lower value of e2 = 0.1, right panels: a higher one of

e2 = 0.3. Plotted are the 2:1 resonance (solid), 3:2 (dashed), 4:3 (dotted) in every panel.

Top: a weaker resonance with A = 0.3π, bottom: a strong one with A = 0.1π.

interesting is a sharp increase of the collisional velocity from moderate to large eccentric-

ities that occurs for 3:2 and 4:3 resonances. It is due to the fact that, starting from a

certain e, the resonant “clumps” start to overlap, see two right-most panels in the middle

row of Fig. 3.2. The larger p is the smaller the eccentricity at which the effect shows up,

because a (p + q) : p resonance produces p clumps. The larger the number of clumps,

the easier it is for them to overlap. The same effects, in a weaker form, are seen in the

middle panels that are drawn for a shallower resonance. The velocity is highest in colli-

sions between particles in highly eccentric orbits with those in moderately eccentric ones.

In the nonresonant case depicted in the lowest panels, the highest velocity is attained in

collisions between particles in highly eccentric orbits with those in nearly circular ones.

The maximum possible value of Vimp(e1, e2) is
√

2. It is achieved asymptotically when

e1 = 0 and e2 → 1.

3.6.2 Average Collisional Velocity in the Disc

After investigating the interaction of subsets, we now calculate the average collisional

velocity in the whole disc of particles. This is accomplished by integrating Vimp(e1, e2)

over both e1 and e2 from 0 to emax, distributed according to Eq. (3.13). In this a way,
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Figure 3.6: Contour plots of collisional velocity Vimp(e1, e2), in units of Vkepler, for the 2:1

resonance (left), 3:2 (middle), 4:3 (right) with libration width A = 0.1π (top), A = 0.3π

(middle), and A = π (bottom, non-resonance case). Darker regions correspond to higher

velocities.

we get the average collisional velocity in the disc as a function of the maximum possible

eccentricity,

Vimp(emax) =
∫

e1

∫

e2

∆(1)(e1, e2)

∆(0)(e1, e2)
φe(e1; emax)φe(e2; emax)de1de2 .

(3.52)

The additional double integration is performed numerically with a Monte-Carlo method.

Fig. 3.7 (top) shows the dependence on the libration width of the resonant argument.

The smaller A is the stronger the resonance – and its influence – becomes. A = π describes

a nonresonant case, whereas A = 0 corresponds to a perfect resonant lock. Again, the

collisional velocity is affected by the resonance only weakly, but the effect is present. It is

interesting that for moderate eccentricities, the average collisional velocity in a resonant

belt is lower than in a similar nonresonant one, while for large eccentricities, the opposite

is true. Similarly, middle and bottom panels in Fig. 3.7 demonstrate the dependence of

Vimp on p and q. They show that collisional velocity does vary with the resonant integers,
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Figure 3.7: Collisional velocity Vimp(emax) in units of Vkepler. Top: dependence on libration

width A width for the 2:1 resonance. Middle: dependence on resonance parameter p for

first-order resonances q = 1 with A = 0.1π. Bottom: dependence on the order of resonance

q for p = 3 and A = 0.1π.
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and may be both higher or lower that the nonresonant one, but the effect is usually of

the order of several tens of percent.

3.7 Collisional Rates and Collisional Lifetimes

Using the same methods as in the previous section, we will now investigate the influence

of a resonance on the frequency of collisions. Since the number density of the particles in

the resonant “clumps” is higher than in a similar nonresonant belt one might expect the

collisional rate to be higher, too. We check whether, and to what extent, this expectation

is true.

3.7.1 Collisional Rate for the Subsets of Particles with e = e1

and e = e2

Like in the case of collisional velocity, we start by considering two subsets of particles in the

resonant family: one with eccentricity e1 (n1 particles) and another one with eccentricity

e2 (n2 particles) and “count” collisions between particles of population 1 with those of

population 2. The rate of collisions is given by (see Krivov et al., 2005, 2006),

R(e1, e2) = NσVimp(e1, e2)∆
(0)(e1, e2), (3.53)

which simplifies – with Eq. (3.28) – to

R(e1, e2) = Nσ∆(1)(e1, e2). (3.54)

Here, σ is the collisional cross section for equal-sized particles, and the front factor N

depends on what we mean by “collisional rate”. If R(e1, e2) is the number of collisions per

unit time that a single particle of population 1 has with any particle of population 2, then

N = n2. Conversely, if we consider a particle of population 2 colliding with population 1

particles, then N = n1. Finally, to get the total number of collisions between all particles

of both families occurring per unit time, we should set N = n1n2.

However, the above formulas are two-dimensional. For instance, σ should be under-

stood as 2s, where s is the radius of equal-sized particles. Any physically meaningful

calculation of collisional frequencies requires a 3D treatment. We thus introduce an ap-

proximation for a 3D ∆-integral,

∆
(k)
3D(.) ≡ ∆(k)(.)

h
, (3.55)

where h = 2r sin ǫ ≈ 2ares sin ǫ is the disc thickness at the annulus location, ǫ being the

half-opening angle of the disc. The 3D collision rate thus is

R(e1, e2) = Nσ∆
(1)
3D(e1, e2), (3.56)
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Figure 3.8: Cuts through the contour plots of collisional rate R̃(e1, e2) for fixed e2 = 0.1

on the left and along the line of equal eccentricities e1 = e2 on the right. Plotted are

the 2:1 resonance (solid), 3:2 (dashed), 4:3 (dotted) in every panel. Top: a shallower

resonance with A = 0.3π, bottom: a strong one with A = 0.1π. The shift of the maxima

to lower e1 for larger p is quite pronounced. Some further, local maxima appear in the

case p = 3.

now with the “usual” collisional cross section σ = 2πs2. We note that ∆
(1)
3D, i.e. R

without the factor Nσ, is exactly what is usually called “intrinsic collisional probability”

(e.g. Greenberg, 1982; Davis & Farinella, 1997).

Instead of dealing with the full collisional rate (3.56), it is convenient to introduce a

dimensionless one R̃(e1, e2),

R̃(e1, e2) ≡ R(e1, e2)/R0, (3.57)

where

R0 ≡
1

2π2

NσVkepler

h a2
res

(3.58)

is the approximate “particle-in-a-box” value of the collisional rate To first order, R0 does

not depend on eccentricities of the colliding particles and depends on their inclinations

through the divisor h only. It describes the rate of collisions in a nonresonant, and there-

fore rotationally-symmetric, ring of objects. Again, R0/(Nσ) is the intrinsic collisional

probability in such a ring. Thus R̃ contains all the nonsymmetric effects, especially those

of the mean motion resonance. Via its deviations from unity it enables us to study the



3.7. COLLISIONAL RATES AND COLLISIONAL LIFETIMES 41

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

e 2

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

>2

0.2

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

e 2

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

>2

0.2

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

e 2

e1
0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

e1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

>2

0.2

e1

Figure 3.9: Contour plot of the dimensionless collisional rate R̃(e1, e2), for the 2:1 reso-

nance (left), 3:2 (middle), 4:3 (right) with libration A = 0.1π (top), A = 0.3π (middle),

and A = π (bottom, non-resonance case). The darker the contours, the higher the rate.

influence of a resonance without having to specify the disc. There are some corrections

due to non-zero eccentricities, too. The value of which can be determined by studying

the nonresonant R̃|A=π.

The two columns of Figure 3.8 show the dimensionless collisional rate R̃(e1, e2) as a

function of one of its two arguments, left with the second argument fixed to e2 = 0.1 and

right with e2 ≃ e1, respectively. To avoid the singularity of (3.35) at e1 = e2 we calculated

only up to e2 = 0.9999 e1. For larger A, i.e. for a weaker resonance, shown in the top

panels, the collisional rate is almost independent of e1, being close to the “particle-in-

a-box” value. For stronger resonances (bottom panels) R̃(e1, e2) peaks at intermediate

values of eccentricity e1. The stronger the resonance, the more pronounced the maximum.

For the 2:1 resonance at e2 = 0.3 and A = 0.1π, the maximum collisional rate at e1 ∼ 0.4

is about 3.75 times larger than the nonresonant rate. Interestingly, the larger the resonant

integer p, the smaller the value of eccentricity at which the collisional rate is the highest.

Another finding is that, for sufficiently large eccentricities, resonances may decrease the

frequency of collisions.
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Fig. 3.9 depicts the collisional rate in the e1-e2-plane. Again, we excluded a region of

width 2 10−4 around e1 = e2 and smoothed the graph over this small gap. The upper and

middle panels show that within resonance collisions are most frequent between particles,

whose orbital eccentricities are moderate and not very different from each other. Interest-

ingly, these are exactly the eccentricities for which collisional rates in the nonresonant case

are the lowest (bottom panels). For some resonances, another region of higher collisional

rates is observed at very high eccentricities. This effect has the same origin as a similar

effect in the collisional velocities, see Fig. 3.6.

3.7.2 Average Collisional Rate in the Disc

Like in the case of collisional velocity, we now average over both eccentricities in order to

obtain the collisional rate in the whole disc containing N objects:

R(emax) =

Nσ

∫

e1

∫

e2

∆
(1)
3D(e1, e2)φe(e2; emax)φe(e1; emax)de2de1.

(3.59)

Again, the front factor N depends on what we intend to describe. If R(emax) is the number

of collisions per unit time that a certain particle may have with all other particles in the

belt, then N = n. To get the total number of all collisions, meaning every particle with

every other one, occurring in the ring per unit time, we should set N = n2/2.

Figure 3.10 shows the numerical results. Again we split off R0, so that

R̃(emax) ≡ R(emax)/R0 (3.60)

The top panel focuses on the influence of the libration width A, whereas the middle and

bottom ones illustrate the dependence on p and q. It is seen that R(emax), although all the

curves are generally flatter than the non-averaged ones, has qualitatively the same proper-

ties as R(e1, e2): independence of emax out of resonance and a maximum at intermediate

eccentricities for deeper resonances. The maxima shift to slightly lower eccentricities,

when either the libration width decreases, p increases, or the order of resonance q de-

creases.

To understand those properties we go back to section 3.5.6. There, among other

results, we obtained a formula in Eq. (3.50) for the position e⋆ of the maxima in the case

A → 0 and gave some examples for different p and q.

A comparison with the maxima in Fig. 3.10 shows that the plotted ones lie slightly

to the right of the positions e⋆ calculated by (3.50). As is expected since we have plotted

R̃(emax) for several small, but still non-zero A, while (3.50) is valid for A ≡ 0. We see,

however, how R̃(emax) approaches this limit for decreasing A, as the the maximum shifts

to smaller emax as A decreases. We extracted the actual values fo the maxima R̃(emax)|max

and their respective positions for different A of the 2:1 resonance shown in the uppermost

panel of Fig. 3.10. They are plotted in Fig. 3.11 and show that the heights seem to grow
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Figure 3.10: Dimensionless collisional rate R̃(emax) in the disc, Top: dependence on libra-

tion width A width for the 2:1 resonance. Middle: dependence on resonance parameter

p for first-order resonances q = 1 with A = 0.1π. Bottom: dependence on the order of

resonance q for p = 3 and A = 0.1π.
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linearly with decreasing emax. If we extrapolate this ‘secondary data’ to the maximum

position e⋆ = 0.31 for A → 0, we get an estimate for the maximum collisional rate in the

perfect resonance of

lim
A→0

R̃(emax)|max ≈ 2.5R0 ,

for both linear and quadratic interpolation.

The collisional rates are intimately connected to collisional (life)times of the disc par-

ticles. The average collisional lifetime of an object in the disc defined as is

Tcoll(emax) =

[
∫

e1

∫

e2
R(e1, e2)φe(e2; emax)φe(e1; emax)de2de1

∫

e1

∫

e2
φe(e2; emax)φe(e1; emax)de2de1

]−1

(3.61)

or simply

Tcoll(emax) =
1

R(emax)
, (3.62)

where R(emax) is given by Eq. (3.59) with N = n.

Remember that we have calculated R in quasi-3D. More exactly: in the collisional

rates, which are proportional to velocity / volume, we do take into account the inclinations

when calculating the volume, but still ignore those in velocity.

3.8 Concerning High Eccentricities

In the previous sections we presented results for eccentricities e1, e2, emax up to values of

e· = 0.9. The total range of eccentricities for particles on elliptic orbits is [0, 1] (e > 1

corresponds to hyperbolic, i.e. unbound, orbits). All our calculations performed in Sec.

3.5 are valid for the whole range of range minus its boundaries, i.e. for all eccentricities
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0 < e < 1. We discussed the lower border in a separate section (3.5.6). We also aviod the

upper limit in our calculations because there things diverge, too, this time for physical

reasons. In the case e = 1 the orbit is a single, straight line of length 2a and both orbital

velocity and acceleration diverge in the apo- and pericentre. It is not a physically stable

orbit.

The deviations of the collisional rate R(.) from R0 in the nonresonant case are also

due to effects of high eccentricity. The R0 given in (3.58) is the nonresonant collisional

rate – but only for small eccentricities. The deviations from R̃ = 1 in Fig. 3.10 give an

impression of the extent of the high-eccentricity corrections needed.

Taking a look at the dynamics of the resonance we find further constrains on e. The

maximum possible eccentricity eres which can be reached by resonant pumping (cf. Eq.

(2.7)) is,

eres ≡ lim
t→∞

e(t) =

√

q

3p
. (3.63)

For the 2:1 resonance whose collisional velocities and rates are depicted in the upper

panels of Figs. 3.7 and 3.10, this gives eres = 0.58. Even that maximum value is hardly

reached. The particles start to become unstable already at the moment their orbits cross

that of the planet, ares (1 − e(t)) ≤ ap and will be ejected from the resonance soon after.

Since we are using the kinetic theory, setting the maximum eccentricity emax ‘by hand’,

instead of directly solving the equations of motion for the disc particles, we are not

constrained by this dynamical limitations. We are able to check what would happen if a

certain population acquires – by whatever means – a higher maximum eccentricity.

Because of this dynamical limitations we do not take great pains to make high-

eccentricity corrections of our equations and simply avoid critically high eccentricities

near e = 1.

