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 Deutsche Zusammenfassung

Die Modellierung der Kohlenstoffdynamik in 
bewirtschafteten Forsten und deren Beeinflussung 
durch verschiedene Bewirtschaftungsoptionen ist 
das Anliegen dieser Doktorarbeit. Diese 
Modellierung wird benötigt um auch den Aspekt 
der Kohlenstoffspeicherung in Entscheidungen 
über verschiedene Bewirtschaftungsmaßnahmen 
zu berücksichtigen. Weiterhin ist die Modellie-
rung ein viel versprechender Weg, um zwischen 
natürlichen und direkten anthropogenen Ursachen 
einer Kohlenstoffsenke oder Quelle zu 
unterscheiden, wie es von den Good Practicse 
Guidance Tier 3 vorgeschlagen ist (2003). In 
dieser Arbeit werden methodische Entwicklungen 
vorgestellt, mit der die Kohlenstoffdynamik in der 
Baumbiomasse, im Totholz, in der organischen 
Auflage, im Mineralboden und in Holzprodukten 
mit standardmäßig erhobenen Forstdaten simuliert 
werden kann.  

Als beispielhaftes Untersuchungsgebiet 
wurden die Forsten des Bundeslandes Thüringen 
ausgewählt, da diese Region bereits in einigen 
Vorläuferprojekten zur Umsetzung des Kyoto-
protokolls (Wirth et al. 2004, Mund et al. 2005) 
und zur Erfassung von Kohlenstoffvorräten 
(Baritz 2005) ausführlich untersucht wurde. Der 
größte Teil der 540.000 ha Forstfläche befindet 
sich auf den sauren Gesteinen des Thüringischen 
Schiefergebirges und des Thüringer Waldes und 
auf den Kalkstein-dominierten Flächen an den 
Rändern des Thüringer Beckens im Übergangs-
bereich vom maritimen zum kontinentalen Klima. 
Die dominierenden Baumarten der natürlichen 
Vegetation sind Fichte (Picea abies) in den 
höheren Lagen (500-980m), Buche (Fagus 
sylvatica) in den tieferen Lagen mit ausreichend 
Niederschlag, sowie Kiefer (Pinus sylvestris) und 
Eiche (Quercus spec) in den trockeneren Gebieten 
(Ozenda and Borel 2000). Teile der Flächen 
wurde vor allem im 13. Jahrhundert und einige 
Teile bis ins 20. Jahrhundert hinein landwirt-
schaftlich genutzt und auch ein Großteil der 
Böden der durchgängig als Wald genutzten 
Flächen wurde durch Waldweide und 
Streunutzung degradiert. Seit 1800 bevorzugte 
eine reguläre Forstwirtschaft vor allem Nadel-
hölzer, so dass ab der zweiten Hälfte des 20 
Jahrhundert auf 70% der Fläche Nadelhölzer, vor 
allem Fichtenreinbestände wuchsen. Während sich 
die Forstwirtschaft früher vor allem an Ertrags-
tafeln für Reinbestände orientierte, fördert sie 
heute gemischte mehrschichtige natürlichere 
Bestände. 

Die Ergebnisse der Arbeit sind in dem Modell 
TreeGrOSS-C zusammengefasst, welches vier 

Teilmodelle koppelt: ein Bestandeswachstums-
modell, ein Bewirtschaftungsmodell, ein Modell 
der Kohlenstoffdynamik in Totholz, organischer 
Auflage und Boden und ein Modell der Kohlen-
stoffdynamik in Holzprodukten. Als Bestandes-
wachstumsmodell wurde das empirische Modell 
TreeGrOSS (Nagel 2003) ausgewählt, welches das 
Durchmesser- und Höhenwachstum von Einzel-
bäumen in gemischten Beständen simuliert. Es 
wurde um das Konzept von Kohorten, d.h. 
Gruppen ähnlicher Bäume, Forstinventurmodulen, 
und Modulen zur Berechnung von Kohlenstoff-
Vorräten und Kohlenstoff-Umsätzen erweitert.  
Das erweiterte Modell wurde anhand von 
forstlichen Dauerversuchsflächen in Thürigen 
validiert. Als Ausgangspunkt für die Beschreibung 
der Kohlenstoffvorräte in Totholz, organischer 
Auflage und Mineralboden wurde das Modell 
YASSO (Liski et al. 2005) ausgewählt und so 
erweitert, dass es den Streueintrag gemischter 
Bestände simulieren konnte. Für die Beschreibung 
der Bewirtschaftung wurde ein ertragstafel-
basiertes Modell entwickelt, und für die 
Holzprodukte wurde ein Modell entwickelt, 
welches auf Studien der Menge und der 
Lebensdauer von Holzprodukten in Thüringen 
beruht (Mund et al. 2005, Profft et al. 2007).  

Die Berechnung aktueller Kohlenstoffvorräte 
im Forstökosystem war mit bereits etablierten 
Methoden möglich. Zusätzlich zu bisherigen 
Studien ermöglichte die Integration der forstlichen 
Grundkarte, der Standortkarte und Forstinventur-
daten eine Untersuchung verschiedenster Einfluss-
faktoren auf die Kohlenstoffvorräte (Artikel I). 
Während die Durchforstungsintensität einen 
großen Einfluss hatte, wurde kein signifikanter 
Einfluss der Standortfaktoren im gleichen Klima 
auf die Kohlenstoffvorräte in der Baumbiomasse 
festgestellt. 

Für die Fortschreibung der Kohlenstoffvorräte, 
also die Simulation der Kohlenstoffdynamik, war 
eine ergänzende Studie zu Biomassegleichungen 
für die Baumart Buche notwendig. In einer Meta-
Analyse über die Originaldaten von 13 Studien 
wurde mit Hilfe gemischter Modelle ein Satz von 
Biomassegleichungen für alle wichtigen Bio-
massekompartimente entwickelt (Artikel II). Für 
die Baumart Buche existierten vorher nur Studien 
mit Originaldaten über einzelne Standorte oder 
Regionen, jedoch nicht für ganz Mitteleuropa. 
Auch in der Fehleranalyse ging die Studie über 
bisherige Arbeiten hinaus, indem sie erstmals den 
theoretischen statistischen Hintergrund für die 
Kovarianzen zwischen berechneten Einzelbaum-
biomassen beschrieb, sowie Gleichungen und 
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Werkzeuge für die Berechnung der Kovarianzen 
und deren Hochskalierung in der Varianz der 
Biomasse auf Bestandesebene entwickelte. 
Sowohl die Vernachlässigung von Wuchs-
unterschieden zwischen Regionen, als auch die 
Vernachlässigung der Kovarianzen zwischen 
berechneten Einzelbaumbiomassen führt zu einer 
Unterschätzung der Varianz der Bestandes-
biomassen. 

Die größte methodische Herausforderung lag 
in der Initialisierung des Ausgangszustandes des 
Bodenmodells. Ähnliche bisherige Arbeiten hatten 
dazu die Annahme getroffen, dass sich die 
Bodenkohlenstoffvorräte im Gleichgewicht mit 
dem aktuellen Streueintrag befinden. Historisch 
bedingt, befinden sich die meisten Böden 
Mitteleuropas jedoch in einer Phase einer 
langsamen Erholung der Vorräte von früheren 
Störungen. Diese Arbeit geht in zwei Schritten 
über die strenge Gleichgewichtsannahme hinaus. 
Zum einen modellierte sie statt der aktuellen 
Streueinträge die durchschnittlichen Streueinträge 
über eine ganze Rotationsperiode eines Bestandes 
mit der Hauptbewirtschaftungsform des letzten 
Jahrhunderts (Artikel III). Diese Einträge 
umfassten zusätzlich zum Umsatz von Laub und 
Feinwurzeln (1.9 bis 5.6 tC/ha/yr für Eiche bzw. 
Esche mittlerer Bonität in Thüringen) unter 
anderem die Ernterückstände und die Wurzel-
stöcke aller geschlagenen Bäume (0.8 – 3.1 
tC/ha/yr für Eiche bzw. Birke). Des weiteren 
zeigte eine Monte-Carlo-Sensitivitätsanalyse auf, 
dass die Genauigkeit der ermittelten Streueinträge 
(cv=14% für Buche bis 25% für Kiefer) stark 
erhöht werden kann, indem der Zusammenhang 
der Lebensdauer von Laub mit Umweltgradienten 
besser quantifiziert und in die Modelle integriert 
wird. 

Der zweite wesentliche Fortschritt der Arbeit 
für die Initialisierung des Bodenmodells war die 
Einführung der vereinfachten Gleichgewichts-
annahme und der Korrektur für transiente 
Zustände (Artikel IV). Schon minimale Ver-
letzungen der strengen Gleichgewichtsannahme 
führten zu sehr großen Abweichungen in der 
Modellparameterisierung und den daraus resultie-
renden Initialisierungszuständen für das Boden-
modell. Die vereinfachte Gleichgewichtsannahme 
setzte nun nur ein Gleichgewicht für die Zustands-
variablen der schnell abbaubaren Ausgangsstoffe 
voraus, und nahm die langsamste Fraktion davon 
aus. Die Korrektur erniedrigte den durch die 
strenge Gleichgewichtsannahme ermittelten Wert 
für die am langsamsten abbaubare Fraktion mit 
Hilfe einer unabhängigen Schätzung der gesamten 
Boden-Kohlenstoffvorräte. Die Anwendung der 
Korrektur an einen Beispielbestand, an dem die 

Gesamt-Bodenvorräte gemessen worden waren, 
korrigierte den Kohlenstoffvorrat um 30%, was 
dazu führte, dass in Simulationen mit verschie-
denen Szenarien von Streueintrag und Klima-
entwicklung eine zusätzliche Kohlenstoffsenke 
von 5.7±1.5 tC/ha über 100 Jahre quantifiziert 
wurde. Für die Anwendung auf Ebene von 
Forstämtern oder Bundesländern wurden Boden-
Kohlenstoffvorräte mit Hilfe von flächenhaft 
verfügbaren Daten und Regressionsmodellen für 
jeden Bestand geschätzt (Wirth et al. 2004). 

Die vorgestellte Methodik ermöglichte es, die 
Kohlenstoffdynamik jedes einzelnen Bestandes 
ganzer Forstflächen zu simulieren, und dabei 
explizit die gemischte und geschichtete Struktur 
der Bestände zu berücksichtigen. Dem entgegen 
müssen andere Quantifizierungsansätze entweder 
einige intensiv untersuchte Standorte als 
flächenrepräsentativ für das Untersuchungsgebiet 
voraussetzen, oder sie müssen die vorliegenden 
Daten stratifizieren und von den spezifischen 
einzelnen Bestandesstrukturen abstrahieren. Mit 
dem vorgestellten Modell war es nun möglich, zu 
prüfen, ob diese Stratifizierung und Vernach-
lässigung von Details der Bestandesstruktur eine 
systematische Abweichung in der simulierten 
Kohlenstoffsenke bewirkt. Dazu wurde das 
Modell TreeGrOSS-C auf 1616 Einzelbestände 
des Forstamtes Hummelshein angewendet und die 
Resultate mit der Anwendung des Modells auf 
einen stratifizierten Datensatz verglichen (Artikel 
V). Auf der Ebene einzelner Bestände zeigten sich 
große Abweichungen des stratifizierten Ansatzes 
vom expliziten Ansatz in den simulierten 
Ökosystem-Kohlenstoffvorräten (-39% bis +38%), 
der Kohlenstoffsenke über 100 Jahre  (-1.1 bis 
+1.9 tC/ha/yr) und Unterschiede in der Verteilung 
der Kohlenstoffvorräte zwischen lebender Baum-
biomasse und Boden und organischer Auflage. 
Dies war vor allem auf die unterschiedlichen 
Eigenschaften und Parametrisierungen der 
eingemischten Arten im einzelbestandesweisen 
Ansatz zurückzuführen. Bei Entscheidungen 
zwischen verschiedenen Bewirtschaftungsmass-
nahmen für konkrete Bestände, wirkt sich die Art 
der Mischung und Schichtung der Bestände auf 
die Größe der Kohlenstoffsenke aus. Da die 
Ergebnisse des stratifizierten Ansatzes jedoch für 
einige Bestände in positiver und für andere 
Bestände in negativer Richtung von den 
Ergebnissen des expliziten Ansatzes abwichen, 
glichen sich die Unterschiede auf Ebene des 
Forstamtes aus. Dieses Ergebnis weist darauf hin, 
dass der stratifizierte Ansatz keine systematische 
Abweichung in der Quantifizierung der Kohlen-
stoffsenke mit sich bringt. 
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Die vorgestellte Methodik ist ein wichtiger 
Schritt in Richtung einer Unterscheidung direkter 
anthropogener und natürlicher Ursachen für die 
Kohlenstoff-Senke in Forsten. Die nächsten 
Schritte sind zum einen eine bessere Repräsen-
tation der sich ändernden Umwelteinflüsse auf das 
Wachstum der Bestände. Zum anderen wird eine 
formellere Spezifikation der aktuellen Bewirt-
schaftung und des Waldumbaus benötigt, um 
einen realistischeren Bewirtschaftungsplan zu im-
plementieren.
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Thesis Frame

1. Abstract  
Managed forests act as sinks or sources of 
atmospheric carbon by temporarily sequestering 
carbon in standing biomass, dead wood, organic 
layer, mineral soil, and wood products. 
Accounting of this carbon sink and managing 
forests with the aim of increasing the carbon sink 
need projections of the development of the sink 
with different management options. This thesis 
developed a methodology to simulate the carbon 
sink of individual managed forest stands using 
standard forestry data sources as they are available 
for many forested regions in Europe. As a test 
case area the German federal state Thuringia was 
taken in accordance with several other forest 
carbon projects. The presented methodology 
extends an empirical multi-species stand growth 
model with carbon quantification and couples this 
model to the Yasso soil carbon model, which was 
extended to handle multiple species and cohorts. 
The coupled model also includes newly developed 
component models of forest management, and of 
carbon in wood products.  

The calculation and analysis of current carbon 
stocks in tree biomass, organic layer and mineral 
soil was based on established methods. Projecting 
the development of the carbon stocks, however, 
required further research on biomass equations for 
the tree compartments branches, foliage and root. 
The biggest challenge was to estimate the initial 
pool sizes of the soil carbon model that strongly 
depend on site history. One part of the solution 
was the introduction of the relaxed equilibrium 
assumption, which assumes that all pools are near 
equilibrium unless the pool with the slowest 
turnover. This assumption allowed to infer initial 
states by average past soil carbon inputs and by an 
estimate of current soil carbon stocks. A second 
part of the solution was to model average soil 
carbon inputs of the former century by using a 
combination of yield tables and the stand growth 
model.  

In addition to the prediction of mean carbon 
stocks and their changes I focused on their 
uncertainties and error propagation on upscaling. I 
found that the precision of tree biomass carbon 
stocks is strongly overestimated if site quality and 
correlations between tree biomass at similar site 
conditions are not carefully accounted for. Litter 
inputs to the soil and hence also soil carbon stocks 
strongly vary with lifetime of foliage and 
branches, which vary with site conditions. 
Additionally, if a soil carbon pool with very long 
turnover time is considered, the long term 

dynamics of the soil carbon sink is determined by 
the site history. I conclude that differences in site 
quality and site history must be adequately 
accounted for to avoid bias in the estimate of the 
carbon sink at forest district scale.  

The developed methodology made it possible 
to simulate the carbon sink of each individual 
stand of entire forest areas.  A comparison of the 
model application to the Hummelshein forest 
district in Central Germany with a stratified 
approach showed that multi-cohort and multi-
species stand properties have a high impact on 
carbon dynamics at stand scale but that they are 
levelled off at forest district scale. The presented 
methodology is a move towards factoring out 
natural and anthropogenic effects on the forest 
carbon sink. Next steps in the development of the 
approach are a better representation of 
environmental conditions in the stand growth 
component model and a more formal specification 
of changes in forestry management.  

2. Introduction 
Projections of the effects of forestry management 
on forest carbon dynamics are important to factor 
out direct anthropogenic effects versus indirect, 
natural, and historical effects (Lasch et al. 2005, 
Vetter et al. 2005, Albani et al. 2006) as required 
by the Kyoto Protocol (UNFCCC 1997).  In the 
past, research has focused on quantifying the 
forest carbon sink at stand scale (DeAngelis et al. 
1981, Ellenberg et al. 1986, Aubinet et al. 2001, 
Curtis et al. 2002, Valentini 2003) and at national 
to continental scale (de Wit et al. 2006, Liski et al. 
2006, Ågren et al. 2007). Projections of 
management effects at the forest district scale are 
rare, even though decisions on forest management 
are made at this scale, and also activities to 
improve the carbon sink strength of forests would 
take place at district scale. In Germany, Lasch et 
al. (2005) applied the physiological 4C model to 
long term research plots in order to investigate 
effects of management on carbon sequestration 
and ground water recharge at regional level. 
However, their model requires detailed input data 
and parameters, which makes it difficult for 
application in management enterprises. In forestry 
empirical models are used more frequently 
(Hasenauer 2006). These empirical models are 
usually based on tree properties and have no 
explicit representation of the carbon cycle and 
environmental changes. In Finland,  Matala et al. 
(2006) were able to extend the empirical Motti 
model by relative variations in volume increment 
with increased temperature, carbon dioxide 
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concentrations and  nitrogen depositions inferred 
by a physiological model. Nuutinen et al. (2006) 
incorporated the growth differences into a large-
scale forest scenario MELA model, which then 
was applied to national forest inventory data. I 
pursued a similar approach of extending an 
empirical model. I simulated the carbon sink at 
forest district level based on standard forestry data 
by adapting the stand simulator TreeGrOSS 
(Nagel 2003) to work with standard forest 
inventory data and coupling it with carbon 
calculators, a management planning model, a soil 
carbon model, and a wood product carbon model.  

3. Objectives 
The main objective of this work was to develop a 
methodology to simulate the carbon sink of a 
managed forest ecosystem using standard data 
sources, which are easily and commonly available.  

This main objective can be refined to the 
following specific objectives. 
• To calculate and analyse current carbon stocks 

in living tree biomass, organic layer, and the 
mineral soil using standard forestry data 
sources (Publication I) 

• To select or develop a stand growth model that 
is driven by standard forestry data sources and 
that is able to explicitly represent different 
thinning strategies (preparatory work for 
Publications II-V). 

• To extend the stand growth model to provide 
outputs in carbon units. This involves 
estimation of carbon stocks in tree biomass 
compartments foliage, branches, and root 
(Publication II) 

• To extend the tree biomass carbon model to a 
complete forest carbon model including 
deadwood, organic layer, mineral soil, and 
carbon in wood products (preparatory work for 
Publication V).  

The fourth specific objective required to infer 
initial states of different soil carbon pools, which 
depend on disturbances and carbon inputs during 
former centuries. This challenge was tackled by 
two Publications.  
• Publication III calculates average carbon inputs 

to the soil using a combination of yield tables 
and the stand growth model. 

• Publication IV explores the consequences of  
the case where soil pools are apart from 
equilibrium and develops the concept of the 
relaxed equilibrium assumption and the 
methodology of the transient correction, which 
attempts to account for unknown past 
disturbances. 

Finally, I was interested, if the application of the 
developed method at forest district scale would 
improve projections that are based on aggregated 
forest data (Publication V). 

4. Background 
This section briefly introduces the main concepts 
and terms that are used in the discussion about 
forestry management and modelling the forest 
carbon sink. 

4.1. Terrestrial carbon cycle 
The terrestrial carbon cycle together with the most 
important flows and terms according to Schulze et 
al. (2000) is shown in Fig. 1. During 
photosynthesis atmospheric carbon is used to 
synthesize carbohydrates (Gross Primary 
Production GPP). A part of this carbon is respired 
by the plant (authothrophic respiration Ra) and the 
remaining carbon is used to build up biomass (Net 
Primary Production NPP). Most of the carbon in 
foliage, branches and roots is turned over by litter 
production and enters the organic layer and the 
mineral soil as soil organic matter (SOM) or dead 
biomass. The SOM and dead biomass is consumed 
by micro-organisms and partly respired 
(heterotrophic respiration Rh) and partly 
transformed to more recalcitrant forms of SOM, 
which can reach an age of  thousands of years 
(Martel and Paul 1974, Rumpel et al. 2002). The 
stabilization mechanisms are still in debate 
(Sollins et al. 1996, von Lützow et al. 2006). The 
small difference between production and 
respiration describes the net change of stocks at 
the site (Net Ecosystem Production NEP). During 
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thinning and harvesting operations a part of the 
carbon is exported from the ecosystem and used in 
fuel or wood products. In several ecosystems also 
fire plays an important role. Harvest and fire are 
captured on larger space and time scales with the 
term Net Biome Production (NBP). The above 
terms can have slightly different meanings when 
concerning different carbon quantification 
methods and refinements of these terms can be 
found in (Chapin et al. 2006). 

4.2. Thinning strategies and yield tables  
Foresters can influence the forest carbon balance 
mainly by selecting tree species and by cutting 
trees. In some regions also fertilization or 
controlling fire are common management 
activities which affect the carbon balance 
(Nabuurs and Schelhaas 2002, Schoene and Netto 
2005, Jandl et al. 2007a). In Central Europe most 
of the forests have been managed as even-aged, 
mono-species plantation. The final cut of all trees 
is called clear cut or final harvest and an 
intermediate cut of single trees, which promote the 
growth of the remaining trees, is called thinning. 
The foresters decide first, about the times to thin 
or harvest trees, second, how much timber volume 
to thin, and third, which trees to select for 
thinning. With precommercial thinning all cut 
trees are left at the site and with commercial 
thinning a part of the cut trees is removed and 
used. The three most common approaches of 
selecting trees in Central Europe were thinning 
from below, thinning from above, and crop tree 
thinning. With thinning from below, only the 
suppressed trees with a diameter below the 
average are selected for cutting. With thinning 
from above, also some dominant and co-dominant 
trees are cut. With crop tree thinning, some 
dominant trees are marked to remain until final 
harvest and competing trees around them are cut 
gradually.  

A model for managing even-aged stands that 
maximises merchantable timber production is 
recorded in yield tables. In general, yield tables 
describe the ‘‘regular growth’’ of forest stands for: 
(1) distinct tree species; (2) under constant 
environmental conditions; (3) according to a 
defined management regime. Each table lists stand 
ages and the expected stand attributes: stand age 
(yr), dominant height (m), basal area (m²), tree 
number per hectare (1/ha), and timber volume 
(m³/ha), quadratic mean of tree diameters at breast 
height (dbh) (cm), and stand height (m). Different 
tables in one collection describe different growth 
patterns. They are distinguished by the absolute 
site index: the expected height of trees (m) at 

stand age 100 years (Kramer and Akça 1995). 
Yield tables are only applicable to even-aged 
monospecific stands and because of environmental 
changes over the last 50 to 60 years some older 
yield tables do not reflect current tree growth 
(Mund et al. 2002, Jandl et al. 2007b). 

4.3. Tree growth models 
With the change of forest management goals to 
several forest functions besides timber production, 
forest management shifts from even-aged 
monospecific stands towards uneven-aged mixed 
species stands (Larsen and Nielsen 2007). Because 
stand structure and competition of trees for light 
and other resources have a large effect on tree 
growth, the growth of single trees has to be 
modelled in order to predict the growth of such 
uneven aged stands. A good introduction into the 
concepts of tree growth models can be found in 
Hasenauer (2006). Usually, these models predict 
diameter and height growth for each tree. The 
increment functions are based on a potential 
growth, which depends on species and site 
conditions and which is decreased by the 
competition between trees. Alternatively, the 
increment is estimated directly from the tree 
properties and site conditions. Different competi-
tion indices have been developed which can be 
classified into distance dependant ones and 
distance independent ones. For the first case, the 
exact position of each tree within the stand is 
required. The distance independent indices are 
based on a mean distance between trees on a plot. 
Often, the competition indices require a 
description of the crown form of several species 
by crown models. In addition to diameter and 
height increment, most of these models can also 
predict mortality and regeneration. The calibration 
of tree growth models requires an extensive set of 
repeated tree observations that are usually 
collected at permanent research plots. The models 
are classified as empirical models, because they 
describe observed increment data without 
explicitly modelling the structure of the increment 
process, i.e. photosynthesis and biomass 
allocation. In comparison, process-oriented 
physiological models explicitly represent these 
processes. They are regarded more successful in 
predicting changes with changing environmental 
conditions. However, they require much more data 
on application and often focus on natural 
vegetation. Gap-models (Botkin et al. 1972, 
Bugmann et al. 1997, Seidl et al. 2005) are the 
class most similar to the empirical tree growth 
models. A classification of further forest growth 
models can be found in (Porté and Bartelink 
2002).  
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All dynamic models are based on various 
assumptions and simplifications. A model can be 
viewed as a tool to calculate several outputs for 
the given assumptions. Therefore, I use term 
“projection” instead of “prediction”. The two most 
important simplifications in this study are first, the 
assumption that tree growth as observed during 
the last century does not fundamentally change 
during the next century and second, the 
assumption that management was and is guided by 
yield tables.  

4.4. Modelling and simulation (M&S) 
A model is an abstraction of a system and can be 
specified at different hierarchy levels (Zeigler et 
al. 2000). While regression models work on the 
input/output function level, dynamic models 
additionally describe the history and internals of 
the system by the systems state. It is important to 
distinguish between first, the real system, second, 
the experimental frame, which constrains the real 
system to several properties by specifying the 
observed inputs and outputs including their time 
resolution, third, the model, which specifies the 
rules and equations of the modellers abstraction 
and fourth, the simulator, which numerically 
executes the model over time and generates a 
trajectory of outputs for given inputs. The three 
most common modelling formalisms of describing 
system dynamics are first, fixed time steps (DTSS: 
discrete time step specified system), e.g. computer 
clock ticks, second, times of events (DEVS: 
discrete events specified system), e.g. processing 
and waiting times in queuing lines, and third, 
differential equations in continuous times (DESS 
differential equation specified system), e.g. the 
movement of a satellite in orbit. A DESS can be 
approximated by a DTSS by quantizing the time 
axis or by a DEVS by quantizing of the state space 
(Kofman 2003, 2004). There are different 
simulators for different modelling paradigms. In 
many environmental model implementations, the 
distinction between model and simulator is not 
clear. This prohibits the distinction between model 
verification and validation, i.e. the check that the 
model is correctly executed versus the check that 
the model correctly describes the experimental 
frame. Models that are specified a higher 
hierarchy level also describe the decomposition of 
the system into smaller subsystems and the 
interactions between these subsystems. Reynolds 
and Acock (1997) pose advantages and 
requirements to such component models. One of 
the most important requirements is that 
component models communicate by inputs and 
outputs only. The parallel DEVS formalism 
(Chow 1996, Zeigler et al. 2000) supports a 

hierarchy of coupled models. Both atomic and 
coupled models specify input and output ports, 
and a coupled model specifies how these ports are 
connected. The simulator takes care that the 
outputs of one component model are delivered to 
the input ports of the corresponding component 
model. Such a communication between models is 
called a message.  

5. Materials and methods 
5.1. Study region 
The focus of this study is the managed forest in 
Thuringa, a federal state in Central Germany (Fig. 
2). This region had already been selected for a 
study on implementing the Kyoto protocol in 
Germany (Wirth et al. 2004, Mund et al. 2005) 
and as a test area for the European-wide Carbo-
Invent carbon inventory study (Baritz 2005).  The 
largest parts of the 540 000 ha forest area are 
found in the southern low mountain ranges, where 
geology is dominated by slate, and in the 
limestone dominated areas in the east and west. 
The soils of the central Thuringian basin are 
covered with a loess layer. Hence the fertile soils 
of the basin are used mainly for agriculture and 
only 4% of the area is forested. Soil is dominated 
by dystric cambisols, however there is a mosaic of 
various bedrocks and soil types at the scale of 1’ 
ha.  

The climate of Thuringia is characterized by 
the transition from maritime Western Europe to 
the continental Eastern Europe (Fig. 3). 
Temperature and precipitation change with 
increasing elevation in the mountain range and 
there are also foehn wind effects.  

100 0 100 20050
km

Germany

Thuringia
Federal State

Hummelshein
Forest District

Figure 2: Map locating the study area. 
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The single Publications focus on different extents. 
Publication I utilizes soil catena measurements of 
the Tharandt forest east of Thuringia, the 
validation sites are distributed across the forest 
area of Thuringia, Publication II develops biomass 
equations that are applicable to entire Central 
Europe including Thuringia, the sites of the 
application examples of Publications III and IV 
are located in the west of Thuringia, and the forest 
district Hummelshein of Publication V is located 
in the east of Thuringia.  

5.2. Forestry 
After the last glaciations, the entire area was 
initially populated by early sucessional species 
(poplar, birch, willow, spruce). The naturally 
dominating species of later states of succession are 
spruce (Picea abies) at the higher elevations, 
beech (Fagus sylvatica) at the lower elevations 
with enough moisture, and pine (Pinus sylvestris) 
and oak (Quercus spec) at areas with not enough 
moisture for beech. Until 1300 most of the fertile 
soils in non-steep terrain were converted to 
agriculture and big parts of the remaining forest 
were used for wood pasture and extraction of litter 
for fertilizing agricultural land. Hence most of the 
forest soils were depleted in carbon. Around 1800 
forests started to be regularly managed. Since then 
coniferous trees have been favoured, and in 
second half of the 20th century 70% of the forest 
area was dominated by conifers, mainly 
monospecific even-aged spruce stands. The 
management was guided by yield tables, which 
listed expected timber diameter, height, and 
volume of stands for different site qualities. The 
aim of nowadays forestry is to foster mixed and 
multi-cohort stands that are closer to the forests 
that are expected to occur naturally, if the grazing 
pressure of deer can be controlled. 

5.3. Inventory data 
Forestry administration of the German federal 
state Thuringia performs an inventory of timber 
volume for each stand every 10 years. The 
inventory is based on assessment of basal area and 
tree height of each stand with a relascope and 
provides information on cohorts, this means 
homogeneous groups of trees. The data includes 
species, age (year), quadratic mean of diameter at 
breast height (dbh) (cm), height (m) (calculated 
from stand height curve for given dbh), timber 
volume (m³/ha), and basal area (m²/ha). The 
inventory does not contain the variance of tree 
parameters, timber volume of trees with a dbh 
smaller than 7cm, nor the number of trees within a 
cohort.  

In 1960, forestry administrations of Eastern 
Germany started an inventory of site conditions 
(Kopp and Schwaneke 1991). The raw data of the 
soil profiles have been aggregated and classified 
to site classes. A site class consists of the 
categorical site parameters of climate/topography, 
parent material, water regime, nutrient 
availability, and moisture index. In that inventory, 
the parameter parent material is a combined 
description of topography, soil type, and bedrock.  

5.4. Empirical equations of carbon stocks 
Carbon stocks in whole tree biomass were 
calculated by multiplying timber volume of the 
forest inventory with an age- and site-specific 
factor. This factor is the product of wood density, 
an expansion factor from timber to entire tree 
biomass and the carbon contents. Factors for the 
dominating species Norway spruce (Picea abies) 
and Common beech (Fagus sylvatica) have been 
developed by the study of (Wirth et al. 2004). For 
pine (Pinus sylvestris) I used factors from 
(Lehtonen et al. 2004a). Tree biomass carbon 
stocks of other broadleaved species than beech 
were calculated using the  factors for beech, and 
biomassof other coniferous species than spruce  
using the biomass-expansion factors of spruce but 
species-specific wood density and carbon content 
according to (Weiss et al. 2000). Carbon turnover 
was calculated by applying conversion-expansion 
factors for several tree biomass compartments and 
a mean turnover rate. For a more detailed 
description of the turnover rates see Publication 
III. 

Current carbon stocks in mineral soil and 
organic layer were calculated using the inventory 
of site conditions, the dominating tree species and 
the empirical functions of Wirth et al. (2004).  

0

10

20

30

40

50

0

20

40

60

80

100

300

Month

Te
m

pe
ra

tu
re

 (°
C

)

P
re

ci
pi

ta
tio

n 
(m

m
)

Leinefelde (356 m)
1961-90 7.5°C        662 mm

J F M A M J J A S O N D

 
Figure 3: Climate diagram of a weather station in the
west of the Thuringian basin. Data Source: Deutscher
Wetterdienst (1961-90) 



 12 

5.5. The TreeGrOSS-C coupled model 
The coupling of a stand growth model, a 
management model, a soil carbon model, and a 
wood product model resulted in the model 
TreeGrOSS-C (Fig. 4). While the stand growth 
model has a discrete time step of five years, the 
other two models are described by continuous 
differential equations. Instead of approximating 
the solution of the differential equations by a time-
stepped approach, I used the quantized approach 
(Kofman 2003). This approach provides exact 
control on the accuracy of the carbon stocks and 
allows for time steps up to thousands of years near 
the equilibrium. The Yasso model was 
implemented using the computer language C++ 
and coupled to the other models, which are 
implemented in Java, using the DEVS-abstract 
model (Wutzler and Sarjoughian 2006). The 
submodels communicate solely by messages 
which are routed in time order between output- 
and input ports.  