3.9 The 1:1 Resonance: Trojans

The so called Trojan asteroids at the two trigonal Lagrangian points are a special case.

First from the geometrical point of view and then from the observational one. Jupiter’s

Trojans are one of the very few cases in the Solar System where we can not only identify

an asteroid to be resonant but also see the structures predicted by theory. Most other

resonant groups are either too far away (Plutinos) or too scarcely populated (Earth belt)

for the overall structure to be observable.

Trojans do reside in the 1:1 resonance, i.e. p = 1, q = 0. All the formulas derived

and discussed above are valid in this case, but the results reveal important qualitative

differences from the first- and higher-order resonances. Figure 3.12 presents the collisional

velocity and the rates for Trojan clouds with different maximum eccentricities emax and

different libration amplitudes A.

Like in the case q > 0, Vimp vanishes when emax goes to zero. However, unlike for other
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Figure 3.12: The case of Trojans. Left: collisional velocity Vimp(emax) in units of Vkepler;

cf. Fig. 3.7. Right: dimensionless collisional rate R̃(emax); cf. Fig. 3.10. Different curves

correspond to different libration widths A.

resonances, R̃(emax) has a maximum at emax = 0. What is more, that maximum collisional

rate goes to infinity when A → 0. Mathematically, this is explained in Section 3.5.6; for

instance, Eq. (3.51) is no longer valid – it was obtained under the condition e1, e2 6= e⋆.

Here e⋆ = 0 is the only (non-complex) solution of (3.50). Geometrically, the explanation

is obvious. For q > 1, even in the case where emax = 0 and A = 0 the objects form

an (infinitesimally narrow) ring. For q = 0, the cloud simply shrinks to the Lagrangian

point in that case – in other words, all the objects reside exactly at one and the same

point and have zero relative velocities. Their volume density is infinitesimally high, and

so is the collisional rate. For small non-zero emax and A, frequent collisions are expected.

In contrast to this, the velocity would be lower, but the effect here is almost negligible,

because the velocities would be dominated by 3D-terms coming from inclinations, which

we do not consider in our model.

3.10 Comparison to Other Work

3.10.1 Approach by Dell’Oro et al.

The formalism developed here is based on exactly the same ideas as those of the one

developed by by Dell’Oro and collaborators (Dell’Oro & Paolicchi, 1998; Dell’Oro et al.,

1998). For instance, our ∆(1)-integral (3.27) is essentially the same as Eq. (9) or (10) in

Dell’Oro & Paolicchi (1998). A technical difference between the two approaches is that

we incorporate the collisional condition directly into the integrand, through the function

δ(r1 − r2), and assume a particular functional form of the distribution of orbital elements

(Eqs. 3.12 and 3.13). We then perform analytically as many integrations in the multiple

integral as possible. As a result, only one integration (see Eq. 3.42) needs to be performed
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Figure 3.13: Typical numerical results for collisional velocity Vimp(e1, e2 = 0.1) (left) and

collisional rate R(e1, e2 = 0.1) (right) in a 2:1 resonance for comparison with left column

of 3.5 3.8. See also right columns of Figs 4 and 7 of Queck et al. (2007).

numerically. The price to pay for “more analytics” in our approach is that it is much

“heavier” mathematically, which makes a strict 3D-treatment impossible. Still, we deem

this approach suitable for theoretical study of a statistical ensemble of pseudo-objects

with continuous distributions of orbital elements. As we have seen, our approach is quite

convenient for exploring the dependence of the collisional velocities and rates on various

parameters (emax, A, p, and q). Moreover, our approach naturally circumvents numerical

difficulties that otherwise would arise for extreme values of these parameters (e.g., for

very low or very high eccentricities).

In contrast, Dell’Oro and his group evaluate the multiple numerically using a Monte-

Carlo technique integrals, similar to our ∆(k). This allows a study in three dimensions.

In fact, in terms of our formalism they use

p = (a, e, i) q = (Ω, ω, θ) (3.64)

(cf. Eq. 3.25). This makes their approach ideal for the study of particular collisional com-

plexes in the Solar System, consisting of individual objects with known orbital elements.

Their method is particularly useful for exploring effects associated with inclinations and

longitudes of nodes.

3.10.2 Numerical Formalism by Thébault and Collaborators

We also compare our results to those of some numerical calculations. The latter were

obtained by Phillipe Thébault using his algorithm developed in Thébault & Brahic (1998)

and Thébault & Doressoundiram (2003). This algorithm is a N-body code with “inflared

particle radius”, i.e. they consider a relatively small number of particles Nnum with radius

snum, such that their product equals that of the real particles,

Nnumsnum = Nrealsreal.
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They follow the motion and collisions of this enflared particles. Fig. 3.13 shows some test

numerical integrations, in which planetesimals were trapped into a 2:1-resonance with a

slowly migrating, Neptune-like planet.

With respect to the velocity we see exactly the same V -shape pattern in the left panel

of Fig. 3.13 as was seen in Fig. 3.5: a drop to 0 at e1 = e2 and rise to ∼ 0.25Vkepler at

e1 = 0.3. At that point the calculation ceases because the particle is ejected from the

resonance.

With respect to the rates there is a lot of numerical noise caused by a limited number

of integrated particles. Those notwithstanding, the right panel of Fig. 3.13 shows the

same tendency of a small, but definite, increase for larger e1 as Fig. 3.8 showed.

3.10.3 “Intrinsic Collisional Probability”

The “intrinsic collisional probability” is a phrase coined by Marzari and collaborators. It

describes the collisions within a certain population and gives the probability that a particle

has a collision with any other per unit time, i.e. the intrinsic collisional probability is the

frequency of collisions, or in other words the collisional rate.

Marzari et al. (1996) studied Jupiter’s Trojans and found that their intrinsic collisional

probability is about twice a high as that of the Main Asteroid Belt between Mars and

Jupiter.

Our result, see Fig. 3.12, is that for the Trojans the resonant collision rate is up to

10 times that of the nonresonant one, depending on A and emax. To compare this to

Marzari’s result we have to consider the inclination and semimajor axis dependence of

R first. Eq. (3.58) gives R ∼ a−7/2 and R ∼ 1/h ∼ sin ǫ−1, for flat discs, i ≪ π,

we can approximate the sine of the opening angle with the mean inclination < i >:

sin ǫ ≈ < i >. Thus we have R ∼ a−7/2〈i〉−1. The Trojans have Jupiter’s semimajor

axis, a = 5.2 AU , whereas the Main Belt is situated between 2.2 AU and 3.2 AU , in the

mean about half the Trojans’ distance to the Sun. For the inclinations the situation is

similar: Trojans have < i >= 15◦, the Main Belt < i >= 8◦. Thus asteroids in the Main

Belt should have a collisional rate 20 times higher than the Trojans due to geometrical

reasons. However, the Trojans are resonant, the Main Belt asteroids are not, so there is

an additional factor of ten in favour of the Trojans, so that in the end both collisional

rates are of comparable value. Considering all the simplifications we made, e.g. quasi-3D

calculations, Heaviside distributions of orbital elements, fully circular planet, this is in

reasonable agreement with the result by Marzari et al. (1996).

Unlike the collision rate, the effect of the resonance on the collisional velocity is minor.

In fact, given rather large inclinations of Trojans, Vimp will be dominated by inclination

terms of the order iVkepler that are ignored in our treatment. As a result, we expect

nearly the same impact velocities for Trojans as for the main-belt asteroids, and, as a

consequence, the same collisional outcomes. This fully agrees with conclusions of Marzari

et al. (1996) and Dell’Oro et al. (1998) as well.
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3.11 Summary

In this chapter we have developed a statistical model of the celestial mechanics in a circum-

stellar debris disc. Therein we successfully combined collisions with resonant dynamics.

Thus we were able to explore the collisional velocity and rate for subsets of disc particles

on the one hand and for the whole disc on the other hand. Due to the kinetic approach

we were able to choose freely the resonant parameters p and q, the libration width A and

maximum eccentricity emax.

We averaged both velocity and rate over the whole particle orbit being well aware

that in resonant ensembles the particle density is much higher in the resonant “clumps”

so that most collisions take place there (see, e.g., Fig. 4 in Wyatt, 2006). The influence

of the resonance on the particle ensemble is strongest in the “clumps”. The individual

particles, however, move in and out of them in their revolution around the star.

The collisional velocity for subsets of disc particles, Vimp(e1, e2), we found to be small-

est for e1 = e2. It is almost linear for small eccentricities e1, e2 <∼ 0.3 but becomes highly

nonlinear for large ones e1, e2
>∼ 0.7. Averaged over both eccentricities and thus repre-

senting the collisional velocity of the whole ensemble Vimp(emax) is almost linear over the

whole range of eccentricities considered. The most remarkable feature is that for small

eccentricities the resonance lowers the collisional velocity, in contradiction to heuristic ar-

guments. This might be due to geometrical aligning in resonance. In all cases considered

Vimp was of the order of magnitude ∼ e·vkepler.

Concerning the collisional rate there is a definite change from nonresonant to strongly

resonant ones. While the rate R(e1, e2) of two subsets is almost constant in the nonres-

onant case, – some high eccentricity corrections not withstanding – it develops a pro-

nounced maximum on the line of equal eccentricities for stronger resonances. The smaller

the libration width A, the more pronounced the maximum becomes,

A = 0.3π ⇒ maximum rate 1.89R0

A = 0.1π ⇒ maximum rate 3.75R0

p = 3 in both cases.

For the rate R(e1, e2) a higher resonance parameter p not only moved the maximum

towards lower eccentricities, but also results in slightly higher maximum values:

p = 1 ⇒ maximum rate 3.67R0 at e1 = e2 = 0.38

p = 3 ⇒ maximum rate 3.75R0 at e1 = e2 = 0.17

A = 0.1π in both cases.

The collision rate of the whole disc R(emax), i.e. R(e1, e2) averaged over both e1 and e2,

still shows such a maximum, becoming steeper for smaller libration width. It is somewhat

lower than in the unaveraged case: for A = 0.1 and p = q = 1 it is only 1.85R0 now. The

parameter p still shifts the maximum inwards, but does not alter the height anymore. For
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higher orders q of the resonance the maximum is shifted towards higher emax and lowered

considerably in height,

q = 1 ⇒ maximum 1.87R0 at emax = 0.23

q = 5 ⇒ maximum 1.13R0 at emax = 0.54

p = 3 in both cases

The most drastic influence of resonance is seen in the case of Trojans (p = 1, q = 0).

The collisional velocity is only subtly influenced again, but the rate actually goes to

infinity for emax → 0.

Although we did need quite a few simplifying assumptions in order to be able to

carry out analytic calculations our results are in good agreement with others’ work. In

contrast to those, our results show the influence of the different parameters in an easy

and straightforward way.



Chapter 4

Origin of Resonant Structures

In the previous chapter we explored the collisional behaviour within resonant ensembles.

But how does a resonance actually create structures in circumstellar discs? This is the

question we will address in this part of our work, whereas before we just assumed the

circumstellar particles to be in a resonant, structured ensemble.

The somewhat ‘classical’ mechanism of structure formation by resonances is based

upon transport processes in the circumstellar disc. It assumes that there is a reservoir of

dust grains far out, due to Poynting-Robertson and stellar wind drag – its significance will

be tested also – the disc particles are moving inwards. When they near the location, a ≈
ares of an mean motion resonance, they get trapped and form the observed structures, see

e.g. Figs. 2.2, 2.6 and 2.7. This scenario was first proposed by Gold (1975) and thoroughly

discussed, especially since several discs have been spatially resolved (e.g. Weidenschilling

& Jackson, 1993; Beaugé & Ferraz-Mello, 1994; Liou & Zook, 1997; Wyatt, 2005). We

will refer to it as ‘scenario I’.

But this mechanism has one major problem: the timescales. As Lecavelier des Etangs

et al. (1996); Lagrange et al. (2000) and Wyatt (2005) have shown PR drag is a rather slow

process. Collisions in such gas-less debris discs are very violent, mostly destructive – and

may be faster than transport by PR-drag. They might smear out or totally destroy the

resonant structures faster than PR drag replenishes them. Therefore another, not time

dependent formation scenario was suggested (Wyatt, 2003, 2006), hereinafter ‘scenario II’.

Now the dust’s parent bodies, the planetesimals, are caught in resonance, because they

grew there or were caught during earlier planet migration phases. The capture mechanism

for the planetesimals will not be a subject of our investigation. Their existence is proved

by two examples from the Solar System, Jupiter’s Greeks and Trojans (L4 and L5 branch

of 1:1 resonance) on the one hand and Neptune’s Plutinos (3:2 resonance) on the other one.

Those resonant planetesimals collide amongst each other and create a cloud of fragments,

including the observable dust.

We will make a comparative analysis of both scenarios with analytic models as sim-

ply as possible. We want to avoid extensive numerical solutions of any equation and

instead obtain results which show the influence of certain parameters in an obvious and

51
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straightforward way.

Scenarios I and II are considered in Secs 1 and 2, respectively.

4.1 Scenario I

4.1.1 Effects

We start with an analysis of scenario I, in which dust particles are brought from afar

to resonant locations and are captured in resonances. We have to consider three types

of effects here: first the drag forces, second the resonance and third the collisions. The

transport is driven by the outflow of the star, photons as well as massive particles like

electrons, protons, α particles and so on. The photons move radially outward, but with a

finite velocity c, the wind particles move with the much smaller velocity vwind and in spiral

formation due to the rotation of the star. Thus a dust particle moving tangentially around

the star is hit aslant by photons and wind and decelerated by the acquired momentum. In

case of photons the effect is called Poynting-Robertson effect, in case of massive particles

stellar wind. For our models only the velocity dependent, indirect parts of them will be

of interest.

The decelerating force grows with the intensity I irradiated upon the particle as well

as with the latter’s orbital velocity v and cross-sectional area A (Burns et al., 1979),

Frad = −IradA

c

v

c
. (4.1)

c being the speed of light. We make a Taylor expansion of Irad = Irad
0

√

1 − v2/c2 and

neglect all terms v2/c2 since v ≪ c. We consider the radial vector component of that,

called Poynting-Robertson effect, and obtain

FPR = −Irad
0 A

c
. (4.2)

Inserting Irad
0 = L∗/(πr2) and A = π/4 s2 this can be rewritten as

FPR = −1

4

L∗ s2

c r2
. (4.3)

Making use of the 1/r2 dependence we are able to bring this into the same formal structure

as the gravitational force,

FPR ≡ −βrad
GM∗m

r2
(4.4)

with βrad :=
3

16π

L∗

GM∗cρs
, (4.5)

where s is the dust grain’s radius, ρ its density, m its mass. M∗ is the stellar mass and

L∗ the luminosity.
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In case of the massive particles the work-flow is similar, but now the intensity Iwind

has to be scaled by the wind velocity vwind instead of the speed of light. ( To be exact,

the wind velocity is vectorial, too, vwind, but we are interested in the radial component

only. ) The wind’s force is

Fwind = −IwindA

vwind

v

vwind

(4.6)

Fwind = −Iwind
0 A

vwind

(4.7)

Fwind = − 3

16π

Ṁ∗ vwind s2

r2
(4.8)

≡ −βwind
GM∗m

r2
(4.9)

with βwind :=
3

16π

v2
wind

GM∗ρ

1

s
Ṁ∗ . (4.10)

Here Ṁ∗ is the mass-loss rate of the star, the massive particles’ equivalent to the photons’

luminosity.

As can be seen, the Poynting-Robertson and stellar wind forces have the same radial

dependence. Therefore we combine them into one drag force, Fdrag. Therein we have to

remember the different angles due to different velocities under which both are acting upon

the orbiting dust particle. This angle is given by the ratio of the velocities, thus

β = βrad + βwind
c

vwind

(4.11)

β =
3

16π

L∗

GM∗cρs

(

1 +
Ṁ∗c

2

L∗

)

. (4.12)

With this formalism, it is evident that the drag force reduces the gravity to an ‘effective

gravity’,

F eff
G = (1 − β)FG , (4.13)

and that the drag is the more efficient the smaller the dust particles. This seems to

contradict the fact that both Poynting-Robertson and stellar wind forces are ∼ A ∼ s2.

But in the circumstellar environment, gravity is always at work, too, and FG ∼ m ∼ s3.

Thus the larger the grains are, the more dominating gravity will be.

For later use we rewrite (4.12) in a more convenient form:

β = 0.57

(

L∗

L⊙

)(

M⊙

M∗

)(

1 g cm−3

ρ

)(

1 µm

s

)

×
(

1 + 0.29

(

Ṁ∗

Ṁ⊙

)

(

L⊙

L∗

)

)

. (4.14)

In what follows, we treat M∗ as a parameter and calculate luminosity by using the

standard L∗ ∝ M3.8
∗ relation for main-sequence stars.
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The typical resonant dynamics have been summarized in the introduction: once cap-

tured, the particle’s semimajor axis stays constant, its inclination is reduced and the

eccentricity pumped up. At a certain emax the particle becomes unstable and is ejected

from the resonance. Most likely it will leave the planetary system. But some of them

may continue migrating toward the star. Such cases were considered by Marzari & Van-

zani (1994). Then the dynamics are even more complicated due to chaotic regions in the

vicinity of the resonances. And the resonance inducing planet needs to be a very low

mass one (M ∼ M⊕), which is still below the observational limits today. It might become

observable with the DARWIN or TPF mission, but even for them it is not very likely. We

confine our analysis to larger, at least Neptune/Uranus-mass planets.

Since we are now dealing with the small dust grains for which the PR and wind drag

needs to be considered we have to correct (2.6) accordingly,

ares = (1 − β)1/3

(

p + q

p

)2/3

ap , (4.15)

where β is the combined one of (4.12). The same goes for e(t), Eq. (2.7).

The third and last effect is that of the collisions. They were thoroughly investigated

in the previous chapter. We will use the most simple collisional model. We consider

ensembles of single sized particles and collisions among them are totally destructive.

However, we are aware that in collisional equilibrium there is a certain distribution of

particle sizes (Dohnanyi, 1969) and that grains are mostly destroyed by those just smaller

than themselves (Krivov et al., 2006). The collisions are destructive in the sense that

afterward they no longer reside in the resonant ensemble, either because they are really

broken up or because they have been scattered out of the resonance to join the background.

We will not consider the collisional outcome here. After a collision the particle simply is

not a member of the considered ensembles anymore.

4.1.2 The Set-up

The set-up within which we will construct our model is depicted in Fig. 4.1. It consists

of one planet on a circular orbit with semimajor axis ap and an annulus around a given

external, mean motion resonance, ares(1− emax) < a < ares(1+ emax). Two populations of

dust grains reside in that annulus. The first is the non-resonant one of the background

grains. Their distribution is rotationally symmetric, without internal structure and on

mostly circular orbits due to PR drag (Wyatt & Whipple, 1950; Deller & Maddison, 2005).

Second are the resonant grains. Their distribution is asymmetric, they form ‘clumpy’

structures. We will mark all quantities of the background with subscript “0”, the resonant

population will have none. We will also omit unnecessary subscripts for quantities which

are by model construction equal for both, such as size s and β ratio.

The half width emax of the annulus is the maximum eccentricity that the resonant

grains can aquire. At the most this is the eccentricity at which they are ejected from the
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aP

a

Planet

Clump

AnnulusGrain orbit

2aemax

Figure 4.1: Schematic of the resonant and non-resonant components of the dust disc in

the vicinity of a given resonance. The particular resonant population with two clumps

shown here corresponds to the 3:2-MMR with emax = 0.2 and A = 20◦.

resonance, eres. But collisions might destroy them before reaching that value, therefore

emax ≤ eres. Under the influence of PR and wind drag Eq. (2.7) is valid as an approx-

imation for small eccentricities only, a more general but also more complicated e(t) can

be found in Liou & Zook (1997). Eq. (3.63) gives a simple estimate of eres, numerical

integrations of which yield values between 0.1 and 0.4 (e.g. Weidenschilling & Jackson,

1993; Beaugé & Ferraz-Mello, 1994; Liou & Zook, 1997). We will adopt as a standard

value eres = 0.2 throughout our calculations.

Each ensemble will consist of one typical grain size s corresponding to a certain β.

The β ratio will be a free parameter in our model. It has to be chosen carefully to be

large enough for efficient PR drag and small enough to get caught in resonance for a long

time, compare e.g. Krivov et al. (2000); Thébault et al. (2003); Krivov et al. (2006) and

Diploma thesis of M. Reidemeister. We will adopt β = 0.1 as a default.

The density ρ of the grains depends on the chemical composition, porosity and other

parametres. We adopt an intermediate value of 2 g cm−3 throughout our work.

Farther out beyond the annulus there is the reservoir of dust grains, such that they

are constantly replenished. That reservoir will not be the subject of our modelling. Once

produced the dust grains drift inwards to the star by PR and wind drag at such a rate

that ṅ+ cross a = ares per unit time.

When the grains arrive in the vicinity of ares they are captured into resonance with a

certain probability pres. That capture probability depends on a wide range of parameters,

e.g. the planetary mass and semimajor axis, the grains’ size, inclination and eccentricity

or the resonance parameters p, q themselves. E.g. Deller & Maddison (2005) found that
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parameter β ρ pres eres

value 0.1 2.0 g/cm3 0.5 0.2

Table 4.1: Collection of default values for Scenario I.

for a Jupiter sized planet, capture into 5:2 resonance is most efficient, whereas for 0.05MJ

a wide range of them is more or less equally populated. A large β ratio, however, results

in the capture preferentially into resonances close to the planet, (p+ q)/p ≈ 1, for smaller

β capture is already very efficient at the outer ones 2:1, 3:2 or 4:3 (Liou et al., 1999;

Reidemeister, 2007). A thorough investigation of the parameter space of resonant capture

was recently performed in the Diploma thesis of Martin Reidemeister (Reidemeister, 2007).

There and in the papers cited above pres shows a large variation from 10% to almost 100%.

We choose an intermediate value of pres = 0.5 in our calculations.

4.1.3 Kinetic Model and Timescales

We now construct a model, which shall contain all the effects discussed above on the one

hand, but on the other hand it shall be as simple as possible, so that the influence of

different parameters can be shown easily. We need the correct temporal scaling, meaning

all the timescales have to be combined consistently to see where PR drag is fast enough

to allow the development of structures and where it is not. A kinetic model fulfils all our

requirements. This first needs the balance equation, now a much simpler form of (3.4).

We combine the gains by drag forces, ṅ+, and resonant capture, pres, with the losses by

collision, Tcoll, T
0
coll, or ejection, Tres, to

dn

dt
= ṅ+pres −

n

Tres
− n

T 0
coll

− n

Tcoll
. (4.16)

Tcoll and T 0
coll are the collisional lifetimes for collisions among the resonant particles and

for collisions of resonant particles with those from the background, respectively.

This means there are 4 typical timescales in our system, the two collisional ones Tcoll,

T 0
coll, the time of residence in the resonance Tres and the time to drift through the annulus

Tdrag by PR and wind drag. According to Burns et al. (1979) the drag timescale is

Tdrag =
4emax

B
, (4.17)

where B is ∼ β (cf. Eq. (2.8)), the sum of PR and wind drag.

This timescale can be linked to the number density of particles in the respective area.

Multiplying the drift rate with the drift time gives the number of background particles in

the annulus at a certain moment,

n0 = ṅ+Tdrag .
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During the drift the background ensemble is reduced in number due to resonant cap-

ture. To avoid unnecessary complications, it is assumed here, that the resonant capture

occurs precisely at a ≡ ares. Therefore we split it in (I) drift from the outer rim of the

annulus a = ares(1+emax) to the centre a = ares, where resonant capture actually happens,

and (II) drift from the centre to the inner rim a = ares(1 − emax). So we get

nI
0 = ṅ+T̂drag (4.18)

nII
0 = (1 − pres)ṅ

+T̂drag (4.19)

n0 = nI
0 + nII

0 (4.20)

= (1 − pres

2
) ṅ+Tdrag (4.21)

with Tdrag = 2 T̂drag . (4.22)

The number density in return is linked to the geometrical optical depth τ0,

τ0 =
n0 σ

S0
, (4.23)

where σ is the collisional cross section of a single particle, σ = πs2 and S0 the size of the

annulus, S0 = 4πa2emax. Combining (4.23), (4.21) and (4.17) we are now able to express

the drift rate by an observable quantity. The explicit expression is

ṅ+ =
a2B

s2
(

1 − pres

2

) τ0 . (4.24)

So we will be able to compare our model with real, observed systems.

Considering the collisional timescales we confer to the previous chapter, where colli-

sions within resonances were investigated thoroughly. There we found that in a certain,

resonant ensemble the collisional rate, being the inverse of the collisional timescale, is

about twice as high within resonance as out of it, see Fig. 3.10. Thus, if R and Tcoll are

the collisional rate and time scale within the resonant ensemble and R0 and T 0
coll those

with the nonresonant background particles, we have

R ≡ 1

Tcoll
= 2R0

⇒ Tcoll =
1

2
T 0

coll . (4.25)

If the number density n is known, the collisional rate can be calculated by

R =
nσv

V
, (4.26)

where σ is again the collisional cross section, v the collisional velocity and V the interaction

volume. With the respective variables, the same is true for the background. In the case

of a nonresonant ensemble the Appendix of Krivov et al. (2006) gives

V0 = (2πa)2 h| sin Γ| (4.27)

v0 = vkepler| sin Γ|, (4.28)
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with h = 2a sin ǫ being the height of the disc (ǫ the disc’s semi-opening angle) and Γ

the angle between the two colliders. Eq. (4.28) is true for very flat discs only, it ignores

corrections due to nonzero inclinations as well as those due to eccentricities. It can be

understood as a mean value, averaged over the orbit. The Keplerian velocity vkepler needs

to be PR drag corrected,

vkepler = (GM∗(1 − βPR)/a)1/2 . (4.29)

Note that here we have the Poynting Robertson drag only, the wind drag moves the

particle to a different orbit a, but does not affect the orbital velocity. Collecting everything

the collisional time for the background is

T 0
coll =

1

n0

(2πa)2h

σvkepler

(4.30)

The calculation of V and v in the resonant, non-rotationally symmetric case is not as

easy, as was seen in the previous chapter. But making use of (4.25) we can evade the

extensive analysis and have the respective resonant collisional time analogous to (4.30) as

Tcoll =
1

2

1

n

(2πa)2h

σvkepler

. (4.31)

For simplification of later calculations we define

T̂coll :=
(2πa)2h

σvkepler
(4.32)

and finally have

Tcoll =
1

2

1

n
T̂coll (4.33)

T 0
coll =

1

n0

T̂coll . (4.34)

Last, but not least, we need the resonant timescale Tres. This is that time which is

needed to pump the eccentricity of a resonant particle from zero to eres. At e = eres the

particle is ejected from the resonance due to dynamic perturbation. We start by inverting

(2.7), because now we no longer follow the time evolution of a particle but want to know

the time it takes to achieve a certain eccentricity. Inversion plus Taylor series expansion

in e gives

t =
p + q

3p

1

B
ln

(

3p

q
e2 +

9p2

2q2
e4 + O(e6)

)

. (4.35)

Table 4.2 shows some example values of the 2nd and 4th order terms for different resonances

and different eres. As can be expected from the p2 dependence, the 4th order is negligible

for small p, but must be considered for larger ones. For large q it can be neglected in
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2:1 resonance: eres 0.1 0.3 0.5 0.7

1st term 0.03 0.27 0.75 1.47

2nd term 0.0004 0.0364 0.2812 1.080

9:8 resonance: eres 0.1 0.3 0.5 0.7

1st term 0.24 2.16 6.00 11.76

2nd term 0.029 2.33 18.0 69.15

9:1 resonance: eres 0.1 0.3 0.5 0.7

1st term 0.0037 0.0337 0.0937 0.1837

2nd term 0.0000 0.0006 0.0044 0.0169

Table 4.2: Comparison of the 2nd and 4th order term in the Taylor series of t(e), see Eq.