5.6. The TreeGrOSS stand growth model 
The TreeGrOSS (Tree Growth Open Source 
Software) model (Nagel 2003) is a public domain 
variant of the BWinPro model (Nagel et al. 2002). 
According to the classification of Porté and 
Bartelink  (2002) it belongs to the class of non-
gap distance-independent tree models. The 
empirical model is based on a growth and yield 
experiment data pool of about 3500 plots in 
northern Germany. It uses the potential growth 
concept, which reduces species and site dependent 
maximum diameter and height growth of single 
trees by their competition situation (Hasenauer 
2006). Both, a distance dependent and a distance-
independent calculation of competition indices are 
supported. In this work the distance-independent 
variant was used, because it uses only a mean 
distance within a plot and does not require tree 
coordinates. The TreeGrOSS model includes a 
generator of tree diameters (dbh) based on the 
Weibull function (Nagel and Biging 1995). In 

order to adapt the model to the available inventory 
data, I extended the model by the concept of 
cohorts and developed modules that read and write 
inventory records to a database. Further, I 
extended the model by thinning routines, which 
selected trees randomly from a probability 
distribution of the tree diameter. Eventually, I 
used one side of a Gaussian distribution with a 
mean of cohorts minimum or maximum diameter 
respectively and a standard deviation, so that the 
basal area equalled the specified basal area of 
thinned trees (Fig. 5). The model and the 
extensions were validated against plot data of 
several permanent sampling inventories of both 
monospecific and multi-cohort multi-species 
stands within the study region. The complete time 
series, which partly covered more than 100 years, 
were kindly provided by the Eberswalde forestry 
research institute and the chair of Forest Growth 
and Timber Mensuration at TU-Dresden and 
preprocessed by Mund et al. (2005). 

5.7. The Yasso soil carbon model 
The soil carbon model Yasso was designed by 
Liski et al. (2005) in order to model soil carbon 
stocks of mineral soils in managed forests. Figure 
6 displays the model structure and the flow of 
carbon. The colonization part (Fig. 6a) describes a 

Figure 4: Conceptual view 
of the TreeGrOSS-C model. 
Arrows denote inputs and 
outputs to the TreeGrOSS-C 
model and its component 
models. 
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delay before decomposers can attack the parts of 
the woody litter compartments and additionally 
describes the composition of the different litter 
types of compartments that correspond to the 
kinetically defined pools. The decomposition part 
(Fig. 6b) describes the decomposition of the 
chemical compounds. The fwl-pool can be 
roughly associated with undecomposed litter, the 
cwl-pool with dead wood, and all the other parts 
with organic matter in soil including the organic 
layer. The decay rates are dependent on mean 
annual temperature (or alternatively effective 
temperature sum) and a drought index (difference 
between precipitation and potential evapotranspi-
ration during the period from Mai to September). 
In the standard parameterization the decay rates of 
the slower pools are less sensitive to temperature 
increase than the fast pools (humus one: 60%, 
humus two: 36% of sensitivity of fast pools). The 
model has been tested and successfully applied to 
boreal forest (Peltoniemi et al. 2004), litter bag 
studies in Canada (Palosuo et al. 2005), and as 
part of the CO2FIX model all over Europe (e.g. 
Nabuurs and Schelhaas 2002, Kaipainen et al. 
2004). In order to simulate multi-species stands I 
duplicated and parameterized the colonization part 
for each tree cohort and coupled all the duplicates 
to the single species independent decomposition 
part. 

The soil pools were initialized by spin-up runs 
with repeated climate data of the last century and 
average soil carbon inputs. The average soil 
carbon inputs were derived for each species by 
simulating the stand growth model over an entire 
rotation cycle including final harvest (Publication 
III). Soil carbon inputs for cohorts, i.e. tree 
groups, in multi-cohort stands were decreased by 
the proportion of tree groups basal area to stands 
basal area. In order to account for soil degradation 
in the past, I reset the slowest pool after the spin-
up run so that the sum of pools match the carbon 
stocks that were obtained by spatial extrapolation 
of observed carbon stocks using the dominating 
tree species and site conditions (Publication IV). 

5.8. The products carbon model 
The products carbon model simulated the 
residence of carbon in wood of different groups of 
wood products. The simple model assumed that 
the carbon stored in forest products is released to 
the atmosphere again right after the product is out 
of use. Hence it did not account for recycling of 
wood products. Dumping of wood in landfills was 
not considered, because this has been forbidden by 
a law of waste products in Germany. One basic 
model assumption was that the portion of wood 
products that goes out of usage is the reciprocal of 
the average lifetime of the product (Eq. 1).  
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Where pC  is the pool size of product pool p and 

plifetimet ,  is the average time of product use (Table 
1). Hence the carbon pool of each product group is 
described by a first order exponential decay (Eq. 
2). 
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Where tΔ  is the time that passed since last input 
and tpC Δ−,  is the former pool size. 

In order to couple the stand growth model to 
the product model, the simulated removed timber 
had to be allocated to the different product pools. 
In a first stage, the wood volume was allocated to 
different sale segments by species and mean basal 
area diameter based on assortment tables 
(Schöpfer and Dauber 1985, Schöpfer and Stöhr 
1991). Next, these sale segments were allocated to 
the different product groups based on an analysis 
of the first stage of wood processing (Profft et al. 
2007). Losses by sawing and leaching were 
allocated to the most short-lived class. I used the 
resulting shares of timber volume to allocate the 
simulated carbon in removed timber to the product 
groups of the products carbon model.  

 
Figure 6: Flow chart of 
the Yasso model. a) 
species dependent part of 
litter colonization and 
separation of litter into 
chemical compounds b) 
species independent part 
of decomposition of 
chemical compounds  
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The product carbon model was implemented 
in the following way. Whenever wood was 
extracted from a stand, the amount of carbon in 
harvested timber corresponding to the different 
product groups was calculated and assigned to the 
inputs of the product carbon model. Next, the 
pools of each product pool were updated by Eq. 2. 
Finally the inputs were added to the corresponding 
pools, and the sum of all the pools was calculated. 
Initial stocks of the products were based on (Mund 
et al. 2005) Table 2.9, which presents harvest 
statistics of 195000 ha Thuringian forest area over 
the years 2001 and 2002. 

Table 1: Wood product classification by average 
lifetime, i.e. time of product use, based on (Wirth et al. 
2004). 

Product 
class Products 

product 
life 
time 
[years] 

Main 
class 

energy 

fuelwood, slash, 
non-commercial 
wood,  

pulpwood 

1 

Wood 
products 
with short 
lifespan 

pulp 

small poles,  
wood for packing 
material,  
wood for temporary 
constructions 
(building sites)  

3 

pallets 
pallet wood,  
poles, 
ram piles 

11 

panels 

furniture,  
particle board, 
chipboard, 
fibreboard, etc. 

25 
Wood 
products 
with long 
lifespan 

sawn 
parquet 

parquet wood 43 

sawn 
timber 

construction wood 51 

 

5.9. The forestry management model 
The outputs of the forestry management model 

were information on thinning at several stand 
ages, final harvest, and establishment of new 
cohorts. The dynamic behaviour of the product 
model was separated from the management plan 
component (Fig. 7).  

For each stand age listed in the management 
plan, the management component model issued an 
output message, which demanded a stand 
inventory. The coupled model routed the message 

to the stand growth model, which in turn 
generated an output message containing the 
current stand inventory. When the message with 
the stand inventory arrived at the input port of the 
management model, the management plan 
component specified the target basal area and the 
target diameter for thinning events. Currently, 
only a yield table-based version of a management 
plan has been implemented. The target basal area 
and the target diameter of each cohort were 
interpolated by yield tables for the cohort age. 
Yield tables refer to monocultures; hence the 
target was multiplied by the share of basal area of 
the tree group within the stand. Finally, the 
thinning type (precommercial / commercial / 
harvest), the basal area of all thinned trees, and the 
basal-area-mean diameter of the thinned trees was 
calculated by the difference between the inventory 
and the target. The amount of stem volume that is 
removed by a single thinning operation was 
constrained not to exceed 20% of the basal area to 
avoid instability of the stand. 

In addition to messages with thinning 
information, the management model generated 
output messages for harvest and establishment of 
new cohorts. After each clear-cut, cohorts were 
established that shared the basal area in the same 
proportions, as the cohorts did at the start of the 
simulation. Both yield tables and the carbon 
accounting model were not tailored to simulate 
growth of very small trees. Therefore the yield-
table based management plan established the stand 
when the dominant cohort had reached a diameter 
at breast height of 7 cm. The stand age correspon-
ding to this diameter was estimated from yield 
tables. The absence of biomass and biomass 
turnover in the first years after harvest, when 
diameter of the new dominant cohort was small, 
led to an underestimation of soil carbon inputs. 
However, this bias was small compared to mean 
carbon inputs across the rotation period.  

Management
Model

DEVS

Management Plan

getManagementDates()
getThinningData( StandData)
getEstablishmentData( StandData )

standData

requestInventory

standThinningData

standEstablishmentData

Figure 7: Input/Output relationship of the management
component model. 
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5.10. Uncertainty analysis 

Many parts of the model were constructed in a 
way that a relative deviations for parameters or for 
intermediate results could be specified with 
invocation of the model. In a Monte-Carlo 
analysis, these relative deviations were sampled 
from the assumed joint probability distribution of 
the parameters and intermediate results and the 
model was called several thousand times. The 
empirical distribution of the model outputs then 
was used to assess the uncertainty of the model 
outputs. Crucial to this approach are the 
assumptions about the variability of the model 
parameters. In the development of biomass 
functions (Publication II), I used mixed-effects 
models to assess different components of 
uncertainty. These components were crucial to 
scale the variance of biomass predictions up to the 
stand level, for which the uncertainty of the 
conversion-expansion is specified, which in turn 
propagates to the results of the Monte-Carlo 
analysis in Publication III. 

6. Results and discussion 
6.1. Carbon stocks (Publication I) 
The combination of standard forest inventory data 
and data of site conditions was sufficient to 
quantify carbon stocks of tree biomass and the 
organic layer explicitly at stand scale. Contrary, 
standard forestry data was not sufficient to 
quantify carbons stocks in mineral soil and 
additional data was required. In addition to former 
carbon quantifications  in Germany, which 
quantified similar carbon stocks in living tree 
biomass (10.0±0.1 kg/m2), organic layer (3.0±1.4 
kg/m2), and mineral soil (7.3±1.4 kg/m2) (Baritz 
and Strich 2000, Karjalainen et al. 2002, Wirth et 
al. 2004), I focused on the spatial distribution of 
the different carbon stocks at stand scale. This 
allowed for comparing different factors that 
influence carbons stocks. Stronger thinning 
intensities significantly decreased living tree 
biomass carbon pools. However, I did not find 
significant effects of site conditions on tree 
biomass carbon pools within the same climate.  

6.2. Validation of the stand growth model 
The validity of the TreeGroSS model for growth 
conditions of Thuringia was checked with data of 
permanent sampling inventories. The TreeGrOSS 
stand growth model was able to model diameter 
and basal area of monospecific stands as good as 
or better than local yield tables. In the case of 
multi-cohort and mixed stands the model matched 

the observed growth much better than applying 
local yield tables to a conceptual split of the stand 
into pure stands (Fig. 8). The TreeGrOSS model 
accounts for the decreased growth due to the 
competition state of the trees of the suppressed 
cohort. The yield table approach cannot account 
for this competition. There were still sometimes 
high relative errors for suppressed cohorts; 
however, the absolute amounts within the stands 
were small. Also the simulated growth of ash 
(Fraxinus excelsior) was slightly biased to higher 
values, but could be neglected as the share of Ash 
among tree species of the study region was very 
small. The change of the diameter during different 
thinning strategies was well represented by the 
thinning routines. This confirms that describing 
the selection of trees to be thinned based on 
diameter distributions is a suitable model 
approach (Lasch et al. 2005).  

6.3. Uncertainty of converting tree 
properties to tree compartment carbon 
stocks and turnover (Publications II and 
III) 
For Spruce and Pine I found suitable biomass 
functions, biomass expansion factors, basic wood 
density, and carbon contents in the literature for 
all major tree compartments, which were 
necessary to extend the TreeGrOSS model to 
provide outputs in carbon units. For Beech, 
however, there was no consistent set of biomass 
functions, aside from above ground and total tree 
biomass. Therefore, I developed biomass 
functions of other major tree compartments by a 
meta-analysis of original tree measurements from 
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Figure 8: Comparison of timber volume from a 
suppressed beech cohort of the permanent inventory 
plot Leinefelde 245 (data from Eberswalde forestry 
research institute) to model predictions by yield table 
(Dittmar et al. 1986) and predictions of the TreeGrOSS 
model. 
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13 studies. The approach of using non-linear 
generalized mixed effects model allowed the 
separation of variation due to residuals and 
differences between studies, i.e. specific site 
conditions, provenances, etc. (Fig. 9). The means 
of the predictions of the presented biomass 
equations of stem and foliage agreed well with 
other published biomass functions for Common 
Beech in Central Europe (Bartelink 1997, Le Goff 
and Ottorini 2001, Cienciala et al. 2006). 
However, I predicted larger uncertainties of tree 
biomass compartments than those supposed by 
former quantifications basing on smaller datasets 
only. In addition to these uncertainty 
considerations at tree level, I showed that it is also 
important to consider covariances between single 
tree biomass predictions at stand level. This role 

of covariances was already demonstrated by 
Lehtonen et al. (2004a, 2007), but in this study I 
developed theory and practical tools to actually 
quantify the covariances.  
The turnover of carbon of the major tree 
compartments foliage, branches, and fine roots 
and quantification of harvest residues was used to 
quantify litter production, i.e., the carbon flux to 
the forest floor. In conjunction with modelling 
past mean average litter production for soil carbon 
initialization, I performed a Monte-Carlo 
sensitivity analysis of the model parameters. The 
analysis calculated an importance index. A high 
importance index indicates that parameters have 
both, a low precision and a high sensitivity in 
respect to the studied model outputs. The 
parameters with the highest importance index 
were associated with branch and foliage turnover 
(Fig. 10). I note that in the model, the litter below 
ground litter production was estimated by a 
species-specific fraction of the above-ground litter 
production, and not by the usual approach of 
calculating fineroot biomass and turnover. Hence, 
in order to decrease uncertainties of the used 
model, a better description of the dependency of 
foliage and branch turnover times on site 
conditions as water and nutrient availability or 
temperature are required. Several Scandinavian 
studies already related foliage and branch turnover 
to tree properties or environmental gradients 
(Lehtonen et al. 2004b, Muukkonen and Lehtonen 
2004, Ågren et al. 2007). In Germany there are 
studies of foliage lifetime related to forest decline 
(e.g. Wachter 1985). Similar studies should be 
initiated for several regions and species and their 
results should be incorporated in carbon turnover 
calculations. 

6.4. Litter Production and Initial soil 
model carbon pools (Publications III and 
IV) 
In order to model changes in forest ecosystem 
carbon stocks, the initial state of all carbon pools 

0 20 40 60 80
0

1000

2000

3000

4000

5000

6000

Diameter [cm]

S
te

m
 [k

g]

Dhc-Model
Dh-Model
Fixed Effects Model

Figure 9: 95% confidence intervals of stem biomass for
different forms of modelling variation between groups.
The fixed-effects model does not account for the
differences between studies. The dh-model accounts for
these differences by random effects. The dhc-model
also accounts for these differences by random effects
but explains these differences in part by additional
covariates. It can be seen, that the mean predictions do
not differ, but the confidence intervals of the predictions
differ. The confidence band for the fixed-effects model
is too narrow because it does not account for the
differences between the studies, neither implicit by
random effects nor explicit by covariates. 

  
Figure 10: Importance index, i.e.
relative influence of the parameter
uncertainty on the results
uncertainty, for litter production of
intermediate site quality. For all
species the mean lifetime of foliage
is very important. Uncertainty in
information on harvest (last three
parameters) is not contributing
much to the uncertainty in results
in all three cases.  
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in the model has to be specified. For the 
conceptual pools of the soil model the initial 
stocks of these pools had to be estimated. This is 
usually done by a spin-up run of the model, which 
assumes the initial stocks of the pools to be near 
equilibrium with mean carbon inputs.  In order to 
derive mean past carbon inputs to the soil model 
and to the wood product model, I simulated stand 
development of monospecific stands and 
aggregated the simulated litter production by 
turnover of foliage, fine root, and branches, 
harvest residues of fine wood, coarse root, and 
coarse wood across the entire rotation period (Fig. 
11). The increase of litter production with site 
quality was of the same magnitude as the mean of 
the litter production and the differences between 
species (3-8 tC/ha/yr). Therefore, regional studies 
of carbon quantification should properly account 
for this fact, possibly by stratifying the studied 
area for different site qualities. The productivity 
also explains why I quantified a larger litter 
production for pine (7.2 tC/ha/yr) than a finish 
study (Peltoniemi et al. 2006). Further, I 
quantified the uncertainty of the calculated litter 
production, which strongly depended on the 
assumptions of the uncertainty of the model 
parameters. The uncertainty for pine (cv=25%) 
was higher than in the study of Peltoniemi. This 
can be mostly attributed to the single parameter 
foliage turnover, for which I assumed a higher 
uncertainty (cv=25%). 

The mineral soil contains carbon of age up to 
thousands of years. I posed the hypothesis that the 
soil model carbon pool which represents this old 
carbon does not reach equilibrium with mean soil 
inputs shortly after severe disturbances, and that 
therefore many soils in Central Europe are still 
recovering from former agricultural use, wood 
pasture, or litter removal. There is strong evidence 
from case studies for the persistence of intensive 
disturbances, such as forest fires (Parker et al. 
2001, Wardle et al. 2003) and erosion (Hedges et 
al. 1997, Polyakov and Lal 2004). Therefore, I 
suggested and applied the transient correction, 
which decreases the stock of the slowest pool after 

the spin-up run, so that the sum of soil carbon 
stocks matches an independent estimate of soil 
carbon stocks. The application of the transient 
correction at the Leinefelde chronosequence in the 
west of Thuringia decreased the spinup-run 
predicted carbon stock by 30% which resulted in 
an additional carbon fixation of 5.7±1.5 tC/ha 
within 100 years consistently across scenarios of 
different litter inputs and climate change (Fig. 12). 
The transient correction can be applied at forest 
district scale, where the independent estimate of 
carbon stocks is taken from extrapolating 
measured soil carbon stocks by regression models 
that estimate carbon stocks based on information 
obtained from stand map, forest inventory and the 
map of site conditions (Wirth et al. 2004). 

6.5. Application at forest district scale 
(Publication V) 
The integration of all the formerly presented 
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Figure 11: Litter production 
of monospecific stands of 
medium site quality. 
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results to the coupled model TreeGrOSS-C 
allowed the projection of forest carbon stocks 
based on forest inventory that is routinely 
compiled in Central Germany. The model 
explicitly accounts for the mixed-species, multi-
cohort stand characteristics. Studies on larger 
scales often stratify the forestry data and thereby 
abstract from details of stand structure.  I studied 
if this stratification introduces a bias in projections 
of the ecosystem carbon sink by applying the 
TreeGrOSS-C model to 1616 plots the 
Hummelshein forest district by two approaches. In 
the first approach, I used all available data 
including all stands and cohorts. In the second 
approach I stratified the data according to species 
groups, age classes, and site classes and simulated 
each stratum with a single cohort. I found that at 
stand scale ecosystem carbon stocks and the 
carbon sink over 100 years calculated with the 
aggregated approach differed from the explicit 
approach (39% to +38% and -1.1 to +1.9 tC/ha/yr 
respectively), mainly because of the properties of 
the interspersed species. However, these 
differences were of opposing sign and 
compensated for each other across the forest 
district (Fig. 13). This effect of compensating 
effects at larger scales corresponds to the findings 
of Davi et al. (2006), who studied the effect on 
environmental parameters of a process based 
forest growth model. It implies that decisions on 
management for specific stands need proper 
information on stand structure. Conversely, it 
implies that the stratified approach is justified at 
larger scales. Further, the results confirmed that 
the age distribution of the studied area has a large 
effect on the projected carbon sink (Vetter et al. 

2005, Albani et al. 2006, Böttcher 2007, Canadell 
et al. 2007).  

7. Conclusions 
The integration of several methodological 
developments and component models into the 
coupled model TreeGrOSS-C allowed the 
projection of the forest carbon sink of individual 
stands in Central Germany based on available data 
sources and routinely compiled forest inventories.  
The presented developments include  
• the integration of  site inventory and forest 

inventory data (Publication I), 
• the adaptation and validation of an empirical 

forest growth model to the conditions of a 
routine, standard forest inventory and 
management planning, specified for the federal 
state Thuringia (Central Germany), 

• the development and integration of carbon 
quantification methods, which are based on 
forest inventory and harvest data, into the stand 
growth model (Publication II), 

• the integration of a stand growth model, a 
management model, a wood product model, 
and a soil carbon model to a multi-cohort forest 
ecosystem carbon accounting model, 

• the modelling of average past mean litter 
production and the investigation of the 
uncertainty of the results and their sensitivity 
to model parameters (Publication III) 

• and, the development of the transient 
correction for initial soil carbon stocks 
regarding to former disturbance of soil carbon 
stocks (Publication IV). 

The fact that the model can be applied to standard 
forestry data, made it possible to simulate the 
carbon sink of each individual stand of entire 
forest areas. By comparing the model application 
to a forest district in Central Germany with a 
stratified approach, I collected some evidence that 
multi-cohort and multi-species stand properties 
have an impact on ecosystem carbon stocks and 
fluxes at stand level but that their influence is 
levelled off at forest district scale (Publication V). 

8. Future research 
The implications of both, the changes in forestry 
management and the changing environmental 
conditions with global change for the forest 
carbon budget must be accessed at operational 
scale. In order to develop the presented approach 
further, two points need to be addressed. First, a 
more detailed specification and quantification  of 
rules or new management practices is required 
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(Gamborg and Larsen 2003, Larsen and Nielsen 
2007), in order to develop a more realistic 
management plan. Second, changing 
environmental conditions need to be more 
explicitly represented in the stand growth 
component model (Matala et al. 2006). Then, 
model experiments, which check the sensitivity to 
management and environmental conditions, 
combined with inventory data would allow to 
factor out several anthropogenic and natural 
effects on forest carbon stocks. 
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Area in Eastern Germany 

 
Abstract The Kyoto-protocol permits the 
accounting of changes in forest carbon stocks due 
to forestry. Therefore, forest owners are interested 
in a reproducible quantification of carbon stocks at 
the level of forest management units and the 
impact of management to these stocks or their 
changes. We calculated the carbon stocks in tree 
biomass and the organic layer including their 
uncertainties for several forest management units 
(Tharandt forest, Eastern Germany, 5500 ha) 
spatially explicit at the scale of individual stands 
by using standard forest data sources. 
Additionally, soil carbon stocks along a catena 
were quantified. Finally, carbon stocks of spruce 
and beech dominated stands were compared and 
effects of thinning intensity and site conditions 
were assessed. We combined forest inventory and 
data of site conditions by using the spatial unions 
of the shapes (i.e., polygons) in the stand map and 
the site map. Area weighted means of carbon (C) 
stocks reached 10.0 kg/m² in tree biomass, 3.0 
kg/m² in the organic layer and 7.3 kg/m² in 
mineral soil. Spatially explicit error propagation 
yielded a precision of the relative error of carbon 
stocks at the total studied area of 1% for tree 
biomass, 45% for the organic layer, and 20% for 
mineral soil. Mature beech dominated stands at 
the Tharandt forest had higher tree biomass carbon 
stocks (13.4 kg/m²) and lower organic layer 
carbon stocks (1.8 kg/m²) compared to stands 
dominated by spruce (11.6 kg/m²;  3.0 kg/m²). The 
difference of tree biomass stocks was mainly due 
to differences in thinning intensity. The additional 
effect of site conditions on tree carbon stocks was 
very small. We conclude that the spatially explicit 
combination of stand scale inventory data with 
data on site conditions is suited to quantify carbon 
stocks in tree biomass and organic layer at 
operational scale. 
 
Keywords ecosystem carbon pools, temperate 
mixed spruce and beech forest, site conditions, 
thinning, forest management, spatial distribution, 
GIS, stand scale, landscape, error analysis  
 

Introduction 
Several studies quantify carbon stocks in 

forests by using national inventories for forests 
and soils (e.g. Baritz and Strich 2000, Dieter and 
Elsasser 2002, Karjalainen et al. 2002, Laitat et al. 
2000, e.g. Liski et al. 2002, Schlamadinger 2003). 
Lindner et al. (2002) and Nabuurs et al. (2002) 
estimated carbon stocks in forests by usage of 
frequency distributions of forest types. All of 
these studies calculate carbon stocks and their 
errors accurately using statistics at the scale of 
nations or federal states, which is sufficient for the 
national communications to the UNFCCC (United 
Nations Framework Convention on Climate 
Change) (UNFCCC 1997). However, forest 
owners are interested in carbon pools at stand 
level and the level of forest management units. 
The above studies cannot account for the spatial 
heterogeneity of carbon stocks caused by different 
site conditions and forest management at this 
spatial resolution. Further, the development of 
methodologies for spatially explicit estimations 
based on inventories can support validation of 
long-term eddy-covariance measurements of 
carbon dioxide exchange above forests. As found 
at the flux tower site in the Tharandt forest, the 
total source area (ca. 1 km2) contributing to the 
atmospheric fluxes of carbon dioxide comprises a 
series of individually managed forest stands 
(Bernhofer 2003). 

The present study aimed (1) to quantify 
spatially distributed carbon stocks and their 
uncertainties in tree biomass, the organic layer, 
and mineral soil at stand scale for an entire forest 
management unit, and (2) to explore relationships 
between carbon stocks and dominating tree 
species as well as influences of thinning intensity 
and site conditions. Using the Tharandt forest in 
eastern Germany as a case study, it is 
demonstrated in how far standard forest inventory 
data are suitable for the quantification of carbon 
stocks, and how the spatial distribution can be 
used to relate differences in these stocks to 
different species, thinning activities and site 
conditions. 

*corresponding author, present address: 
Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745 Jena, 
Germany, Fax (+49) 3641 577861, email: thomas.wutzler@bgc-jena.mpg.de 

1Technische Universität Dresden, Institute of 
Hydrology and Meteorology, Dep. of 
Meteorology, 01062 Dresden, Germany 
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Methods 

Study Site  
The Tharandt forest is located in Germany at 51° 
latitude and 13° longitude at elevations of 400 to 
460m asl, about 20 km southwest of the city of 
Dresden. Mean annual air temperature is 7.2°C 
and mean annual precipitation is 800 mm 
(Bernhofer 2002). Most stands are dominated by 
Norway spruce (Picea abies [L.]. Karst.) 
interspersed with Scots pine (Pinus sylvestris L.), 
European larch (Larix decidua Mill.), and 
European beech (Fagus sylvatica L.).  

There are also several stands that are 
dominated by the latter species. While most of the 
younger stands include mixtures of different 
species, older stands are more homogenous.   

The parent material is dominated by gneiss 
and porphyry. However it is very heterogeneous 
and partly covered by loess (Fiedler et al. 1989a). 
Dominant soil type is dystric cambisol. Podzols 
and stagnosols are also frequent. The forest area of 
5500 ha comprised almost four forest management 
units. It was managed by the smallstrip-
clearcutting system, which was commonly used in 
the former German Democratic Republic. 

Data Sources 
Forestry administration of the former German 
Democratic Republic performed an inventory of 
forest biomass for each stand every ten years. The 
inventory provides information of the area of the 
stands [m²] and tree parameters of homogeneous 
groups of trees within each stand: species, age 
[year], quadratic mean of diameter at breast height 
(DBH) [cm], height [m] (calculated from stand 
height curve for given DBH), timber volume 
[m³/ha], and basal area [m²/ha]. The inventory 
does not contain the variance of tree parameters, 
timber volume of trees with a DBH smaller than 
7cm, nor the number of trees within a group of 
trees. We used an inventory of Tharandt forest that 
was conducted in 1988 and the last amendment by 
yield tables was done in 1993. The link between 
records of forest inventory and the location in 
space is provided by the stand map. Each shape 
(i.e., polygon) of the stand map refers to an 
administratively formed area that consisted of one 
or a few stands. 

During 1960 – 1970, forestry administrations 
of the Eastern Germany started an inventory of 
site conditions (Kopp and Schwaneke 1991). The 
raw data of the soil profiles have been aggregated 
and classified to site classes. A site class consists 
of the categorical site parameters of 

climate/topography, parent material, water regime, 
nutrient availability, and moisture index. The 
parameter parent material, in this inventory, is a 
mixed description of topography, soil type, and 
bedrock. Moisture conditions are described by the 
two parameters water regime and moisture index. 
Water regime describes the seasonality of 
moisture (alternating: clear seasonality, constant: 
no change with time, variable:  other wetness-
specific classes e.g., moisture dynamics near well-
springs). Moisture index defines ordinal 
subclasses of water availability within each class 
of water regime. Local experts delineated areas of 
homogeneous site parameters using mainly 
topography and vegetation. Results of this survey 
are provided in the site map. Each shape of the site 
map has a site class and a local classification of 
soil types assigned to it. Details on the site 
parameters and their categorical values can be 
found in the literature (Gemballa et al. 2001, 
Rehfuess 1990, Schwaneke 1989, 1965). In this 
paper we try to use terms of the world reference 
base soil classification (WRB) (FAO 2006) where 
possible, despite there is no unique mapping 
between WRB and the soil classification of this 
inventory. 

Additionally, we used data of 10 soil profiles 
out of a transect (the Esberg Catena, Fiedler et al. 
1989b) for quantifying mineral soil carbon stocks. 
Profiles were taken from soil pits, which extended 
down to bedrock and were analysed according to 
German soil classification (AG BODEN 1994). 
Locations of the soil profiles comprised different 
soil types. For each mineral horizon (Pietrusky 
1975) and (Fiedler et al. 1989a) measured coarse 
stone content and carbon content. We further 
determined fine soil bulk density per mineral 
horizon by using a mixed sample of fife soil cores 
(100 cm3). 

Combining the Data Sources 
Data on site conditions were related to shapes of 
the site map while records in the forest inventory 
were related to shapes of the stand map. However, 
stand map and site map did not match. In order to 
combine the maps and their related records we 
used an approach that was based on the spatial 
union of maps via a GIS (Figure 1). 

Shapes in the Stand Map

Shapes in the Site Map

Shapes in the Composite Map:
union of above shapes  

Figure 1: Union of 
the shapes of the 
stand and site map. 
Each shape of the 
composite map 
corresponds to 
exactly one shape 
of the stand map 
and one shape of 
the site map. 
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We used the information system CQuant 
(Wutzler 2002) to relate information from both, 
forest inventory and site parameters to the 
corresponding shapes of the united map.  For each 
shape of the united map carbon stocks were 
quantified using the combined dataset. As far as 
not mentioned otherwise, units of calculated 
masses refer to pure carbon (e.g., kg/m2). Finally, 
the results were aggregated to the corresponding 
shapes of the stand map or the site map by an 
area-weighted mean (equation 1). Several shapes 
of the composite map correspond to one stand of 
the stand map or one site class in the site map. 
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where Kc : mean result of area K (set of shapes) 
[kg/m²], i: index of the shapes within area K, Ai: 
area of shape i [m²], ci: carbon stock per area for 
shape i [kg/m²] 

Spatially Explicit Error Propagation 
For estimating the relative error of the spatial 
mean, relative errors of the areas were assumed to 
be small compared to relative error of the carbon 
stock estimates. Hence, the size of areas can be 
considered to be exact. Further, we assumed 
carbon stocks to be uncorrelated between stands. 
With the rules of error propagation for 
uncorrelated sums and products, the relative error 
of the mean carbon stock from equation 1 is 
calculated by equation 2.  

( )( )

∑
∑

⋅

⋅⋅
=

i
ii

i
iii

K cA

cRcA
cR

)(
)(

2

 

(2)

for area K [kg/kg], i: index of the shapes within 
area K, Ai: area of shape i [m²], ci: carbon stock 

per area for the shape i [kg/m²], R(ci): relative 
error of carbon stock for shape i [kg/kg] 

Similarly, stocks and errors can be aggregated 
to other coarser spatial levels e.g., the entire study 
site, or all area that is dominated by a specific 
species. 

Tree Biomass Carbon Stock 
Quantification  

We calculated the biomass of each tree 
homogenous tree group by using biomass 
expansion factors (BEF)  according to equation 3.  
mCTreeGroup = V * DR * BEF * Cconc (3) 
where mCTreeGroup: carbon stock of the tree group 
[kg]; V: timber volume [m³ dry wood including 
bark]; DR: wood density [kg/m³], BEF biomass 
expansion factor [kg/kg]; CConc: carbon 
concentration [kg/kg] 

 
For spruce the BEFs of Wirth et al. (Wirth et 

al. 2004) were used (Table 1). They are dependent 
on age and site index. For pine the age dependent 
combined factors (KBEF = DR * BEF ) of 
Lehtonen et al. (Lehtonen et al. 2004) were 
applied. For pine we used a higher uncertainty 
than reported, because the factors were developed 
in Finish forests. For other coniferous species, the 
BEF of spruce were applied, but densities as 
reported by Löwe et al. (2000) were used. For 
beech Wirth et al. (2004) report age-dependent 
combined factors. All other broadleaved species 
were treated like beech but corrected for wood 
density (density of species / density of beech). We 
used species-specific carbon contents that were 
reported by Weiss et al. (2000). 

For estimating the relative error of a tree 
group carbon stock, we can assume the errors of 
timber volume, density, BEF, and carbon content 
to be independent. Hence, relative error equals the 
sum of squared relative errors of the single factors. 