(4.35), for three resonances, p = q = 1 (top), p = 8, q = 1 (middle) and p = 1, q = 8

(bottom).

any case. We will restrict ourselves to low order resonances and small eres and thus omit

terms of the order of e4. The resonant time then is

t(eres) ≡ Tres ≈ p + q

q

e2
res

B
. (4.36)

Thus we have now allocated all relevant timescales for the resonant particles. In Figs

4.2 and 4.3 we compare all four of them as functions of the optical depth of the background

and various parametric dependencies. Generally we see that of course Tres is independent

of τ0, and Tdrag almost is. Only for very large optical depth does it decrease slightly.

Regardless of the circumstances (given by τ0, s or Ṁ∗), collisions with the background

are always faster than those within the resonant ensemble. In dilute discs with very low

optical depth, resonant and drag timescales are shorter than the collisional one T 0
coll. For

very large τ0 the opposite is true and, because we set pres to 0.5, Tcoll approaches Tdrag. All

timescales are shorter the smaller the grains are, although the collisional ones are almost

independent of grain size.

Fig. 4.2 shows a solar mass star for two different mass-loss rates: the solar (top)

and a 10 times larger one (middle). All timescales are affected, they all are shorter for

larger Ṁ∗, but Tdrag and Tres more so than Tcoll and T 0
coll. The background collisions for

s = 2.9µm have the shortest of all timescales up to τ0 ≈ 1 · 10−5 in the case Ṁ∗ = Ṁ⊙. In

the case Ṁ∗ = 10Ṁ⊙, however, that border is shifted to τ0 ≈ 5 · 10−5. For small particles,

s = 0.7µm, both borders lie at a about 1 order of magnitude larger τ0. The lowest

panel of Fig. 4.2 shows the timescales for one particle size, s = 1.5µm, but two capture

probabilities: a very low one of 20% and a very high one of 80%. Now also the collisional

times are quite thoroughly affected whereas in the two upper panels they showed only

subtle dependence on any parameters. Tcoll drops to 1/3 for pres = 0.8 compared to

pres = 0.2, although now there are residing 4 times more particles in the resonance. T 0
coll
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Figure 4.2: Typical timescales for a Sun-like star as functions of the normal optical depth

τ0 of the non-resonant disc. Thick, medium, and thin lines: β = 0.05, 0.10, and 0.20,

respectively. These values correspond to s = 2.9, 1.5, and 0.7 µm. Top: The Sun, with

its actual mass-loss rate 2 · 10−14M⊙/year. Middle: with a 10 times larger one. Bottom:

dependence on capture probability for Sun (M = M⊙, Ṁ = Ṁ⊙) for a single size.
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Figure 4.3: Typical timescales as functions of the normal optical depth τ0 of the non-

resonant disc. Same as Fig. 4.2, but for two example stars known to host a debris disc.

Left: AU Mic with M = 0.6M⊙, Ṁ = 300Ṁ⊙ Right: ǫ Eri with M = 0.8M⊙, Ṁ = 30Ṁ⊙

only becomes twice as large, when pres rises from 0.2 to 0.8. Considering the uncertainties

in the determination of τ0 for any observed disc we can neglect the pres dependence in our

analysis of the timescales.

The optical depth of the Kuiper Belt in the Solar System is estimated to be τ0 ≈ 10−6.

For a medium sized particle, s = 1.5µm, the drag time is about 3 times shorter than the

one of collisions with the background. This means scenario I is able to produce resonant

structures in the Kuiper Belt.

Fig. 4.3 depicts the timescales for two example stars (see Tab. 2.1). Both stars

host a resolved debris disc (Kalas et al., 2004; Liu, 2004; Greaves et al., 1998). On

the left-hand side is the M1 dwarf star AU Microscopii. Because of the large mass-loss

rates obtained for this star it is not surprising that the drag forces, especially the wind

drag βwind ≈ 10 . . . 300βPR, are very efficient and work much faster than any collision.

Thus for the whole range of optical depth for debris discs the particles in the resonance

are replenished so fast, that sustaining a resonant structure should not be a problem.

But problems do arise considering the β dependence of the capture probability. A high

β reduces the overall capture probability drastically and causes a preference for higher

order resonances.

On right-hand side of Fig. 4.3 is the K2V star ǫ Eridani. It is not at active as AU

Mic, but still has a mass-loss rate of 30Ṁ⊙ (Wood et al., 2002), which means that the

wind drag is about 20-25 times more efficient than PR drag. The transition from drag to

collision determined ensemble takes place at τ0 ≈ 5 10−4.

At the moment observational data give only weak constrains to the actual optical

depths of the AU Mic or the ǫ Eri disc. It is expected to be around τ0 ≈ 10−5 . . . 10−4. This

would result in a balance between drag and collisions. So scenario I could be responsible

for resonant structures there, if not very pronounced ones because collisions are relatively
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Figure 4.4: Maximum orbital eccentricity of the clump particles as a function of the

optical depth of the “regular” disc τ0. Dashed, solid, and dotted lines: eres = 0.3, 0.2, and

0.1, respectively. Thick, medium, and thin lines correspond to β = 0.05, 0.10, and 0.20.

Gray lines are for Ṁ = Ṁ⊙, black lines for Ṁ = 30Ṁ⊙.

fast.

The actual lifetime T of a resonant particle is determined by all sinks combined and

given by
1

T
≡ 1

Tres
+

1

T 0
coll

+
1

Tcoll
. (4.37)

In graphic representation it is the lower envelope of all timescales depicted in Figs 4.2 and

4.3. The maximum eccentricity achieved by the particles in that time T is

e(T ) ≈
√

q

p + q
BT ≡ emax. (4.38)

This follows from Eq. (2.7) by inversion and a Taylor series expansion for small emax. The

calculation of T and emax is an iterative problem, because T 0
coll in Eq. (4.30) depends

through n0 on emax (Eqs (4.21)–(4.17)) which, in turn, depends on T and thus back on

T 0
coll (Eqs (4.37)–(4.38)). In a first approximation one can use eres for emax, especially for

dilute discs.

Fig. 4.4 depicts the maximum eccentricity as a function of the background optical

depth. For illustrative purposes the data of ǫ Eridani have been chosen with ap = 40 AU.

The semi-opening angle of the disc ǫ is proportional to the collisional lifetime T 0
coll, un-

fortunately it is unconstrained in the face-on view we have. In analogy with similar,

but edge-on discs (β Pic, AU Mic) we set ǫ = 0.1 = 6◦. To show the effect of the high

mass-loss rate, we added graphs for 1 Ṁ⊙ in grey lines.

For the high mass-loss rate measured, the maximum eccentricity is almost independent

of the background optical depth up to τ0 ∼ 10−5, because drag and resonant pumping are

very efficient in that case, see right panel of Fig. 4.3. For larger τ0 the collisions start to
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take over and emax drops rapidly. In the case of a lower mass-loss rate the dependence on

τ0 is much stronger. In a dense debris disc, τ0 ∼ 10−3, emax is smaller 0.1, independent of

eres, it only depends on the size.

This means the more dense or dusty a disc is, the lower the eccentricities in a resonant

ensemble are. Instead of pronounced clumps, which need higher eccentricities, there will

be narrow – if bright – rings only, compare e.g. Fig. 2.6 of this work.

Greaves et al. (2005) claim that three out of the six clumps seen in the ǫ Eri disc

are real. Choosing a 4:3 MMR, which creates exactly 3 clumps this means the disc

particles will have an eccentricity of 0.2 . . . 0.25. This is sufficient for non-axisymmetric

structures. However, if the mass-loss rates are lower than claimed by Wood et al. (2002)

the eccentricities would be too low to make clumps by resonant structuring according to

this scenario.

4.1.4 Optical Depth

With all the timescales being specified, especially their dependence on n, the balance

equation (4.16) can now be solved. It is a first order differential equation, but when

inserting Tcoll we see that it is not linear but quadratic in n. The general, time-dependent

solution is

n =
T̂coll

2

[−1

Tres
− 1

T 0
coll

+W tanh

(

1

2
W t + arctanh

( 1
Tres

+ 1
T 0
coll

W

))] (4.39)

with W =

√

4ṅ+pres

T̂coll

+

(

1

Tres

+
1

T 0
coll

)2

. (4.40)

To determine the integration constant we assumed the initial condition

n(t = 0) ≡ 0

so that at the very beginning of our solution there will be no resonant particles, they will

be caught step by step.

This nears its asymptotic limit very quickly, as seen in Fig. 4.5. So we will have

an equilibrium-like status after a few orbits already. In equilibrium dn/dt = 0, which

mathematically is equivalent to t → ∞, the solution simplifies to

n =
T̂coll

2





√

4ṅ+pres

T̂coll

+

(

1

Tres

+
1

T 0
coll

)2

−
(

1

Tres

+
1

T 0
coll

)



 . (4.41)

It has two limiting cases: very dense and very dilute resonant structures. In the first case

we have perfect resonant capture, pres = 1 and slow collisions. Equation (4.21) shows that

even then the background is anything but empty,

n0(pres = 1) =
1

2
ṅ+Tdrag.
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Figure 4.5: Number of resonant particles as a function of time for a Sun-like star (M∗ =

M⊙) for a variety of parameters. Black lines: τ0 = 10−5, grey lines τ0 = 10−7. Solid:

ap = 30AU, Ṁ∗ = Ṁ⊙, dashed: ap = 0.1AU, Ṁ∗ = Ṁ⊙, dotted: ap = 30AU, Ṁ∗ = 10Ṁ⊙.

Both ensembles will be similarly populated. For real systems, however, this case is not

very likely. More likely is the case of dilute clumps, n ≪ n0. Then we can neglect the n2

term in the balance equation and thus make it linear. Its solution in this case is

n =
ṅ+pres

T−1
res + (T 0

coll)
−1

. (4.42)

We will compare the linear and quadratic solution later.

To construct the normal, optical depth from the number density we also need the

collisional cross section σ of a single particle and the total area of the resonant structures

or clumps S,

τ = n
σ

S
. (4.43)

For a given particle size s the cross section is easily calculated to be σ = πs2. The

problem, however, is the determination of the clump size. The clumps are per definition

not axisymmetric, their number depends on the resonant parameters p and q and their

width and elongation depend on libration width and maximum eccentricity. There is no

analytical representation or approximation with sufficient accuracy.

The most obvious possibility to make numerical approximations is integration of a

derivative of the distribution function φ(.) over the annulus. E.g. define a ‘clump’ to be

where the (normalized) number density of the particles exceeds a certain treshold φmin and

construct a spacial distribution Φ(x, y) which is 1 if φ(.) > φmin > 0. But the distribution

function of a resonant ensemble is highly nonlinear. Near the border of the resonance

there are high, sharp peaks, in the middle very low minima. Even if an adequate φmin is

found, the resulting Φ(x, y) will not be a continuous function but one with lots of steps

or jumps. Numerical integration of such a function is cumbersome.
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Figure 4.6: Size of the clumps of a resonant structure as a function of the maximum

eccentricity, derived from scatterplots, for several 1st order resonances, one 2nd order one

and several libration widths A. Curves smoothed to reduce numerical noise.

The alternative to estimate to the clump size can be found in scatterplots like Figs

2.6 and 2.7. To extract statements about the clump size from the data sets of positions

of resonant particles we divide the annulus area into bins (xi + δx) × (yi + δy), count

the particles per bin ni and then define that the clump is where the number of particles

exceeds a certain percentage k of the maximum number per bin nmax, ni ≥ knmax. The

ratio of the number resonant bins divided by the number of all bins gives the ratio of

clump size S to annulus size S0. The latter is determined by ares and emax according to

S0 = 4πa2
resemax.

Fig. 4.6 shows the results of such an “integration by counting”. The curves were smoothed

to reduce the numerical noise. In total there are 2 000 000 particles considered and the

clump condition was set to 10% nmax. We considered several first order and a second order

resonance, i.e. q = 1 and q = 2, respectively. For all of them the dependence in p is very

subtle, stronger is the dependence on the libration width. For larger A, meaning weaker

resonance, the clumps are more spread out, i.e. more dilute but also covering more space.

For small A, meaning strong resonance, they are sharper and denser, but also concentrated

in space and thus smaller. The fact that S/S0 diverges for emax → 0 seems to contradict

what we have seen in Fig. 2.6, the clump seems larger in the case of larger emax. But in

the small emax case the arcs between the clumps become more pronounced. The smaller

emax the more “concentrated” the resonant ensemble is and the more of the arcs exceeds

the clump condition ni ≥ knmax. In the extreme emax → 0 the annulus becomes infinitely

narrow and the resonant ensemble inhabits all of it. Numerically we divide by zero in

the lower limit emax = 0, but then we have neither an annulus nor clumps, but only a

rotationally symmetric, bright ring. For an intermediate emax of 0.2 and an intermediate

A of 0.2π the relative clump size is S/S0 ≈ 0.2. We use this as a default value.
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Figure 4.7: Normal optical depth of the resonant clumps τ as a function of the optical

depth of the “regular” disc τ0 for the Sun. Solid, black lines are for the actual mass-loss

rate 1Ṁ⊙ and the Kuiper Belt (ap = 30AU). Dashed show a 10 times larger mass-loss

rate, grey lines are for a resonant zodi, ap = 0.1AU . Thick, medium, and thin lines

correspond to β = 0.05, 0.10, and 0.20, respectively. The chosen resonance is 3:2, i.e. the

Plutinos in the Kuiper Belt case.

Thus we are now able to estimate the optical depth of the resonant clumps. Figs. 4.7

to 4.9 show τ as a function of the background optical depth τ0.

It is obvious from Fig. 4.7 that neither mass-loss rate nor position of the planet has a

significant influence on the clumps’ optical depth for a given central mass and resonance.

Especially in the solar case, τ0 ≈ 10−6, there is no any difference for all parameters

considered. In a very dense debris disc there are slight quantitative differences: a 10 times

higher mass-loss rate gives about 10% denser clumps and those of a resonant zodiacal cloud

(ap = 0.1AU) are about twice as dense as a resonant Edgeworth-Kuiper Belt (ap = 30AU).

The results of Fig. 4.8 are somewhat surprising. Although there is the very large

difference between 1% and 100% capture probability the clump brightness is still only

∼ 10% of the background with the perfect resonant capture. For pres ≡ 0 the clumps

brightness will of course be identical zero. Heuristically one would expect an approximate

equality of background and clumps in the case pres = 1.0. The lower panel with the p

and q dependence seems to contradict what can bee seen in Fig. 3.10. There a larger q

reduces the collisional rate considerably, which gives the clumps more time to develop and

consequently a higher optical depth. But in the models considered here, we have fixed R̃

to 2, for all p, q and emax. Inserting the results of Chapter 3 would probably lead to a

compensation of the effects and result in a non-dependence on p and q.

Finally, Fig. 4.9 shows the clumps’ optical depth for the debris disc host star ǫ Eridani.

We use the proposed outer planet (ap = 40AU) again and a 3:2 resonance. Plotted in

solid lines is the solution of the full balance equation, in dashed lines that of the linearized
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Figure 4.8: Normal optical depth of the resonant clumps τ as a function of the optical

depth of the “regular” disc τ0 for the Sun. Left panel: Dependence on the resonant capture

probability. Black lines are for pres = 1.0, grey ones for pres = 0.01. Thick, medium, and

thin lines correspond to β = 0.05, 0.10, and 0.20, respectively. Right panel: Dependence

on resonance parameters p and q. Solid lines represent the first order resonances 2:1

(thick), 4:3 (medium) and 8:7 (thin). Dashed lines are for the higher order resonances 4:1

(thick), 6:1 (medium) and 8:1 (thick).
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Figure 4.9: Normal optical depth of the resonant clumps τ as a function of the optical

depth of the “regular” disc τ0 for the debris disc host star ǫ Eri (ap = 40AU , Ṁ∗ =

30Ṁ⊙). Solid lines show the full solution (4.41) of the balance equation and dashed ones

the solution (4.42) of the linearized balance equation. Thick, medium, and thin lines

correspond to β = 0.05, 0.10, and 0.20, respectively.
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one. Since we have already seen in the upper panel of Fig. 4.8 even in the best case the

clumps are much fainter than the background, the condition n ≪ n0 is always fulfilled and

the approximated solution (4.42) is an excellent one for all τ0. With ǫ Eridani’s estimated

optical depth of τ0 ∼ 10−5 the clumps’ optical depth is about τ ∼ 3 10−6, one third of

that of the background.

In Figs 4.10 and 4.11 there are contourplots showing the additional dependence on

the planetary semimajor axis for several parameters. For the low mass star M∗ = 0.5M⊙,

that dependence is nonexistent, except for very large distances ap ∼ 104AU . That is

different for a higher mass star, M∗ = 5M⊙. The further from the star the planet and

thus the resonant structure is, the fainter it gets. The decrease in τ for increasing ap is

much more prominent for 1Ṁ⊙ than 300Ṁ⊙, because for high mass-loss rates drag and

pumping effects are more efficient and lead to denser clumps in general. For low mass-loss

rates the collisions are more dominating, thus the clumps are more dilute.

The dependencies on the resonances (p + q) : p themselves are rather subtle, see the

upper panels of Fig. 4.11. The influence of the β ratio is similar to that of the stellar

mass-loss rate: high β means more efficient drag which means more dense clumps.

To allow quick numerical estimates for given sets of parameters we derive approxima-

tive formulas for the clumps’ optical depth now. Therein we have to consider 4 cases:

tenuous and dense discs as well as host stars with low and high mass-loss rate. We use

the same ansatz as Krivov et al. (2007),

τ

τ0
=

n

n0

1 − pres/2

Ŝ
= pres

T

Tdrag
(4.44)

but include stellar wind next to PR effect in Tdrag.

In the case of tenuous discs, the lifetime T is given mainly by the resonant timescale Tres

and the maximum eccentricity emax reaches eres. Inserting both into (4.44) and simplifying

we see that all β dependencies rule themselves out and get the very same result as Krivov

et al. (2007),

τ

τ0
≈ 0.125

(pres

0.5

)

(

Ŝ

0.2

)−1
(eres

0.2

)

(

p + q

q

)

. (4.45)

In the case of dense discs we start with the distinction between high and low mass-loss

rates. For high Ṁ∗ the disc is transport dominated and Tres determines the lifetime, just

as in the case of tenuous discs, and we again arrive at (4.45). For low Ṁ∗ the situation is

more complicated. Here the lifetime is determined by a combination of the timescales of

collisions with the background and resonant timescale,

T =

(

1

Tres

+
1

T 0
coll

)−1

. (4.46)

This and the resulting complicated expression for the maximum eccentricity makes the

derivation of a formula in the form of Eq. (4.45) impossible. Thus we restrict ourselves
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Figure 4.10: Contour plots of the normal optical depth of the resonant clumps τ , as a

function of the optical depth of the “regular” disc τ0 and the planet’s distance from the

star. Shown is a 3:2 resonance. The assumed is β = 0.10. Top left and right: stellar masses

0.5 and 5.0M⊙. Bottom left and right: mass-loss rates of 1Ṁ⊙ and 300Ṁ⊙. Contours are

labelled with the values of log τ .

to the case of a mass-loss rate so low that the lifetime is determined by T 0
coll alone. Then

emax ≈ e(T 0
coll) =

(

q

p + q

πBa sin ǫ

(1 − pres/2)vkeplerτ0

)1/3

, (4.47)

and our approximated expression for dense discs and very low mass-loss rates is similar

to the respective result of Krivov et al. (2007),

τ ≈ 9 × 10−6

(

M∗

M⊙

)1/6(
βPR

0.1

)

(

1 + 0.29

(

Ṁ∗

Ṁ⊙

)

(

L⊙

L∗

)

)

×
( ǫ

0.1rad

)( τ0

10−4

)2/3

×
(pres

0.5

)

(

Ŝ

0.2

)−1
( ap

100 AU

)−1/6
(

p + q

q

)2/3

. (4.48)
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Figure 4.11: Contour plots of the normal optical depth of the resonant clumps τ , as a

function of the optical depth of the “regular” disc τ0 and the planet’s distance from the

star. In each panel M∗ = 0.8M⊙, Ṁ∗ = 30Ṁ⊙. Top left and right: 2:1 and 4:3 resonance,

respectively (β = 0.1 each). Bottom left and right: β = 0.2 and β = 0.05, respectively

(3:2 resonance each). Contours are labelled with the values of log τ .

The difference is the mass-loss rate corrected β, see Eq. (4.12).

4.1.5 Contrast

Until now we have exclusively discussed the optical depth of the clumps, which is small

compared to the background. But in any complete disc the background is always present,

i.e. wherever there is a clump there is background “underneath”. Thus, to get the contrast

of a disc region with and without resonant clump we have to add τ to τ0. The difference

of optical depth in the presence of a clump is

∆τ =
τ + τ0

τ0

. (4.49)
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Ergo, if τ ≈ 0.1 . . . 0.3τ0 then the disc is about 10% to 30% denser in the region of resonant

structures than around them.

To obtain the difference in brightness, i.e. the enhancement of observable flux, the

physical properties, such as the temperature and efficiency of emisission, have to be consid-

ered. What we can say, however, since both resonant and nonresonant ensembles consist

of the same kind of dust grains, the brightness difference between background disc and

resonant clump will be of the same order. Thus that the clumps developing as scenario I

describes are just around the limit of observability when we compare it to the sensitivity

of todays instruments. So does the SCUBA array – with which the images 2.2 were taken

– have an accuracy of 5% - 15% depending on the wavelength (Greaves et al., 2005). Thus

the resonant clumps in the ǫ Eridani disc would be just above the noise level and difficult

to distinguish from the background.

4.1.6 Simplifications

In addition to the general assumptions – circular planetary orbit, 2D geometry, all colli-

sions totally destructive and so on – we make further, model specific simplifications.

First we have fixed the resonant eccentricity eres. Since it is given by p and q this

means we restrict ourselves to one single resonance. But looking at the actual range of

eres for different important resonances we see that it ranges from 0.57 ( 2:1 ) to 0 (1:1).

And according to Fig. 4.4 the actually achieved eccentricity emax of a particle is more

dependent on the background optical depth and mass-loss rate than eres.

Second we have fixed the capture probability pres. This is the place where the planetary

mass Mp would enter into our models. Large planets tend to capture preferably into 2:1

resonance, where smaller ones prefers those closer to (p + q)/p ≈ 1 (Reidemeister, 2007,

and references therein). If Mp/M∗ is too large, the particles’ orbits tend to become

chaotic instead of being caught into resonance, if on the other hand Mp/M∗ is too low,

the particles simply pass by the resonances without being caught (Kuchner & Holman,

2003). pres also depends on distance to the star (given by ap), the particles’ size or the

β ratio and very slightly on the inclination with respect to the planet. There have been

attempts to find analytic or empirical formulas for pres (Beaugé & Ferraz-Mello, 1994;

Lazzaro et al., 1994), but only for some subspaces of the parameters. A numerical study

of a wide range of parameters was recently performed by Reidemeister (2007). He found

that the inclination dependence is minor, but the β dependence very strong: where there

is perfect capture (pres = 1) at β = 0.03 it drops to zero at β = 0.3. We chose an

intermediate value of pres = 0.5.

The third fixed parameter is the collisional rate within resonance. It does not appear

explicitly in our modelling but in Eq. (4.25) we set R̃ = 2 and implicitly used it later for

all p, q and emax, ignoring the results of Chap. 3.3. To include those correctly we would,

e.g., have to apply another R̃ to every single emax evaluated, meaning to every chosen τ0.

To keep our treatment simple we again set an intermediate value.
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Apart from these numerical ones there is one major systematic assumption we make.

We do our modelling for a single particle size only. While in the collision between a

very small and a very big particle it will most probably not be destructive for the latter,

Krivov et al. (2006) found that in collisions of like sized particles the bigger one will most

probably be destroyed by the slightly smaller one. Thus when we ignore the other grain

sizes we ignore those “destructors” and overestimate the collisional lifetimes T 0
coll and Tcoll.

4.1.7 Applications

This scenario is a somewhat classical one and was considered by several authors before.

It was applied to the Solar System by Liou & Zook (1996) and Liou & Zook (1999)

By modelling perturbations induced by Jovian planets on the Edgeworth-Kuiper Belt

dust disc, they found efficient resonant trapping of dust by Neptune, which produces arcs

of dust co-orbital with the planet. According to their analysis, if the Solar System were

observed from outside, the presence of at least Neptune and Jupiter would be obvious

merely from analysing images of the dust disc. While the large-scale clumps on the

outskirts of the Solar System still escape observational detection, there is one, so far the

only, case where scenario I is observed at work: the asymmetric resonant ring of asteroidal

dust around the Earth orbit. Predicted by Jackson & Zook (1989), it was identified in

IRAS (Dermott et al., 1994) and COBE/DIRBE data (Reach et al., 1995).

In the case of ǫ Eri, Liou et al. (2000), Ozernoy et al. (2000), Quillen & Thorndike

(2002), and Deller & Maddison (2005) have tried to find particular orbital parameters and

masses of a planet, or planets, that may reproduce the observed substructure in the disc.

To fit the observed structure they claim the planetary parameters to be Mp = 0.1MJ ,

ap = 41.6AU and ep = 0.3. The latter, however, contradicts recent results by Reche

et al. (2008). They found that, although eccentric planets still allow resonant capture,

already a low eccentricity of ep = 0.05 smears out the clumps and makes typical resonant

structures invisible.

4.2 Scenario II

In the previous section we have seen that the timescales and optical depth of scenario I

depend on a multitude of parameters. The efficiency and thus the success in explaining

structures in observed discs depends in particular on the luminosity L∗ and mass-loss rate

Ṁ∗ of the host star. E.g. scenario I might work in the case of ǫ Eridani if the published

mass-loss rate of Ṁ∗ = 30Ṁ⊙ is true. If not and in the case of a less active star we need

an alternative. That is offered by scenario II. Here the dust parent bodies are caught in a

mean motion resonance. By mutual collisions among them smaller fragments and finally

visible dust is produced right within the same resonance.

Here we are confronted with other and in many cases larger difficulties than we had
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Figure 4.12: Schematic representation of Scenario II. The particular resonant population

with two clumps shown here again corresponds to the 3:2-MMR with emax = 0.2 and

A = 20◦.

with scenario I. There the dust production was not a matter of modelling, all the involved

processes were merged in the dust injection rate ṅ+. Which we were able to connect to

the observable quantity “optical background depth”, thus we gauged our model on the

observations and there was no need to model the dust production itself.

In scenario II now the dust production is in the form of the collisional cascade the

essential part of the model. It starts at planetesimal populations, which are totally un-

observable for exoplanet systems. Along the way down to dust grains – across no less

than about 30 orders of magnitude in mass – there exist a few benchmarks and constrains

only. Therefore, we construct here the simplest possible model to explore the efficiency

of scenario II, while being aware of its roughness.

4.2.1 The Set-up

To built our model we again assume a planet on a circular orbit and a group of planetes-

imals in a certain resonance. How they came into the resonance will not be considered

here. Each of the planetesimals is small enough so that mplanetesimal ≪ Mp, but large

enough so that they are not subject to the drag forces, i.e. β = 0. Consequently, there

is no pumping of any eccentricity, compare Eq. (2.7), i.e. e 6= e(t). They will not be

ejected from the resonance, their configuration is stable. Because we want to let them

collide and break up there must be a suitable number of them to replenish and sustain

the dust on a long-term timescale. Their total mass M will be a free parameter of the

model. All collisions will be catastrophic ones, see sec. 2.3. In contrast to the previous

analysis we do keep the fragments of the collisions this time. They stay in the resonance

and collide amongst each other again and again until they are ground down to a minimum

size, to be specified later. Thus there is a collisional cascade grinding the material from

the massive, but invisible planetesimals down to the smallest dust. We have a cloud or
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swarm of resonant bodies in the clumps. Those small dust grains have a large surface and

are thus observable. They form the visible structures.

Fig. 4.12 depicts the set-up of scenario II for a 3:2 resonance. This scenario is much

simpler in concept than scenario I, but more difficult in analysis since now we have to

consider the details of the collisions and model the cascade.