Table 1: Factors for estimating tree carbon stocks. (a): (Wirth et al. 2004) (b): (Lehtonen et al. 2004), DR: dry wood 
density, CConc: carbon concentration, BEF: biomass expansion factor, KBEF: Dr*BEF 
Species DR [kg/m³] 

(Löwe et al. 2000) 
CConc [%] 
(Weiss et al. 2000) 

BEF [kg/kg] 

spruce 377 (a) 50.1 (a) Site index >34 
 = 1.544 + 0.999 * exp(-0.094 * age);  
Site index < 25 
 = 1.89 + 2.41 * exp(-0.085 * age)  
medium site index:  
 = 1.655 + 2.366 * exp( -0.114 * age) 

pine 430 51.1 (like fir) (b) KBEF = 0.7018 + 0.0058 * exp(-0.01*age) 
beech 550 48.6 (a) KBEF = 0.74 + 0.636 * exp(-0.018 *age) 
other 
coniferous 

larch 430; others 
370 

51 like spruce 

other 
broadleaved 

oak: 560, others: 
550 

oak 49.5, locust 49.2, ash 49.7, cherry 
49.7, birch 48.5, others 49 

like beech 
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Timber volume has a relative error (standard 
deviation / mean ≈  ¼ range of 95% confidence 
interval) up to 12% (Kurth et al. 1994). By using 
species-specific carbon contents we can assume 
relative errors to be below 1% for main species 
and below 2% for other species (Table 2). Table 2 
also reports species-specific stand to stand density 
errors and errors of the biomass expansion factors. 
For combining the errors of all tree groups within 
one stand, independent errors of the tree groups 
are assumed and absolute errors are added. 

Organic Layer Carbon Stock 
Quantification 

Carbon stocks in the organic layer were 
estimated by regression models that have been 
developed for Thuringian forests. The models 
have been fitted to carbon stocks of Ol, Of, and Oh 
layers that were measured at 178 plots in 
Thuringian forests (Wirth et al. 2004). According 
to the combination of bedrock and the dominating 
tree species one out of four models was selected. 
We checked applicability for the Tharandt forest 
at four spruce dominated stands where stocks were 
measured. In all models the single predictor was 
nutrient availability. The parameters bedrock and 
nutrient availability were derived from the data of 
the site evaluation in the following way. The 
categorical indices of site parameter nutrient 
availability was transformed to an ordinal scale (k, 
r (rich) →1; m (medium) →2;  z, a (poor) →3).  

The broad range of site parameter parent 
material was grouped and related to the required 
classification of bedrock (Table 3). 

For each plot the relative prediction error of 
the regression model was assigned corresponding 
to the combination of species and bedrock (Wirth 
et al. 2004). Values range from 23% for conifers 
on soils dominated by loess to 73% for 
broadleaved forests on any parent material. In 
order to propagate the error of organic layer 
carbon stocks from the shapes in the united map to 
the stand, we divided the area weighted standard 
deviations (= stock · relative error) by the area 
weighted mean stock (equation 1). 

Mineral Soil Carbon Stock Quantification 
Calculation of mineral soil carbon stocks was 
based on a simple model of several homogenous 
layers (equation 4).  

CbulkstonesCHorizon rrhm ⋅⋅−⋅Δ= σ)1(  (4) 
mCHorizon carbon within pedogenetic horizon [kg/m²] 
Δh height of the layer [m] 
rstones content of stones (d > 2mm) within soil 
volume [m³/m³] 
σbulk fine soil (d < 2mm) bulk density [kg/m³] 
rC carbon content of fine soil [kg/kg] 

We used pedogenetic horizons instead of fixed 
depths, because there are rapid changes in soil 
properties at the edge of horizons in stagnosols 
and podzols. These soil types comprise large parts 
of the study area. In order to compare soil types 
and site classes, the soil carbon stocks of soil 
horizons were summed over horizons within 
surface soil (A), subsurface soil (B) and soil 
influenced mainly by bedrock (C) (AG BODEN 
1994). 

The relative error can be calculated by 
equation 5 if factors are considered independent of 
each other.  
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where R(x): relative error of factor x; other 
symbols as in equation 4. Δh: height of the layer 

Table 2: Relative 
errors (R) for estima-
ting stand tree carbon 
stocks. (a) (Wirth et al. 
2004) (b) (Weiss et al. 
2000) (c) (Lehtonen et 
al. 2004), R(timber 
volume) = 12% (Kurth 
et al. 1994). DR, 
CConc,BEF, KBEF see 
table 1.  
 

Species R(DR) R(CConc) R(BEF)  Resulting R(CStock) 
spruce 9% (a) 1% site index > 25: 5.6% (a) 

site index <= 25: 10% (a)  
16.0% 
18.1% 

pine 11% (b) 1% R(KBEF) = 6% ((c): 
reported 2.8%) 

13.5% 

beech 6% (a) 1% R(KE) = 13.4%; 
R(KBEF) = 13.36% 

18.0% 

other 
coniferous 

11% (b) 2% site index > 25: 8%  
site index <= 25: 12%   

18.2% 
20.3% 

other 
broadleaved 

11% (b) 2% 15% 19.3% 
 

Table 3: Grouping of site parameter parent material. 
hydro (L) dominated by water regime  

(mainly gleysols and stagnosols)  
(site map indices Lg,Sg,B,Lu,Gg,Gu) 

acidic (G) dominated by acidic bedrock ( Sf, P) 
sand (S) dominated by sandy bedrock (Sn, Sb) 
loess (LL) dominated by loess bedrock (LL,Ls,Lb,Gn) 
basic (C) dominated by basic bedrock ( Ba ) 

Symbols in brackets in the first column represent the 
category identifiers that are used to select the regression 
model of organic layer carbon stocks (Wirth et al. 2004). 
Symbols in brackets at the second column represent 
identifiers of parent material according to the site 
evaluation  (Schwaneke 1989, 1965). 
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[m], rstones: content of stones (d > 2mm) within soil 
volume [m³/m³], σbulk: fine soil (d < 2mm) bulk 
density [kg/m³], rC: carbon content of fine soil 
[kg/kg] 
Ståhl et al. (2004) assumed relative errors of 30% 
fine soil bulk density, 40% stone content, 80% 
carbon content for a large scale inventory in 
Sweden. However, horizontal changes of stone 
content, layer thickness and likely also fine soil 
bulk density and carbon content are well captured 
by the stand map, which delineates changes across 
a few 10’ m. Therefore, we assumed lower 
relative errors of 10% layer thickness,  20% stone 
content, 50% carbon content, and 15% fine soil 
bulk density within one horizon at the extend of a 
shape in the site map of fixed size. Assuming 
uncorrelated errors, standard error propagation 
(equation 5) resulted in a relative error 
(precisions) of a single horizon of 57%. We did 
not have estimates of correlations among the 
factors and the soil horizons. Inclusion of these 
correlations would decrease the relative error. 
Assuming independent errors of the horizons, the 
relative error at plot scale was calculated by 
equation 6. Relative error decreased with the 
number of sampled horizons per site.  
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where R(mPlot): relative error of soil carbon stock 
at Plot (area of a site shape) [kg/kg]; i: index of 
soil horiozon; hi: depth of horizon [m]; mi: horzion 
carbon stock [kg]; R(mi): relative error of horizon 
carbon stock [kg/kg] 

Raw data of mineral soil carbon stocks was 
sampled only for spruce dominated stands. We 
assumed no differences in mineral soil carbon 
stocks by dominating species, because these 
differences are small compared to differences with 
site conditions (Mund and Schulze 2005).  

Statistical Analysis of the Species Effect 
on Tree Carbon Stocks 
Information on tree groups in the inventory was 
available only for a part of the area of about 4080 
ha. The other part consisted of non-stocked areas 
or very young stands, for which timber volume 
was not recorded in the inventory. The spatial 
distribution of carbon pools and the mean values 
refer to the stocked area only. Effects of species 
were studied using a constrained population. 
Stands dominated by age classes above 150 years 
(48.0 ha) were neglected, because extrapolating 
stocking density far from given yield table values 

is error-prone. Further, the standtype constrained 
population consisted of more or less 
monospecific stands related to the stand map 
(Figure 1, top). Mixed stands were excluded by 
requiring the dominant tree group to cover at least 
65% of the stand’s basal area and 65% of the 
stand area. This population covered 38% of the 
totally stocked forest area and 49% of the forest 
area that was dominated by spruce, pine, or beech. 
The same inventory record on different site 
conditions only counts as one entity in this 
population.  

Significance of differences between carbon 
stocks of trees and the organic layer between 
spruce and beech was tested with an unpaired t-
test. Area weighted means and their relative errors 
were calculated by equations 1 and 2, and variance 
of the mean values by equation 7. Next, the t 
statistics  (Quinn and Keough 2002, p37) was 
calculated by equation 8. Finally, the probability 
of this statistics was obtained by the density 
distribution with nBeech + nSpruce - 2 degrees of 
freedom using the dt function of the R-statistics 
package version 2.1.1. 

( ) ( )2)(var mRmm ⋅=  (7)

where var( m ): variance of area weighted mean 
carbon stock; m : area weighted mean of carbon 
stocks; ( )mR relative error of area weighted mean 
carbon stock 

( ) ( )SpruceBeech

SpruceBeech

mm

mm
t

varvar +

−
=  

(8)

where t : t-statistics applied for difference in 
stocks of beech and spruce. (Square of the 
standard error corresponds to the variance of the 
mean) 

When studying effects on tree biomass carbon 
stocks, the number of observations was set to the 
number of observed stands. When studying effects 
on the organic layer, the number of observations 
was set to the number of plots that had been used 
to construct the regression models (beech 17, 
coniferous 160) (Wirth et al. 2004). 

Statistical Analysis of Thinning Intensity 
Effect on Tree Carbon Stocks 

In order to compare tree biomass carbon 
stocks by species across different thinning 
intensities we corrected observed carbon stocks 
of different thinning intensities to a comparable 
standard value. We used the proportion of actual 
basal area to the standard basal area (Kramer and 
Akça 1995) as a simple parameter of thinning 
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intensity.  In the following we refer to this 
proportion as stocking density. We interpolated 
standard basal area for each inventoried group of 
trees by using yield tables (Table 4), observed 
stand age, and interpolated site index. Site index 
was interpolated using yield tables, observed age, 
and height. Hence, standard basal area represents 
the expected (according to permanent study sites) 
basal area, and is dependent on site quality. If 
stocking density is smaller than one, stands have 
been thinned more intense than usual. 

Correction was done in the following way. 
First, we fitted the equation “CBiomass = b0 + 
b1·ln(Age) + b2·stockingDensity² + 
b3·ln(Age):stockingDensity” for each species to 
the standtype-constrained population. Second, this 
models was used to predict carbon stocks with 
observed thinning intensity and stocks with 
thinning intensity 1 for each plot. Finally, each 
tree biomass carbon stock was corrected by the 
factor “predicted stock with standard thinning 
intensity / predicted stock with observed thinning 
intensity”. Significance of the difference between 
mean corrected carbon stocks of beech and spruce 
was tested by an unpaired t-test (equation 7 and 
8). 

Statistical Analysis of Site Condition 
Effect on Tree Carbon Stocks 
Not only thinning intensity, but also different site 
conditions potentially confound the effect of 
species on tree carbon stocks. In order to study the 
effect of site conditions the combined information 
of the site map and the stand map was used. The 
site condition constrained population that 
consisted of plots of the composite map (Figure 1, 
bottom) which had to comprise an area of at least 
0.4 ha. In addition to the constraints for 
monospecific stands, we excluded plots on steep 
terrain (indicated by a flag in site map) and plots 
outside the main local climate class. Hence, 
precipitation, temperature and insulation were 
about the same in all studied plots. The site 
constrained population covered 33% of the totally 
stocked forest area and 41% of the forest area that 
was dominated by spruce, pine and beech. Plots 
with the same inventory record but different site 
conditions were treated as different entities. 

Similar to correcting for different thinning 
intensities, we used regression models to correct 
additionally for the effects of nutrient availability, 
water regime, and moisture index. We 
experimented with many model forms (also 
including parent material) and investigated 
variance, residuals, and the Akaike Information 
Criterion (Akaike 1987). However, there was no 

clear favourite model. We present results, that 
were obtained with the following model: 
“CBiomass ~ ln(Age) + stockingDensity² + 
NutrientAvailability + WaterRegime + 
WaterRegime :MoistureIndex”. The model 
equation contained coefficients and dummy 
variable for each level of the categorical factors 
(Quinn and Keough 2002, p136). The site 
parameter moisture was not treated as main effect 
because it describes subclasses of site parameter 
water regime. 

First, this model was fitted to the site 
condition constrained population for each species. 
Second, this model was used to predict carbon 
stocks with observed conditions and stocks with 
the fixed conditions (stocking density 1, medium 
nutrient availability, and moderate moisture of 
constant water regime) for each plot. Finally, each 
tree biomass carbon stock was corrected by the 
factor “predicted stock with fixed conditions / 
predicted stock with observed conditions”. 
Significance of the difference between mean 
corrected carbon stocks of beech and spruce was 
again tested by an unpaired t-test (equation 7 and 
8). 

Results 

Mean Carbon Stocks  
Area weighted mean carbon stocks in above 
ground tree biomass amounted to 10.0 ±0.6 kg/m² 
(Figure 2 left, Table 5). This mean stock refers to 
the area, for which timber volume was recorded in 
the inventory (88% of total area). Related to total 
area, which includes also non-stocked areas and 
very young stands, mean carbon pool reached 8.8 
kg/m². Largest carbon stocks of 22.5 kg/m2 were 
found in stands dominated by old beech. Mean 
carbon stocks of the organic layer amounted to 
3.0 ±1.35 kg/m². Maximum carbon stocks in the 
organic layer of 5.1 kg/m² were calculated for 
coniferous stands at sites with poor nutrient 
supply, while minimum organic layer carbon 
stocks of 0.8 kg/m² were calculated for deciduous 
stands at rich site conditions. In mineral soil, 
area-weighted carbon stock of the area around the 
transect was 7.3±1.4 kg/m². The relative carbon 
content in individual layers of the soil profiles is 
shown in Table 6. Each profile corresponds to a 

Table 4: Yield 
tables used to in-
terpolate 
stocking den-
sities. Data from 
(Nicke 1997). 

tree group yield table 

beech Dittmar et al. (1986)  
spruce Wenk et al. (1985) 
pine Lembcke et al. (1976)
larch Schober R (1987) 
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different site class. The maximum carbon stock 
18.4 kg/m² was found at profile 18 (on loess 
dominated bedrock with a very deep Aeh horizon). 
The minimum carbon stock of 1.2 kg/m² was 
found at profile 24 (on acidic parent material with 
a thin Aeh horizon).  

Spatial Distribution of Carbon Stocks 
The spatial distribution of carbon stocks in 

tree biomass and the organic layer is shown for 
a selected area southwest of the hill “Esberg” in 
the Tharandt forest as an example (Figure 3). We 
depicted this area, because it overlaps with the soil 
transect and there is a beech-dominated stand in 
the centre, which is of equal age as the spruce 
dominated stand right next to it. Similar patterns 
of species composition and age class structure are 
found across the total Tharandt forest. The spatial 
pattern of the distribution of carbon stocks in tree 
biomass followed the stand map, because it 
represents species composition and age class 
structure. The carbon stock of the spruce stands at 
the upper right increased with stand age. However, 
the beech dominated stand at the centre had a 

Table 5: Mean carbon stocks in forest compartments 
of stands in the Tharandt forest.  
  all spruce pine beech 

mean age [y] 73 82 78 87 
tree biomass     
stock [kg/m²] 10.0 11.6 9.9 13.4 
sd [kg/m²] 0.1 0.1 0.2 0.8 
cv [%] 1% 1% 2% 6% 
n 1228 375 80 20 
organic layer     
stock [kg/m²] 3.0 3.0 3.5 1.8 
sd [kg/m²] 1.4 1.2 1.6 1.3 
cv [%] 45% 42% 45% 73% 
n 177 160 160 17 
mineral soil  
stock [kg/m²] 7.3 
sd [kg/m²] 1.4 
cv [%] 20% 
n 10 
total     
stock [kg/m²] 20.3 21.8 20.7 22.5 
sd [kg/m²] 2.0 1.9 2.1 2.1 
cv [%] 10% 9% 10% 9% 
Mean values (stock), standard deviations (sd), 
coefficient of variation (cv) and number of samples 
(n) are indicated. 

Table 6: Soil characteristics of individual horizons 
of the profiles studied at the Tharandt forest.  
Pro-
file  

horizon depth 
(cm) 
from   to 

density 
(g/cm³) 

Stones  
(%) 

carbon
(%) 

1 arAh 0 5 0.6 0 5.2 
1 aBv-

Go 
5 15 0.9 0 3.2 

1 aGo-M 15 30 1.3 0 3.2 
1 aGr 30 70 1.6 40 0.8 
15 Aeh 0 5 0.9 5 5 
15 Bsv 5 35 1.3 15 1.8 
15 Bv 35 95 1.4 90 0 
24 Ahe 0 8 0.5 0 2.75 
24 AhBv 8 35 1.2 0 0 
24 Bv-Sg 35 75 1.6 0 0 
27 Ahe 0 6 0.8 50 6 
27 Bv1 6 70 0.8 90 1.8 
2 Aeh 0 4 1.1 5 2.1 
2 Ae 4 20 1.5 8 0.3 
2 Bsh 20 35 1.5 15 1.8 
2 Bs2 35 110 1.5 5 0 
5 Aeh 0 20 0.7 5 4.6 
5 Bvs 20 50 1.3 15 3.5 
18 Aeh 0 15 0.6 5 13.8 
18 Ae 15 65 1.5 15 1 
3 Ah 0 10 0.7 0 5.18 
3 Ah-Sw 10 25 1.1 10 0 
3 Sw 25 70 1.6 10 0 
7 Aeh 0 10 1.1 15 12.4 
7 Bv 10 25 1.3 20 0 
23 Ahe 0 5 1.0 3 12 
23 Bv-

Sw1 
5 65 1.4 20 0 

23 Sw2 65 90 1.8 15 0 
Profile numbers and Carbon content refer to Fiedler 
et al. (1989c) and Pietrusky (1975), horizon: 
description of soil horizons (AS Arbeitskreis 
Standortskartierung 1980). 
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Figure 2: Area weighted mean main carbon stocks of
stands in the Tharandt forest. Left bar represents all the
entire stocked area including other species and mixed
stands, the other three bars represent a constrained
population of more or less monospecific stands. Arrows
denote standard deviation of the area weighted mean
stocks, numbers in the bars represent the area weighted
mean age. For results of individual compartments see
Table 5. 
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higher stock than the neighbouring spruce stand of 
the same age. On the other hand, the beech 
dominated stand had a lower organic layer carbon 
stock. Spatial distribution of calculated organic 
layer carbon stocks, additionally, showed a pattern 
that followed the site map which has curvy edges, 
because different bedrocks are represented by this 
map. Spatial distribution of mineral soil carbon 
stocks showed a pattern that was related to the 
relative position to the slope (Figure 4). Plots with 
highest pools were all located at the slopes or near 
the bottom of the slopes. Low stocks were found 
at the plateau and lowest stocks are at the more 
level terrain of the surrounding area with shallow 
soils. There was a large range of values within a 
small distance.   

Different Carbon Stocks of Spruce and 
Beech dominated Stands 

Beech dominated stands had a significantly 
higher (1.83 kg/m², p=0.026) mean tree carbon 
stock than spruce dominated stands. This 
difference is not due to the slightly higher mean 
age of beech stands compared to spruce and pine, 
because beech stands have higher stocks in each 
age class (Figure 5 top). Contrary, there was also a 
non-significant trend of lower carbon pools in the 
organic layer (-1.05 kg/m², p=0.34) of beech 
dominated stands (Figure 6) with all parent 
materials except the ones, which were dominated 
by water (label hydro, mostly gleysols and 
stagnosols). With assuming neglectable 
differences in soil carbon stocks between species, 
total carbon stocks of  beech dominated stands had 
a weak trend to slightly higher  stocks (0.77 
kg/m², p=0.4) than spruce or pine dominated 
stands (Figure 2, Table 5). 

Effect of Thinning Intensity and Site 
Conditions on Carbon Stocks  

Beech dominated stands are located at more 
favorable site conditions and are managed with 
higher stocking densities than the other stands 
(Figure 7). Correcting the stocks for the effect of 
stocking density yielded a decrease in beech 
carbon stocks at ages 50 to 110 years and an 
increase in coniferous carbon stocks (Figure 5 
center). At these age classes, spruce dominated 
stands had slightly higher corrected carbon stocks 
than beech dominated stands. The difference 
between area weighted means (Equation 1) of 
corrected tree carbon stocks of beech and spruce 

 
Figure 3: Spatial distribution of tree biomass and
organic layer carbon stocks of several stands southwest
of the hill “Esberg” in the Tharandt forest. Top)  stand
map showing species distribution and stand age (of the
dominant tree group). Centre) tree biomass carbon
stocks distributed according to the stand map. Bottom)
organic layer carbon stocks distributed according to the
composite map (union of the shapes of the stand map
and the site map). 

Soil Profiles
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Mineral Soil [kg/m²]
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Figure 4:  Spatial distribution of mineral soil 
carbon stocks across and around the hill “Esberg” 
distributed according to the site map. Triangles 
mark the location of the soil profiles for mineral 
soil carbon stock quantification. Labels represent 
soil profiles numbers. 
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decreased to 0.26 kg/m². This difference was not 
significant any more (p=0.38). 

Correcting additionally for site conditions had 
only a marginal effect on tree carbon stocks 
(Figure 5 bottom). The drop of mean carbon stock 
of beech in the last correction is explained by the 
exclusion of many old beech stands at very steep 
sites when constructing the site constrained 
population. The differences in mean age in the site 
constricted population (beech 60yr, spruce 82yr) 
resulted in a lower area weighted mean tree 
carbon stocks of beech compared to spruce (-0.69 
kg/m², p=0.26). 

Organic layer carbon stocks were clearly 
influenced by site conditions, i.e., the parent 
material (Figure 6) and nutrient availability. 

Within the sparse dataset of the mineral soil 
there was no specific single site parameter that 
had a clear influence with mineral soil carbon 
stocks (Figure 8). However, there were similar 
mineral soil carbon stocks with the same 
combination of site conditions (profile numbers 24 
and 27, numbers 18 and 5).  

Discussion 
The most important aspect of this study is the 

spatially explicit quantification of carbon stocks 
at the scale of a forest management unit in Central 
Europe at the resolution of individual forest stands 
based on standard forestry data. The spatially 
explicit results enable combined analysis with 
other spatial data sources. In this study we used 
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Figure 5: Area weighted mean tree biomass carbon
stocks by species and age classes (21-40, 41-60, …).
Arrows denote standard deviation of the area weighted
means. Top) observed stocks. Centre) stocks corrected
for stocking density by a regression model; Bottom)
stocks corrected for stocking density, nutrient
availability and moisture conditions. 
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Figure 6: Organic layer carbon stocks by species and 
parent material. Mean values are area weighted. Error 
bars denote area averaged standard deviation. 
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Tharandt forest by age classes of (21-40, 41-60, …). In
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the spatial combination of data of forest inventory 
and data of the site evaluation. This allowed the 
quantification of organic layer carbon stocks at 
stand scale (Figure 3, bottom) and it allowed the 
comparison of influences of stand characteristics 
and site conditions on tree carbon stocks (Figure 
9). Other applications with e.g., digital elevation 
data or results of ground water modelling become 
possible but go beyond the scope of this paper. 
We spatially combined the stand and site datasets 
using the union of the shapes (Figure 1). In 
contrast, Wolff (2002) combined the stand and site 
datasets at grid points and regionalized results on 
the basis of regions with similar growth 
conditions. The approach of this study has the 
advantage of allowing the analysis of several 
carbon pools at the same high spatial detail. 
However, it is scalable only to the federal states of 
Germany that perform a stand based forest 

inventory. The focus on spatial distribution at this 
scale is new to carbon inventories in Central 
Europe. Hence we know only of one similar study 
from Thuringia (Wirth et al. 2004) and one study 
from France (Le Maire et al. 2005), which 
spatially quantifies carbon fluxes. 

Results of the mean tree biomass carbon 
stocks in the Tharandt forest (8.8 kg/m² in relation 
to total forest area) agree with results from studies 
in Thuringia of 8.2 kg/m² (Wirth et al. 2004) and a 
German management case study (8.7 kg/m²) 
(Karjalainen et al. 2002). They were lower than 
national inventory (9.8 kg/m²) (Baritz and Strich 
2000). This is because there are higher stocks in 
the southern parts of Germany. Observed stocking 
density was low (Figure 7). This was likely due to 
extensive thinning during novel forest decline 
before the inventory in 1988. Hence, carbon 
stocks will increase with increasing stocking 
density. There are considerable differences in 
biomass expansion factors. The use of recent 
factors that were dependent on stand age and site 
index increased mean carbon stocks by the 
number of 1.7 compared to the factors used by 
Baritz and Strich (2000) (coniferous 1.14; 
broadleaved 1.24) for the first German national 
reporting. Carbon stocks of the organic layer 
(3.0 kg/m² Table 5) agree with the national 
inventory (2.1 kg/m²) (Baritz and Strich 2000), 
and agree with the Thuringian study (2.7 kg/,²) 
(Wirth et al. 2004), because we utilized the same 
quantification algorithm which is based on 
differences between stand types, parent materials 
and nutrient availability. At four spruce dominated 
stands mean organic layer carbon stocks of 4.8 
kg/m² have been measured (Persson, personal 
communication). At these plots the used model 
estimated organic layer carbon stocks to 3.9 
kg/m². This underestimation of 18% is within the 
error range of 42% for spruce stands. Area-
weighted mean of mineral soil carbon stocks 
(7.3 kg/m² Table 5) agree with estimates of soil 
carbon in Thuringia (7.0 kg/m²) (Wirth et al. 
2004) and with the national inventory (8.8 kg/m²) 
(Baritz and Strich 2000). All the stands, in which 
soil profiles were located, were dominated by 
spruce. There are indications that species 
composition affect incorporation of organic matter 
into the mineral soil (Fischer et al. 2002). 
However, these effect vary with site conditions 
(Berger et al. 2002) and they are small compared 
to differences caused by site conditions (Mund 
and Schulze 2005).  

In comparison to carbon quantification studies 
that used national inventories (e.g, Baritz and 
Strich 2000, Dieter and Elsasser 2002, Ståhl et al. 
2004) we used stand scale inventories. These 
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stand scale inventories comprise a larger number 
of samples per area but trade in a lower precision 
of the single timber stock measurement (12% 
relative error, Kurth et al. 1994). The errors are of 
the two inventory types are comparable only at the 
same scale. When aggregating several single 
measurements to a comparable scale, the variance 
of the mean stock reduces with the square root of 
the sample number (Weiss et al. 2000). This is 
also true for the area explicit error propagation 
(equation 2). With the individual stand approach 
also the bias due to correlation between BEF and 
timber volume shown by Vilén et al. (2005) for 
sample inventories is bypassed. At the total 
stocked area of the Tharandt forest the relative 
error of the mean carbon stock in tree biomass was 
only 1% (Table 5). However, the different 
estimates for biomass expansion factors that were 
reported (Levy et al. 2004) suggest, that there 
might be a bias when applying the factors apart 
from the region, where the factors were assessed. 
Further, there might be also a bias in the stand 
scale timber volume measurement. The bias does 
not decrease with the number of measured plots.  

A similar reasoning is true for mineral soil 
carbons stock errors based on sampling stratified 
for site classes. We could use only a low sample 
size of 10 plots, however, in comparison there are 
only 4 plots of the national soil inventory (BML 
1996) at the total Tharandt forest. The approach of 
this study has the advantage of explicitly 
stratifying for more or less homogenous areas of 
mineral soil carbon stocks (Figure 4). The relative 
error of mineral soil carbons stocks at plot scale is 
dominated by the real heterogeneity of the stocks 
within the plot, and only to a part by measurement 
errors. Therefore we can justify choosing lower 
estimates of relative error of the measured factors 
compared to Ståhl et al. (2004), whose single plots 
represented a vastly greater area. Usage of the 
small scale inventory was the precondition of the 
spatial union and the comparison of influencing 
factors at the scale of forest management units. 

When analyzing the factors that influence 
carbon stocks, we found a significant influence of 
site conditions only on organic layer carbon stocks 
(Figure 6). Effects of site condition on tree 
biomass carbon stocks were overshadowed by 
effects of stocking density (Figure 5). This implies 
that forest carbon models that currently  focus on 
environmental conditions ,e.g., Biome-BGC 
(Thornton 1998), should include thinning 
activities in a more explicit way. Further, we did 
not find relationships between single factors of 
site conditions and mineral soil carbons stocks 
(Figure 8).  The large differences in mineral soil 
carbon stocks within short distances imply that 

extrapolation studies should aggregate the results 
of single plot measurements using the areas of a 
proper stratification, e.g. the shapes of the site 
map. The only factor that effected mineral soil 
carbon stock that we noticed, was the position 
relative to the slope in the catena (Figure 4). This 
can be seen more clearly when arranging the 
profiles by carbon stock (Figure 9). The only 
exception of high mineral soil carbons stock afar 
from the slope was profile 1 near the source of a 
little brook. We can not draw conclusions from 
this sparse dataset because there are many 
confounding factors (bedrock, ground water table, 
etc.). However, this spatial pattern could be 
related to horizontal transport processes. This 
would imply that models of soil carbon dynamics 
to take such processes into account. Further it 
would imply that extrapolation studies that are 
based on large-scale inventories could stratify 
plots by small-scale topography. This topic needs 
further research.  

The used approach of accounting for 
differences in stocking density and site conditions 
by using regression models (Figure 5) is only 
valid if there are not too many differing factors. 
We could ensure this by constraining the studied 
population to a not too large area of the same 
climate and similar topography. If the studied 
population encompasses larger area, there are too 
many confounding factors. However, it is 
necessary to account for different influencing 
factors as it was demonstrated in the comparison 
of tree biomass carbon stocks between species. 

Beech dominated stands had higher tree 
biomass carbon stocks than stands dominated by 
spruce in the Tharandt forest (Figure 2, Table 5). 
This was a combined result of lower stand density 
of beech stands, a higher wood density of beech 
stem wood, and a slightly higher beech BEF 
(Table 1). This was not alone a species effect, but 
also an effect of different management. Stocking 
density was lower in spruce dominated stands 
(Figure 7) and accounting for this effect rendered 
the difference between theses species insignificant 
(Figure 5 center).  At the time of the inventory 
forest management did not promote mixed species 
stands. However, there were many interspersed 
tree groups in younger stands that probably 
originated from natural regeneration. This 
observation enforces the need for research on 
mixed species stands. The results of comparing 
species are based on a much smaller population 
that excluded mixed stands in comparison to the 
results of the total forest that included all available 
stand data. We did not investigate shrubs and 
ground vegetation. However, these pools could 
contribute considerable carbon stocks, specifically 
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at low stand densities (Solon and Roo-Zielinska 
2003). With changes in forest management also 
dead wood can become important again in 
managed forests (BML 2004). An evaluation of 
species concerning carbon sequestration requires 
consideration of mean retention times of the wood 
products, changing growth conditions due to 
climate change and risks of disturbances. 
Considering only the main differences in current 
tree biomass stocks and organic layer stocks in the 
forest, we can recommend promoting beech in 
forests with similar site conditions as the Tharandt 
site.  

This study focused on carbon stock 
quantification. The average stock is relevant for 
climate change mitigation, because the difference 
in carbon stocks is removed from the atmosphere 
carbon pool. For short term changes the carbon 
dynamics (i.e. fluxes and turnover) is more 
important. There are different effects of thinning 
intensity and site conditions on this factor, 
because with favourable site conditions carbon 
turnover is higher (both, increased uptake and 
increased respiration and export). In order to 
investigate dynamics, the inventory data has to be 
combined with modelling studies (Kurz et al. 
2002). This will also give insight in underlying 
ecosystem processes. However, this is future work 
for Central European forests at this scale.  

Conclusions 
Standard forestry data was sufficient to quantify 
carbon stocks of tree biomass and the organic 
layer spatially explicit at stand scale. This was 
possible by combining data sets using the union of 
the stand map and the site map. Quantification of 
mineral soil carbon stocks required further soil 
sampling.  
Usage of small scale inventories with a low 
precision at plot scale (18% of carbon stocks in 
stand tree biomass and 57% in mineral soil 
horizon) allowed a reasonable precision at the 
scale of forest management units (1% tree biomass 
carbon stocks and 20% mineral soil).  
High small scale spatial heterogeneity implied the 
necessity to explicitly account for the areas 
represented by the single plots when aggregating 
to coarser scales.  
The spatial combination of data sources allowed 
comparing different factors that influence carbons 
stocks. The accounting for confounding effects by 
regression models proofed to be a helpful tool at 
this scale. Thinning activities significantly affect 
tree biomass carbon pools. However, we did not 
find a significant affects of site conditions on tree 
biomass carbon pools within the same climate. 