4.2.2 Locking Conditions

Although our model assumes that all fragments stay locked in the resonance, we have

to consider under which conditions and to what extent that assumption is realistic. On

the one hand material loss does occur because of the size of the fragments. For the large

bodies we can ignore the drag forces, but for the smaller ones the β ratio grows larger

and PR and wind drag have to be considered. If they get too dominant they may remove

the grains from the resonant swarm. The size and the responding β will be called smin

and βcrit, respectively. Wyatt (2006) investigated locking conditions of resonant particles

under the influence of radiation pressure and found a critical β ratio of

βcrit = 0.034

(

Mp/MJ

M∗/M⊙

)1/2

. (4.50)

This is easily generalized to Poynting-Robertson plus stellar wind drag by simply inter-

preting the β as the combined one, including both forces. The minimum size not blown

from the resonant swarm is

smin = s (βcrit) . (4.51)

This blow-out is the result of the direct PR and wind effect. In contrast to the

indirect one of sec. 4.1.1 this is velocity independend and does not drive inward transport

processes, but makes a radial outward pressure. The combined β now is

βdirect = βPR + βwind (4.52)

=
3

16π

L∗

GM∗cρs

(

1 +
Ṁ∗cvwind

L∗

)

, (4.53)

and the wind’s velocity vwind appears explicitly. For the solar system velocity between

300km/s and 800km/s have been measured, depending on the activity. We adopt an

intermediate value of 400km/s, as did Wood et al. (2002).

For a Sun-like star (M∗ = M⊙) and Jupiter-like planet (Mp = MJ) we have

βcrit = 0.034 ⇔ smin = 10.8µm.

For ǫ Eridani with M∗ = 0.8M⊙ and an outer planet with an assumed mass of Mp =

0.1 . . . 1MJ the critical β ratio (using L∗ = 0.34L⊙ and Ṁ∗ = 30Ṁ⊙ ) is

βcrit = 0.012 . . . 0.038 ⇔ smin = 9.2 . . . 2.9µm.
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Figure 4.13: Velocity of ejection from the resonance, in units of Keplerian velocity

Vkepler, as a function of the allowed libration width A. The planet was placed at

ap = 40 AU. Differed plotsymbols represent data sets of different Mp/M∗ relation, +:

Mp = 0.1MJ , M∗ = 1M⊙, ×: Mp = 1MJ , M∗ = 1M⊙, ∗: Mp = 1MJ , M∗ = 5M⊙.

In a recently published paper considering our models (Krivov et al., 2007) a minimum

size of 12µm was obtained for ǫ Eridani, but they used L∗ ∝ M4.

On the other hand material may be lost due to too high velocity. The relative or

collisional velocities of the colliders are much smaller than the orbital velocity vkepler

(compare e.g. Figs 3.5 and 3.7 of the previous chapter ) and part of the kinetic energy

will be used to break apart the colliders, but the fragments will still have a certain

nonzero relative velocity with respect to their centre of mass. We will call this velocity

“ejection velocity” ueject – the fragments are ejected from the colliders during collision.

The question is, what is the critical ejection velocity ucrit where the fragments leave the

resonant swarm? To answer this question we performed some numerical experiments.

A planet was placed at 40AU , the parent bodies’ eccentricity and inclination were set

to zero. Following the analysis of Wyatt (2006) we chose different stellar and planetary

masses: M∗ = 0.1, 0.2, 0.5, 1.0, 2.0, 5.0M⊙ and Mp = 0.03, 0.1, 0.3, 1.0, 3.0MJ , resulting in

30 different data sets. We simulated the orbital motion of 100 particles per (M∗, Mp) pair

by direct integration of their equations of motion. The fragments were released within

a resonance (p + q) : p with a certain initial velocity ueject. A β dependence was not

investigated since that only gives a larger initial semimajor axis and eccentricity. We

followed their motion and determined the resonant libration width A.

Results for 3 different sets of parameters are shown in Fig. 4.13. It shows a con-

centration in the region of both small velocity and small libration width and a tendency

for larger libration for larger ejection velocities. Thus the resulting libration width is a

function of the ejection velocity of the particles, or – inverting that function – the ejection

velocity can be written as a function of the libration width, with a parametric dependence

on stellar and planetary mass

ueject

vkepler

= f (A; M∗, Mp) . (4.54)
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Figure 4.14: Critical relative velocity of fragments ucrit/vkepler to stay in the resonance, as

a function of the planet-to-star mass ratio. Symbols: results of individual runs (secondary

data sets); lines: power law fits (4.56). Different maximum A of particles were adopted

as a criterion of staying in the resonance: A = 30◦ (triangles and solid line), A = 40◦

(squares and dashed line), A = 50◦ (stars and dotted line).

M∗ 1M⊙ 1M⊙ 0.8M⊙ 0.8M⊙

Mp 1M⊕ 1MJ 0.1MJ 1MJ

ucrit/vkepler 1.36 10−3 3.01 10−3 3.73 10−3 7.13 10−3

Table 4.3: Some examples of critical ejection velocities for collisions within a resonant

swarm. The allowed libration width is set to 30◦.

We fitted our data sets to a power law aAb. To determine a critical velocity we have to set

limits on A to distinguish still caught from ejected particles. Thus we create ‘secondary

data sets’ with certain ucrit for each triple of chosen A, M∗ and Mp,

ucrit

vkepler

= f (M∗, Mp; A) . (4.55)

Knowing that resonant dynamics depend on the ratio Mp/M∗ rather than the individual

values, we fitted the secondary data to

ucrit

vkepler
= A (Mp/M∗)

B , (4.56)

for libration widths between A = 30◦ and A = 50◦ excluding the shallow resonances easily

destroyed by any perturbation.

Fig. 4.14 shows both the data sets and the fitted lines of ucrit as a function of Mp/M∗

for three choices of libration width. The results of the fits by linear regression were

A = 6.7 10−3 and B = 0.28 for A = 30◦ and A = 8.1 10−3 and B = 0.22 for A = 50◦ with

errors of ≈ 10% . . . 40% for A and ≈ 10%. Table 4.3 shows some example values.

We will continue with the analysis of a stronger resonance (A = 30◦) and choose

ucrit = 6.7 · 10−3 (Mp/M∗)
0.28 vkepler . (4.57)
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Both Figures 4.13 and 4.14 show rather wide spread data, which implies that there is

a further or more complicated functional dependence of the velocities than we considered

here. But they also show that in 0th order approximation the numerical data fit our

assumption well enough. For the sake of the simplicity of our models we will not go into

further detail to obtain the critical velocity for particle loss from the resonance.

4.2.3 Collisional Cascade

As sketched in Sec. 4.2.1 the particles in the resonant clumps go through a collisional

cascade, which grind the largest ones (s = smax) step by step down to the smallest ones

(s = smin). The choice of smax is an arbitrary one, typical values are smax ∼ 10km. smin,

however, is fixed by βcrit, as discussed above.

To model the collisional cascade we first need the distribution of fragments of a single

collision, in size as well as in velocity. That outcome is not easy to determine. It depends

e.g. on the collisional velocity and angle, target and projectile size, composition, morphol-

ogy or porosity. Experiments are only possible for the lower end of the size distribution,

for sizes of centimetres, sometimes up to metres. For the extrapolation to all sizes scaling

laws are needed. They are the result of theoretical work and often, due to the lack of

data, no more than educated guesses.

The mass-loss due to β > βcrit is minor, due to the little mass these very small particles

carry. Most important is the loss due to high ejection velocity, u > ucrit. Labelling the

ratio of fragments kept by Ψ we schematically need the following:

Ψ =
all fragments − those with u > ucrit

all fragments
. (4.58)

To estimate the amount of those with u > ucrit we follow the analysis of Nakamura &

Fujiwara (1991). They experimentally investigated destructive collisions of different ma-

terials and performed a thorough analysis of the obtained data. They give the cumulative

mass of the fragments with u > ui to be

M(u > ui) =
N

2 − γ̃
Mt

(

ui

u0

)−γ

, (4.59)

where Mt is the target mass and u0 the fragments mean velocity. γ̃ and γ are material

parameters, which depend on the size and velocity distribution of a single collision and

were experimentally determined. N is the prefactor of the Dohnanyi (2.9) distribution

and a fit paramter.

Inserting (4.59) into (4.58) we have

Ψ(< ucrit) = 1 −
(

u0

ucrit

)γ

(ucrit ≥ u0). (4.60)

This is the loss after one collision. It remains to estimate the loss during the cascade. To

do this we will extrapolate Eq. (4.60) for a series of collisions,

Ψcascade = Ψ1 × Ψ2 × Ψ3 × · · · × Ψk, (4.61)
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where the indices denote the number of the collision, k is the total number of collisions it

takes to grind down smax to smin. Krivov et al. (2007) found that in the case smax = 10km

and smin = 30µm the mean number of collisions is

k ≈ 8.

Each iterative Ψi can be written in the form of (4.60). But the mean velocity of the

fragments grows with each collision, whenever hit by a projectile the particle gets propelled

away from the centre of mass,

u0,i+1 = u0,iδu. (4.62)

In which the velocity gain depends on the ratio of minimum and maximum mass of the

fragments produced (see Krivov et al. (2007) for more details),

log(δu) ∼ log

(

mmax

mmin

)

≫ 1. (4.63)

Thus means that the mean velocity grows rapidly and most of the mass is lost in the last

collision,

Ψcascade ≈ 1 −
(

u0,final

ucrit

)γ

. (4.64)

For simplicity we drop the extra index, thus:

Ψcascade ≈ 1 −
(

u0

ucrit

)γ

. (4.65)

With the last one being the one at the lower end of the size distribution u0,final is the

mean velocity of fragments measured in the experiments u0. For non-monolithic solids

Nakamura & Fujiwara (1991) obtained γ = 2.3 . . . 1.9 and u0 = 4.4 . . . 6.4m/s, depending

on the material. Consistent results of u0 = 5 . . . 20 m/s were found by Arakawa et al.

(1995); Giblin et al. (1998). We will use the intermediate values γ ≈ 2, u0 ≈ 5m/s.

Comparing this to the Keplerian velocities for e.g. the Kuiper Belt and the ǫ Eri ring we

find

u0 ∼ 10−4vkepler,

which in turn means (compare Fig. 3.5 and 3.7)

u0 ∼ 10−3vimp.

Table 4.4 gives some examples of the lost fraction of particles 1−Ψ. For the resonance

of an Earth mass planet 45% of the material is lost when undergoing a collisional cascade.

But remember that the critical velocity ucrit was calculated for an 3:2 resonance. This

and other resonances further from the planet are known to be rather weak for low mass

planets like the earth (Kuchner & Holman, 2003). For Jupiter the further out ones are
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stellar mass M⊙ M⊙ 0.8M⊙ 0.8M⊙

planet’s mass M⊕ MJ 0.1MJ MJ

1 − Ψ 0.45 1.1 10−3 0.10 2.77 10−2

Table 4.4: Some examples for the lost fraction after a collisional cascade within a resonant

swarm. The allowed libration width is set to 30◦.

the strongest, and here less than 1% of the material is lost. The situation is similar

for the proposed outer planet of ǫ Eridani. In the expected mass range of 0.1 . . . 1MJ

between 10% and 3% are lost. That means most of the material is kept in the resonant

swarm when undergoing a collisional cascade and that swarm can be described as a closed

system. Thus we can apply the Dohnanyi theory,

n(m) ∝ m−1−α. (4.66)

Dohnanyi himself obtained a slope α of 5/6 (Dohnanyi, 1969). In the region of our

minimum size smin of several µm the work of Durda & Dermott (1997) implies a power

law index of k = −2.75 in Eq. (2.12) and thus

α = 0.87 . (4.67)

Ergo the size distribution within the swarm of colliding and fragmenting resonant particles

is fully determined as

n(m) ∝ n−1−0.87. (4.68)

4.2.4 Swarm Cross Section

To make estimates about observables quantities such as the optical depth we first have to

calculate the collisional cross section of our resonant ensemble. For scenario I we solved

the balance equation, obtained the number of resonant particles n and simply multiplied

that with the collisional cross section of a single one σ(s2) to get the one for the whole

ensemble. For scenario II the ensemble does not consist of equally sized bodies anymore,

we have to consider their size distribution n(s).

The total cross section of the swarm of colliding, resonant particles is

Σ = Ψcascade

∫ smax

smin

σ(s)n(s)ds , (4.69)

where σ(s) = πs2 as above and n(s) is obtained from n(m) by

n(s) = n (m(s))
dm

ds
(4.70)

with m(s) =
4

3
πρs3, (4.71)



80 CHAPTER 4. ORIGIN OF RESONANT STRUCTURES

ρ being the uniform density of the particles. Inserting (2.9), (4.70) and (4.71) the swarm

collisional cross section is

Σ = Ψcascade N
3π

2 − 3α

(

4

3
πρ

)−1−α
(

s2−3α
max − s2−3α

min

)

(4.72)

= Ψcascade N
3π

2 − 3α

(

4

3
πρ

)−2/3
(

m2/3−α
max − m

2/3−α
min

)

. (4.73)

To ascertain N we calculate the total mass in the swarm in a similar way,

M =

∫ mmax

mmin

m n(m)dm (4.74)

= N 1

1 − α

(

m1−α
max − m1−α

min

)

. (4.75)

Inserting this into (4.73) we have

Σ = Ψcascade 3π
1 − α

2 − 3α

(

4

3
πρ

)−2/3

M

(

m
2/3−α
max − m

2/3−α
min

)

(

m1−α
max − m1−α

min

) . (4.76)

To bring this into a more convenient form we make use of mmin ≪ mmax, thus we can

approximate

1
(

m1−α
max − m1−α

min

) ≈ 1

m1−α
max

(4.77)

and, since 2/3 − α < 0 for all small particle regimes (see Fig. 12 of Durda & Dermott

(1997)),

m2/3−α
max ≪ m

2/3−α
min (4.78)

⇒
(

m2/3−α
max − m

2/3−α
min

)

≈ m
2/3−α
min . (4.79)

Finally we obtain for the swarm’s cross section

Σ = Ψcascade 3π
1 − α

2 − 3α

(

4

3
πρ

)−2/3
M

m1−α
max m

−2/3+α
min

. (4.80)

For Dohnanyi’s α = 5/6 this becomes symmetric

Σ = Ψcascade π1/3

(

3

4ρ

)2/3
M

m
1/6
min m

1/6
max

. (4.81)

4.2.5 Optical Depth

The optical depth of the resonant clump created by the colliding swarm of particles is

now

τ =
Σ

S
, (4.82)
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where S is the size of the clump. We will again use

S = 4πemaxa
2Ŝ

and Ŝ h 0.2, see Fig. 4.6 and surrounding text. With this the ‘annulus’ from scenario

I reenters through a ‘back door’. But here – in contrast to scenario I – it only sets the

maximum eccentricity allowed and not a background to be overcome in brightness by the

clumps.

In this scenario the optical depth and thus the brightness of the resonant structure

does not depend on that of the background, but on the planetesimal mass and thus on

the amount of material provided in the resonance. The full functional dependence of τ in

this model is

τ = f (M, ap, α, u0, γ, mmin, mmax) .

The dependence on the parameters of the collision α, u0, γ is shown in Fig. 4.15. Here

the host star is the Sun, M∗ = M⊙, Ṁ∗ = Ṁ⊙ and the planet is placed at Neptune’s orbit,

ap = 30AU . The resonance was chosen to be 3:2, i.e. it represents the Plutinos in the

Kuiper Belt. It shows that most important for the determination of τ is the choice of

the correct slope α of the size distribution (thick dotted and solid line). The choice of a

typical or mean velocity u0 of the fragments or the fracturing exponent γ have a minor

influence, only. The hardly visible difference between u0 = 5m/s and u0 = 1m/s hints

at the maximum possible τ for a given planetesimal mass M. If the mean velocity were

zero, there would be no loss during the collisional cascade, leading to a maximum optical

depth in the vicinity of τ = τ(u0 = 1m/s). As long as the lost fraction is of the order

of 10−3 the choice of u0 makes hardly any difference. However, when it becomes large

enough so that several percent are lost, the difference becomes more pronounced, as seen

for u0 = 10m/s.

Fig. 4.16 shows on the one hand the clumps’ optical depth for the two debris disc

host stars ǫ Eridani (solid lines) and AU Microscopii (dashed lines) and on the other hand

illustrates the dependence on Ṁ∗ and ap. Via the mass mmin of the smallest, still bound

particles the optical depth indirectly depends on the host star’s luminosity and mass-loss

rate. This dependence as well as that on mmax is weak, as can be seen in Eq. (4.80) and

in Fig. 4.16. A thirty times larger mass-loss rate, and thus about thirty times larger smin

reduces the clump optical depth by far less than 2 times. For lack of better estimations

the planet was placed in the region of the brightness depletion at 29AU .

For ǫ Eridani we compared two very different planet positions. First the inner one

found by radial velocity measurements. It would shape a hypothetical zodiacal cloud of

this system, so far there is no observational evidence for its existence. It would, however,

have much denser resonant clumps than the actually observed outer disc, structured by the

planet proposed to be at 40AU . That figure also tells us that we only need a planetesimal

swarm of less than 10% Earth mass around ǫ Eri to create clumps of the optical depth
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Figure 4.15: Normal optical depth of the resonant clumps τ in scenario II, as a function of

the planetesimal population mass M, exemplified for the Kuiper Belt of our Solar System:

M∗ = M⊙, Ṁ∗ = Ṁ⊙ and ap = 30AU . Thick lines are for u0 = 5 m s−1 and γ = 2 and two

different α: Dohnanyi’s α = 0.833 (dashed) and a more realistic α = 0.87 (solid). Thin

lines are for α = 0.87 and different u0 and γ: u0 = 1 ms−1 and γ = 2 (solid), u0 = 10 ms−1

and γ = 2 (dashed), u0 = 5 ms−1 and γ = 1.5 (dotted).
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Figure 4.16: Normal optical depth of the resonant clumps τ in scenario II, as a function

of the planetesimal population mass M, exemplified for ǫ Eri and AU Mic, u0 = 5 ms−1

and γ = 2 in all cases. Solid: ǫ Eri with the planet proposed to explain the clumps at

ap = 40AU (thick) and the radial velocity one at ap = 3.4AU (thin). Dashed: AU Mic,

with the two mass-loss rates Ṁ∗ = 10Ṁ⊙ (thin) and Ṁ∗ = 300Ṁ⊙ (thick). The planet

was placed at ap = 29AU
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τ ≈ 10−4, as observed. For AU Mic there one needs 5% to 10% Earth mass, depending

on the actual mass-loss rate, to create equally bright clumps.

The contour plots Fig. 4.17 and 4.18 show, in addition to the dependence on the

planetesimals’ mass, that on the planet’s semimajor axis, i.e. the distance of the clumps to

the star. As the ‘standard case’ we chose an ǫ Eridani like system with M∗ = 0.8M⊙, Ṁ∗ =

30Ṁ⊙, Mp = 0.1MJ , a 3:2 resonance and a size distribution with the slope α = 0.87.

The most prominent contrast to similar plots of scenario I (cf. Fig. 4.10) is the

existence of a critical distance acrit of the resonant particles where the clumps’ optical

depth drops to zero,

τ = 0 ⇔ ares ≥ acrit. (4.83)

That is the distance where the critical ejection velocity ucrit equals the fragments’ mean

velocity u0, which means that Ψ is zero and no material remains within the resonance

after the collisional cascade. The crucial term for that acrit is the fraction of fragments

kept,

τ(ap) ∼ Ψ = 1 −
(

u0

ucrit

)γ

. (4.84)

We determined ucrit as a function f (M∗, Mp) vkepler and thus also a function of the distance

to the star ares. Inserting Eq. (4.56) as well as u0 = 5m/s and γ = 2 we get

τ ∼ 1 − 6.6 10−4

(

M∗

M⊙

)−0.44(
Mp

MJ

)−0.56
( ap

AU

)

(

p + q

p

)2/3

. (4.85)

In the case of ǫ Eridani with M∗ = 0.8M⊙, Mp = 0.1MJ and a 3:2 resonance the optical

depth will be zero at ap ≈ 307AU , which is just out of the upper edge of the plots’ panels.

The critical semimajor axis is reached earlier for smaller stellar or smaller planetary

masses, shown clearly in Eq. (4.85), the upper panels of Fig. 4.17 and middle panel of

Fig. 4.18. Concerning the resonance (p + q) : p itself the resonant semimajor axis ares is

∼ ((p+ q) : p)2/3, the resonant locations are closer to the planet (for constant q) and thus

acrit increases with increasing p.

Of the other parameters tested the choice of a more realistic α = 0.87 enlarges the

optical depth of about one half of an order of magnitude. A more massive and thus more

luminous star as well as a larger mass-loss rate both result in less dense clumps. The

actual brightness observed around a given star, however, will depend on the amount of

light irradiated upon the dust particles. Thus the lower optical depth and the larger

amount of provided light might rule each other out.

For quantitative analysis we rewrite Eq. (4.82) in a more convenient form. For sim-

plicity we assume that Ψ ≈ 1, if that approximation is not possible the following has to

be corrected as given by Eq. 4.85. We insert (4.80) into (4.82) and express mmax and

mmin by smax and smin, respectively. The latter is defined as s(βcrit) and thus

smin ∼ 1

βPR

(

1 +
Ṁ∗cvwind

L∗

)−1

. (4.86)
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Figure 4.17: Contour plots of the normal optical depth of the resonant clumps τ in

scenario II, as a function of the planetesimal population mass M and the planet’s distance

from the star. In each panel α = 0.87, M∗ = 0.8M⊙ and Ṁ∗ = 30Ṁ⊙. Top left and right:

A 3:2 resonance for planetary masses of Mp = 0.03MJ and Mp = 1.0MJ , respectively.

Bottom left and right: 2:1 and 4:3 resonance, respectively, of a 0.1 Jupiter mass planet.

Contours are labelled with the values of log τ . Cf. Fig. 4.10 for scenario I.
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Figure 4.18: Same as Fig. 4.17, but for a 3:2 resonance of a 0.1 Jupiter mass planet

each. Top left and right: Dohnanyi’s α = 0.833 and more realistic α = 0.87, both for

the same stellar properties. Middle left and right: Two different stellar masses of 0.5 and

5.0M⊙, respectively, for same Ṁ∗ and α. Bottom left and right: Two mass-loss rates of

Ṁ∗ = 1Ṁ⊙ and Ṁ∗ = 300Ṁ⊙, respectively, for same M∗ and α.
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We consider two cases now: first a star of low activity, e.g. the Sun. There the stellar

wind can be neglected and we get an approximation for τ as was found in Krivov et al.

(2007),

τ <∼ 4.3 · 10−5

(

Ŝ

0.2

)−1
(emax

0.2

)−1

×
( smax

10 km

)−0.39
(

M

0.1M⊕

)

(4.87)

×
(

Mp

MJ

)0.31(
M∗

M⊙

)−2.14
( ap

100 AU

)−2
(

p

p + q

)4/3

.

Herein the star’s luminosity was replaced with L∗ ∝ M4
∗ , for simplicity.

The second case is an active star for which the stellar wind can be of the same order

as PR drag. Therefore we have to consider the full (4.86). The approximated optical

depth does not depend on the luminosity alone anymore but on the mass-loss rate Ṁ∗

also. Unfortunately the latter cannot be quantified via the stellar mass and remains in

the resulting formula for τ ,

τ <∼ 4.3 · 10−5

(

Ŝ

0.2

)−1
(emax

0.2

)−1

×
( smax

10 km

)−0.39
(

M

0.1M⊕

)

(4.88)

×
(

Mp

MJ

)0.31(
M∗

M⊙

)−2.14
(

1 + 4 · 10−4 Ṁ∗

Ṁ⊙

L⊙

L∗

vwind

400km/s

)−1

×
( ap

100 AU

)−2
(

p

p + q

)4/3

.

All the dependencies seen in Eqs (4.87) and (4.88) can be retraced easily in Figs 4.17 and

4.18.

4.2.6 Simplifications

The additional simplifications for scenario II all concern the modelling of the collisional

cascade. That is the central task and most crucial point here.

First we determined ucrit by numerical experiments for only the 3:2 resonance, thus

we have no information about any p or q dependence. For any set of (M∗, Mp) we had

100 particles only and therefore the numerical noise and resulting error are large. They

become even greater due to the very simple power law fit when determining ucrit from the

ueject.

Later, when considering the loss of material during the cascade, 1 − Ψ, we take into

consideration the final collision only. For the reasons given above that error will be a few

percent. According to Nakamura & Fujiwara (1991) the mean velocity of the fragments

is ∼ m
−1/6
target, thus 1 − Ψ will be much smaller for earlier collisions with larger particles.
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We also use only one value for u0 and γ. In physical systems they will depend on

the material, porosity, the mass of the colliders and the collisional velocity. The latter,

for example, is proportional to the Keplerian velocity and thus also dependent on the

semimajor axis. We do not adjust the slope α of the size distribution when going from

smax to smin, although Durda & Dermott (1997) suggest that this would be necessary.

Finally we assumed a steady state for the colliding, resonant ensemble. We thus ignore

that pronounced clumpy structures can also be produced by a so called ‘supercollision’,

meaning the collision and break-up of two very large bodies in the circumstellar disc, (e.g.

Wyatt & Dent, 2002; Grigorieva et al., 2007). Kenyon & Bromley (2005) showed that the

debris cloud of such a collision is dispersed into a symmetric ring after ∼ 104 years, which

is about 35 orbits for the outer planet ap = 40AU at ǫ Eridani.

Some smaller simplifications appear in the approximations for mmin/mmax ≪ 1 in the

derivation of the swarm cross section Σ, the choice of a single clump size S and single

maximum eccentricity emax.

4.3 Summary

In this chapter we constructed and compared two scenarios aiming to explain clumpy

structures in resonant circumstellar discs. Scenario I was transport driven and depended

on the optical thickness of the nonresonant background disc, scenario II was collision

driven, depending on the amount of dust parent bodies residing in the resonance.

In scenario I the optical depth of the clumps is a function of that of the background,

depending heavily on the star’s mass-loss rate. This is an observational value, which is

only poorly determined and thus a large source of uncertainty for that model, if we want

to explain structures of observed discs. We found that around a large star of low mass-

loss rate this scenario can create clumps in spite of collisions in discs with a thickness of

τ0 ∼ 10−6. For higher mass-loss rates the transport and pumping is more efficient and

thus the scenario works for denser discs also. Independent of circumstances, the clumps’

thickness is only 10% to 30% of that of the background.

In scenario II the clumps’ optical thickness is independent of the background. It

depends, however, on the applied cascade model. The dependence on the distance to the

star is much stronger than for scenario I, for any set of parameters chosen. There even

exists a critical distance acrit where τ ≡ 0. Although the quantitative influence, especially

of M∗, Mp or (p + q) : p is strong, there are no qualitative differences there.

If there were a resonant planetesimal population of 10%M⊕ around either the Sun or

ǫ Eridani it would produce clumps of τ ∼ 10−4 for both stars. That means the influences

of the different mass and mass-loss rate annihilate each other.

If we assume a total mass of Plutinos in the Kuiper Belt of approximately 10MPluto

(following the analysis of Iorio (2007), who found approximately 2% M⊕ of resonant

Kuiper Belt Objects), and adjusting the diameter of the largest planetesimal to smax ∼
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spluto, scenario II an optical thickness of the clumps of τ ∼ 1 · 10−6. Which results in a

brightness difference of about 20% with optical depth of τ0 ∼ 10−6 estimated from dust

measurements. The objects of Pluto’s size, however, are statistically decoupled. They are

too few in number to fit into the kinetic model. If we instead consider the smaller, still

coupled, planetesimals and use smax = 10km, again, we get resonant clumps of the same

optical thickness with a total mass of about one Pluto mass or 1.5 · 10−3M⊕, respectively,

in that size range.

Some quantitative uncertainties of both observations and models not withstanding we

are able to explain resonant structures for a large variety of stars and discs in an easy and

straigthforward way.



Chapter 5

Conclusion & Outlook

Der Kosmos ist zwar das beständigste unter allen Dingen, diese

Beständigkeit umfaßt aber nicht die Lehre, die seiner Erforschung dient.