Mature beech dominated stands at the Tharandt 
forest had higher tree biomass carbon stocks and 
lower organic layer carbon stocks compared to 
spruce. This was to a big part an effect of 
differences in thinning intensity. 
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Generic biomass functions for Common beech (Fagus sylvatica L.) in 
Central Europe – predictions and components of uncertainty 

 
Abstract This study provides a comprehensive 
set of functions for predicting biomass for 
Common beech (Fagus sylvatica L.) in Central 
Europe for all major tree compartments. The 
equations are based on data of stem, branch, 
timber, brushwood (wood with diameter below 5 
or 7 cm), foliage, root and total above-ground 
biomass of 443 trees from 13 studies. We used 
non-linear mixed-effects models to assess the 
contribution of fixed effects (tree dimensions, site 
descriptors), random effects (grouping according 
to studies) and residual variance to the total 
variance and to obtain realistic estimates of 
uncertainty of biomass on aggregated level. 
Candidate models differed in their basic form, the 
description of the variance, and inclusion of 
various combinations of additional fixed and 
random effects and were compared by the AIC 
criterion. Model performance increased most 
when accounting for between-study-differences in 
the variability of biomass predictions. Further, 
performance increased with the inclusion of age, 
site index, and altitude as predictor variables. We 
show that neglecting variance partitioning and the 
fact that prediction errors of trees are not 
independent with respect to their predictor 
variables will lead to a significant underestimation 
of prediction variance. 
 
Keywords inventory, allometric equation, regression, 
mixed-effects models, upscaling, covariance, stem, 
branch, timber, foliage, root, brushwood 

Introduction 
The estimation of biomass at the tree-level and the 
subsequent step of scaling up biomass to the stand 
and eventually the regional level using forest 
inventory data is an essential component of 
monitoring carbon storage in forests (Kauppi et al. 
1992, Liski et al. 2006, Nabuurs et al. 2003). 
Advances in the quality and the efficiency of 
carbon monitoring will affect decisions on climate 
politics and energy politics (Raupach et al. 2005). 
Furthermore, accurate forest carbon stocks are 
important to validate models (Thurig and 
Schelhaas 2006, Vanclay and Skovsgaard 1997) 
and for validating spatial extrapolations based on 
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List of Symbols 

Symbol Unit Description 

symbols of tree measure and predictors 
m kg biomass 
d cm diameter at breast height (1.3m) 
h m tree height 
age yr tree age 
si m site index (mean height of trees at 

age 100 years) 
alt m altitude (height above sea level) 
dh  models with predictors diameter and 

height only 
dhc  models with additional covariates 

age, si, and alt 
statistical symbols 
i  group (study) 
j,k  individuals (trees) 
yij  target variable (biomass m) 
xij  vector of predictors. (d,h) 

ijν   vector of covariates (age,si,alt) 

β   vector of fixed effects 
bi  vector of random effects 
cs  coefficients c0, c1, and c2 of the basic 

model forms 
int  intercept (constant) 
ε   residual 

2σ   variance or first coefficient of the 
variance model 

δ   second coefficient of the variance 
model 
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remote sensing (Lu 2006). The basis for the 
assessment of forest carbon stocks are biomass 
equations. These equations relate variables that are 
commonly measured during forest inventories, 
such as tree diameter at breast height, to dry mass 
of biomass compartments. They may be applied 
directly at the tree level, or as a component of 
biomass expansion factors, which operate on 
aggregated data at the stand-level (Jalkanen et al. 
2005, Wirth et al. 2004a). 

There are numerous studies on biomass 
equations of different species for different regions 
(Jenkins et al. 2003, Marklund 1987, Zianis et al. 
2005) and also several studies for common beech  
(Table 1) (Hochbichler 2002, Hochbichler et al. 
1994, Lebaube et al. 2000, Zianis and Mencuccini 
2003, 2005). With the exception of Burger 
(1949/50) and Joosten et al. (2004) the biomass 
equations presented in these studies are limited 
with respect to the number of trees (median 20 
trees, minimum 7 and maximum 38 trees), the size 
range of the sample trees, and the extent of the 
study area (mostly single stands or catchments). 
None of these studies is sufficiently representative 
for a nationwide monitoring of forest carbon 
stocks and covers a large enough environmental 
gradients to be applicable to such a large and 
diverse area as Central Europe. Furthermore, none 
of the above studies provides the statistical 
background information to allow a straightforward 
variance estimation of stand- and regional level 
biomass (for other species see Phillips et al. 2000, 
Wirth et al. 2004b). Nor, can this information be 
provided by meta-analysis-studies that are based 
on published equations instead of tree 
measurements (Muukkonen 2007, Zianis and 

Mencuccini 2003). However, uncertainties of 
biomass predictions are as important as the 
predictions themselves (e.g. Raupach et al. 2005). 
And finally, most studies only report data and 
equations for a subset of the biomass 
compartments. Compartments considered usually 
include the economically relevant above-ground 
woody compartments (timber, stem), less often 
branches and leaves and rarely belowground 
compartments. However, monitoring and 
modelling changes of carbon stocks requires the 
estimation of all the biomass compartments.   

In our study we compiled available biomass 
data for Common beech (Fagus sylvatica L.) and 
developed generic biomass equations applicable 
for a broad range of sites and situations and for all 
major biomass compartments. In addition, we 
provide tools for a realistic estimation of 
uncertainties of biomass predictions that account 
for the heterogeneity of the underlying data. We 
used non-linear mixed-effects models in order to 
make inference on variance components. We 
outline how functions of biomass and functions of 
prediction variance were developed and how they 
can be used to estimate variances and confidence 
intervals for individual tree predictions as well as 
for estimates of biomass stocks on aggregated-
level, e.g. stands, from forest inventory data. 
While the aggregation of stand-level predictions 
and uncertainties to the regional level involves 
further steps, our generic equations for the wide-
spread Common beech – covering 15% of the 
forest area in Germany – will serve as an 
important component in an improved national 
carbon monitoring.     
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Figure 1: Map showing the location of study sites.
The plot labels correspond to the studies listed in
Table 1. The size of the symbols increases with the
number of trees sampled at the location. 
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Figure 2: Schemes of different definitions of above
ground woody biomass compartments. Scheme A
separates between stem and branch wood with the
assumption that the main stem can be clearly identified
all the way to the top.  Scheme B which is less
subjective and most commonly applied in forest
sciences separates between timber and brushwood
based on a fixed diameter threshold (usually 5 or 7
cm). 



 II/3

Methods 

Data 
We collected biomass of tree compartments from 
sample trees of Common beech originating from 

13 studies (Table 1), which cover the extent of 
Central Europe quite well (Fig. 1). The tree-level 
entries included biomass m of a tree compartment 
(kg) and as predictor variables the diameter at 
breast height d (cm), the tree height h (m), and the 

Table 1: Methods used and compartments sampled by 13 studies to determine tree biomass of Common beech.  

ID Study nTreea nPlot Coun
tryb 

Compart
-mentsc 

Altitude 
[m] 

Site 
Index
[m] 

Vari-
ablesd 

Comments 

BAR (Bartelink 1997) 38 6 NL agr,st,br,l  23 34 - 
36 

sr,cl,cp  

BUR (Burger 1949) 91 18 SZ bw,l 480 - 
1360 

24.5 
- 36 

sr br included thin 
stem parts and was 
not considered here 

CIE (Cienciala et al. 
2006) 

20 4 EZ agr,st,br 450 - 
750 

24 - 
28 

cl,cp  

DU1 (Duvigneaud et al. 
1971) 

7 1 BE agr,st,br,t
,bw 

330  26   reconstructed tree 
heights 

DU2 (Duvigneaud et al. 
1977) 

13 1 BE agr,st,br 250 - 
250 

24  cl  

HEI (Krauß and 
Heinsdorf 1996) 

14 3 GM agr,st,br,l 42  28.5 
- 30 

 also quantified 
bark 

HEL (Heller and 
Göttsche 1986) 

29 3 GM agr,t,bw,
r 

500  22.5 
- 24 

sr r only for 4 trees 

JO (Joosten et al. 
2004) 

116 28 GM agr,t,bw 30 - 
500 

18 - 
45.5 

  

LGO (Le Goff et al. 
2004) 

23 2 FR agr,st,br,l
,r 

300 36  sr,cl r only for a subset 

MAS Masci, A. pers. 
comm. within 
project FORCAST 
(Schulze et al. 
2003) 

28 1 IT agr,st,br,l
,r 

1560  18  sr,cl,cd r only for a subset 

MAT Matteucci, G. pers. 
comm. within 
project FORCAST 
(Schulze et al. 
2003) 

30 3 GM agr,st,br,l 440 - 
450 

32 - 
35 

 l only for a subset 

PEL (Pellinen 1986) 19 5 GM agr,t,bw,l
,r 

420 29 - 
30.5 

sr r only for a subset, 
age uncertain 

VYS (Vyskot 1990) 15 1 EZ agr,st,br,l
,r 

505  36  sr,cl,cd
,cp 

also quantified 
twigs and stump, 
provides further 
data on root 

 Total 443 76 7  23 - 
1560 

18 - 
45.5 

  

a nTree = number of sample trees considered; nPlot = number of plots where trees have been samples;  
b NL = Netherlands, SZ = Switzerland, EZ = Czech Republik, BE = Belgium, GM = Germany, FR = France, IT = Italy  
c agr = above ground wood; st = stem including bark; br = branches; t = timber (agr with diameter > 7cm); bw = brushwood (agr 
with diameter < 7cm); l = leaves, r = roots 
d in addition to diameter at breast height, tree height, age, site index and altitude: sr = social rank, cl = crown length, cd = crown 
diameter, cp = crown projection 
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tree age age (yr). Stand-level predictors are the 
site index si (mean height of trees at age 100 years 
in m) and the altitude alt (height above sea level in 
m).  

The biomass compartments considered are 
foliage (leaves), coarse roots (root) and above-
ground woody biomass (agr). Due to the weak 
apical dominance of Common beech there is a 
gradual transition between stem and branch wood, 
which renders the separation into these two 
compartments ambiguous (Fig. 2). In this study 
we report functions for both schemes and thus for 
all four compartments: brushwood, timber, stem, 
and branches. The number of sample trees and the 
range of predictor values differed between 
compartments (Table 2). 

Basic model forms 
We used three basic model forms as starting 
points of our model selection. First, the simplest 
allometric equation for predicting the biomass of a 
tree compartment m is a function of its diameter at 
breast height d (eq. 1). It can be shown that the 
functional form of a power function arises from 
the assumption that the ratio of the relative growth 
rates of mass and diameter (here m and d) is 
constant (Wenk et al. 1990). Second, to improve 
the predictive power this basic allometric equation 
is often extended to include the tree height h as an 
additional predictor. Eq. 2 still can be viewed as 
allometric equation that relates biomass to the 
volume of a cylinder defined by d and h (Cienciala 
et al. 2006, Wirth et al. 2004b). Third, a multiple 
allometric equation for predicting the biomass of a 
tree compartment as a multiplicative function of d 
and h is given by eq. 3 (Widlowski et al. 2003). 
[1]  1

0
cdcm =  (d2) 

[2]  ( ) 12
0

c
hdcm =  (dh2)  

[3] 21
0

cc hdcm =  (dh3)  

Here m  is the biomass of a tree compartment for 
a sample tree, d  is the diameter at breast height 
(cm), h is the tree height (m), cs, i.e. c0..c2, are 

model coefficients to be estimated. The number at 
the end of the equation labels (d2, dh2, dh3) 
indicates the number of parameters.  

Rational of using nonlinear mixed-
effects models  
We used non-linear mixed-effects models 
(Lindstrom and Bates 1990) to directly fit the 
candidate models to the data. The main advantage 
of using mixed-effects models lies in their 
capability to account for groupings in  residual 
variance due to random effects (Pinheiro and 
Bates 2000). In our case, the grouping variable is 
the study from which the data originate. The mere 
fact that sample trees from one study usually share 
a common provenance and were collected in the 
same environment by the same team of scientists 
with a specific set of methods often causes their 
residuals to be consistently lower or higher than 
the mean predictions of a fixed effects model. This 
violates a fundamental assumption of independent 
residuals in conventional regression analysis 
(Crawley 2002), and will lead to an 
underestimation of variance. Mixed-effect models 
are one way to adequately address this type of data 
heterogeneity. Instead of assuming the same fixed 
effects across all groups (eq. 4a), mixed models 
allow the coefficients sc of the model (eq. 1..3) to 
vary between groups by adding a group dependent 
random effect (eq. 4b). Additionally, they allow to 
include covariates that in part explain the 
deviation from generic coefficient value sβ  (eq. 
4c). 
[4a] ssc β=  
[4b] isss bc ,+= β  

[4c] 
altsialtage

altsiagebc

altsisaltages

altssisagesisss

⋅⋅+⋅⋅+

⋅+⋅+⋅++=

.,.,

,,,,

ββ

ββββ
 

,where sβ and  >< ars cov,β are fixed effects, isb ,  is 
the study dependent random effect, age, site index 
(si), and altitude (alt) are covariates.  

For a single level of grouping to studies, the 
tree compartment biomass mij of the tree j from 
the ith study can be expressed as the target by a 

Table 2: Number of sample trees and range of predictors by tree compartments. 
Compartment nTree nStudy Dbh (cm) Height (m) Age (yr) Site Index (m) Altitude (m) 

agr 350 12 1 - 79 2 - 37 8 - 173 18 - 46 23 - 1560 
stem 187 9 2 - 79 3 - 37 8 - 165 18 - 36 23 - 1560 
branches 175 8 2 - 64 3 - 37 8 - 165 18 - 36 23 - 1560 
timber 170 4 1 - 79 2 - 35 18 - 173 18 - 46 30 - 500 
brushwood 276 6 1 - 79 2 - 40 14 - 173 18 - 46 30 - 1360 
root 48 5 3 - 38 7 - 29 21 - 160 18 - 36 300 - 1560 
leaves 247 8 1 - 62 3 - 40 8 - 165 18 - 36 23 - 1560 
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single level mixed-effects model (eq. 5) 
(Lindstrom and Bates 1990)  
[5] ( ) ijiijijijij bxfym εβν +== ,;,   

 ( )Ψ,0~ Nbi , and ),0(~ 2σε Nij  

where, f is a general, real-valued, differentiable 
function (one of eq. 1..3, with coefficients 
expressed as eq. 4c) of a vector of predictors, 

ijx (d, h), a covariate vector ijν (age, si, alt), the 
vector of fixed effects β , and study dependent 
vector of random effects ib  (Pinheiro and Bates 
2000). In this study we used an unconstrained 
symmetric positive definite covariance matrix 
Ψ of random effects. We used extended mixed-
effects models, where the assumption of the 
within-group residuals εi =(εi1, …,εin ) is relaxed by 

),0(~ 2
ii N Λσε , and where iΛ are positive-

definite matrices parameterized by a set of 
parameters δi. Typically the variance of the 
residuals jε  increases with compartment biomass 

jm  for tree j at the original scale. We thus 
explicitly modeled the variance of the residuals by 
a power function (eq. 6). 

[6] ( ) δ
σδσεε

222 ,;)( jjj mgVar ==    

Not only the coefficients but also the residual 
variance may potentially vary between studies. 
We accounted for this by modifying the model of 
residual variance (eq. 6) to eq. 7 by replacing the 
single exponent δ by the group-dependent 

exponent iδ . 

[7] ( ) i

ijiijij mmgVar
δ

σδσε
222 ,;)( ⋅==    

for the ith study and the jth observation. The 
parameters 2σ and iδ  were estimated by 
iteratively re-weighted sum of squares 
simultaneously with the other coefficients in the 
model fitting algorithm. 

We used non-linear models (Lindstrom and 
Bates 1990) for the following reasons. For model 
fitting the biometric data are often log-
transformed to linearize the allometric equation 
and to homogenize the variance, which otherwise 
increases with size on the original scale 
(Baskerville 1972). However, the back-
transformation of the predicted value to the 
original scale introduces biases in the expected 
values and the uncertainties (Smith 1993). The 
proper dealing with these biases introduces new 
assumptions and the simple nonparametric 
correction using the smearing estimate  (Duan 
1983, Taylor 1986), as it is frequently employed 

(e.g. Joosten et al. 2004), is not directly applicable 
if mixed-effects models are used (Wirth et al. 
2004b). In addition, the logarithmic form does not 
allow to include the covariances between 
predictions errors at the original scale when 
calculating the variance of a biomass prediction 
errors for several trees (eq. A2.1). In Appendix A2 
we show how the variance of new predictions can 
be propagated to aggregated levels.  

Fixed effects models partition the variance 
around the mean prediction into the variance 
arising from uncertainty in the parameter 
estimates and into residual variance. In mixed-
effects models a further component is added: the 
variance that is induced by the random effects, 
which represents groupings in the data (eq. A1.2) 

In our case the random effect accounts for all 
implicit differences between sites, provenances 
and methods etc. associated with the sample 
material and sites of different studies that are not 
represented by any specific predictors. Besides the 
grouping of variances according to studies there is 
potentially also a grouping according to stands. In 
addition to the presented results we tried to fit 
two-level mixed models to account for this 
additional grouping level. However, the highly 
unbalanced design of the data, i.e. several studies 
include only one stand, and the differences in 
variances of random effects between the studies 
caused problems in the numerical algorithm to fit 
the two-level mixed model and we concluded that 
the available data was not sufficient to account for 
groupings at both the stand- and the study-level at 
the same time. Diagnostic graphs of stand level 
random effects and study level random effects 
showed that groupings according to studies were 
much more pronounced than groupings according 
to stands. In the presented approach the stand-
level differences are partly accounted for by the 
study random effect. This approach can be seen as 
a pooling of the comparatively similar stands of 
each study in order to obtain enough within-group 
cases. 

It shall be noted that the equations for the 
different compartments are based on different 
subsets of the whole dataset. Hence, we separately 
fitted the models for the different biomass 
compartments and the derived biomass equations 
are not additive (Lambert et al. 2005, Parresol 
2001).  

Definition of the candidate model set 
In order to find an appropriate model, we 
compared 246 models for each biomass 
compartment by the Akaike information criterion 
(AIC) (Akaike 1987). Figure 3 summarizes the 
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different dimension of constructing the candidate 
model set.  

First, we tested which coefficients ( sc ) 
differed randomly by study. We fitted the models 
(eqs. 1..3) with all 8 combinations of random 
effects (either eq. 4a or eq. 4b) for the model 
coefficients and compared model performance by 
AIC. The non-linear fixed or mixed-effects model 
after this step is called the ‘best dh-model’. In 
some cases with random effects in three or two 
coefficients the model fitting algorithm did not 
converge. We excluded these cases from the 
candidate model set. 

Second, we included covariates in the model 
coefficients (eq. 4c). To reduce the number of 
possible combinations and to avoid overly 
complex models we constructed our candidate 
models according to the following three rules: (1) 
Higher-order polynomial terms for any of the 
covariates were avoided because such models are 
difficult to extrapolate. (2) A covariate effect was 
added to a coefficient sc  only if the same 
covariate effect was not already associated with 
another coefficient. This was done because 
including covariates on correlated coefficients 
caused unrealistically high counteracting effects 
(e.g. c0 strongly increases with age while c2 
decreases with age). (3) Covariates were added to 
either c1 or c2 , in the dh3 model form (eq. 3) 
because diameter and height were highly 
correlated and the AIC hardly changed when the 
covariate was included in either one of the two 
coefficients. If the dh-model with random effects 
in c0 and c2 resulted in a better AIC than the dh-
model with random effects in c0 and c1, we 
selected c2 else c1. In total, this led to 41 
combinations of the terms in eq. 4 across the three 
coefficients. Finally, the resulting best model, 
which included the random effects from the first 
step, was compared to the models with covariates 
but with fewer random effects. We call the 
resulting best model after this step the ‘best dhc-
model’.  

Third, we assessed if including a study 
dependent formulation of the residual variance 

increased model performance by replacing eq. 6 
by eq. 7.  

The model fitting was done using the nlme 
and the gnls functions using a general positive-
definite variance-covariance matrix using 
Maximum Likelihood (ML) method for model 
selection. The resulting best models were refitted 
using the REML method to improve estimates for 
the variance components. We used R-nlme library 
version 3.1-66 (Pinheiro and Bates 2000). 

Calculation of Confidence intervals 
We computed symmetrical 95% confidence 
intervals around single tree biomass predictions 
with width )(96.1295 newcf mVarw ⋅⋅= . The 
variances of the predictions were computed by eq. 
A1.2 and the residual variance component 

)( newVar ε  was determined by eq. A1.5. A 
numerical example for the tree-level calculation is 
given in Appendix A3.  

At aggregated level the 95% confidence 
intervals around the biomass predictions were 
calculated with the same equation as for the tree 
level. However, the variance of the prediction 
error of the sum of the biomass of several trees 
has to include covariances between the single tree-
level predictions errors (eq. A2.1 and eq. A2.3). 
The covariance between predictions errors of two 
trees explicitly depends on the predictors and 
covariates of the two trees (eq. A2.2). All 
calculations were programmed with the statistical 
software R1. The calculation of variance at the 
stand level was exemplified2 using data of an 
inventory of a chronosequence of shelterwood 
beech forests in Thuringia, Germany (Mund 
2004)3.  

Cross validation and comparison to 
previously published biomass 
functions 
The validity of the presented model and its 
performance in comparison to published studies is 
demonstrated using cross validation (Davison and 
Hinkley 1997).  This was done by comparing the 
predictive performance of a range of published 

                                                      
1 www.r‐project.org. The programmed R‐model objects, 
including variance‐covariance matrices, derivative 
functions, and additional functions to apply prediction 
and uncertainty calculation at tree and stand level are 
provided as supplementary material S5 

2 R‐code is provided with electronic supplementary 
material S6. 

3 Details of the inventory are provided with electronic 
supplementary material S1. 

• d2,dh2,dh3: basic model forms (eqs. 1..3) 
• ran: inclusion of study random effects in 

model coefficients ( isss bbb ,int, += ) 

• c: inclusion of covariates in model 
coefficients (eq. 4)  

• ranres: inclusion of a study effect in the 
residual model (eq. 7 instead of eq. 6) 

Figure 3 Dimensions of the candidate model set. 
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functions with the results of the cross-validation 
of our generic functions.  In the cross validation 
the observations that were used for validation 
were not used to fit the model,  i.e. the biomass of 
a tree from a given study was predicted with our 
generic model, but the  parameterization of the 
respective model was based only on the data of all 
other published studies. For each model we 
calculated the root mean squared error (RMSE) 
with the modification of applying a weighted 
mean. The weights were the inverse of the square 
root of the expected variance according to eq. 
A1.5. 

Results 

Comparison of the models without 
additional covariates 
The three-parameter model dh3 (eq. 3) fitted the 
data best for most compartments (see Table 3 for 
the example of stem biomass4). Only for the stem 
and timber biomass, the dh2-model (eq. 2) and for 
the root biomass the d2-model (eq. 1) showed 
similar or better performance. In all cases, the 
inclusion of parameters that allow the variance to 
differ between studies (eq. 7) resulted in the 
largest improvement of model performance. In 
comparison, the mere inclusion of random 
components into the model coefficients improved 
the model performance only slightly for the 
compartments stem, branches, roots, and leaves. 
However, it did not improve the model 
performance at all for the compartments above-
ground wood and timber. The coefficients of the 
best dh-models are listed in Table 4. 

                                                      
4 For other compartments see electronic supplementary 
material S2 

Effect of additional covariates 
The inclusion of the additional covariates age, site 
index, or altitude improved the model 
performance in all cases (see Table 3 for the 
example of stem biomass5). The highest 
improvement was achieved for the compartments 
above ground wood, branches, brushwood, and 
leaves (Fig 4; compare neighboring graphs). The 
coefficients of the best dhc-models are listed in 
Table 5. We will come back to the magnitude and 
sign of individual coefficients and their 
interpretation in the Discussion section.    

Variance of predictions  
The estimated parameters that are needed to 
calculate the residual variance (eq. A1.5) are listed 
in Table 6. The standard deviations of the random 
effects with the dhc-models in Table 6 were 
smaller compared to the ones of the corresponding 
dh-models. This indicates that a large part of the 
variance that was previously accounted for in the 
random effects component was now accounted for 
by the covariates. 

The 95% confidence intervals of several single 
tree biomass predictions by the best dh-models 
(Table 4) and dhc-models (Table 5) are shown in 
Fig. 4. In all cases, the width of the confidence 
intervals strongly increased with the size of 
predicted biomass. This represented the increasing 
variability in the observed biomass that was 
modelled with a power model (eq. 6 or 7 
respectively). The amount of prediction variance 
differed considerably between the different 
compartments. The confidence intervals for above 
ground wood biomass and timber are 
comparatively narrow (both have a coefficient of 
variation cv = 12% for tree age of about 70 years). 
However, confidence intervals of single tree 
biomass predictions of branches, root, and leaves 
are very wide (cv = 59%, 35%, and 49% 
respectively). The inclusion of additional 
covariates in the models resulted in narrower 
confidence intervals in most cases (compare 
neighbouring graphs in Fig. 4). However, the 
confidence intervals for branches and leaves were 
still comparatively wide (cv = 45% and 43%). 
Inclusion of additional covariates also accounted 
for a large part of the variance that, before, in the 
dh-models was attributed to unknown random 
effects between the studies (see background bars 
in Fig. 4).  

                                                      
5 For other compartments see electronic supplementary 
material S2 

Table 3: Comparison of the model forms and 
inclusion of random components by AIC for stem.  
Kind of Model AIC degrees of freedom 

dh3_c_ran_ranres 1507.3 17 
dh2_c_ranres 1509.0 16 
dh2_ran_ranres 1512.8 15 
dh3_ranres 1538.3 13 
dh3_c_ran 1567.2 9 
dh3_ran 1571.3 8 
dh2_c 1596.5 7 
dh2 1623.6 4 
 dh3,dh2,d2: basic model forms (equations 2..4), c: 
covariates included, c ran: random effects included,  
ranres: model of residuals includes study dependence. 
results of the other compartments are given in 
electronic supplement S2 (Fig. 3) 
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The biomass equations were developed at tree 
level. However many applications make inference 
at the aggregated level, e.g. stands, by taking the 
sum of predicted biomass of all trees. At the stand 

level, the confidence intervals were much 
narrower (Fig. 5) (cv = 2.5%, 2.9% for above 
ground wood and timber) compared to the 
corresponding confidence intervals at the tree 

Table 4: Regression coefficients (βi) and their standard errors in brackets of the best models of diameter 
and height (dh-models, eq. 1..3, with coefficients as in eq. 4b). 
Compartmenta Form β0 β1 β2 

agr dh3 ranres 0.0523 (0.00330) 2.12 (0.0225) agr 
stem dh2 ran_ranres 0.0293 (0.00406) 0.974 (0.0163) stem 
branches dh3 ran_ranres 0.123 (0.0296) 3.09 (0.107) branches 
timber dh3 ranres 0.00775 (0.00125) 2.11 (0.0406) timber 
brushwood dh3 ran_ranres 0.466 (0.0862) 1.85 (0.100) brushwood 
root d2 ran_ranres 0.0282 (0.00263) 2.39 (0.0467) root 
leaves dh3 ran_ranres 0.0377 (0.00686) 2.43 (0.0817) leaves 
a This table is also available with electronic supplementary S2. Empty cells denote the term to be not included    
 
Table 5: Regression coefficients and their standard errors for the models that include additional 
covariates (dhc-models, eq. 1..3, with coefficients as in eq. 4c).  

Compartment agr stem branches timber brushwood root leaves 

Form dh3 dh3 dh3 dh2 dh3 d2 dh3 
 ran_ranres ran_ranres ran_ranres ran_ranres ranres ranres ranres 
β0 0.0551 

(0.00463) 
0.00351 

(0.00704) 0.122 (0.0294) 0.0106 
(9.43E-04) 0.805 (0.159) 0.0292 

(0.00225) 0.0561 (0.00882) 

β1 2.11 (0.0242) 1.84 (0.0333) 3.09 (0.106) 1.08 (0.00795) 1.83 (0.113) 1.70 (0.0792) 2.07 (0.0770) 
β2 0.589 (0.0427) 1.04 (0.0548) -0.151 (0.304)  -0.560 (0.149)  -1.09 (0.112) 

βs,age s=2: 4.06E-04 
(1.07E-04) 

s=0: 3.47E-05 
(2.43E-05)   s=1: 0.00134 

(3.03E-04) 
s=0: 4.36E-05 

(1.65E-05)  

βs,si s=0: 2.39E-04 
(8.15E-05) 

s=0: 6.72E-04 
(2.38E-04) 

s=2: -0.0309 
(0.00783)   s=1: 0.0209 

(0.00387) 
s=1: 0.0137  
(0.00192) 

βs,alt s=0:-4.68E-06 
(1.39E-06) 

s=0: 8.11E-06 
(2.77E-06) 

s=2:-9.87E-04 
(2.58E-04) 

s=0:-1.54E-06 
(5.84E-07) 

s=1:-1.68E-04 
(5.26E-05) 

s=1: 7.43E-04 
(1.72E-04) 

s=0: -3.29E-06  
(3.62E-06) 

βs,si.alt 
  s=2: 3.06E-05 

(1.08E-05)   s=1:-2.70E-05 
(8.55E-06)  

a, see Table 4, see appendix A3 for an example of constructing the full equation. 
 

Table 6: Uncertainty coefficients of the best models.  
 Compartmenta Form σ² b Mean(δi) c Var(δi) sd(b0,i) d sd(b1,i) sd(b2,i) 

dh
-m

od
el

s 

agr dh3 0.166 0.770 0.00965       
stem dh2 0.0708 0.873 0.0177 3.47E-07 0.0176   
branches dh3 0.249 0.863 0.0274     0.132 
timber dh3 1.29 0.614 0.0104       
brushwood dh3 0.149 0.979 0.00448   0.0811   
root d2 0.0432 0.902 0.118   0.0660   
leaves dh3 0.179 0.854 0.117 0.00882     

dh
c-

m
od

el
s 

agr dh3 0.142 0.782 0.00912       
stem dh3 0.0903 0.842 0.0196 0.00316     
branches dh3 0.250 0.860 0.0260     0.0690 
timber dh2 1.29 0.615 0.00779       
brushwood dh3 0.191 0.935 0.00434   0.0661   
root d2 0.0410 0.874 0.185       
leaves dh3 0.174 0.858 0.121       

a seeTable 4; The estimated covariance matrices of the fixed and the random effects are provided with electronic supplementary S4 
in csv format, bσ: base variance   cδi: power of variance for study i, dsd(bs i): estimated standard deviation of the random coefficients
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Figure 4 Tree-level predictions and 95% confidence intervals of the best dh-models (left) and dhc-models (right) 
for each biomass compartment, respectively. The bars in back represent the proportions of the different variance 
components (residual, random effects and fixed effects variance). The predictors site index and altitude were kept 
constant (si = 30m, alt = 470m). The predictors height and age were chosen to be consistent with the site index and 
the diameter. 

Agr

40 69 120 140 164
0

100
200
300
400

Stem

40 69 120 140 164
0

100
200
300
400

Branches

40 69 120 140 164
0

20
40
60
80

100

Timber

40 69 120 140 164
0

100
200
300
400

40 69 120 140 164
0

100
200
300
400

40 69 120 140 164
0

100
200
300
400

40 69 120 140 164
0

20
40
60
80

100

40 69 120 140 164
0

100
200
300
400

Brushwood

40 69 120 140 164
0

10
20
30
40
50
60

Root

40 69 120 140 164
0

20

40

60

80

Leaves

40 69 120 140 164
0
1
2
3
4
5

Chronosequence Geney (Age[yr])

S
ta

nd
 B

io
m

as
s 

[t/
ha

]

Residual Variance
Random Effects
Fixed Effects

Contribution on
 total Variance

40 69 120 140 164
0

10
20
30
40
50
60

40 69 120 140 164
0

20

40

60

80

40 69 120 140 164
0
1
2
3
4
5

 
Figure 5: Predictions and 95% confidence intervals of the best dh-models on the left and the best dhc-models on 
the right for biomass predictions at the stand level for 5 stands of a shelterwood chronosequence. The bars in back 
represent the proportions of the different variance components as in Fig. 4.   
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level (Fig.4). The effect of wider confidence 
intervals for higher biomass predictions was still 
present, but not as pronounced as with the single 
tree biomass predictions. The relative contribution 
of model residuals to total variance was much 
smaller (background bars in Fig. 5). The decrease 
in total variance upon inclusion of covariates was 
much stronger than at the tree-level (cv = 
34% 20%, 18% 8%, and 20% 10% for 
branches, root, and leaves, respectively, at stand 
age 69 years).  

The different model forms are compared 
exemplarily for stem biomass at tree level in Fig. 
6. The predictions were very similar for average 
covariate values. However, the variability between 
studies added uncertainty to the biomass 
prediction. The mixed-effects dh-model accounted 
for these differences by random effects, which 
resulted in a wider confidence band. The mixed-
effects dhc-model explained these differences in 
part by additional covariates and the width of the 
confidence band was smaller than without 
covariates. The fixed effects model neglected the 
inter-group variability and underestimated the 
variance. Hence, the confidence band for the dh-
fixed effects model was too narrow. However, this 
underestimation of variance due to ignoring 
differences between studies was small compared 
to ignoring covariances between single tree 
prediction errors at stand scale (Fig. 7). 

Cross Validation 
The advantages of generic models of the dh- and 
dhc-type can be evaluated by comparison with 
other published beech biomass functions for 
Central Europe that are based on far smaller data 
sets. The stem biomass predictions of the cross 
validation of the dh-models (including only 
diameter and height as predictors) were very 
similar to the predictions of the previously 
published equations by Ciencala et al. (2006) and 
Bartelink (1997) across the range of sizes (Fig. 
8a). For our generic functions, the inclusion of 
additional covariates in the dhc-model improved 
the model fit slightly (weighted RMSE decreased 
from 21 to 18 kg). For foliage biomass, however, 
the larger dataset and the inclusion of covariates 
led to a more pronounced improvement of the 
model fit and a reduction of estimated biomass 
(Fig. 8b) in comparison to the predictions 
according to Bartelink (1997) and Le Goff and 
Ottorini (2001). 

Discussion 
Our study provides the first comprehensive set of 
functions for predicting biomass for Common 

beech in Central Europe for all major tree 
compartments. Combining original tree biomass 
data from many sites across Central Europe, 
which varied in climate and soil characteristics, it 
was possible to develop generic equations that are 
representative for the great majority of beech sites 
in the study region. However, the obvious 
advantages of combining data from various 
sources comes at the cost of data heterogeneity, 
which can only be appropriately dealt with by 
using non-standard statistical methods (Bates and 
Watts 1988, Wirth et al. 2004b). We used non-
linear mixed-effects models (Pinheiro and Bates 
2000) that have been successfully applied in 
forestry studies for trunk circumference 
(Lindstrom and Bates 1990), tree height (Calama 
and Montero 2004, Calegario et al. 2005, Fang 
and Bailey 2001, Hall and Bailey 2001), stand and 
bole volume (Fang et al. 2001, Gregoire and 
Schabenberger 1996, Zhao et al. 2005), yield (Hall 
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Figure 6: 95% confidence intervals of stem biomass
for different forms of modelling variation between
groups. Predictors site index and altitude were given
intermediate values (si = 30m, alt = 470m). The
predictors age, diameter and height were chosen to
represent typical values for these conditions from the
dataset of sample trees.  
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and Clutter 2004), and biomass (Wirth et al. 
2004b). Using non-linear mixed models allowed 
us to propagate different sources of variance and 
to analyse the structure of variance when scaling 
up from tree-level to aggregated level. 

Our study illustrates the continuum between 
fixed and random effects models. When we 
compare models with and without additional 
covariates (dh and dhc-models),  the contribution 
of the random effects to the total variance was 
much smaller in the dhc-models than in the dh-
models (Figures 4 and 5). The effects of the 
covariates were formerly accounted for in part by 
the random effects in the dh-models. This finding 
corroborates the finding of Fang et al. (2001), 
where the inclusion of the predictor dominant 
height accounted for the differences between 
stands, that were formerly accounted for by 
random effects. The effect of covariates was less 
pronounced for the biomass compartments branch, 
brushwood, and stem biomass (Fig. 4). We 
hypothesize, that this is in part caused by the 
subjectivity involved in the separation of the stem 
and branch compartment and that thus there are 
inherently large differences between studies that 
are not due to environmental conditions but 
unknown differences in sampling protocols of 
different teams. This is confirmed by the fact that 
the random effects almost disappear for the sum of 
the two compartments (above ground woody 
biomass). In this context it is important to realize 
that the inclusion of covariates is only possible if 
– as in our case – data from many stands covering 
a range of ages and site conditions are pooled.  

We generally observed that the random effect 
of the variable ‘study’ was small for biomass of 

stem, timber and above ground wood (Tables 4 
and 5). This indicates that study-specific effects 
are relatively small compared to the dominating 
effect of the predictors diameter and height. 
Hence, the predictions of stem biomass did not 
vary much when we compared equations from 
different studies (Fig. 8a).  However, we observed 
that models accounting for grouping effects in the 
residual variance performed better (eq. 7, Table 
3). This implies that although the mean prediction 
was similar, the estimated variance of the biomass 
did vary between studies. The data, which were 
used in our study, do not allow us to distinguish 
whether this was an effect of differences in the 
sampling scheme between the studies, or a real 
effect of differences in growth variability between 
the studies. For other tree compartments, the 
random effects associated with the study were 
larger. Hence, for a specific new inventory, the 
biomass predictions will be more strongly biased 
towards the mean across studies. If a few 
additional biomass measurements for the new 
inventory are available it is possible to estimate 
the specific values of the random effects (e.g. 
Nothdurft et al. 2006). However, in most 
applications additional measurements of tree 
biomass compartments are too expensive. Lappi 
(1991) provides methods to estimate the values of 
the random effects of linear mixed-effects models 
for volume equations by related equations that 
require only diameter and height measurements. 
To develop similar related equations for the non-
linear tree biomass equations presented here is 
beyond the scope of this paper and warrants 
further study.   
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Figure 8 Predictions of the models fitted in the cross validation of  a) stem and b) leaves biomass and comparison

to previously published biomass functions. 
1.2621.951

stem 0.0109  hdm ⋅⋅=  (Bartelink 1997) 
084105320140 ..

stem hd. m ⋅⋅=

(Cienciala et al. 2006). 
1011951201670 .-.

leaves hd.  m ⋅⋅=  (Bartelink 1997) ( )( )d. +.- mleaves ln1935285994exp ⋅= (Le Goff
and Ottorini 2001). Values in brackets indicate the variance weighted RMSE.  
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Applying biomass functions from a single 
study outside the reference area will inevitable 
ignore the site influence on biomass allocation 
patterns (see discussion below) and will also 
underestimate variance (Fig. 6). This is, because 
the biomass function does not account for the 
differences between the studies, neither implicitly 
by random effects nor explicitly by covariates. 

In the statistical analysis we assumed that the 
measurement error of the predictors does not 
have a profound effect on the estimation of the 
model coefficients (Table 5). Diameter, height, 
stand age, and altitude have been measured with 
high precision at the considered studies. For the 
covariate site index, which was in some cases 
estimated by age and height, we performed a 
Monte Carlo study for the above ground biomass 
where we varied the site index randomly with a 
standard deviation of ±1m and re-fitted the best 
dhc-model. The additional uncertainty introduced 
in the estimates of the model coefficients ranged 
only from 3%  to 24% of the standard errors in 
Table 5 for the for coefficients β1 and β0.si 
respectively.  Hence, we conclude that the 
uncertainty in predictor site index has a 
sufficiently small effect on the results and does 
not change our interpretations. 

Although certainly not all features of the 
models can be readily interpreted, some obvious 
biologically plausible patterns emerged that can 
be related to well-known allocation patterns thus 
increasing our confidence in the model 
predictions. 

The three parameter model fitted the data of 
most biomass compartments best (Table 3). The 
better performance of the dh-models showed that 
the parameter tree height is an important 
additional predictor of biomass as observed in 
other studies for beech (Cienciala et al. 2006, 
Joosten et al. 2004, Zianis and Mencuccini 2003) 
as well  as in studies of other species (Cienciala et 
al. 2006, Montagu et al. 2005). However, tree 
height did not significantly influence root 
biomass, as indicated by the best performance of 
the d2 model form (eq. 1). This corresponds to 
findings for Norway Spruce (Wirth et al. 2004b).  

The parameter β2 associated with the predictor 
tree height was negative for all crown 
compartments. This means, that (at a given 
diameter) higher trees tended to have a lower 
biomass of crown compartments. We think that 
this is most likely due to the fact that individuals 
with a high h/d-ratio tend to be suppressed trees 
with an elevated allocation to stem growth at the 
expense of allocation to crown biomass (Nilsson 
and Albrektson 1993, Vanninen et al. 1996, Wirth 

et al. 2004b). Negative values of β2 have also been 
observed in a similar study on Norway spruce 
(Wirth et al. 2004b)     

At a given diameter and height stem biomass 
increased with stand age in the best dhc-model. 
This may be related to a negative correlation 
between wood density and ring width (Bouriaud et 
al. 2004). At a given diameter and height older 
trees have more and thus smaller tree rings. This 
implies a higher wood density and hence higher 
biomass. The fact that the best model included 
also the site index and altitude as covariates with 
positive coefficients suggests additional 
environmental modulation of wood density that 
warrants further investigation.  

Biomass equations are usually applied to make 
inferences at the aggregated level. For up-scaling, 
the sum of the biomass predictions of many single 
trees, e.g. within one stand, is calculated. When 
calculating the variance of the sum, prediction 
errors of the single trees are usually regarded as 
independent of each other for simplicity sake. 
Instead, our statistical approach accounts for 
covariances between prediction errors for several 
trees. The residuals of different trees are still 
considered independent. However, biomass 
predictions based on uncertain model coefficients 
deviate from the prediction that would result if the 
true (but unkown) model coefficients were used. 
The deviations of the predictions have the same 
direction for similar predictor values and therefore 
have a positive covariance (for a more formal 
description see Appendix A2). This issue is 
independent of using fixed-effects models, single-
level random-effects models or multi-level mixed 
effects models. We showed how much the 
variance of biomass predictions at the aggregated 
level is underestimated when covariances between 
single tree-prediction errors are neglected (Fig. 7). 
This was already shown by exploring different 
assumptions about the covariances (Lehtonen et 
al. 2007, Lehtonen et al. 2004), however we 
provide the approach to actually quantify the 
covariances.  

Further, we demonstrated that the reduction of 
variance upon scaling from tree level to 
aggregated level depends on the partitioning of 
variance. When differences between studies were 
represented explicitly by additional covariates 
instead of random effects, the relative contribution 
of fixed and random effects to total variance on 
tree level decreased (Fig. 4 background bars). 
Because of the linear scaling of the residual 
variance with the number of trees, the coefficient 
of variation (cv) of the predicted biomass at the 
stand level decreases with the square root of the 
number of trees if trees are regarded independent. 



 II/13

However, variance attributed to the uncertainty of 
fixed and random effects scale in a quadratic 
manner with the number of trees (Appendix A2), 
these partitions of variance became much more 
important at aggregated level. Hence, the 
decreased contribution of fixed and random 
variance at tree level with the inclusion of 
additional covariates led to a large decrease of 
total variance at aggregated level (Fig. 5 
background bars). This finding highlights the 
importance to factor out variance components at 
the original, i.e. not log-transformed, scale. 

Conclusions 
This study presents generic biomass equations of 
seven biomass compartments for beech trees in 
Central Europe. A meta-analysis of biomass 
measurements of 443 trees of 76 sites from 13 
studies across Central Europe enabled the 
assessment of the effect of the covariates age, site 
index, and altitude on tree biomass. Further, our 
study illustrates for the first time the importance 
of separating variance components (residual, 
fixed, random) in the context of scaling up 
uncertainties from tree to the aggregated level. 
• Leaves and branch biomass prediction varied 

considerably across Central European studies. 
Using our large dataset for calibration 
improved model performance most for these 
compartments in comparison to previously 
published functions. Stem and above ground 
biomass did not vary this much, but still model 
performance slightly improved. 

• In addition to mean predictions, also the 
variability of tree biomass differed between 
studies in Central Europe. Biomass functions 
based on a data set of a single study, did not 
account for the implicit differences between 
studies. Hence, using these functions outside 
the calibration area underestimates the variance 
of the prediction error for new biomass 
predictions. 

• The covariates age, site index, and altitude 
modulated the effect of diameter and height. 
These additional variables accounted for a 
large part of the differences in biomass 
predictions between studies, which were 
otherwise accounted for by the random effects. 
Hence, the inclusion of these covariates 
increased model performance for several 
biomass compartments and reduced prediction 
variance. 

• The predictions errors of trees are correlated, 
because of uncertain model coefficients. 
Neglecting these correlations when scaling up 
biomass to aggregated level underestimates 

prediction variance significantly. We 
developed equations and tools to quantify the 
covariances between single tree prediction 
errors as well as for up-scaling. 
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Appendix A1: Variance of single predictions 
The prediction newy  for a predictor vector xnew, covariates newν  and an unknown group was done by 
applying the model formula to the vector of new predictors assuming zero random effects (expected 
value) and zero residual term.  
In order to estimate the variance of the error of the non-linear prediction, we approximated the non-linear 
function f in equation 1 by its first order Taylor expansion in the parameter space around the estimated 
parameters  β̂  and 0=b   (eq. A1.1) (Gregoire and Schabenberger 1996).   
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derivates evaluated at the estimated parameters β̂ , 0=b , and the values of predictors and covariate for 
the new observation. 
Equation A1.1 describes the prediction that uses the true parameters β , and newb by a prediction that 

uses the modified parameters β̂  and 0=b  plus some deviation depending on the model parameters 
and the predictors. With this approximation the variance of the error of a non-linear prediction evaluates 
to eq. A1.2. 
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Estimates for the unknown true covariance matrices ( )β̂Var  and Ψ as well for the residual variance 2σ  
are obtained as a by-product of the numerical optimization algorithm used for REML estimation of the 
unknown parameters. The three terms of eq. A1.2 correspond to three components of variance, first the 
fixed effects, second the random effects, and third the residual variance. 
To account for variance heterogeneity within groups, we modeled the residual variance as a power 
function of the predicted values (eq. A1.3). 
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22
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If the coefficient δ of the power variance model additionally depended on the particular group ( iδδ → ), 
the parameter δi for a new prediction was unknown because the group of the new prediction was 
unknown. The best estimate for the new prediction is the mean iδ̂ of the estimate for parameters δi. 
However, the mean-function appears in a non-linear term and a correction factor has to be applied. The 
general form of the expected value of a non-linear eq. ( )xfy =  obtained by the delta-method is eq. 
A1.4 (Hilborn and Mangel 1997 p.58). 
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Appendix A2: Variance of the sum of predictions  
Many applications of statistical models calculate the sum of several individual predictions that originate 
from the same group (e.g. sum of biomass of individual trees measured by the same team with the same 
measurement procedure). The expected value of the sum of n predictions is simply the sum of the single 
expected values, i.e. model predictions. However, the variance of the sum of prediction errors has to 
account for covariances between the individuals. The variance of the sum of prediction errors is given by 
eq. A2.1 
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where ( )kkjj yyyyCov ˆ,ˆ −−  denotes the covariance between the errors of the individual prediction for 
the new observations j and k. 
In the following we derive the covariance between two prediction errors for predictions based on model 
of eq. 5 within the same group i. With approximating model eq. 5 by its first order Taylor expansion (eq. 
A1.1) around  β̂  and 0=b   we derive eq. A2.2. 
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where 1,newu , 2,newu , 1,neww , and 2,neww are vectors of partial derivates as explained with eq. A1.1. 

Estimates for the unknown true covariance matrices ( )β̂Var  and Ψ  are obtained as a by-product of the 
numerical optimization algorithm.  
If the two observations were of different groups, i.e. trees of different regions and measured by different 
teams, the covariance in prediction errors due to random effect would be zero, i.e. 

( ) 0, 2,2,1,2, =new
T
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T
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Now we are ready to calculate and interpret the variance of a sum of prediction errors of model eq. 5. 
Inserting eq. A2.2 into eq. A2.1 leads to eq. A2.3.  
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Similar to the variance of single predictions (eq. A1.2), eq. A2.3 is composed of the three terms of the 
components of variance (fixed, random, and residuals). However, the residual variance occurs in a 
simple sum over all individuals, whereas the fixed and random terms occur within a sum of sums. Hence 
the residual variance increases linearly with the number of individuals, whereas the random and fixed 
components of variance increase quadratically with the number of individuals.  
The covariance terms in eq. A2.3 can be negative. Hence, they potentially cancel out each other. 
However, individuals of the same group often have similar predictor values and have positive 
covariances. 
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Appendix A3: Application example 
In the following example, we demonstrate how to use the presented models and equations to calculate a 
new prediction for stem biomass and its confidence interval for a single tree with diameter (d = 18.8 cm), 
height (h =16.9 m) age (age = 40 years), site index (si = 30 m), and altitude (alt = 470 m). Consequently, 
we choose the dhc-model, because all the additional covariates are known. The label dh3 in table 5 
indicates that the basic model form is 21

0
cc

new hdcm =  (eq. 3). Site index, age, and altitude affect the 
coefficient c0, and table 6 indicates that the model includes also random effect in c0: 

altsiagebc altsiagei ⋅+⋅+⋅++= ,0,0,0,000 ββββ  (eq. 4c). The other coefficients do neither include covariates 
nor a random effect. Hence the full equation of above ground biomass for tree j is given by eq. A3.1. 
 [A3.1] ( ) ( ) ( ) ( )21

,0,0,0,00;,,,, ββββββ hdaltsiagebbaltsiagehdfm altsiageiNew ⋅+⋅+⋅++==  

Hence, with setting the random effect ib ,0  to its expected value 0 for a general prediction, the stem 
biomass computes to (0.00351 +0 +3.47E-05*40+6.72E-04*30 +8.11E-06*470) *18.8^1.84 *16.9^1.04 
= 121 kg. The variance of the prediction error is estimated according to eq. A1.2 and A1.5 as 
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Where f is given by eq. A3.1, ( )β̂Var  is the estimated 6x6 covariance matrix the estimated fixed effects, 
Ψ  is the 1x1 random effects covariance matrix6. The values of the coefficients of the third term are given 
in Table 6. A symmetric 95% confidence interval around the prediction is calculated using the quantile of 
the standard normal distribution as )ˆ(96.1 newmVar⋅± . This becomes 54.7 kg and the 95% confidence 
interval ranges from 68 kg to 177 kg. 
We provided R-objects7 of all the best models together with coefficients, gradient functions, the fixed 
and random effects covariance matrices and functions to calculate the variance of single tree biomass 
predictions (nlVar). The results of this example are simply obtained with the R-Command: 
“nlVar(dhcme.beech$stem, data.frame(dbh=18.8, height=16.9, age=40, si=30, 
alt=470), pred=TRUE)”. 
Similarly, for a group of trees the predicted biomass and the variance of the prediction error are simply 
obtained with the provided R-function nlCovar8. 
 

                                                      
6 Both matrices are made available with electronic supplementary material S4 
7 Electronic supplementary material S5 
8 An example of calculating biomass and prediction variance at stand level is in electronic suppl. material S6 
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Modelling Mean Above and Below Ground Litter Production Based 
on Yield Tables 

 
Abstract Estimates of litter production are a 
prerequisite for modeling soil carbon stocks and 
its changes at regional to national scale. However, 
the required data on biomass removal is often 
available only for the recent past. In this study we 
used yield tables as a source of probable past 
forest management to drive a single tree based 
stand growth model. Next, simulated growth and 
timber volume was converted to tree 
compartment carbon stocks and biomass 
turnover. The study explicitly accounted for 
differences in site quality between stands. In 
addition we performed a Monte-Carlo uncertainty 
and sensitivity analysis. We exemplify the 
approach by calculating long-term means of past 
litter production for 10 species by using yield 
tables that have been applied in Central Germany 
during the last century. We found that litter 
production resulting from harvest residues was 
almost as large as the one from biomass turnover. 
Differences in site quality caused large 
differences in litter production. At a given site 
quality, the uncertainty in soil carbon inputs were 
14%, 17%, and 25% for Beech, Spruce, and Pine 
stands, respectively. The sensitivity analysis 
showed that the most influential parameters were 
associated with foliage biomass and turnover. We 
conclude that rates of mean past litter production 
and their uncertainties can reliably be modeled on 
the basis of yield tables if the model accounts for 
(1) full rotation length including thinning and 
final harvest, (2) differences in site quality, and 
(3) environmental dependency of foliage biomass 
and foliage turnover. 
 
Keywords soil carbon, yield table, litter 
production, biomass turnover, harvest residues, 
thinning, Spruce, Beech, Pine, uncertainty, 
sensitivity analysis, forest management 
 

Introduction 
Estimates of litter production are a prerequisite 
modeling forest soil carbon stocks and its 
changes. Most dynamic soil carbon models of 
mineral forest soils are driven by carbon inputs 
from plant litter production, which is usually 
estimated by forest inventories (de Wit et al. 
2006, Liski et al. 2006, Ågren et al. 2007). The 
combination of forest inventories and modeling is 
a viable option to compile soil carbon stock 
changes from regional to national and global 
scales (Peltoniemi et al. 2007). Models, which 
allow for reliable estimates of changes in soil 
carbon stocks at different spatial scales, are of 
particular interest, because they could be used for  
national annual greenhouse gas reports according 
to the UN Framework Convention on Climate 
Change and the Kyoto Protocol (UNFCCC 1997). 
An additional important use case of estimates of 
litter production baselines is to infer the 
sustainability of intensively managed energy 
plantations with respect soil carbon protection 
(Reijnders 2006). The derivation of long-term 
mean litter input rates requires data on forest 
biomass and on past forest thinning operations 
and harvest. For many regions, these data are 
available for the recent past only. A model for 
forest timber volume, yield and growth under 
defined site conditions and a defined management 

List of Symbols 

dbh diameter at breast height (1.3m)  

h tree height (m) 

si site index (m) 

ς stem wood density (t/m³) 

lP litter production for litter compartment p 
(tC/ha/yr) 

p litter compartment (fine root, foliage, etc.) 

i index of ration periods 

ti length of simulation period i (yr) 

ce carbon per timber volume (tC/m³ dry wood) 

bj regression coefficients 

1Max Planck Institute for Biogeochemistry, Hans-Knöll-
Straße 10, 07745 Jena, Germany 
 
*corresponding author 
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regime is recorded in yield tables, which are used 
in this study as an approximation tool of former 
forest management. 

Yield tables were developed for many 
species, many site classes, and many regions (e.g. 
Tjurin and Naumenko 1956, e.g. McArdle 1961, 
Nishizono et al. 2005). They list expected stand 
characteristics such as tree height, basal area, and 
standing timber volume, as well as proposed 
timber volume of thinning and harvesting for 
several stand age classes and tree species. 
Because of environmental changes over the last 
50 to 60 years some older yield tables do not 
reflect current tree growth (Mund et al. 2002, 
Jandl et al. 2007). However, their common use in 
forestry practice and for forest planning indicate 
their usefulness at least in the past.  

The objective of this study is to demonstrate 
how yield tables can be used to estimate long-
term means of past litter production. This 
proposed methodology is significant for all 
studies on soil carbon balance where no better 
data on former forest management or biomass is 
available. The intended spatial scale is the 
regional level with calculations based on single 
stands or single strata of the forested area. We 
investigate the following questions: (1) How 
relevant is litter production resulting from self-
thinning, precommercial thinning, commercial 
thinning, and final harvest compared to litter 
production resulting from foliage, fine roots, and 
branches turnover? (2) How large is the influence 
of different tree species and of different site 
qualities on the estimates of litter production? 
And (3) how large are the uncertainties of the 
estimates and which factors contribute most to 
them?  

We exemplify the approach using yield tables 
that have been applied to forests in Eastern 
Germany (Nicke 1997) to drive a forest growth 
model and convert simulated timber volume and 
harvest to rates of litter production. Further we 
study the uncertainty of the results and the 
sensitivities to parameters and assumptions.  

Methods 
An overview of the general approach of this study 
is given in Fig. 1. The details are explained in the 
following sections.  

Yield tables and study area 
We used yield tables as a source of data on 
probable past forest management. In general, 
yield tables describe the ‘‘regular growth’’ of 
forest stands for: (1) distinct tree species; (2) 
under constant environmental conditions; (3) 

according to a defined management regime. In a 
first step, we compiled a relational database of 
yield tables, which provides amongst others the 
following attributes.  
• meta information: region, where the data that 

was used to construct the table data was 
collected, genus and species, and citation 

• absolute site index: the expected height of 
trees (m) at stand age 100 years (Kramer and 
Akça 1995) 

• stand attributes: stand age (yr), dominant 
height (m), basal area (m²), tree number per 
hectare (1/ha), and timber volume (m³/ha), 
quadratic mean of tree diameters at breast 
height (dbh) (cm), and stand height (m) 

The database currently contains 228 yield tables 
out of 49 yield table collections. Each yield table 
collection contains several tables corresponding 
to different site qualities. Site quality is expressed 
by the site index as defined above. In this study 
we used yield tables that have been applied in the 
past in Eastern Germany (Table 1). Hence, the 
study area of the application example is defined 
by the set of stands, where these yield tables have 
guided the management, which comprises most of 
the forest area of Eastern Germany. The approach 
of inferring biomass removal by yield tables can 
be extended to other regions in a straightforward 
way, by using the yield tables that have been 
applied in the corresponding region. 

Yieldtable
Manager

Carbon
Calculator

Stand-Growth
Model

Database

Year
Timber Volume of Harvest
Mean of Extracted Diameter

Stand Inventory
Timbervolume of SelfThinning
Timbervolume of Thinning
Timbervolume of Harvest

Litter Production
    by Biomass Turnover [t/ha/yr]

Litter Production
    by Thinning and Harvest Events [t/ha]

Aggregation
   Across Rotation Period

 
 

Figure 1: Overview of modeling mean litter
production by yield tables. Information on forestry
management, as represented by yield tables, and was
used to drive a stand growth model. The model
outputs were used to calculate litter production by
biomass turnover and management operations during
stand growth. Finally, the outputs were aggregated
across one rotation period.  
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Stand development simulations 
Stand development was simulated with the 
TreeGrOSS model (Nagel 1999, Nagel 2003). 
The empirical stand growth model simulates 
diameter and height development of single trees 
and explicitly takes account for competition. By 
these simulated competition indices also self-
thinning is simulated.  
The stand was initialized according to the first 
age that was recorded in the yield table and had a 
tree diameter (dbh) ≥ 7cm. We implemented 
thinning and harvesting operations according to 
the yield tables in the following way. We 
simulated tree growth with environmental 
conditions of the former century, which well 
matched the growth recorded in the yield tables. 
Tree growth was simulated in periods of at most 5 
years. Shorter periods occurred when the time to 
the next date that was recorded in the 
corresponding yield table was less than 5 years. 
We simulated tree dimensions before the growing 
season. In each of these simulation cycles, first 
growth was projected, next self-thinning during 
this period was calculated, and finally thinning 
was applied. Basal area of thinned trees was 
derived by comparing the yield table target basal 
area with the simulated basal area. Type of 
thinning (from above/below/neutral) was 
determined by comparing diameter from yield 
table with the simulated diameter. We assumed a 
clearcut of the stand at the last age that was listed 
in the corresponding yield table. In addition we 
specified the stand age until precommercial 
thinning has been applied by a fraction of the 

rotation period (Table 1). At precommercial 
thinning all biomass is left in the forest, at 
commercial thinning a defined fraction of 
branches and stem is removed from the forest.  

Calculation of litter production by tree 
biomass turnover 
Yield tables and the stand growth model provided 
data on timber volume. Our focus, however, was 
on litter production, which originated from 
biomass turnover of all tree compartments. 
Hence, the timber volume was converted to dry 
timber biomass by species specific basic wood 
densities. Next, biomass of different tree 
compartments were estimated by multiplying 
timber biomass by site and age specific 
conversion factors. For spruce we used the 
functions developed for Central Europe (Wirth 
and Schumacher 2002, Wirth et al. 2004) and for 
pine the functions developed for Finish forests 
(Lehtonen et al. 2004a). For beech, only 
conversion factors for whole tree carbon stock 
were available. Hence, we re-examined the 
dataset of Wirth et al. (2004) to derive expansion 
factors for other tree compartments as well (Table 
2). The factors depend on species, stand age, and 
site quality. Finally, biomass stocks were 
converted to carbon stocks by species specific 
carbon concentrations. Biomass of other tree 
species was calculated using conversion factors 
of either spruce, pine, or beech, but using species 
specific dry wood densities and carbon contents. 
Basic wood densities and carbon contents were 
taken from Weiss et al. (2000). 

Table 1: Yield tables that have been used in this study to simulate standard rotation and litter inputs. Several site 
indices were used. Additionally the table lists the prescribed rotation length and the stand age from which 
commercial thinning with biomass removal was applied. a) taken from (Nicke 1997). b) % of  rotation period 

Tree group  Yield  
(mostly grey literature) 

Site Index [m] Length of 
Rotation 

Period [yr] 

Begin of 
Biomass 
removalb 

Spruce Wenk et al. (1985) (a) 36/30/24 120/120/130 40 

Beech Dittmar et al. (1986)  (a) 36/30/24 160/160/160 40 

Pine Lembcke et al. (1976) (a) 32/26/20 130/130/140 40 

Oak Ertelt (1962) (a) 23.4/20/15.7 200/200/160 30 

Larch Schober R (1987) (a) 34/29.5/25 140/140/140 40 

Douglas fir Bergel (1985) (a) 43.8/38.7/34.1 100/100/100 40 

Linden/Maple Böckmann (1990) 33.5/29.2/23.1 90/120/120 60 

Birch Tjurin and Naumenko (1956) (a) 31.8/25.1/17.1 100/100/90 40 

Ash Wimmenauer (1919) in (Erteld 1962) (a) 29.9 / 24.8 120/120 40 

Poplar Knapp (1973)  in (Autorenkollektiv 
1982) (a) 

37/30.5/24.1 50/50/50 70 
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The above ground litter production was derived 
by multiplying branch and foliage biomass by a 
mean turnover time (Table 3). We did not 
calculate the turnover of stem and coarse root 
because this was accounted for by self-thinning, 
thinning and harvest. The production of below 
ground litter was derived by multiplying the 
above ground litter production by a species 
specific factor (Table 3). For Pine and Spruce 
forests we adapted the factor 1.5 from Ågren et 
al. (2007). We did not find a similar study for 
beech. However, in a first approximation we 
assumed that the soil carbon inputs by litter 
production are balanced by outputs by soil 
respiration, i.e. the storage is very small 
compared to the input/output fluxes. Bowden et 
al. (1993) found that 37% of the annual soil 
respiration of a North American broadleaved 
forest can be attributed to above ground litter and 
30% to belowground litter. A more recent study 
confirms this ratio of about 0.8 of below ground 
to above ground litter production but indirectly 
infers an additional carbon flow from roots to 
rhizosphere (Fahey et al. 2005). Because our 
focus is on soil carbon inputs by litter production, 
we included this flux in the below ground litter 
production and used a ratio of 1.0 for beech.  

Our aim was to come up with a mean of litter 
production across the entire rotation cycle. 
Hence, we aggregated the litter input rates of all 
the simulation periods by Eq. 1. 
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In Eq. 1 the absolute amount of litter production 
for each simulated period i, was calculated by 
multiplying the mean rate of litter production of 

this period ( )ipip ll ,1,2
1

+−  by the length of the 

period it . Finally the sum of the litter across all 
simulation periods was divided by sum of the 
length of all simulation periods, i.e. the rotation 
length.  

Calculation of litter production by thinning 
and harvesting events 
In addition to litter production by foliage, 
fineroot, and branch turnover, also self-thinning 
and residues after harvesting or thinning 
operations contribute to litter production and 
carbon inputs to the soil (Harmon et al. 1996, 

 
Table 3: Coefficients for estimating biomass turnover. 
Numbers in brackets denote the standard deviation, used 
in the sensitivity analysis (a) (Muukkonen and Lehtonen 
2004) with assuming standard deviation of 1/2 of the 
range to minimum; (b) (Ågren et al. 2007); (c) 
(Heinsdorf et al. 1993); (d) based on equation 4 from 
(Lehtonen et al. 2004b); mean across trees with dbh 
from 7 to 40 cm; (e) all leaves biomass is shed each year 
unless some carbon that is translocated before leaves 
senescence (f) based on data of (Mund 2004)  (g) based 
on (Bowden et al. 1993) and (Fahey et al. 2005) 

Species Turnover [1/yr] Bel.gr / Abv.gr.  
litter production 

 Foliage Branches 
Spruce 0.10 

(0.015) 
(a) 

0.0125 
(0.008) 

(a) 

1.5 (0.3) (b) 

Pine 0.4 (0.1) 
(c) 

0.015 
(0.01) (d) 

1.5 (0.3) (b) 

Beech 0.9 (0.09) 
(e) 

0.013 
(0.01) (f) 

1.0 (0.2) (g) 

Table 2: Coefficients and standard errors of the 
conversion-expansion factor function 

Ageb
Beech ebbce ⋅−+= 2

10  (t C/m³ dry wood), stratified 
by tree compartment and site index. si: Site indices 0: 
across all, 1 good (>=28m), 2 average (20..28m), 3 
low (<20m); rmse: root mean square error of the 
residuals; cv: rmse / mean( ceBeech ) 

p si b0 b1 b2 rmse cv 

total 0 0.741 0.636 0.018 0.113 12.7% 

 1 0.735 1.320 0.020 0.152 14.6% 

 2 0.760 0.649 0.022 0.079 9.2% 

 3 0.827 0.922 0.067 0.065 7.2% 

stem 0 0.479 0.380 0.020 0.073 8.2% 

 1 0.445 0.765 0.021 0.155 14.9% 

 2 0.464 0.289 0.014 0.052 6.0% 

 3 0.530 0.496 0.050 0.042 4.7% 

bran-
ches 

0 0.137 0.235 0.037 0.044 5.0% 

1 0.164 0.361 0.027 0.054 5.2% 

2 0.142 1.341 0.091 0.029 3.4% 

3 0.107 0.274 0.054 0.026 2.9% 

leaf 0 0.005 0.107 0.042 0.005 0.6% 

 1 0.004 0.137 0.033 0.005 0.4% 

 2 0.006 0.286 0.075 0.002 0.3% 

 3 0.006 0.141 0.067 0.001 0.1% 

root 0 0 0.185 0.002 0.292 32.7% 

 1 0 0.258 0.004 0.189 18.1% 

 2 0 0.199 0.003 0.281 32.6% 

 3 0 0.118 -0.004 0.301 33.5% 
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Nishizono et al. 2005). In each simulation period 
the stand growth model simulated the timber 
volume of a) trees that died by self-thinning, b) 
trees cut by precommercial thinnings, and c) trees 
extracted by commercial thinning and harvest. 
Carbon stocks of tree compartment of tree 
volumes a) and b) were calculated with 
previously presented conversion factors. We 
excluded foliage and fineroot carbon stocks from 
input to the soil to avoid double counting with 
turnover. This led to a small underestimation of 
litter input rates for coniferous trees. 