Stanislaw Lem 1

5.1 Conclusions

In this work we examined structures in circumstellar debris discs induced by an embedded

planet. In doing so, we successfully combined the effects of a mean motion resonance

between the planet and disc particles with the effects of mutual collisions among the

particles. To achieve this we applied the method of kinetic theory to celestial mechanics.

In the first part we investigated the velocities and rates of mutual collisions of disc

particles within a resonance by computing both from distributions of the orbital elements.

This way we obtained the collisional velocity and rate as functions of the eccentricities,

depending on the integers p and q of the (p + q) : q-resonance as well as the libration

width A as free parameters.

The collisional velocity Vimp is found to be influenced by the resonance very only

slightly. For subsets of disc particles with orbital eccentricities e = e1 and e = e2,

the collisional velocity Vimp(e1, e2) is smallest if e1 = e2, as expected. It is maximal

for collisions between particles with a low and a medium eccentricity. Averaged over

both eccentricities from 0 to emax, Vimp(emax) represents the collisional velocity of the

whole ensemble of particles with an allowed maximum eccentricity of e = emax. It is

almost linear over the whole range of eccentricities. The most remarkable feature is that

for small eccentricities emax <∼ 0.4 the resonance slightly lowers the collisional velocity,

in contradiction to heuristic arguments, which rather predict a rise here. In all cases

considered Vimp(emax) was ∼ emax vkepler.

The collisional rate R is more strongly influenced by the resonances, generally having

a highly nonlinear dependence on the particles’ eccentricities. While the rate R(e1, e2) of

1in: Franz Rottensteiner (Ed.): Quarber Merkur, Suhrkamp, 1979, pp. 33

89
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two sub-ensembles is constant in the nonresonant case (with exception of some small cor-

rections for high eccentricities), it develops a pronounced maximum with growing strength

of the resonance, i.e. with decreasing libration width. This means, most notably, that

higher eccentricities do not necessarily lead to higher collisional rates. It are rather the

intermediate eccentricities for which collisions are most frequent. The maximum of the

collisional rate is the more pronounced, the smaller the libration width A is. For a strong

resonance, e.g. A = 0.1π, the collisional rate at its maximum is almost 4 times higher than

out of resonance (for 2:1 resonance, at e1 = e2 = 0.38). The collision rate of the whole

disc R(emax), i.e. R(e1, e2) averaged over both e1 and e2 from 0 to emax, still shows that

maximum. It is now somewhat lower than in the unaveraged case: for the same resonance

and same libration width the maximum rate is only twice the nonresonant one. As was

depicted in Fig. 3.10, increasing the parameter p shifts the maximum of the collisional

rate inwards to smaller emax, but does not alter its height. Changing the parameter q,

i.e. the order of the resonance, alters both position and height of the maximum. If we

increase q – while p is kept fixed – the maximum shifts outwards to larger emax and at the

same time becomes lower. For example, if R0 is the collisional rate in the nonresonant

case and q = 1, then the maximum of the rate is R = 1.87R0 and located at emax = 0.23.

If, however, q = 5 then the maximum is only R = 1.13R0 and appears at emax = 0.54

(p = 3, A = 0.1π in both cases).

The most dramatic influence of a resonance is seen in the case of Trojans (p = 1, q = 0).

While the velocity is – as in any other case – only changed weakly, the collisional rate

rises steeply for strengthening resonance. For emax → 0 it formally goes to infinity.

All things considered, the collisional behaviour of a resonant debris disc is not very

different from that of a nonresonant disc in most cases. The results obtained for collisions

in nonresonant, rotationally symmetric discs can be adapted easily to resonant ones.

In the second part of the work we constructed two scenarios aiming to explain the

origin of resonant structures. All structures are labelled ‘clumps’ in general for simplicity.

Both scenarios require a planet, which induces resonances in the circumstellar debris disc.

And in both of them analytic models are used. They contain the most important effects,

but are at the same time kept as simple as possible for this problem. In application to cer-

tain planetary systems we found, that the observational and experimental data nowadays

available are not sufficient to allow a clear distinction between the two scenarios in the

interpretation of the observed structures in debris discs. However, our modelling enables

us to explain resonant structures for a variety of stars and discs in a straightforward way.

Scenario I is transport-driven. Here the drag forces of Poynting-Robertson effect

and stellar wind bring already existing dust grains to resonant locations, where they are

captured into resonance with a certain probability. The dust is assumed to be produced

far from the resonance, in a planetesimal belt etc. and not considere here. The properties

of the clumps, including their optical depth, are determined by the optical depth of the

background disc. The other parameters such as the resonant capture probability and
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strength of the stellar wind (especially the mass-loss rate of the star) also influence the

efficiency of clump formation heavily.

Scenario I works best for dilute discs around stars with low mass-loss rates. Although

for denser discs and higher mass-loss rates the particles might still be captured into

resonance, the collisions happen so fast and shorten the lifetime so much, that the resonant

dust grains do not develop perceptible eccentricities. In these cases the resonant ensemble

cannot form clumpy structures but forms a thin, bright ring. We find that the collisional

timescales of the resonant ensemble hardly depend on the size of the particles, but have

a power law dependence on the optical depth of the background disc. In dilute discs,

i.e. for low optical depth, the drag and resonant pumping timescales are faster than the

collisional ones for any set of parameters. Here scenario I will create pronounced clumps.

For a denser debris disc, collisions take over and smear the clumps out. The position of

that turning point depends on the luminosity and mass-loss rate of the star as well as the

grain size and probability of capture of the dust grain into resonance.

Scenario II is collision-driven. Here a number of larger bodies resides in the resonance.

Their way into the resonance is not considered here. They might have been placed there

e.g. by an earlier planet migration. These larger, resonant bodies collide amongst each

other and break up in a cascade-like process. This way the dust is produced already within

the resonance. In contrast to scenario I the actual dust production is considered here. To

quantify the amount of produced dust we describe the velocities and size distributions of

the fragments. We consider the loss of material from the resonance by radiative blow-out

as well as by collisional scattering and construct a model for the collisional cascade.

Scenario II works best in discs with a considerable number of resonant dust parent

bodies available, i.e. where there is a well populated, resonant planetesimal belt. In

this model the optical depth of the resonant structures does not depend on that of the

background disc or any timescales. It is instead proportional to the mass of available dust

parent bodies.

In this scenario the model for the collisional cascade has a strong influence on the

efficiency of clump formation. The influence of assumed collisional velocity or material

strength of the colliders, however, is minor.

Application of scenarios I and II to the debris disc host star ǫ Eridani shows that

we cannot clearly determine which of the two scenarios is responsible for the clumps.

With the available data both are able to explain the observed structures. In scenario I a

background optical depth of the observed value of τ0 ∼ 10−4 leads to an enhancement of

that optical depth of 25% in the presence of clumps. Equally dense clumps can be created

by scenario II with a planetesimal mass in resonance of ∼ 0.1M⊕, which is reasonable for

a debris disc with a size and optical depth like that of ǫ Eridani.

Applying both scenarios to the Solar System, the result is similar. Assuming about

ten Pluto masses in Pluto-sized bodies residing in the Plutino group (3:2 resonance with

Neptune) of the Kuiper Belt scenario II produces a clump optical depth of τ ≈ 1 · 10−6,
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which is of the same order of magnitude as that of the background disc, τ0 ∼ 10−6,

estimated from dust measurements. For such a background scenario I creates resonant

clumps which are not quite as dense as those by scenario II, τ ≈ 8 · 10−7. As it is already

difficult to quantify by observations the background τ0 itself, it is impossible so far to

measure such small differences between the background disc and resonant structures.

Comparing the efficiencies and predictions of scenarios I and II both of them could be at

work in the Kuiper Belt of our Solar System.

5.2 Outlook

In future the kinetic model of a colliding, resonant disc shall be refined by using more

realistic distributions for the orbital elements. For example, the eccentricity distribution of

asteroid populations in the Solar System is known to be far from uniform, it rather peaks

near emax. Effects of a three dimensional motion should also be considered. However, to

do so a considerable portion of the analytic calculations has to be replaced by numerical

ones, since in a full 3D formulation the collision condition has implicit solutions only.

The – in all likelihood – oversimplified models in scenario I and II shall be made

more realistic. Scenario I would benefit from a size-dependent particle distribution, n(s).

This is because the smaller the particles are, the brighter they are. And because most

destructive collisions take place between particles of similar but not quite identical size.

A more realistic capture probability, depending then on particle size, planet mass and so

on, would allow more realistic settings for the other parameters of the model, too.

In scenario II, use shall be made of the results of Durda & Dermott (1997) by inserting

a size dependent slope α(s) in the size distribution, so that the larger particles are no

longer underestimated in number and mass. The particles ejected and blown out of the

resonance have to be considered. One has to check, if they are removed fast enough so

that they really do not contribute to the clumps’ optical depth at all.

With the inclusion of these refinements, however, we will have to leave behind the

simple analytic structure of our models which we were aiming at in the first place.
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Appendix A

List of Symbols/Units

a semimajor axis

ap, ares planetary, resonant semimajor axis

A libration width of resonance

α slope of Dohnahyi distribution

AU Astronomical Unit, 1.5 · 1013cm

B modified β, B = 2GM∗β/(ca2)

βPR, βwind PR drag over gravity ratio, stellar wind drag over gravity ratio

β combination of all drag forces, βPR + βwind

c speed of light, 3 · 1010cm/s

δ(.) Dirac delta distribution

∆(k)(.) ∆-integral of order k, see Ch. 3

e numerical eccentricity of the orbit, referred to as ‘eccentricity’ only

emax, eres maximum eccentricity of the ensemble, max. ecc. possible in resonance

ǫ semi-opening angle of the disc

G gravitational constant

γ fracturing exponent of the collisional outcome (=̂ material strengh)

h scale height of disc, h = 2a sin ǫ

I. intensity (of light, stellar wind)

L∗ stellar luminosity

L⊙ solar luminosity, 4 · 1033erg/s

λ, λp mean longitude, mean longitude of planet

λ mean longitude with respect to planet

m mass of a single particle

I



II APPENDIX A. LIST OF SYMBOLS/UNITS

mmin, mmax mass of smallest and largest particle within ensemble

M mean anomaly (angle)

M∗ stellar mass

M total planetesimal mass

M⊙ solar mass, 2 · 1033g

Ṁ∗ stellar mass loss rate

Ṁ⊙ solar mass loss rate, 2 · 10−14M⊙/year

Mp planetary mass

MJ , M⊕ Jupiter mass, 1.9 · 1030g ≈ 300M⊕, Earth mass, 5.9 · 1027g

n(.) number density of particles

ṅ+ drift rate of particles

N number of particles

N prefactor of Dohnanyi distribution

ω argument of pericentre

ω argument of pericentre with respect to planet

p resonance parameter

pc parsec = parallactic second, 206 265AU

pres probability of capture into resonance

φ(.) normalized density distribution

Φ, Φ0 resonant argument, centre of libration

Ψ kept fraction of material after coll. cascade

q resonance parameter, order of the resonance

r distance circumstellar object - star

r position vector in real/physical space

R(.) collisional rate

ρ density of particle

s, smin, smax diammetre of particle, minimum, maximum size within ensemble

S, Ŝ size of resonant clump, size relative to background annulus

S0 size of background annulus

σ collisional cross section of single particle

Σ collisional cross section of swarm of particles

t time

T lifetime of particle



III

Tdrag, Tres time to drift through resonance, resonant pumping time

Tcoll, T
0
coll collisional lifetime within resonance, with background disc

τ, τ0 optical depth of resonant clumps, of background disc

θ true longitude

ueject velocity of ejection of individual fragments during collision

ucrit critical ejection velocity for staying in resonance

u0 mean velocity of fragments after collision

vkepler circular Keplerian velocity,
√

GM∗/a

v velocity vector in real/physical space

V, V0 interaction volume within resonance, with background disc



Appendix B

Relative Velocity at Collision

Here we give the derivation of the explicit form of Vimp(e1, θ1, e2), Eq. (3.24). Eq. (3.22)

is only valid in the individual frame of each particle. To compare two colliding particles

the velocity with respect to the inertial frame is needed. For particle #1 this is

v1 =





cos(ω1 + θ1) − sin(ω1 + θ1)

sin(ω1 + θ1) cos(ω1 + θ1)



 · v (B.1)

=

√

GM

a(1 − e2
1)





−e1 sin ω1 − sin(ω1 + θ1)

e1 cos ω1 + cos(ω1 + θ1)



 , (B.2)

and likewise for particle #2. From now on we will omit the prefactor
√

GM/a as it is

idential for both colliders. The difference (3.23) of both, with the collision condition (3.17)

for ω2 inserted, is

v1 − v2 =











−e1 sinω1−sin(ω1+θ1)√
1−e2

1

− − sin(ω1+θ1)−e2 sin(ω1+θ1−θ2)√
1−e2

2

e1 cosω1+cos(ω1+θ1)√
1−e2

1

− cos(ω1+θ1)+e2 cos(ω1+θ1−θ2)√
1−e2

2











. (B.3)

We replace cos θ2 according to (3.18) now and calculate the scalar product of (B.3)

with itself, being the square of the norm, i.e. the square of the relative velocity. After

thorough arithmetics it can be written as

(v1 − v2)
2 =

2

(1 − e2
1)W

[

W + e2
1W + 2e1W cos θ1

−(1 − e2
2)(1 + e1 cos θ1)

2 − e1e2(1 − e2
1) sin θ1 sin θ2

]

(B.4)

with W =
√

(1 − e2
1)(1 − e2

2) . (B.5)

Finally replacing the remaining θ2 with the solution from Eqs (3.19) and (3.20) and

IV



V

extracting the root we get the two branched relative velocity of the colliders,

|v1 − v2|± ≡ V ±
imp(e1, θ1, e2)

=





2

(1 − e2
1)W



W + e2
1W + 2e1W cos θ1 − (1 − e2

2)(1 + e1 cos θ1)
2

± e1e2(1 − e2
1) sin θ1

√

1 − (e2
1 − e2

2 + (1 − e2
1)e1 cos θ1)

2

(1 − e2
1)

2 e2
2









1/2

(B.6)
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seiner unermüdlichen Bereitschaft seinen Enkeln diese und andere Dinge zu erklären, einen
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