During commercial thinning and harvest a 
part of the stem and branch biomass is removed 
and another part is left at the side as harvest 
residues. Information about the proportion of the 
removed wood is based on timber volume and 
does not distinguish between stem and branch.  
At coarse scale removal statistics can be used to 
obtain extracted timber volume (Dieter and 
Elsasser 2002). However, at stand scale, we used 
values of a guideline of the forest administration 
(Weber 2003) to interpolate proportion of the 
removed timber volume by species and stand age 
(Fig. 2).  

The carbon in harvest residues was calculated 
in the following way. We multiplied the sum of 
stem and branch carbon by proportion of removed 
timber wood (Fig. 2). Next we partitioned the 
remaining carbon to fine woody litter and coarse 
woody litter with the proportions 40% and 60% 
respectively. We did not find suitable studies to 
back up this subjective partitioning. However, we 
will discuss with the sensitivity analysis that 
changes in this partitioning do not affect the 
resulting equilibrium soil carbon stocks very 
much. All the litter produced by 
thinning/harvesting events were summed over the 
rotation period and divided by the rotation length 
to obtain a mean annual rate of litter production. 

Uncertainty analysis  
Uncertainty of the calculated litter production 
was studied by the Monte Carlo method. This 
method investigates the distribution of a random 
variable by simulating random numbers (Gentle 
1985). In our case the random variable, in which 
we are interested in, is the sum litter production 
over all litter compartments and the simulated 
random numbers represent the uncertain 
parameters that were used to calculate litter 
production. Monte Carlo simulation involves the 
generation of a large number of realizations of the 
parameters from their joint probability 
distribution. The distribution of the calculated 
results, i.e. rates of litter production, across all the 

realizations of parameters represents the result’s 
empirical joint probability distribution. This 
empirical distribution can be used to describe the 
uncertainty of the result.  

We studied the propagation of the uncertainty 
of converting timber volume to carbon stocks in 
stem, branch, foliage, and root by varying the 
product of expansion-factor, wood density, and 
carbon content. In the following we refer to this 
product by the term conversion-expansion factor 
(ce-factor) (Table 4). The precision of the ce-
factor is dominated by the biomass expansion 
factor. The precision listed in Table 4 actually 
describes the uncertainty of predicting an 
intermediate expansion factor for a given 
combination of site factors such as stand age and 
site quality. We also included uncertainty of 
biomass turnover by varying the mean lifetime of 
foliage and branches and by varying the 
proportion of belowground litter input. In 
addition we included uncertainty of information 
on management to our analysis by varying the 
proportion of removed timber, the proportion of 
remaining coarse wood that is collected for 
firewood, and the proportion of fine wood in 
harvest residues. We prescribed a log-normal 
distribution for each parameter with a mean 
according to standard parameterization and a 
coefficient of uncertainty (cv) according to Table 
4. The mean of simulated litter production varied 
less than 0.3% after 4000 runs. Hence we used 
5000 runs for one Monte-Carlo simulation. In a 
first scenario we assumed all parameters to be 
independent. In a second scenario we introduced 
positive correlations between the ce-factors of 
stem, root, and foliage, and a negative correlation 
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Figure 2: Regional estimates of extracted timber
volume in relation to timber volume of trees that died
during commercial thinning operation according to
Weber (2003). Having regional species and age-
specific estimates of this factor improves the estimate
for the litter production resulting from harvest
residues. 
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between the ce-factors of stem and branches. The 
correlations at the scale of the normal distribution 
were 0.7 and -0.4 respectively. This reflected our 
experiences from examining uncertainty with 
constructing biomass functions for Common 
beech (Wutzler and Wirth 2007).  

Sensitivity analysis 
The data generated by the Monte Carlo 
simulation was also used to assess which 
parameters had the largest influence on the 
uncertainty of litter production. We assessed the 
importance of each parameter by calculating the 
rank-based correlation, called spearman’s rho 
(Conover 1980), between each input parameter 
and the calculated litter production. The strength 
of this correlation reflects how strongly the 
parameter influences the uncertainty in the results 
(Vose 1996). In order to compare the correlations 
we normalized the squared correlation to 100%. 
We refer to this value as importance index. 

In addition to the Monte Carlo study, we 
investigated how the uncertainty of stand growth 
affected the litter production. We represented the 
uncertainty of stand growth by varying the site 
index. The soil carbon inputs for the uncertain 
site index were linearly interpolated between the 
site indices, for which the soil carbon inputs have 
been calculated previously from yield tables. 

Comparison with measured leaves 
litterfall 
To validate our model results we compared the 
estimated litter production by leaves turnover 

with measured litter fall data of a case study on 
European beech forests (Fagus sylvatica L.) in 
Thuringia, Germany, under different silvicultural 
management (regular shelterwood system, 
selection system, unmanaged forest; Mund 
(2004). In that study annual litter fall of two years 
was measured by litter traps at four study sites 
each including 3 or 5 forest stands. The mass of 
leaf litterfall was converted to carbon by 
measured carbon contents. Growing conditions 
are described as optimal for beech forests and 
corresponding to site indices above 28m.  

Results 
The three major sources of litter production, 
which were investigated in this study, were 
continuous biomass turnover, self-thinning, and 
residues remaining after thinning operations and 
harvest. Simulated self-thinning differed between 
species. For Spruce and Beech stands, which 
were dominating at the study area, carbon inputs 
from self-thinning was negligible compared to 
harvest and thinning residues.  

The comparison of litter production by 
species revealed large differences (Fig. 3). The 
comparison also confirmed that the sum of litter 
production resulting from thinning and harvest 
was smaller but of the same magnitude as the sum 
of litter production by turnover of foliage, fine 
root, and branches across the rotation period. In 
the comparison of litter production by different 
litter compartments, the largest contributions 
were found with fine root litter production, 
followed by foliage litter production (Fig. 4). 
Branch turnover contributed minor parts only.  

Table 4: Coefficient of uncer-
tainty (standard deviation
divided by the mean) of the
parameters used in the
uncertainty analysis. ce:
conversion-expansion factor:
product of wood density,
carbon content, and
expansion-factor from timber
mass to mass of tree
compartment. (a) according to
table 3 (b) G. Weber pers.
communication, see also Fig 2
(c) unknown, reasonable
number (d) unknown,
conservative number (e)
(Wirth et al. 2004) with
regional density error and site
specific factors (f) according
to table 3 in (Lehtonen et al.
2004a) (g) medium site index
of Table 2. 

  Spruce Pine Beech 
Biomass to Carbon Conversion    
ce of Stem 13.3% (e) 5.3% (f) 6.0% (g) 
ce of Branch 13.3% (e) 9.7% (f) 3.4% (g) 
ce of Foliage 13.3% (e) 25.9% (f) 0.3% (g) 
ce of Root 13.3% (e) 11.3% (f) 33.0% (g) 
Biomass Turnover    
lifetime of branches (a)  63.0% 67.0% 70.0% 
lifetime of foliage (a) 15.0% 25.0% 10.0% 
proportion of below ground to above 
gr. litter (a) 

20.0% 20.0% 25.0% 

Thinning and Harvest  
proportion of extracted timber on 
harvest (b) 

5.0% 

proportion of collected remaining 
coarse wood (c ) 

25.0% 

proportion of fine wood in harvest 
residues (d) 

30.0% 
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When comparing litter production by site quality, 
we found that differences were in the same 
magnitude as the mean for all compartments (Fig. 
4). The calculated litter production for the three 
most important species for three different site 
qualities are listed in Table 5.  

In the following presentation of the results of 
the Monte-Carlo uncertainty analysis, we 
concentrate on the sum of litter production across 
all litter compartments. Fig. 5 displays the 
resulting empirical distribution of two Monte-
Carlo simulations for Spruce of site index 30m. 

The first simulation was performed with sampling 
from a parameter distribution that assumed 
independent parameters, the second one from a 
parameter distribution that included correlations 
between the parameters. From the first 
distribution, we calculated a mean litter 
production of 3.9 tC/ha/yr, a standard deviation of 
0.65 tC/ha/yr, giving a coefficient of uncertainty 
(cv) of 17%. The variance of the second 
simulation did not differ from the first simulation 
within two significant digits. Similarly, we 
inferred a cv of 14% and 25% for Beech and Pine 
respectively from their empirical distributions. 
These uncertainties were in the same magnitude 
as the uncertainty of stand growth, as represented 
by a 5% increase of the site index. 

The comparison of the importance index, a 
combined measure of parameter uncertainty and 
parameter sensitivity, provided a measure of the 
relative importance of the parameters for the 
uncertainty in the soil carbon inputs. Fig. 6 
displays the importance index for all the 
parameters that were included in the sensitivity 
analysis. Uncertainty of foliage turnover 
(lifeTimeFoliage) was an important cause of the 
uncertainty in litter production for all species. 
Contrary, uncertainty in harvest information 
(harvest, pWoodPicke, fwlShare) was not 
important with all species. For Pine, the 
comparatively high uncertainties of both, 
expansion factor for foliage and mean lifetime of 

  
Figure 3: Comparison of litter 
production between different 
monospecific stands of medium 
site quality. Litter production by 
the biomass turnover (a) are of 
the same magnitude as litter 
production by thinning events 
(b) for all species. Differences 
between species are of the same 
magnitude as the litter 
production itself.  
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Litter Production
by Thinning and Harvest [tC/ha/yr]
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Figure 4: Comparison 
of litter production 
between different site 
qualities (site index) 
by litter compartments 
for spruce. The dif-
ference in litter pro-
duction between site 
qualities is of the same 
magnitude as the litter 
production itself. 
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Table 5: Calculated litter production (tC/ha/yr).  
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R
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Sp
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ce
 24.0 0.57 0.89 0.20 0.25 0.22 0.43 

30.0 0.79 1.18 0.22 0.38 0.38 0.62 
36.0 1.25 1.83 0.30 0.57 0.69 0.74 

Pi
ne

 

20.0 1.46 1.96 0.13 0.24 0.74 0.53 
26.0 2.15 2.87 0.19 0.31 0.95 0.70 
32.0 2.88 3.83 0.25 0.40 1.22 0.90 

B
ee

ch
 24.0 0.77 0.89 0.24 0.23 0.24 0.52 
30.0 1.56 1.79 0.42 0.42 0.48 0.81 
36.0 2.15 2.45 0.55 0.65 0.81 1.15 
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foliage (Table 4) were important causes of the 
large uncertainties in the result and are 
dominating over all the other factors.  

We further studied how the uncertainty of 
litter production would decrease if we were able 
to better constrain foliage biomass and turnover. 
We repeated the Monte-Carlo-Analysis with 
double precision of the ke-factor for foliage and 
double precision of the foliage turnover time 
compared to Table 4. This resulted in a reduction 
of the relative error (cv) of the sum of soil carbon 
inputs by 3%, 11%, and 0% for Spruce, Pine, and 
Beech, respectively. For Spruce and Beech, the 
lifetime of branches became the most important 
parameter. For Pine, the foliage parameters still 
had the highest importance index. 

The reliability of the applied model approach 
is shown by the comparison with field data given 
in Figure 7. The modeled data well matched the 
range of measured annual leaf litter fall at for 
beech study sites. 

Discussion 
Forest soil carbon inputs by litter production and 
are usually derived using forest inventories (de 
Wit et al. 2006, Liski et al. 2006, Ågren et al. 
2007).  However, in most countries, forest 
inventories are only available for the very recent 
past. Therefore, this study presented an 
alternative approach that is based on yield tables 
instead of forest inventories. We exemplified the 
approach by estimating long-term mean past litter 
production based on yield tables that have been 
used in Eastern Germany. Further we assessed the 
uncertainties of the results and the importance of 
several input parameters. 
The litter production by residues from thinning 
and harvest was smaller than the litter 
production by biomass turnover but of the same 
magnitude (Fig. 3, Fig 4). Self-thinning did not 
significantly affect soil carbon inputs in forests of 
the most common tree species. This can be 
explained by the fact, that the management 
proposed in yield tables result in stand densities 
at which no or only slight competition for light 
occurs. For Birch, Maple and Pine self-thinning 
contributed to soil carbon inputs in the same 
magnitude as harvest residues. However, most of 
the self-thinning occurred in the period of 
precommercial thinning, where all wood remains 
at the site. And soil carbon stocks do not depend 
much upon whether tree biomass entered the 
forest floor by self-thinning or as harvest 
residues. While allocation has been studies 
extensively before (Burschel et al. 1993, Baritz 
and Strich 2000, Löwe et al. 2000, Lehtonen et al. 
2004a, Levy et al. 2004, Jalkanen et al. 2005, 
Zianis et al. 2005) and also estimating turnover of 
leaves and branches has been studied (Lehtonen 
et al. 2004b, Muukkonen and Lehtonen 2004, 
Ågren et al. 2007) only minor research has been 
done to quantify harvest residues. At regional or 
national scale forest statistics have been used 
(Ågren et al. 2007). However, it is difficult to use 

Figure 6 Importance index, i.e. 
relative influence of the parameter 
uncertainty on the results uncertainty, 
for litter production of intermediate 
site quality. For all species the mean 
lifetime of foliage is very important, 
for Pine also the conversion from 
timber to foliage biomass. The mean 
life time of branches is the most 
important factor for Spruce and Beech. 
Uncertainty in information on harvest 
(last three parameters) is not 
contributing much to the uncertainty in 
results in all three cases. 
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Figure 5. Histogram litter production for Spruce of site
index 30m when accounting for uncertainty in model
parameters. The distribution deviates slightly from
normal by having a stronger positive tail. In the case
where correlations between input parameters were
accounted for, the distribution has slightly stronger
tails. 
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regional forest statistics at stand level. Hence, in 
many studies a fixed portion of stemwood is 
extracted and the other compartments are left on 
site. For example Kaipainen et al. (2004): 
transferred 10–15% of stemwood from the 
thinnings and the final cuttings to litter. In 
contrast, the presented study explicitly takes into 
account first, the distinction between 
precommercial and commercial thinning (Table 
1), second, the age-dependency of the proportion 
of remaining wood (Fig. 2), and third, self-
thinning. 

Site quality, as expressed by the site index, 
had a large influence on both, litter production by 
biomass turnover and litter production by harvest 
residues (Fig. 4). The effect of site quality is of 
the same magnitude as differences by species and 
as the mean of soil carbon inputs. Published soil 
carbon studies at the national scale consider age 
classes and species, but often site quality is not 
taken into account explicitly (e.g. de Wit et al. 
2006, Liski et al. 2006, Ågren et al. 2007). 
However, our results suggest that site index 
should be explicitly accounted for.  

We used the Monte-Carlo approach to study 
the uncertainty of the calculated soil carbon. An 
alternative approach would have been error 
propagation methods. However, error propagation 
methods assume specific distributions of the 
parameters and all intermediate results, and they 
have problems with non-linearity, because they 
are usually based on a first order Taylor 
expansion (Winzer 2000). Contrary, Monte Carlo 
analysis is an effective method to assess 
uncertainty when models are complex with non-
linearity and with different types of correlations 
(Morgan and Henrion 1990, Vose 1996). When 
we compare our estimates of litter production of 
spruce of intermediate site quality (3.8 t/ha/yr) 
with an estimate across all forests in Finland 
(Peltoniemi et al. 2006), their estimates are 
slightly lower (2.7-3.0 tC/ha/yr). This is 
reasonable, because we expect forests in the 
region of our study to be more productive. 
Peltoniemi et al. (2006) also performed an 
Monte-Carlo analysis and quantified the standard 
deviation of litter production, i.e. soil carbon 
inputs, to be 0.36 tC/ha/yr, corresponding to a 
13% relative error. Our higher estimate of relative 
error of 18% is probably because we used a 
higher uncertainty of foliage turnover. When 
aggregating the results of a set of stands or strata 
to a larger forest area, the precision of the 
aggregated value increases with the square root of 
the number of stands or strata (Kurth et al. 1994). 
Smith and Heath (2001) found with an 
uncertainty analysis of ecosystem carbon stocks, 

that introducing temporal correlations decreased 
uncertainty very much. Peltoniemi et al. (2006) 
demonstrated, that estimating litter from standing 
biomass overestimates temporal correlation and 
underestimates uncertainty of annual results. In 
our study, temporal correlations were not as 
important, because we aggregated results across 
an entire rotation period (Eq. 1). In our results, 
also the inclusion of correlations between model 
biomass expansion factors of different 
compartments did not change the distribution of 
soil carbon inputs significantly (Fig. 5).  

The results of the sensitivity analysis 
strongly depend on the assumptions about the 
distribution of the parameters. We assumed a 
right-skewed log-normal shape for all parameters. 
This distribution is more suitable than a normal 
distribution especially for the conversion factors 
and the lifetimes of foliage and branches than a 
normal distribution. On the one side, values 
below zero, which can occur in the normal 
distribution, are clearly not valid. On the other 
side values larger than twice the mean are 
observed occasionally. However, we expect the 
shape of the distribution to not affect the 
distribution of the results very much (e.g. Smith 
and Heath 2001). For some of the parameters we 
assigned subjective values. In the Monte-Carlo 
simulations we therefore assigned rather high 
relative errors to these parameters in order to 
reflect our lack of knowledge about theses 
parameters. However, in the sensitivity analysis, 
some of these uncertain parameters did not 
influence the calculated litter production very 
much (proportion of fine wood in harvest 
residues, proportion of coarse harvest residues 
that are collected for private combustion, and to 
some extent also uncertainty of the ratio of below 
ground litter production). The importance index 
reflects both, the uncertainty of the parameter and 
the sensitivity of the parameter (Hamby 1994). 
On the one side there are parameters that are 
uncertain but not sensitive (e.g. collected coarse 
wood). They are not very important for the 
uncertainty of the results. On the other side, there 
are sensitive parameters. Small changes in these 
parameters have a substantial influence on the 
results. However, if their precision is high, i.e. 
they have a low relative error, then they are also 
not important for the uncertainty in the results. 
Hence, we should concentrate on the parameters 
that are important, i.e. sensitive and uncertain.  

For all species, the lifetime of foliage was a 
very important parameter (Fig. 6). Mean lifetime 
is the reciprocal of the turnover. Ågren et al. 
(2007) found, that the mean lifetime of needles of 
Spruce and Pine is correlated to latitude. 
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However, Wachter (1985) found that mean 
lifetime of spruce needles varied by 13% already 
at regional scale and that lifetime increased with 
altitude and water availability. A combined 
observation and modeling study (Muukkonen and 
Lehtonen 2004) quantified a range of turnover 
times of Spruce needles of 0.7 to 0.13 yr-1 for 
southern Finland, which corresponds to a relative 
error of 15%. Bornkamm et al. (2003) cited 8 
studies of pine needles in which a mean lifetime 
between 2 and 3 years was found in Slovakia, 
Estonia, southern Finland, England and northern 
Germany. However, their own measurements in 
Germany resulted in a mean life time of pine 
needles of 1.7 years. They attributed this low 
value to periods of hot and dry weather 
conditions. Therefore, we used a relative error of 
25% for pine, which is considerably higher than 
the 11% that was used for foliage by Peltoniemi 
et al. (2006). For broadleaved forests most studies 
assume a turnover rate of 1 yr-1 because all 
foliage is shed. However, some of the carbon is 
translocated during leaves senescence or 
consumed by herbivores before reaching the 
ground. Fahey et al. (2005) reported 16 to 26% 
maximum extent of carbon resorption from the 
differences in leaf area to weight ratio between 
late-season live foliage and fresh litterfall for 
northern American hardwood forest. Similar to 
Fahey’s approach, we quantified a value of 9% of 
carbon resorption from data of a Common beech 
forest in northern Spain (Regina and Tarazona 
2001). Hence, in this study we used a beech 
foliage carbon turnover rate of 0.9 yr-1 instead of 
1.0 yr-1. In order to improve precision of soil 
carbon inputs, environmental dependencies of 
foliage carbon turnover should be studied further 
and incorporated into the carbon turnover 
calculation.  

For Beech and Spruce, also the lifetime of 
branches had a substantial influence on litter 
production (Fig. 6). Because we did not find 
explicit literature on beech branch turnover, we 
estimated branch turnover and its error by 
dividing branch biomass by branch litterfall for 
each of 16 stands from the study of Mund (2004). 
The turnover had a large variability (cv=74%) 
and declined with stand age (r²=0.52). The 
correlation between branch turnover and tree 
diameter was studied for Spruce (Muukkonen and 
Lehtonen 2004) and Pine (Lehtonen et al. 2004b) 
in southern Finland. A next step in improving the 
estimates of soil carbon inputs is to perform 
similar studies in other regions too, and to 
implement the derived results in the carbon 
turnover calculation. 

In the following we discuss how and why some 
aspects of the used methods differed from 
previous studies. Other studies calculated fine 
root litter production similar as foliage litter 
production by estimating biomass and turnover 
(e.g. Peltoniemi et al. 2004). However, both, the 
estimation of fine root biomass and the turnover 
is still very uncertain (Matamala et al. 2003, 
Hutchings and John 2004, Majdi et al. 2005, 
Godbold et al. 2006, Mulia and Dupraz 2006). 
Hence, some studies use the idea of functional 
scaling, which suggests a stable proportion 
between foliage and root biomass, to estimate 
fineroot biomass (Vanninen and Makela 1999, de 
Wit et al. 2006). However, with this approach 
there is still the uncertainty of fineroot turnover. 
Therefore, we followed an approach of Ågren et 
al. (2007), which extends the idea of functional 
scaling to litter production. Hence, we use a fixed 
ratio of below ground litter production to above 
ground litter production. Our study, as well as 
previous studies, did not distinguish between soil 
carbon inputs by fine root litter production and by 
root exudates. However, evidence is 
accumulating that the carbon transport by root 
exudates is a major carbon flux with a different 
dynamics in soil (Fahey et al. 2005, Högberg and 
Read 2006).  

Two important factors were not taken into 
account explicity in this study. These are ground 
vegetation and natural disturbances. Peltoniemi et 
al. (2006) applied a mean biomass stock of 
ground vegetation of 3.8 t/ha and a mean turnover 
rate of 0.33 yr-1 based on more detailed data for 
forests in southern Finland (Peltoniemi et al. 
2004). Application of the same numbers together 
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Figure 7 Comparison of calculated litter production
by leaves for beech with litter fall data from Mund
(2004). Both, the mean and the standard deviation
(error bars) of values calculated for two site indices
28m and 30m (two dark right columns) well match
the range of carbon in measured litter fall.  
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with 50% carbon content to this study would lead 
to an additional increase of non woody litter 
production of 0.63 tC/ha/yr. A part of the natural 
disturbances is accounted for by the yield tables, 
which state that only 80% of the given basal area 
should be thinned. The other 20% of the thinned 
basal area will be killed due to other reasons such 
as disturbance (Wenk et al. 1985). However, if 
there are larger scale disturbances, litter 
production will be larger compared to the values 
presented in this study. 

The good agreement between calculated and 
measured leaf litter production (Fig. 7) 
increases our confidence in the calculated soil 
carbon inputs. While the sites Leinefele (lei) and 
Muehlhausen (muehl) have been managed 
according to yield tables, the Hainich site (hai) 
represents an unmanaged forest and the Langula 
site (lang) a selection cutting system. However, 
leaf litterfall is estimated quite well for all the 
sites with the yield table based approach showing 
that the uncertainty of the modelled values are in 
the range of the variability caused by the studied 
management activities. 

Conclusions 
• Residues left after thinning and harvest 

contributed to litter production in the same 
magnitude as the continuous biomass 
turnover. Therefore, it is important to consider 
at least one full rotation period including 
thinning operations and final harvest for 
estimating long-term mean litter production. 

• Both, different species and differences in site 
quality for the same species caused variability 
in litter production that was of the same 
magnitude as the mean of litter production. 
Hence, site quality is very important for 
estimating litter production at stand scale, but 
should also be taken into account at broader 
scales. 

• We quantified the relative error of the 
presented litter production to be 14%, 17%, 
and 25% for Beech, Spruce, and Pine stands 
respectively. This uncertainty was mainly due 
to the large natural variability in foliage 
biomass and foliage lifetime. A better 
explanation of this variability by 
environmental conditions will improve the 
precision. 

• Long-term means of past litter production 
rates and their uncertainty can be reliably 
estimated for the former century on the basis 
of yield tables. The presented approach can 
provide a new tool to establish the baseline 
carbon stocks in dynamic soil carbon models 

(Peltoniemi et al. 2007, Wutzler and 
Reichstein 2007), which in turn can be used 
for soil carbon monitoring. 
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Soils apart from equilibrium - consequences for soil carbon balance 
modelling 

 
Abstract Many projections of the soil carbon 
sink or source are based on kinetically defined 
carbon pool models. Parameters of these models 
are often determined in a way that the steady state 
of the model matches observed carbon stocks. The 
underlying simplifying assumption is that 
observed carbon stocks are near equilibrium. This 
assumption is challenged by observations of very 
old soils that do still accumulate carbon. In this 
modelling study we explored the consequences of 
the case where soils are apart from equilibrium. 
Calculation of equilibrium states of soils that are 
currently accumulating small amounts of carbon 
were performed using the Yasso model. It was 
found that already very small current 
accumulation rates cause big changes in 
theoretical equilibrium stocks, which can virtually 
approach infinity. We conclude that soils that have 
been disturbed several centuries ago are not in 
equilibrium but in a transient state because of the 
slowly ongoing accumulation of the slowest pool. 
A first consequence is that model calibrations to 
current carbon stocks that assume equilibrium 
state, overestimate the decay rate of the slowest 
pool. A second consequence is that spin-up runs 
(simulations until equilibrium) overestimate 
stocks of recently disturbed sites. In order to 
account for these consequences, we propose a 
transient correction. This correction prescribes a 
lower decay rate of the slowest pool and accounts 
for disturbances in the past by decreasing the spin-
up-run predicted stocks to match an independent 
estimate of current soil carbon stocks. Application 
of this transient correction at a Central European 
beech forest site with a typical disturbance history 
resulted in an additional carbon fixation of 5.7±1.5 
tC/ha within 100 years. Carbon storage capacity of 
disturbed forest soils is potentially much higher 
than currently assumed. Simulations that do not 
adequately account for the transient state of soil 
carbon stocks neglect a considerable amount of 
current carbon accumulation. 
 

Introduction 
The widely applied soil carbon models 

Century (e.g. Parton et al. 1988), Roth-C 
(Jenkinson 1990), Romul (Chertov et al. 2001), 
Yasso (Liski et al. 2005) and many other models 
are based on kinetically defined pools. This 
means, that decomposition is described by 
removing a constant fraction of a pool at each time 
step. This fraction, which distinguishes the pools, 
is called the decay rate or decomposition rate. It is 
often modeled with a dependence on 
environmental conditions, in most cases 
temperature and moisture. Despite simplifying 
many soil processes, these models have proven to 
predict reasonable soil carbon stock changes 
during decadal time scales (e.g. Smith et al. 1997). 
However, there is a controversy whether the decay 
rates of the slower (more stable) pools have a 
lower, equal or higher dependence to warming 
than the faster pool (Ågren 2000, Davidson and 
Janssens 2006). The different answers to this 
question cause large differences in the long term 
soil carbon sink or source. While the decay rates 
of the faster pools have been determined by 
experimental results, the decay rates of the slower 
pools have been calibrated in a way that a models 
steady states matches observed carbon stocks (e.g. 
Liski et al. 2005). The underlying assumption is 
that the observed carbon stocks represent 
equilibrium stocks. This assumption also allows a 
determination of the initial state of the model for 
given constant average inputs and parameters by 
simulating the model until an equilibrium state is 
reached (spin-up-runs) (e.g. Smith et al. 2005). 
However, observed soils might be far away from 
equilibrium because of possible very long 
turnover times of stable compounds and 
disturbances by fire, erosion, land use or land use 
change. The equilibrium assumption is challenged 
by observations of steadily increasing carbon 
stocks of very old soils. Wardle et al. (1997) 
observed carbon stocks of about 240 tC/ha in the 
organic layer on small islands in northern Sweden, 
where fire was prevented. Sizes of the stocks 
correlate with the time since last disturbance 
(1000 to 3000 years). This implies increasing 
stocks at old soils. Many modellers argue that the 
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equilibrium assumption might be wrong, but it 
works and must be used until other approaches are 
evolving. Nevertheless, the consequences of 
relaxing the equilibrium assumptions are not well 
understood. 

The aim of this study was to explore the 
consequences of a relaxed equilibrium 
assumption. The paper has the following outline. 
In a first part we perform an equilibrium 
experiment using the Yasso model’s standard 
parameterization and show that the decay rate of 
the slowest pool and theoretical equilibrium stocks 
are highly uncertain. This implies that soil might 
be far apart from theoretical equilibrium yet. 
Based on these findings we propose a method how 
to initialize models to a transient state instead of 
equilibrium. In a second part we apply this 
initialization to a Central European case study. We 
discuss consequences for current soil modelling. 
Further, we show and discuss ways to overcome 
the equilibrium assumption. 

Methods 

The Yasso model 
The soil carbon model Yasso was designed by 
Liski et al. (2005) in order to model soil carbon 
stocks of mineral soils in managed forests. Despite 
its simplicity and low demands on input data and 
parameters it shares many properties of the family 
of models that are based on kinetically defined 
pools. Figure 1 displays the model structure and 

the flow of carbon. The right part describes the 
separation of the different litter types into 
compartments that correspond to the kinetically 
defined pools and it describes a delay of the 
woody litter compartments before decomposers 
can attack the chemical compounds. The left part 
describes the decomposition of the chemical 
compounds. The decay rates are dependent on 
mean annual temperature (or alternatively 
effective temperature sum) and a drought index 
(difference between precipitation and potential 
evapotranspiration during vegetation period). In 
the standard parameterization the decay rates of 
the slower pools are less sensitive to temperature 
increase than the fast pools (hums one: 60%, 
humus two: 36% of sensitivity of fast pools). The 
model has been tested and successfully applied to 
boreal forest (Peltoniemi et al. 2004), litter bag 
studies in Canada (Palosuo et al. 2005), and as 
part of the CO2FIX model all over Europe (e.g. 
Nabuurs and Schelhaas 2002, Kaipainen et al. 
2004). 

The relaxed equilibrium assumption  
The relaxed equilibrium assumption corresponded 
to the usual equilibrium assumption, except that 
the slowest pool was excluded from this 
assumption. Assuming that time since last 
disturbance is longer than a century and that the 
inputs to the soil system did not change much 
within this time, the faster pools (turnover times 
of at most decadal time scale) have had enough 
time to recover from former disturbance. They 
were regarded to be near a dynamic equilibrium 
(averaging across changes during rotation periods 
and with climate fluctuations). The relaxed 
equilibrium assumption assumed that this is not 
true for the slowest pool which needs long time 
scales to reach the theoretical equilibrium. Hence 
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Figure 1: Model Structure of the Yasso Model (Liski
et al. 2005). The pools on the left side describe woody
litter that becomes available for decomposition after a
delay (nwl: non-woody litter, fwl: fine woody litter,
cwl: coarse woody litter). The pools on the right side
(ext: extractives, cel: celluloses, lig: lignin, hum1:
humus1, hum2: humus2) represent soil carbon pools
of different stability that are modeled by different
decay rates of an exponential decay. The ext pool has
the largest decay rate (i.e. least stability and shortest
turnover time) and the hum2 pool has the smallest
decay rate (i.e. highest stability and longest turnover
time). 
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Equilibrium of fast pools
Stock (ext+cel+lig+hum1):

40.7 tC/ha

Carbon flow to hum2:
0.063 tC/ha/yr (plig=phum1=0.2)
0.127 tC/ha/yr (plig=phum1=0.4)

Figure 2: Relaxed equilibrium assumption: All
pools are assumed to be in equilibrium except the
slowest pool (hum2). Constant average litter
input determines equilibrium stocks of the faster
pools and the constant flow to the slowest pool. 
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the relaxed equilibrium assumption assumed the 
slowest pool to be still accumulating (Table 1). If 
all the faster pools are in equilibrium, the input 
rate to the slowest pool is constant (Fig. 2).  

The equilibrium experiment 
Using this relaxed equilibrium assumption we 
determined the decay rates of the slowest pool of 
soils that are recovering from former disturbance. 
The development of the carbon stock of the 
slowest pool C (tC/ha) over time t (yr) was 
described by a first order kinetics with decay rate 
k (1/yr) and with input i (tC/ha/yr) (Eq. (1)).  

Cki
t
C

⋅−=
δ
δ

 (1) 

When applying a constant input rate, integration 
of equation (1) resulted in the closed form of Eq. 
(2), where a (dimensionless) is an integration 
constant. 

( )tkae
k
iC ⋅−−= 1  (2) 

Constraining the stock at time t=0 to C0 in Eq. (2) 
gives Eq. (3).  

tkeC
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The decay rate k can be expressed as a 
function of the current stock Cc, (tC/ha), input i, 
and by an approximation of its current rate of 

assimilation 
t

Cc

Δ
Δ

 (tC/ha/yr). Resolving Eq. (1) 

for the decay rate gives Eq. (4). 
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k Δ
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For a given decay rate k, the equilibrium stock, 
which corresponds to an assimilation rate of 0, is 
given by Eq. (5). 

k
iCe =  (5) 

And the accumulation time t95 (yr), i.e. the time 
for an increase of stocks from zero to 95% of 
equilibrium stock, is given by Eq. (6). 

k
C

t e )05.0ln(
95

⋅
=  (6) 

In the equilibrium experiment we prescribed 
different current assimilation rates and calculated 
corresponding decay rates of the slowest pool (Eq. 
(4)). Given these decay rates, we determined 
equilibrium stocks (Eq. (5)), and the times that are 
needed to accumulate 95% of these stocks (Eq. 
(6)). Initial pools size (40.7 t/ha) and input to the 

slowest pool (i=0.063 tC/ha/yr) were calculated by 
equilibrium of the faster pools of the Yasso model 
with standard parameterization for Norway spruce 
in standard climate (Appendix B). Reasonable 
constant average litter inputs of Norway spruce 
were applied (non woody litter=1.7 tC/ha/yr, fine 
woody litter=1.4 tC/ha/yr, thin coarse woody 
litter=0.1 tC/ha/yr, large coarse woody litter=0.1 
tC/ha/yr). The development of carbon stocks with 
average litter inputs represents the trend (moving 
average over time) of the carbon stocks that result 
from the application of non-constant litter input. 
Additionally, calculations were repeated using an 
increased input to the slow pool (i=0.127 tC/ha/yr) 
that resulted from a change in the Yasso 
parameterization in which a larger part of decay 
material was spent to form more recalcitrant 
compounds (plig=phum1=0.4). 

The transient correction 
In continuation to the results of the equilibrium 
experiment, we developed a method of correcting 
spin-up-run predicted pool sizes for the effects of 
former disturbance. This “transient correction” is 
only valid for sites that have not been disturbed 
for about a century, because it uses the relaxed 
equilibrium assumption, which assumes that all 
pools are in equilibrium except the slowest pool. 
According to the results of the equilibrium 
experiment, which are described in the results 
section of this study, the effects of former 
disturbance are an overestimation of the slowest 
pool’s decay rate in model calibration and that 
current carbon stocks are smaller than equilibrium 
carbon stocks. Hence, the correction, first, 
prescribes a lower decay rate of the slowest pool. 
Below it will be shown that about 20% of the 
decay rate that is determined by the usual 
equilibrium assumption is appropriate for century 
term simulations. Second, the correction decreases 

Table 1: Comparison of equations between the usual 
equilibrium assumption and the relaxed equilibrium 
assumption for the slowest pool. k: decay rate, i: input 
rate, Cc: current stock, Ce: equilibrium stock. 
 Usual  Relaxed  
Equilibrium 
stock 
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the spin-up-run predicted equilibrium stock of the 
slowest pool by subtracting an amount of carbon. 
The amount that has to be subtracted is chosen so 
that the sum of the stocks of the soil carbon pools 
matches an independent estimate of current carbon 
stocks.   

Application of the transient correction 
In order to test the performance of the transient 
correction, we applied the transient correction at a 
Central European beech forest chronosequence 
(Mühlhausen/Leinefelde). The sites of the 
chronosequence have been managed as a 
shelterwood system. In the EU-project 
FORCAST, litter fall, organic layer carbon stocks, 
and soil carbon stocks have been measured (Mund 
2004). Carbon pools of the soil model were 
initialized with spin up runs with constant average 
litter inputs and climatic conditions (mean average 
temperature: 6.8°C, drought index: 71.3mm). All 
sites of the chronosequence have been disturbed 
by wood pasture about 150 years ago and some 
sites have been possibly used as agricultural land 
before the 16th century. The several sites of the 
chronosequence represent different stand ages of 
the one simulated site. As independent estimate of 
soil carbon stocks for the transient correction the 
sum of the measured carbon stocks of the mineral 

soil (41.7±5.0 tC/ha) and the organic layer 
(3.7±0.8 tC/ha) was used. The used standard 
parameterization of the Yasso model is listed in 
Appendix B.  

We studied the effect of assuming different 
intrinsic decay rate of the hum2 pool (slowest 
most stable pool of the Yasso model) on both, the 
average carbon stock, and the uncertainty of the 
carbon stocks after 100 years. The decay rate was 
varied by dividing the standard value of 1.2e-3 yr-1 
by 1, 5, 25, 125, and 625. This corresponds to 
turnover times of 830 to 5.2e5 years. We used 
four scenario groups in order to gain insight, in 
how this effect varies with combinations of 
changes in temperature and litter input (Table 2). 
Table 3 lists average litter inputs to the Yasso 
model. We did not vary litter inputs with stand age 
but applied a constant litter input that was 
averaged across one rotation cycle. For details of 
derivation of litter input see Appendix A. First we 
studied the effect with four scenario groups and 
standard parameterization. Next, we studied the 
effect in four scenario groups that differed from 
the corresponding previous scenario groups by 
increased temperature sensitivity of the slow pools 
apparent decay rate. The apparent decay rate 
depends on the intrinsic decay rate, water 
availability, temperature, and several parameters. 
We modified the standard parameterization in a 
way so that the slowest pools were as sensitive to 
warming as the decay rates of fast pools 
(s1=s2=100%).  

Results 

Decay rates and equilibrium stocks in the 
equilibrium experiment 
Current carbon stocks can be explained by 
different decay rates of the slowest pool if the 
equilibrium stock is not fixed (Fig. 3). The 
difference between the trajectories of carbon 
stocks with different decay rates within a few 
years is very small (<10 g/ha/yr). However, the 
assumption of already very small current 
accumulation rates in the equilibrium experiment 
resulted in profound changes of equilibrium 
stocks. We calculated (Eq. 4-6) large changes in 
the resulting decay rate (Fig 4a), in the theoretical 
equilibrium stocks (Fig 4b) and the accumulation 
times (Fig. 4c). This is explained as follows. If the 
assumed rate of change was approaching the input 
rate to the slowest pool, the difference between 
input and accumulation approached zero. Hence, 
the decay rate also approached zero (Fig 4a). This 
caused the equilibrium stocks and the times to 
reach these stocks to approach infinity. The limit 

Table 2: Scenario groups of the simulations of the 
Leinefelde/Mühlhausen chronosequence. Within each 
group simulations were performed with different 
decay rates of the slowest pool (hum2) and repeated 
with increase temperature sensitivity. 

Scenario 
Group 

Description 

base current inputs and current temperature 

litter increase of litter inputs by assuming that 
all the wood remains in the forest 
(conservation scenario) 

t3-t9 increase of temperature by 3,6, and 9 
Kelvin gradually over the next 100 
years 

t3+litter increase of litter input and increase of 
temperature by 3 Kelvin 

Table 3: Average litter inputs to the Yasso model 
[tC/ha/yr]. nwl: non woody litter, fwl: fine woody 
litter, cwl_small: coarse woody litter with a diameter 
diameter 6-20cm, cwl_large: coarse woody litter with 
a diameter 20-60cm. 

Scenario Group nwl fwl cwl_small cwl_large

base, t3-t9 3.15 0.53 0.21 0.085 

litter, t3+litter 3.15 0.87 1.24 0.214 
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case, when the rate of change was equal to the 
input, corresponded to an inert pool that is not 
decomposed. With doubling the proportion of 
carbon that is used to form more recalcitrant 
components plig=phum1=0.4, the limit case had a 
different position. However, despite this big 
change to the model, the pattern was the same. 
With the assumption of small current 
accumulation rates decomposition rates were 
much lower (Fig. 4a cross symbols) than without a 
current carbon accumulation and theoretical 
equilibrium stocks were much higher (Fig. 4c 
cross symbols).  

Effects of accounting for former 
disturbance by the application of the 
transient correction 
The sum of the equilibrium carbon pools after the 
spin-up-run exceeded observed stocks by about 
30% for the Mühlhausen/Leinefelde study site that 
has been disturbed  until 150 years ago (Fig. 5). 
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(Eq. (3)): tkeC
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i

k
iC ⋅−⋅⎟

⎠
⎞

⎜
⎝
⎛ −−= 0 ; input i = 0.06345 

tC/ha/yr; stock at time zero C0 = 52.874 tC/ha. At time
t=0 the current carbon stock C0 is observed. The lower
the decay rate, the larger is the current rate of carbon 
accumulation, which is given by the slope ∆C/∆t at 
time zero. 
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With the relaxed equilibrium assumption (all 
pools are in equilibrium except the slowest pool), 
we interpreted that the slowest pool (hum2) was 
far from equilibrium yet. The application of the 
transient correction decreased the slowest pool, 
i.e. the carbon above the line of observed carbon 
stocks in Fig. 5. In the scenario of increased 
temperature sensitivity the relative proportion of 
the slowest pool after the correction was larger 
because the spin-up-runs resulted in smaller sum 
of stocks of all the pools.  

The carbon accumulation due to the 
adjustment of the spin-up-run predicted pools for 
former disturbances was 5.7±1.5 tC/ha with 
standard temperature sensitivity (Fig. 6 top left) 
and 5.5±1.8 tC/ha with increased temperature 
sensitivity (Fig. 7 top left) within 100 years for the 
baseline scenario. This corresponds to a flux of 
5.7gC/m²/yr and an increase of about 13% of 
initial carbon stocks over 100 years. This carbon 
accumulation would have been neglected without 
the transient correction. The transient correction 
prescribes a lower intrinsic decay rate of the 
slowest pool but does not specify this rate. Hence, 
we studied the uncertainty that resulted from a 
range of prescribed decay rates that correspond to 
turnover times from 830 to 5.2e5 years. The 
absolute amount of uncertainty of 1.5 tC/ha (or 1.8 
tC/ha for increased slow pool temperature 
sensitivity) did not change much with different 

scenarios of litter input and temperature increase 
(Fig. 6 and 7). Hence the relative size of the 
uncertainty depended on the projected change of 
carbon stocks and varied between 9% in the 
conservation scenario (Fig. 7 litter) and 59% in 
the temperature increase scenario (Fig. 7 t3). 

Assuming lower decay rates of the slowest 
pool resulted in an increased carbon accumulation 
(Fig. 8). Consistently across all scenario groups, 
the carbon accumulation increased most with the 
first decrease of the slowest pool’s (hum2) decay 
rate to 20% of standard parameterization. Further 
decrease of the decay rate to 4%, 0.8%, and 0.16% 
of standard parameterization only slightly 
increased carbon accumulation during 100 years.  

Discussion 

Highly uncertain decay rates and 
equilibrium stocks 
Our study for the first times explores the 
consequences of relaxing the usual assumption 
that soil carbons stocks are in equilibrium. The 
consequences for the parameterization of slow 
pool decay rates and resulting theoretical long-
term equilibrium were studied by performing an 
equilibrium experiment, in which the slowest pool 
was still accumulating carbon. The equilibrium 
experiment showed that already very small rates 
of current accumulation caused tremendous 
changes in equilibrium stocks (Fig. 4). The 
necessary accumulation rates are so small, that it 
is practically impossible to measure them within a 
few years. The times to reach equilibrium could 
span millennia. Hence, soils may be far apart from 
a theoretical equilibrium. The theoretical 
equilibrium does not account for non-respiratory 
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losses out of the system. Hence, soils may never 
reach this theoretical equilibrium because of 
changing conditions and partial resets by 
disturbances (e.g. forest fires (Parker et al. 2001, 
Wardle et al. 2003), or erosion (Hedges et al. 
1997, Polyakov and Lal 2004)). In addition soil 
weathering continues and soil horizons may 
change in a way to increase humus stabilization 
and potential carbon stocks.  

The transient correction – an approach to 
account for former disturbance  
In order to account for account for former 
disturbances, we suggested a heuristic technique 
that we call the transient correction. Soils that 
have been disturbed centuries ago are still in a 
transient state due to the long timescales of the 
slowest pool. The transient correction can account 
for this transient state, where the relaxed 
equilibrium assumption is valid (time since last 
disturbance is longer than a century).  

The transient correction does not specify the 
decay rate of the slowest pool, because the rate 
can not be determined by calibrating equilibrium 
states to current stocks or observing current stock 
changes. If no method of constraining this rate is 
available, 1/5 of the standard decay is a reasonable 
first estimate, because lower rates did not change 
results much in decadal time scale, as we showed 
in our sensitivity analysis (Fig. 8).  

The transient correction modifies a valid state 
by changing the stock of a single pool. This 
procedure potentially may initialize models to 
non-valid states. However, most models have no 
feedbacks or very weak feedbacks from the 
slowest pool to the other pools. Hence, we do not 
expect big numerical errors or anomalies due to 
the transient correction when simulating the 
system. 

One precondition for applying the transient 
correction is an independent estimate of current 
soil carbon stocks. This estimate must account 
for the disturbance history. Best choice is 
measuring carbon stocks at the site. However, this 
is laborious and expensive. If the disturbance 
history can be assumed to be similar within a 
region, a spatial extrapolation of measured carbon 
stocks can be used (e.g. Liski and Westman 1997, 
Perruchoud et al. 2000, Wirth et al. 2004, Wutzler 
et al. 2006).  

We note, that neither the equilibrium nor the 
relaxed equilibrium assumption is applicable for 
sites with more recent (less than a century ago) 
disturbances. In order to initialize the model for 
such sites, the stocks of all the pools have to be 
estimated. There are recent advances in 

reflectance methods to achieve this (Couteaux et 
al. 2003). Zimmermann et al.(2006) related 
fractions of grassland soil carbon that were 
distinguished chemically to the carbon pools used 
in the Roth-C model. These pools then could be 
classified quite well by analyzing reflectance 
spectra. 

Incorrect initial model state and 
underestimation of carbon accumulation 
and it’s uncertainty 
Previous model studies of soil carbon stock 
changes (e.g. Liski et al. 2002) did not take 
detailed account for the effect of soils recovering 
from former disturbance. We exemplified the 
consequences of relaxing the equilibrium 
assumption on development of soil carbon by 
applying the transient correction together with the 
YASSO model to a Central European beech 
forest.  

If soils are apart from equilibrium, this leads 
to a big overestimation of the decay rate of the 
slowest pool with the current method of 
constraining the slow pool decay rates. The spin-
up-runs will still give reasonable results for soils 
that have a similar disturbance history as the sites 
used for parameterization of the model 
(Peltoniemi et al. 2004). However, with an 
overestimated decay rate of the slowest pool, the 
spin-up-runs underestimate the stock at sites that 
have not been disturbed for a very long time. 
Further it overestimate the stock at sites that have 
been disturbed in the last two or three centuries 
ago. For this time we can assume that the sites 
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used for parameterization of the Yasso model have 
not been severely disturbed. The spinup-runs 
possibly will overestimate stock at sites where last 
disturbance is even longer ago, but this depends 
on disturbance history of the sites used for 
parameterization of the Yasso model.  

When applying the transient correction to the 
Central European beech forest we found an 
additional increase due to recovering from 
disturbance was with 5.7 g/m²/yr (Fig. 6). This  
additional increase was of the same magnitude as 
the increase due to climate change projected for 
Finland (9 g/m²/yr) (Liski et al. 2006) or Sweden 
(7.5 g/m²/yr) (Ågren et al. 2007). In a first very 
rough extrapolation to European scale we assume 
that half of the forested area in Europe is still 
recovering from former disturbance and that the 
additional increase that we calculated for the 
Leinefelde site would occur on this area. With 
these assumptions, the projected forest soil carbon 
sink of 7.5 TgC for Europe (EU15 + Norway + 
Switzerland: 120 million ha) by a recent LPJ 
modelling study by ATEAM (Lindner et al. 2004, 
Schröter et al. 2004) would be increased by 3.42 
TgC or by 46%. Hence, the potential carbons sink 
due to recovering from former disturbance is in 
the same magnitude as the currently projected sink 
in Europe. 

Relaxing the equilibrium assumption added 
another degree of uncertainty to projections of 
carbon stocks. With applying the transient 
correction, this additional uncertainty entered the 
model by the unknown slowest pools decay rate. 
The uncertainty of projected carbon stocks was 
smaller than projected stock change but of the 
same magnitude (Figures 6 and 7).  Further, the 
uncertainty varied with assumptions about the 
temperature sensitivity of the slow pools decay 
rates (Fig. 8). This variation of the uncertainty of 
carbon stock changes was caused in part by the 
higher initial percentage of the slow pool in the 
increased temperature sensitivity scenarios (Fig. 
5). We suppose that uncertainty of stock changes 
due to slow pool parameterization will be largest 
in soils, where the initial percentage of the slow 
pool after the transient correction is large or where 
decay rates are high.  

Consequences apply also to other models 
The models Century (e.g. Parton et al. 1988), 
Coup (Jansson and Karlberg 2004), Romul 
(Chertov et al. 2001), RothC (Jenkinson 1990), 
and the soil model of Biome-BGC (Thornton 
1998) all define a very slow pool. Except Romul, 
which provides a database of compiled initial 
states, all these models use the equilibrium 

assumption to infer initial states. Therefore, the 
consequences of Yasso model simulations also 
apply to these models. The transient correction 
should also be readily applicable to these models 
except the RothC model. The RothC shares the 
same problem; however the application of the 
transient correction is impaired. This is because 
the model specifies no input to the inert pool and 
already calibrates the size of the inert pool in a 
way to match average age of soil carbon that was 
determined by C14 measurements (Martel and 
Paul 1974, Falloon et al. 1998, Rumpel et al. 
2002).  

Evidence and tests for the hypothesis of 
soil carbon stock being apart from 
equilibrium  
From repeated measurement after 5-10 years, we 
can practically not infer if a soil carbon stock is 
near equilibrium because small changes in carbon 
stocks could be attributed to inter-annual variance 
(Fig. 3). However, the influence of former 
disturbances, namely former land use, on current 
soil carbon stocks, C:N ratios, nitrification and 
other soil properties is confirmed by many  studies 
at several sites (e.g. Koerner et al. 1997, Wardle et 
al. 1997, Goodale and Aber 2001, Berger et al. 
2002, Rothe et al. 2002, Thornton et al. 2002, 
Mund 2004, Mund and Schulze 2005). These 
influences can be much stronger than climatic 
influences  (Caspersen et al. 2000, Janssens et al. 
2001) and can be observed after 1700 years 
(Dupouey et al. 2002). A recent review regarding 
soil carbon changes in forests concludes that the 
vast intensive cultivation throughout Europe 
(deforestation, drainage, deflation and erosion) has 
caused immense historical losses of soil carbon. 
Nowadays forested areas with degraded soils are 
abundant and offer a tremendous potential to 
restore carbon stocks (Baritz  et al. 2004). Foster 
et al. (2003) describe processes that alter soil 
properties in historic timescales. The most 
important ones are probably tillage (Wall and 
Hytonen 2005, Grandy and Robertson 2006) and 
erosion (Polyakov and Lal 2004). Hence, we 
support the hypothesis that soil carbon stocks of 
many sites are apart from equilibrium. In order to 
further increase the evidence we suggest testing 
some consequences of the hypothesis.  

One consequence is the underestimation of 
current soil carbon stocks for sites that have not 
been disturbed for a much longer time than the 
sites used for parameterization. Are these 
overestimations observed? We did not apply the 
Yasso model to the  old-growth forest with high 
carbon stocks (Wardle et al. 1997, Harmon et al. 
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2004), but we realize that the litter input and 
adjustment of decay rates with climate would not 
be sufficient to simulate the large observed stocks. 
Soils with an even longer track (i.e. more than 
millennia) of stable conditions can be found at 
sites of tropical evergreen rainforests. However, 
caution has to be applied in translating models and 
parameters between boreal and temperate zone. 
Due to the very different apparent decay rates, the 
soil carbon stocks are not readily comparable 
between the temperate and the boreal zone. 

A second consequence is the overestimation of 
current soil carbon stocks for sites that have been 
disturbed in the last two or three centuries ago. In 
this study we presented simulations of forest soils 
that have been disturbed by wood pasture 150 
years ago with lower observed carbon stocks than 
stocks predicted by spin-up runs (Fig. 5). These 
observations confirm the notion of soils being 
apart from equilibrium. 

Koerner et al. (1999) found that δ15N values  
increase with intensity of former land use. They 
related this to former input of 15N enriched 
manure, and to the activation of soil nitrification. 
The increase δ15N can be used as a (yet non-
quantitative) tracer of previous land use in forests. 

How can we interpret and constrain the 
slow pool’s decay rate without assuming 
equilibrium? 
Currently quite contrasting concepts are existing 
about which factors processes determine the slow 
kinetically defined pools and their decay rate, 
where the biochemical properties of the decaying 
material (Couteaux et al. 1995, Berg and 
McClaugherty 2003), physico-chemical 
stabilization (Mikutta et al. 2006, von Lützow et 
al. 2006) and microbial limitations of energy and 
nutrients (Fontaine and Barot 2005) are mentioned 
as limiting factors. Couteaux et al. (1995) present 
a conceptual model of decomposition in the 
organic layer that is divided in three phases. The 
initial phase could be roughly attributed to the 
decay of the extractives, celluloses, and lignin 
pools of the Yasso model, the late phase to the 
pools lignin and humus one pool, and the final 
stage to the decay of the most recalcitrant pool. 
Howard et al. (1974) found, when extrapolating 
mass loss of litter bag studies with an asymptotic 
model, that in many cases the proportion of mass 
that is decayed, is smaller than 100% and that 
there is a part of the litter that is transformed to 
stable components. Berg et al. (1996, 2003) 
termed the asymptote of the decay “limit value” 
and showed that it can be correlated with litter 
quality and climatic conditions. If pools are 

attributed to the decay phases as described above, 
the portion above the limit value, i.e. the not or 
extremely slowly decomposing fraction, 
corresponds to the flux into the slowest pool. It 
needs to be investigated, if this approach together 
the age of soil carbon (Martel and Paul 1974, 
Falloon et al. 1998, Rumpel et al. 2002)can be 
used to constrain the slower pools without the 
equilibrium assumption. The parameterization of 
the slow pools then will depend on litter quality, 
namely initial nitrogen content, and climatic 
drivers. 

Decomposition, especially the late states, also 
depends on soil mineralogy and spatial 
inaccessibility of carbon (Mikutta et al. 2006, von 
Lützow et al. 2006). Finally, Fontaine and Barot 
(2005) could increase dramatically the decay rates 
of the soil organic matter by increasing the energy 
input into the soil, indicating that microbial 
starvation could also be a reason for stabilization, 
particularly in deeper horizons. The YASSO 
model, however, assumes that decomposition is 
governed by chemical litter quality and climatic 
drivers. Hence, the transient correction should 
only be considered as a diagnostic approach and 
we believe that models need to be developed 
which explicitly represent these additional 
processes give better mechanistic constraints on 
and interpretation of soil organic matter 
decomposition rates. 

Conclusions 
• Observations of current soil carbon stocks are 

not sufficient to constrain the decay rates of the 
recalcitrant components and the corresponding 
equilibrium carbon stocks. The reason is that 
because of the long time scales of recovering 
from disturbances it is not known whether 
carbon stocks are in equilibrium. 

• If soils are apart from equilibrium, spin-up runs 
are only valid for sites that have a similar 
disturbance history as the sites used for model 
calibration. The spin-up runs underestimate the 
stock of sites that have not been disturbed for a 
very long time, i.e. thousands of year, and 
overestimate the stock of sites that have been 
disturbed in the last two or three centuries  

• Carbon stocks that have been generated by 
spin-up runs of models that work similar as 
YASSO should be corrected by the “transient 
correction”. This means to adjust the slowest 
pool in a way that the sum of soil pools 
matches an independent estimate of soil carbon 
stocks. Such an estimate can be obtained by 
soil carbon stock observations or by regional 
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statistical models that can account for the 
unknown but similar disturbance history. 

• In century-term simulations the uncertainty due 
to the unknown decay rate of the slowest pool 
results in uncertainty of stock changes in the 
magnitude of 1’ g/m²/yr. This considerable 
amount of uncertainty is of the same 
magnitude of the simulated changes in soil 
carbon stocks due to litter input and climate 
change. The amount of uncertainty does not 
change very much with changing litter input 
and changing temperature. However, this 
amount increases with temperature sensitivity 
of the slow pools and the initial proportion of 
the stock of the slowest carbon pool.  

• Carbon storage capacity of disturbed forest 
soils is potentially much higher than currently 
assumed. 

• Century-term simulation of changes in soil 
carbon stocks that use spin-up-runs without the 
transient correction miss a considerable 
amount of carbon accumulation at many 
disturbed forest sites 

Appendix A: Calculation of average 
litter inputs 
In addition to the measured litter input, we 
calculated input by harvest residues and coarse 
roots after harvest in the following way. 
Merchantable timber volume and volume 
increment of the remaining part of the stand was 
estimated by yield tables (Dittmar et al. 1986). We 
assumed a harvest of 50% of the volume at age 
140 years and 15%, 15% and 20% at the ages 150, 
160, 170 years respectively. Carbon mass of tree 
compartments stem, branches were estimated by 
age and site index dependent conversion factors of 
(Wirth et al. 2004). Extracted wood volume on 
harvest was 92% of merchantable timber volume 
(Weber pers. comm). Carbon mass of harvest 
residues was calculated by the difference between 
stem/branch carbon and the carbon mass of the 
extracted wood  by applying a wood density of 
0.56 t/m³ and a carbon concentration of  48.6% 
(Weiss et al. 2000). The harvest residues and roots 
were partitioned to the inputs of the Yasso model 
according to Table 4. The coarse woody part of 
harvest residues was removed by about 90% by 
wood pickers (Mund pers. Comm.). The sum of 
harvest residues and root biomass was divided by 
the rotation length of 140 years and added to the 
average litter inputs. 

Appendix B: Parameterization of the 
Yasso model 
Following tables list the standard parameters that 
have been applied to the Yasso Model for 
simulation experiments. 

climatic parameters (standard climate) 
mat0 3.3 °C standard mean annual 

temperature 
drought0 -32 mm standard precipitation - 

potential evapotranspiration 
from may to september 

beta 0.105 effect of mean annual 
temperature 

gamma 0.00274 effect of drought 

decomposition rates (k) and mass proportions of 
decay use to form more recalcitrant components 
(p) 
compartment k [1/yr] p [1]  

ext 0.48 0.2 conifers 
ext_b 0.82 0.2 deciduous 
cel 0.30 0.2  
lig 0.22 0.2  
hum1 0.012 0.2  
hum2 0.0012 0  

standard relative sensitivity of slow pool decay 
rates to differences in temperature and drought 
s1 (hum1) 0.60 
s2 (hum2) 0.36 

microbial invasion rates with standard climate 
compartment a [1/yr] 

fwl 0.540 
cwl_small 0.077 
cwl_large 0.030 

chemical composition of litter, used in the 
equilibrium experiment (Pinus sylvestris). 
compartment ext  cel lig 

nwl 0.27 0.51 0.22 
fwl 0.03 0.66 0.31 
cwl 0.01 0.69 0.30 

chemical composition of litter, used in the 
Leinefelde application (broadleaved) 
compartment ext cel lig 

nwl 0.38 0.36 0.26 
fwl 0.03 0.65 0.32 
cwl 0.01 0.77 0.22 
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Effect of the Aggregation of Multi-Cohort Mixed Stands on Modeling 
Forest Ecosystem Carbon Stocks 

 
Abstract Studies of the carbon sink of forest 
ecosystems often stratify the studied stands by the 
dominating species and thereby abstract from 
differences in the mixed-species, multi-cohort 
structure of many forests. This case study infers 
whether the aggregation of forestry data introduces 
a bias in the estimates of carbon stock changes at 
the scale of individual stands and the scale of a 
forest district. The empirical TreeGrOSS-C model 
was applied to 1616 plots of a forest district in 
Central Germany to simulate carbon dynamics in 
biomass, woody debris, and soil. In a first 
approach each stand was explicitly simulated with 
all cohorts. In three other approaches the forest 
inventory data were aggregated in several ways, 
including a stratification of the stands to 110 
classes according to the dominating species, age 
class, and site conditions. A small but significant 
bias was confirmed. At stand scale the initial 
ecosystem carbon stocks by the aggregated 
approach differed from that of the detailed 
approach by 2.3%, but at the district scale only by 
0.05%. The differences in age between 
interspersed and dominant cohorts as well as 
differences in litter production were important for 
the initial stocks. The amounts of wood extracted 
by thinning operations were important for the 
projection of the stocks over 100 years. Because of 
the smallness of bias this case study collects 
evidence that the approaches, that represent stands 
or stratums by a single cohort, are valid at the 
scale of a forest district or larger. 
 
Keywords stand structure, thinning, scale, forest 
growth model, TreeGrOSS-C, inventory 

Introduction 
Forest ecosystems of the northern hemisphere are 
currently a large carbon sink in respect to the 
atmosphere (Liski et al. 2003, Myneni et al. 2001). 
The direct human-induced part of this sink is 
accountable with the Kyoto protocol (UNFCCC 
1997). However, factoring out the drivers for this 
sink can only be done with large uncertainties yet 
(e.g. Albani et al. 2006, e.g. Vetter et al. 2005) and 
studies are required that better represent forest 
management, especially the effects of age and 
stand structure (Perry et al. 2008). In line with 
changes in forest management goals, many forests 
in Central Germany will become more diverse and 
the importance of mixed species, multi-cohort 
stands will increase (Gamborg and Larsen 2003, 
Kohm and Franklin 1997, Larsen and Nielsen).  
Many current studies of forest carbon, however, 
work with stratified forest inventory data (e.g. 
Vetter et al. 2005) and hence abstract from many 
details of the stand structure. This involves 
aggregation of inventory data, which potentially 
introduces a bias with the application of non-linear 
models (Harvey 2000).  Several aspects of carbon 
stock quantification are highly non-linear, e.g. the 
dependence of biomass expansion factors on tree 
age and site quality.  Hence, it needs to be tested, 
if the aggregation of forest inventory data and the 
representation of multi-cohort mixed stands results 
in a bias in carbon stock projections.  

Davi et al. (2006) already showed that 
aggregating several eco-physiological parameters 
had only a negligible bias on applying the process 
based CASTANEA model at subplot, stand, and 
landscape scale. They simulated monospecific 
stands only. The factors that are generalized or 
averaged in the process of data aggregation at 
stand scale, however, concern mostly differences 
between species and between tree ages. First there 
are parameters of the growth and management of 
trees (diameter and height increment, competition, 
thinning intensities, natural mortality, proportion 
of extracted biomass on harvest), second, the 
conversion of inventory data to carbon mass 
(volume equations, wood densities, biomass 
expansion factors for stem, branches, leaves, and 
roots), third, estimation of carbon inputs to the soil 
(biomass turnover rates), and fourth, litter 
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decomposition parameters (distribution of litter 
qualities and decomposition rates).   

I categorize the approaches of projecting the 
forest carbon sink into three classes (Fig. 1). First, 
with the stratified approach (i) the forest area is 
stratified into classes by dominating species, age 
structure, and site conditions. Next, the carbon 
dynamics of each class are simulated (e.g. 
Freibauer et al. 2008, e.g. Vetter et al. 2005). 
Alternatively, the transitions of forest areas from 
one class to another class are tracked in a forest 
scenario model (e.g. Thurig and Schelhaas 2006). 
Second, the subsampled approach (ii) differs from 
the stratified approach by simulating a set of 
localized stands instead of a set of classes. The 
approach must assume that the sample of 
simulated stands is representative for the studied 
forest area (Lasch et al. 2005, e.g. Nabuurs and 
Schelhaas 2002). Third, the detailed approach (iii) 
simulates each stand of the study area separately 
(e.g. Le Maire et al. 2005). The level of spatial 
heterogeneity and the level of detail in forestry 
management that can be represented in the carbon 
sink projection increases from (i) to (iii). However, 
also the requirements on input data and execution 
times increase. Therefore it is desirable to use 
approach (i), but it must be shown, that the 
aggregation of parameters and input data does not 
lead to a bias.  

Hence, the goal of this study was to perform a 
case study at the scale of a forest district that 
assesses the effect of the aggregation of the forest 
inventory data on the carbon stock projections. I 
used a single-tree based empirical forest 

ecosystem carbon balance model and compared 
the simulated carbon stocks between different 
scenarios of aggregating forest inventory data. My 
hypothesis was that the aggregation of multi-
cohort forest inventory data to a single cohort 
results in a bias in simulated forest ecosystem 
carbons stocks. In order to exclude confounding 
effects, this study did not consider climate change 
and changes in management practises. The finding 
that the bias within this case study was small 
compared to the projected changes in forest 
carbons stocks collects evidence that the usage of 
stratified data in carbon stock projections is viable 
for quantifying carbon and projecting carbon 
stocks at scales of forest districts and larger. 

Methods 

Study area 
I studied a population of forest stands in the 
Hummelshain forest district. The population was 
constrained to stands that were owned by the 
federal state, and where trees with a diameter at 
breast height (dbh) of at least 7 cm were present, 
because forestry inventory data were sparse or it 
were not available for other stands. The population 
consisted of 1616 stands that covered an area of 
3619 ha. The Hummelshain forest district was 
located 50° 48′ N, 11° 35′ O at the south-eastern 
edge of Thuringian basin at altitudes of 270- 330 
m above sea level. Limestone in the west and 
sandstone at the east of the district formed a 
plateau that was carved by the river Saale and 
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Figure 1: Classification of approaches of projecting
carbon sink of a forest area. The approaches differ by
first, the set of stands that are projected, second, by the
spatial detail of inputs and parameters that drive the
projections, and by the assumptions involved to
extrapolate or aggregate the results of the projections. 
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Figure 2: Distribution of Species Groups. There are
less broadleaved species within the dominating cohorts
compared to the interspersed cohorts in the Eastern
growing region and more Beech dominated stands in
the dominating cohorts of the Western region. 
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several smaller rivers. The forest areas were 
located at the plateau areas and the ridges between 
the Saale and several contributing rivers. Mean 
annual temperature was 8.5 °C and annual 
precipitation was 602 mm according to the lower 
climate stratum of Vetter et al. (2005). Most stands 
were dominated by Scots Pine (Pinus sylvestris) 
and interspersed with Spruce (Picea abies), Birch 
(Betula pendula), and Oak (Quercus rubra). On 
several sites also Common Beech (Fagus 
sylvatica) was dominating. There were differences 
in species composition between the western 
sandstone dominated growing region and the 
eastern limestone dominated growing region (Fig. 
2 bottom). The forest area has been managed until 
1993 by a smallstrip clearcutting system leading to 
homogeneously managed stands of size 0.5-5 ha. 
For more than two third of the stand area the forest 
inventory recorded one or more cohorts in addition 
to the dominating cohort. Within the non-
dominating cohorts there was a larger proportion 
of Oak and other Softwood and Hardwood species 
(Fig. 2 top). 

I exemplify some of the stand-scale results at 
the specific stand named “10,S,1,3,189,a,2”, which 
consisted of 4 cohorts (Table 1): the dominating 
Spruce cohort of age 55 years, a younger spruce 
cohort of age 45 years, a pine cohort and a birch 
cohort, which were both of age 50 years. The 
forest inventory additionally listed a remnant of a 
pine cohort of age 95 year, for which no further 
information, such as basal area, was available. Site 
conditions were described as a dystric Cambisol 
(class  “BBn: Normbraunerde”) on sandstone 
bedrock with no seasonal changes in intermediate 
soil moisture (class “terrestrisch, mäßig frisch”) 
and intermediate nutrient availability. The stand is 
located in the climatic region in the lowlands 
(class “Vm”), with annual mean temperature of 
8.5°C, annual precipitation sum of 602 mm, and a 
drought index, i.e. precipitation minus potential 
evapotranspiration from May to September, of 8 
mm. 

Data 
Forest inventory in the study region is performed 
with the main objective to assess timber volume 
and growth increment. All the stands of the forest 
area of the forest district are sampled during one 
year and the sampling is repeated every 10 years. 
Diameter at breast height (cm) and basal area 
(m²/ha) of each cohort (classified by species, age, 
and height distribution) are assessed with a 
relascope and on a small subset of  trees tree 
height is measured. Cohort data enters a database 
together with recorded age of the cohort, measured 
or interpolated height (m), calculated relative and 
absolute timber volume (m³/ha; m³), site index 
(expected tree height at age 100 years in m), the 
proportion of covered area within a layer of the 
stand (%), a species identifier and several other 
descriptive parameters such as social role, tree 
layer and damages. 

Additionally, an inventory of site conditions 
has been performed, which is based on soil 
profiles and delineation of homogenous areas 
based mainly on local topography and ground 
vegetation (Kopp and Schwaneke 1991). The site 
inventory records information on bedrock, 
geology, moisture conditions and nutrient 
availability. The areas of this site evaluation are 
nested within areas of similar climatic conditions, 
which are based mainly on altitude and exposition 
in this inventory. 

I used the climatic data from (Vetter et al. 
2005) and related it to the classes of the site 
inventory. Vetter et al. obtained the data from 11 
stations of the German Meteorological Society 
(DWD Offenbach Germany) and aggregated it to 3 
classes. The original data consisted of an hourly 
record of temperature, precipitation, water 
pressure deficit, solar radiation and day length 
from 1971-2001. Additionally I used the Simpel 
model (Hörmann 2006) to calculate potential 
evapotranspiration for spruce and for broadleaved 
species dominated stands.  

 
 
 

Table 1: Inventory information for the stand „10,S,1,3,189,a,2“ 

species age diameter height coverage basal area volume 

 yr cm m % area m2/ha m3/ha 
spruce 55 18 24 65 27 311 
pine 50 26 22 15 27 271 
birch 50 23 24 20 27 271 
spruce 45 10 15 40 9 72 
pine 95 41 ? ? ? 6 
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Forest Ecosystem Carbon Model 
In order to project the stand structure and the 
development of carbon stocks, I used the 
TreeGrOSS-C model which is described in more 
detail in appendix A and (Wutzler 2007). The 
model is an extension of the TreeGrOSS-model 
(Tree Growth Open Source Simulator), an 
empirical single tree based stand simulator which 
is based on data of long term monitoring plots in 
Central Germany (Nagel 1999, Nagel 2006, Nagel 
2003). TreeGrOSS projects the development of 
diameter and height of individual trees by a 
species and site dependent potential growth that is 
diminished by the competition state of each tree. It 
contains modules to calculate the timber volume of 
trees, as well as modules to generate distributions 
of single trees, based on average diameter and 
height of tree cohorts. I extended the TreeGrOSS 
model first, by modules to read and generate 
inventory information of the used inventory data, 
second, by modules to convert timber volume to 
carbon of several tree compartments and it’s 
turnover by wood density (Weiss et al. 2000), 
biomass expansion factors (Lehtonen et al., 
Wutzler et al. 2008, Zianis et al. 2005), and 
average life times (Wutzler and Mund 2007), and 
third, by modules to allocate carbon in harvested 
timber to several product groups according to 
(Mund et al. 2005). Next, I coupled the extended 
TreeGrOSS model to a model of forestry 
management, a simple wood product model, and 
the Yasso Soil Carbon model (Liski et al. 2005)  
(Fig. 3). The management model compared the 
inventory of the simulated stand to yield tables at 
each year that was listed in the corresponding 
yield tables. Then it generated thinning demands 
by specifying the accumulated basal area and the 
mean diameter of trees to be thinned as the 
difference to the goal from the yield table. The 
amount of thinning was constrained to be at 
maximum 20% of the current basal area, in order 
to avoid stand instability. The stand was harvested 
at the last stand age that was recorded in the yield 

table of the dominating cohort and cohorts were 
re-established with the same shares of cohorts as 
in the initial forest inventory. The product model 
tracked the carbon in several product groups that 
are defined by a common life time. The Yasso soil 
carbon model was split into a species-dependent 
and a species-independent part. The dependent 
parts were replicated in order to simulate multi-
cohort stands. Yearly inputs of mean annual 
temperature, annual precipitation, and drought 
index were provided. The soil model was 
initialized by spinup-runs with modelled mean 
past litter production (Wutzler and Mund 2007) 
and corrected with the transient correction to 
account for former disturbances (Wutzler and 
Reichstein 2007). The correction required an 
independent estimate of initial carbon stocks. 
Therefore, I extrapolated measured carbons stocks 
in mineral soil and organic layer based on the 
inventory of site conditions and the forest 
inventory. For the spatial extrapolation, I applied 
geo-matching in conjunction with the regression 
models developed by Wirth et. al. (2004), making 
use of the combined data of the forest inventory 
and the site evaluation. The stand growth model 
had an internal time step of 5 years. The 
management model and the product model were 
implemented as discrete event models (Zeigler et 
al. 2000) and run according to the thinning events 
as specified by the yield tables. The Yasso soil 
carbon model was implemented as a quantized 
system that solved the differential equations with a 
time step adjusted to the accuracy of the pool 
changes (Kofman 1997) and received updated 
litter input rates at least each 5 years. 

In this study I analysed the simulated 
merchantable timber volume (m3/ha), above 
ground wood with a diameter > 7cm and carbon 
stocks (t/ha) in  
• above and below ground biomass of living trees 
• woody debris, i.e. the sum of dead wood, dead 

root and woody litter 
• and the soil including the organic layer  

Figure 3: 
Conceptual view 
of the 
TreeGrOSS-C 
model. Arrows 
denote inputs and 
outputs to the 
TreeGrOSS-C 
model and its 
submodels. 
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Practical Scenario 
Because of the goal of this study was to assess the 
effect of the aggregation of multi-cohort multi-
species stands to only one dominating cohort on 
the carbon stock projections, I did not introduce 
scenarios of climate change nor introduce changes 
in management practises. I project the carbon 
stocks to the next century under practical 
assumption that management, i.e. timing and 
amount of thinning and harvesting and stand 
establishment, corresponded to yield tables. 
Climatic drivers were kept constant to the mean 
over the previous 40 years. The additional 
assumptions with the possible inclusion of climatic 
correction into empirical stand growth models 
(Matala et al. 2006) together with the uncertainty 
of regional and topographic climate scenarios 
(Running et al. 1987), would have increased model 
complexity and they would also have complicated 
the interpretation of the results.  

Four Approaches of Aggregating Forest 

Inventory Data 

The aim of this study was to assess the effect of 
aggregating multi-cohort, multi-species stands to 
only one cohort on the projection of carbon stocks. 
Hence, I first ran the TreeGrOSS-C model with the 
data of all the stands and all the cohorts to form a 
baseline (detailed approach, Fig 1iii). Second, I 
ran the model for each stand but with only a single 
aggregated cohort, i.e. a monospecific stand 
(aggregated approach Table 2). The properties 
species, age, diameter, height, and site index of 
this aggregated cohort corresponded to the 
dominating cohort. The properties basal area, 
timber volume, and covered area of the aggregated 
cohort corresponded to the sum across all the 
cohorts within the stand.  Third, I analyzed a 
subset of 46 randomly selected stands with all 
cohorts (subsampled approach). The number of 46 
stands was chosen because there were 46 plots of 
the national forest inventory (BMVEL 2005) 

within the study area. And fourth, I aggregated all 
the inventory data into classes according to four 
species groups, age classes of 10 years, and three 
classes of site quality according to site index 
(Kramer and Akça 1995)  (stratified approach, Fig. 
1i).  For each class I ran a simulation with one 
cohort using the data of site conditions and the 
climate record for the area that was most abundant 
within the forest area that was represented by the 
class.  

Statistical Analysis 

Mean carbon stocks at forest district scale and at 
the two sub regions of the Eastern and Western 
growing region were calculated with weighting the 
stands or classes by their corresponding stand area. 
In order to compare the significance of differences 
between the approaches I used a bootstrap analysis 
(Davison and Hinkley 1997) of 1000 times 
randomly sampling stands or classes with 
replacement. This mimics a 1000 times resampling 
of the forest district. From each bootstrap sample I 
recalculated the weighted mean of simulated 
carbon stocks (tC/ha) by one of the aggregated 
approaches and I recalculated its difference to the 
weighted mean of the stocks that were simulated 
by the detailed approach for each bootstrap 
sample. The mean, the standard deviation, and the 
2.5% to 97.5% confidence interval of the 
difference were estimated from the empirical 
cumulative distribution function across the 
bootstrap samples. The bias, i.e. the mean 
difference to the detailed approach, was significant 
if the 95% confidence interval did not include the 
zero difference. In the same manner I calculated 
the differences between approaches and their 
statistics of the stock change (tC/ha/yr) from 2003 
until 2013, 2023, 2053 and 2103. The bootstrap 
analysis is here more appropriate than t-tests or 
rank-tests because it accounts for booth, the strong 
non-normality of the distribution and the weights 
of each stand or observation. 

Results 

Stand Level 
First, I compared the aggregated versus the 
detailed approach (Table 2) at single stands. The 
two approaches differ most by the consequences of 
different thinning operations and by different 
carbon mass per timber wood volume, i.e. the 
parameters wood density and biomass expansion 
factor. For example, at the stand named 
“10,S,1,3,189,a,2,0” less pre-commercial thinning 
or self-thinning was simulated with the aggregated 

Table 2: Approaches of aggregating the forest 
inventory data. 

 Cohort aggregation 

St
an

d 
ag

gr
eg

at
io

n Detailed Aggregated 
Each stand Each stand 
All cohorts Single aggregated cohort 

Subsampled Stratified 
Subset of 46 

stands 
110 strata of district 

inventory data 
All cohorts Single aggregated cohort 
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approach (Fig. 4a). This was because of stronger 
thinning for the interspersed cohorts than for the 
dominating spruce cohort, which was prescribed 
by the yield tables. Further the species of the 
interspersed cohorts were also less shade-tolerant 
than the dominating cohort and the model 
calculated stronger self-thinning. This resulted in 
higher standing timber volume in tree biomass but 
in lower tree biomass because of differences in 
conversion factors.  At the same time, less dead 
wood was produced with the aggregated approach. 
Hence, there were lower carbon stocks in woody 
debris and soil (Fig. 4b and 4d). Besides thinning, 
also differences in litter production and litter 
turnover between species were important for 
woody debris and soil carbon stocks. When 
ecosystem carbon stocks were compared, i.e. the 
sum of carbon stocks in above and below ground 

biomass, woody debris, and soil, the aggregated 
approach resulted in lower initial carbon stocks for 
the example stand (Fig. 4c). The differences in 
volume equations, wood density, biomass 
expansion factors and initial carbon stocks 
between species caused the difference in 
ecosystem carbon stocks at the beginning of the 
projection in 2003.  

In addition, there were differences in initial 
woody debris carbon stocks (-7.3 to 2.9 t/ha in 
95% of the stands) and soil carbon stocks (-19.0 to 
11.9 t/ha) (Fig. 5). These differences were larger 
than the difference in biomass stocks (-1.2 to 8.8 
t/ha) and dominated the differences in ecosystem 
carbon stocks (-21.8 to 16.2 t/ha). However, these 
differences in initial carbon stocks between 
approaches was small compared to the differences 
between the stands (Fig. 6). The relative difference 
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Figure 4: Stand scale differences of projections of timber volume (a), carbon stocks in woody debris (b), ecosystem 
(c), and mineral soil (c) between the detailed approach (soilid line) and the aggregated approach (dashed line). The 
several dash-dot lines in figure four correspond to the four simulated tree cohorts (Table 1) in the stand growth 
model. 
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between the detailed and the aggregated approach 
of 2003 ecosystem carbon stocks did not exceed 
2% for 71% of the stands. The mean of the 
absolute values of the differences was 2.3% and 
the standard deviation of the differences was 9.0%. 
However, eight stands differed by more than 20%. 
For a subset of the stands the carbon stocks were 
overestimated by the aggregated approach, but for 
the other stands the stocks were underestimated. 
The histograms (Fig. 5) showed no apparent 
dominance of a direction of the difference between 
the aggregated approach and the detail approach.  

Forest District Scale 
At forest district scale the bootstrap analysis 
detected a non-significant difference (-0.39 t/ha) in 
2003 ecosystem carbon stocks between the 
aggregated and the detailed approach (Table 3). 
However, for the subsets of stands in the Eastern 

and the Western growing region there was a 
significant underestimation (-0.93 t/ha) and 
overestimation (+1.9 t/ha) respectively. The 
difference in the soil carbon stocks (95% of the 
bootstrap samples within -1.15 to -0.48 t/ha) was 
larger than the difference in biomass stocks (-0.78 
to +0.015 t/ha) and in woody debris carbon stocks 
(-0.54 to -0.29 t/ha) (Fig. 7). 

Further, when I compared the change in 
ecosystem carbon stocks between 2003 and 2023, 
there was a significant underestimation of these 
stock change by the aggregated approach of about 
-33 kg/ha/yr across the district and the sub regions. 
The difference regarding ecosystem stock change 
was dominated by biomass (95% of the bootstrap 
samples within -48 to -28 kg/ha/yr) compared to 
woody debris (+12 to +27 kg/ha/yr) and soil (-20 
to -7 kg/ha/yr). 
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Figure 5: Histogram of the differences in 2003 carbon
stocks between aggregated and detailed approach (Caggr-
Cdetl)). The left column represents the Eastern growing
region and the right column the Western growing
region. Note the different scale of the x-axis which
represents the empirical 95% confidence interval. 
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At district level, I could also compare the 
results of the subsampled and the stratified 
approach (Table 2) to the detailed approach. The 
studied population was the same, but the sample of 
individuals differed across the approaches. The 
box-plots of the distribution of carbon stocks in 
2003 across the forest area showed that about 50% 
of the area had carbon stocks of 190 to 250 tC/ha 
and a median of about 220 tC/ha in all approaches 
(Fig. 8). The subsampled and the stratified 
approach did not represent areas of extreme (28 to 
289 t/ha) carbon stocks. The bootstrap analysis 
showed comparatively wide confidence intervals (-
24 to +14 tC/ha) for the difference in ecosystem 
carbon stocks 2003 between the subsampled and 
the detailed approach (Table 3). Hence, there was 
no significant bias detected. The bias with the 
stratified approach, i.e. the difference to the 

detailed approach, of 2003 ecosystem carbon 
stocks had the same directions for the regions as 

Table  3: Bootstrap statistics about the differences of the aggregating approaches from the detailed approach in 
2003 ecosystem carbon stocks (t/ha). q2.5  and q97.5 :empirical 2.5% and 97.5% percentiles, p0 zero difference in the 
empirical cumulative distribution function (outside 0.025 and 0.975 is significant). 

Region Mean Std.Dev q2.5 q97.5 p0 bias 
Aggregated - Detailed     

District -0.39 0.21 -0.78 0.015 0.97 trend of underestimation 
East -0.93 0.19 -1.3 -0.54 1.0 significant underestimtion 
West 1.9 0.62 0.65 3.1 0.0020 significant overestimation 

Subsampled - Detailed     
District -1.9 10 -24 14 0.50 no 

East 0.37 11 -22 17 0.46 no 
West 1.0 5.8 -11 8.0 0.50 no 

Stratified - Detailed      
District -3.9 0.92 -5.7 -2.1 1.0 significant underestimtion 

East -6.1 0.98 -8.1 -4.2 1.0 significant underestimtion 
West 5.4 1.8 1.9 9.2 0.0010 significant overestimation 

Table 4: Bootstrap statistics differences in ecosystem carbon stock changes from 2003 to 2023 (t/ha/yr). Symbols as 
in Table 3. 

Region Mean Std.Dev q2.5 q97.5 p0 bias 
Aggregated - Detailed     

District -0.033 0.0060 -0.043 -0.021 1.0 significant underestimation 
East -0.033 0.0071 -0.047 -0.019 1.0 significant underestimation 
West -0.034 0.011 -0.056 -0.011 1.0 significant underestimation 

Subsampled - Detailed     
District -0.012 0.27 -0.53 0.48 0.56 no 

East 0.013 0.35 -0.51 0.61 0.46 no 
West 0.017 0.15 -0.25 0.28 0.38 no 

Stratified - Detailed      
District 0.48 0.031 0.42 0.54 0.0 significant overestimation 

East 0.50 0.031 0.44 0.56 0.0 significant overestimation 
West 0.41 0.091 0.23 0.58 0.0 significant overestimation 

West
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Figure 7: Differences in district mean carbon
stocks 2003 between aggregated and detailed
approach.  
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 with the aggregated approach, and the bias was 
significant for all regions. 

When comparing the distribution of the carbon 
stock change between 2003 and the years 2013, 
2023, 2053 and 2103, there were no obvious 
differences in the median and the quantiles of the 
distribution between approaches (Fig. 9). The 
subsampled and the stratified approach did not 
represent areas of the extreme carbon stocks 

changes. The bootstrap analysis of the carbons 
stock change from 2003 to 2023 found again large 
standard errors for the difference between the 
stratified and the detailed approach. Hence, this 
difference was not significant (Table 4). The 
stratified approach predicted a significantly larger 
stock change (0.48 t/ha/yr) than the detailed 
approach. 

Figure 8: 
Distribution of the 
2003 carbon stocks 
(t/ha) across the 
forest area. 
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Discussion 
This case study provides the first assessment of a 
potential bias in the quantification and projection 
of forest ecosystem carbon stocks with the 
aggregating forest inventory data of multi-cohort 
mixed stands. By driving a single-tree based 
empirical forest carbon balance model first with 
data on all cohorts and second with aggregated 
data (Table 2) it was possible to study the effect of 
abstracting from details of stand structure on the 
quantification of carbon stocks at the scale of 
stands and the scale of a forest district.  

Our hypothesis which states that the 
aggregation of multi-cohort forest inventory data 
to a single cohort results in a bias in simulated 
forest ecosystem carbon stocks was first confirmed 
at stand scale.  The difference in initial timber 
volume between the aggregated and the detailed 
approach is caused by differences in timber 
volume equations (Gregoire and Schabenberger 
1996). With the example stand the aggregated 
approach, which subsumed the younger birch and 
spruce cohorts and the 10 years younger spruce 
cohort into the dominating spruce-cohort, resulted 
in a higher timber volume for the same basal area 
(Fig. 4). At the same time the approach resulted in 
lower carbon stock in tree biomass. This 
corresponds to the decrease of the biomass 
expansion factors with age (Lehtonen et al. 2007, 
Lehtonen et al. 2004, Wirth et al. 2004). 

In addition, there were differences in initial 
woody debris and soil carbon stocks that were 
larger than the differences in biomass and differed 
between regions (Fig. 7). The difference in initial 
soil carbons stocks were caused mainly by 
differences in initial organic layer carbon stocks 

between coniferous  and broadleaved species 
(Wirth et al. 2004) and to some extent also by 
differences in mean litter production (Wutzler and 
Mund 2007), and litter turnover (Liski et al. 2005). 

The difference between the approaches in the 
predicted stock changes were mainly attributed to 
differences in thinning intensity in pre-commercial 
thinning and to differences in self-thinning 
between species in the example stand. The 
differences in diameter and height increment 
between species were less important (Fig. 4). This 
observation corresponds to the finding of the 
overruling effect of the thinning intensity of a 
similar forest in Central Germany (Wutzler et al. 
2006). It also implies that a different 
representation of forestry management can 
significantly change the projection of the carbon 
sink during one rotation cycle. 

At forest district scale the positive and 
negative deviations between the aggregated and 
the detailed approach balanced each other to a 
large extent (Fig. 5). Nevertheless, the size of the 
studied population was large enough so that the 
bootstrap analysis detected a trend of an 
overestimation at the district scale and an under 
and overestimation at the Eastern and Western 
growing region respectively (Table 3). However, 
this bias due to aggregation of stand data was 
small compared to the stocks and their changes 
(Fig. 10). The compensation of the bias at district 
scale might have been due to the fact that most of 
the interspersed species also occurred as dominant 
species. Therefore, I repeated the analysis 
independently for the Eastern and the Western part 
that differed in many aspects, most important in 
bedrock and species distribution. Although, there 
was a difference in the share of broadleaved 
species in the interspersed cohorts compared to the 
dominant cohorts within these regions (Fig 2), still 
negative and positive bias compensated so that the 
bias at district scale was small (Table 3). The 
disappearance of effects that are important at stand 
scale was also observed and discussed for 
environmental parameters in a monospecific 
process based forest growth model (Davi et al. 
2006). From a theoretical perspective this is only 
expected, if the participating processes are linear 
(Harvey 2000). However, this was not strictly the 
case with our study as it was with Davi’s study. 

The opposing sign of the bias in the Eastern 
and the Western region allows us to discuss which 
reasons hindered a full balancing at the district 
scale. A possible reason for the bias ecosystem 
carbon stocks in 2003 is that spruce cohorts of age 
50 years store about one third less carbon for the 
same timber volume compared to beech cohorts 
due to differences in wood density and biomass 
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Figure 10: Forest district scale projections of carbons
stocks. Black arrows represent the 95% bootstrap
confidence interval of the detailed approach and grey
arrows the intervals of the aggregated approach. 
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expansion factors (Löwe et al. 2000, Wirth et al. 
2004). The interspersed cohorts have a larger 
contribution of broadleaved species compared to 
the dominating cohorts in the Eastern region and a 
smaller contribution in Western region 
respectively (Fig. 2). The aggregated approach 
subsumes a part of these cohorts within the 
dominating cohort. I, henceforth, expect an 
underestimation of biomass carbon stocks in the 
Eastern region and an overestimation in the 
Western region. Instead I observed a significant 
overestimation of biomass carbon stocks (+0.94 
and +0.40 tC/ha) in both the Eastern and the 
Western region respectively with the larger 
overestimation in the Eastern growing region (Fig. 
7). This is opposite of the expected differences and 
I, hence, think that this first reason has only a 
minor effect. A second possible reason is that 
interspersed cohorts are of different age than the 
dominating cohorts. At the Eastern region the 
dominant cohorts were on average (basal area 
weighted mean) one year younger than the 
interspersed cohorts and at the western region 11 
years older. Hence, I would expect an 
overestimation of carbon stocks by the aggregated 
approach in the Western region. This is in line 
with the observed carbon stocks (Fig. 7).  This 
second reason is likely a major contributor to bias 
in carbon stocks. A third possible reason is that the 
most broadleaved species have a higher mean litter 
carbon production than spruce and pine across the 
rotation cycle (Wutzler and Mund 2007). 
Therefore, I expect an underestimation of carbon 
stocks in woody debris and initial soil carbon in 
the Eastern region where broadleaved species are 
subsumed to pine and spruce cohorts. This is in 
line with a significant underestimation (-0.52 and -
1.35 t/ha) in the Eastern region and an 
overestimation (0.02 and 1.52 t/ha) in the Western 
region for woody debris and soil carbon 
respectively. Because of the fact that differences in 
the approaches were mostly attributed to woody 
debris and soil (Fig. 7), this mechanism has a 
likely major effect on bias on carbon stock 
quantification. 

The significance of the bias does not 
necessarily imply that this bias is important. When 
I compare the bias with the magnitude of the 
stocks and their changes (Fig. 10), the bias can 
hardly be presented in the graph and also the bias 
of the subsampled and stratified approach would 
hardly be seen. It is small compared to the range of 
the uncertainty of the ecosystem carbon stock 
prediction of the detailed approach (e.g. -0.39 
tC/ha bias; 195.5 to 201.2 tC/ha 95% confidence 
interval of the detailed of ecosystem carbon stocks 
in 2003, i.e. only about 7% of the uncertainty 

range). The bias is small enough compared to the 
uncertainty range, so that I conclude that it is not 
important for the quantification and projection of 
carbon stocks at our case study. This study 
considered only uncertainty introduced by 
sampling the population of forest stands and the 
aggregation of the inventory data. If the 
uncertainty of the forest inventory and the model 
were considered, the uncertainty ranges would 
increase, and the relation of the bias to the 
uncertainty range would be even smaller. In order 
to verify that the smallness of the bias is a general 
phenomenon, it is necessary to repeat similar 
studies at various forests. However, I do not 
expect the bias to increase at other forests to the 
magnitude of the uncertainty range.  

The observation of higher simulated carbon 
stocks in woody debris and soil for spruce stands 
that are interspersed with broadleaved species 
counteracts with the observation of lower timber 
volume (Fig. 4a). Such antagonistic effects of 
mixture on productivity are observed, when 
species compete for the same resources (Pretzsch, 
2003). However, our results confirm that a lower 
timber production of mixed stands does not imply 
lower carbon storage, which corresponds to 
findings by Jandl et al. (2007a). 

All four studied approaches agreed in the 
temporal development of carbon stocks. All four 
approaches projected a shift in the distribution of 
carbon with time (Fig. 10). This shift is explained 
by the unbalanced age class structure in the forest 
district (Fig. 11). Initially there was a dominance 
of stands of age class 40-50 years and this 
dominance persisted in time, as the respective 
stands grew older. Ecosystem carbon stocks were 
dominated by the tree biomass stocks, which are 
larger at higher age classes. When it comes to 
harvest of these cohorts after 2053, the carbon 
stocks decrease again until 2103 (Fig. 10). This 
legacy effect of age classes has already been 
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Figure 11: Age-class structure of the forest
district. 
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simulated before for the study region (Böttcher 
2007, Vetter et al. 2005). Since, this age class 
effect is also observed in other regions of the 
world (Albani et al. 2006), it contributes to the 
projected exhaust of the terrestrial sink (Canadell 
et al. 2007).   

The advantages of using an empirical distance 
independent tree based forest ecosystem carbon 
balance model are that I were able to run it at each 
individual stand including the full inventory data 
of all cohorts. I could take detailed account for site 
quality, as expressed by the site index, and for the 
effects of thinning operations on stand 
development. The drawback of this approach, 
however, was that I could not explicitly 
represented climate change in the stand growth 
submodel. Contrary, mechanistic approaches allow 
more confidence in longer term projections that 
are effected by changing environmental 
conditions, but require more detailed input 
parameters and input data (Grote and Pretzsch 
2002, Matala et al. 2003, Porté and Bartelink 
2002). With explicitly accounting for climate 
change I expect the stand growth and the biomass 
carbon stocks later than 2003 to be higher than 
with the presented simulations (Jandl et al. 2007b, 
Mund et al. 2002). The soil carbon either may be 
higher because of enhanced litter input or be lower 
because of enhanced decomposition of soil organic 
matter. Climate change could, however, effect 
species differently and alter competition, growth, 
and self-thinning. On the other hand, the changes 
in biomass carbon stocks are mainly a result of a 
changing age structure and thinning intensities in 
these managed forests. Therefore, I expect the 
effects of climate change in the next 100 years to 
be overruled by forestry management to a large 
extent. 

Despite these disadvantages, our case study 
provides evidence, that the bias in carbon stock 
changes due to aggregation of stand data is only 
7% of the uncertainty range, i.e. 95% confidence 
interval of the detailed approach, and hence our 
study provides evidence that the application of the 
aggregated and the stratified approaches are valid. 

Conclusions 
This case study on the potential bias, which is 
introduced by representing multi-cohort mixed 
forest stands by only one tree cohort, confirms a 
small but significant bias. It is based on several 
scenarios of aggregating forest inventory data of 
1616 stands of a forestry district in Central 
Germany a single-tree based empirical forest 
carbon balance model. At stand scale the 
ecosystem stocks that were quantified for 2003 

with the aggregated approach differed from the 
detailed approach by 2.3%, but at the district scale 
only by 0.05%.  

The sign or the magnitude of the bias in 
simulated biomass, dead organic matter, and soil 
carbon stocks differed between two sub regions. 
By comparing the differences between the regions 
to the bias in carbon stocks I identified possible 
major causes for the bias. For the quantification of 
the initial stocks the differences in age between 
interspersed and dominant cohorts were important 
as well as differences in litter production between 
species. For the projection of the carbon stocks 
over the next 100 years, the differences in forestry 
management were important, namely the amounts 
of wood extracted by thinning operations. 

Because of the smallness of bias, e.g. only 7% 
of the size of the 95% confidence interval of the 
detailed approach for the carbon stocks in 2003, 
this case study collects evidence that the 
approaches of carbon stock quantification, that 
represents stands or stratums by a single cohort, 
are valid at the scale of a forest district or larger. 
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Appendix A: The TreeGrOSS stand 
growth model 
The TreeGrOSS (Tree Growth Open Source 
Software) model (Nagel 2003) is a public domain 
variant of the BWinPro model (Nagel et al. 2002). 
According to the classification of Porté and 
Bartelink  (2002) it belongs to the class of non-gap 
distance-independent tree models. The empirical 
model is based on a growth and yield experiment 
data pool of about 3500 plots in northern 
Germany. It uses the potential growth concept 
(Hasenauer 2006), which reduces species and site 
dependent potential relative height growth of a top 
height tree hrelPoti by the single trees competition 
situation (A1).  

2)/( 1001
p

hrelPothrel hhpii +=  (A1) 
Where ip  are species specific constants, 100h  is 
the topheight of the stand, i.e. the average height 
of the highest 100 trees, and h  the height of the 
considered specific tree. The basal area growth of 
a tree is estimated by Eq. A2. 

)ln(
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Where ip  are species specific constants, Sc is the 
crown surface area calculated from diameter, 
height of the tree, and the topheight of the stand, 
age  is the tree age, tΔ  is the time period of 
usually 5 years, 66c  is the competition index (Fig 
A1) and cc66  is an index that increases when the 
competition situation is relieved, i.e. neighbouring 
trees are thinned. 

Further, I extended the model by thinning 
routines based only on information of the sum of 
basal area and mean quadratic diameter of thinned 
trees. These routines selected trees randomly from 
a probability distribution of tree diameters (Fig. 
A2). Eventually, I used one side of a Gaussian 
distribution with a mean of the cohorts minimum 
or maximum diameter, respectively to thinning 
from below or above, and a standard deviation 
chosen in a way, so that the expected quadratic 
mean diameter of thinned trees was equal to the 
specified one. The model and the extensions were 
validated against plot data of several permanent 
sampling inventories of both monospecific and 
multi-cohort multi-species stands within the study 
region. An example is shown in Fig. A3. The 
TreeGrOSS model performed at least as good as 
local yield tables with significant improvements 
for co-dominant and suppressed cohorts. 

The complete time series, which at several 
stands covered more than 100 years, were kindly 

provided by the Eberswalde forestry research 
institute and the chair of Forest Growth and 
Timber Mensuration at TU-Dresden and 
preprocessed by Mund et al. (2005). 

Figure A1: Calculation of the competition index in
TreeGrOSS (taken from Nagel 2003). At a height of
2/3 (or 66%) of the crown length all crowns are cut, if
they reach that height. If the crown base is above the
height then cross sectional area of that tree will be
taken. The sum of the cross sectional area is divided
by the stand area. 
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Figure A2: Selecting trees for thinning in the model
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