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Zusammenfassung 

Gegenstand dieser Arbeit ist das Vorkommen und Verhalten von kurzkettigen 

Alkylphenolen (SCAP) im Grundwasserabstrom der carbochemischen Industrie. An drei 

Felduntersuchen, welche sich bezüglich ihrer Geologie und Hydrogeologie unterscheiden, 

konnte gezeigt werden, daß diese Phenole selbst Jahre nach Schließung der betroffenen 

Standorte im Grundwasser nachweisbar sind. Da SCAP toxische und weitverbreitete 

Schadstoffe sind, sollte das Verhalten der individuellen Vertreter der SCAP im 

Grundwasser eingehender studiert werden. Dazu stellt eine präzise und richtige Analytik 

die Grundlage aller Felduntersuchungen dar. In diesem Zusammenhang wurden derzeit 

verwendete Analysenverfahren für SCAP auf ihre Anwendbarkeit und Aussagekraft für 

Grundwasserverunreinigungen der Carbochemischen Industrie untersucht. 

Es konnte gezeigt werden, daß sich der Phenolindex gemäß DIN nicht zur selektiven 

Beschreibung der SCAP in Grundwasserverunreinigungen der Carbochemischen 

Industrie eignet. Alle SCAP reagieren mit verminderter Empfindlichkeit auf den 

Summenparameter. Para-Alkylphenole werden dabei gar nicht mit dem Phenolindex 

erfaßt. Gleichzeitig existieren in den oben genannten Schadensfällen Verbindungen wie 

Aniline und Heterozyklen, welche ebenfalls mit dem Phenolindex erfaßt werden, ohne 

dabei selbst Phenole zu sein. Daraus muß geschlußfolgert werden, daß der 

Summenparameter ein falsches Bild über die Verbreitung der SCAP in der 

Schadstoffahne zeichnet, weshalb sich auch keine Aussagen über die zukünftige 

Entwicklung der Kontamination ableiten lassen. Im weiteren eignet sich der Phenolindex 

nicht als Eingabeparameter für die Modellierung; jedoch kann der Phenolindex genutzt 

werden, um an einem unbekannten Standort erste Sondierungsuntersuchen 

durchzuführen. 

Im weiteren wurden HPLC Methoden bezüglich ihrer Anwendbarkeit auf die Analytik von 

SCAP in komplexen Matrices getestet. Es konnte festgestellt werden, daß sich die 

Phenole selbst auf speziell entwickelten Säulen nicht auftrennen lassen und in komplexen 

Proben mit anderen Substanzen co-eluieren. Damit scheidet diese Methode für die 

Analytik von SCAP als Einzelsubstanzen aus. 

Alle bisher beschriebenen Verfahren zur Einzelsubstanzanalytik von SCAP mit 

gaschromatographischen Methoden sind mit einem erheblichen Aufwand in der 
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Probenvorbereitung verknüpft, weshalb diese Verfahren als wenig ökonomisch für eine 

große Probenanzahl anzusehen sind. Umfassende Literaturstudien verweisen auf kein 

Verfahren, mit welchem alle 35 SCAP ohne vorrausgehende Derivatisierung direkt als 

Einzelsubstanzen bestimmt werden können. Daher wurde ein neues Verfahren entwickelt, 

mit welchem sich SCAP bei minimiertem Probenvorbereitungsaufwand als 

Einzelsubstanzen bestimmen lassen. Dieses Verfahren basiert auf einer geschickten 

Kombination neuer Entwicklungen in der Geräte- und Säulentechnik und ist als Patent 

angemeldet wurden. Es konnte nachgewiesen werden, daß sich underivatisierte SCAP 

auf einer Säule, in welcher PM-α-cyclodextrin in der metapolaren stationäre Phase gelöst 

vorliegt, fast vollständig auftrennen lassen. Mittels einer Solid phase microextraction aus 

dem Headspace der Probe (HS-SPME) konnten die Phenole wasserfrei und selektiv 

angereichert und auf die Säule injiziert werden. Diese Arbeitsweise gestaltet das 

Analysensystem verschleißarm und durch seine Automatisierbarkeit sehr ökonomisch. Es 

senkt dabei den manuellen Arbeitsaufwand pro Probe um ein Vielfaches gegenüber 

herkömmlichen Verfahren und genügt dabei den Anforderungen an Richtigkeit, Präzision 

und Nachweisgrenze. 

Im Vorfeld zu den Felduntersuchungen wurde der Adsorptionsmechanismus der SCAP 

näher betrachtet. Es wurde festgestellt, daß sich die im allgemeinen leichtlöslichen SCAP 

anders verhalten als die üblich betrachteten Schadstoffe wie BTEX oder PAK. Auf dieser 

Basis kann auch das Transportverhalten jener Phenole nur ungenügend vorausgesagt 

werden, und eine Neubetrachtung machte sich erforderlich. Dazu wurden Batchversuche 

unter grundwassertypischen Verhältnissen durchgeführt, die Stufenisothermen ergaben 

woraus sich schließen läßt, daß es sich bei der Adsorption von SCAP an Braunkohle um 

eine Mehrschichtenadsorption handelt. Die Phenolschichten scheinen sich als 

Hemimizellen zu stabilisieren. Damit ist eine Intrapartikeldiffusion, wie sie häufig für PAK 

beschrieben wird, unwahrscheinlich. Langzeitversuche konnten zudem zeigen, daß die 

sorbierte Masse Phenol nach dem 3. Tag nicht weiter zunimmt. 

Die Adsorptionskapazität kann hauptsächlich organischer Materie zugeordnet werden. Für 

Filterkies wurde keine Adsorption von SCAP festgestellt und auch für Karbonate 

(Dolomite) konnte nur wenig Adsorption gefunden werden. Generell gilt, daß die 

Verteilungskoeffizienten für SCAP für die oben genannten Materialien sehr viel kleiner 

sind, als man dies für organische Verbindungen erwarten würde. Damit sind SCAP sehr 

mobile Schadstoffe.  
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Unter den pH Bedingungen im Grundwasserleiter war keine pH-Abhängigkeit der 

Adsorption von SCAP an organischer Materie zu beobachten. Im Gegensatz dazu ist die 

Adsorption von SCAP an karbonatischen Gesteinen wie erwartet sehr wohl pH-abhängig 

und wird im besonderen Maße vom Ladungsneutralpunkt (ZPC) des Gesteins bestimmt. 

SCAP adsorbieren an karbonatischen Gesteinen im wesentlichen im pH-Fenster 

zwischen dem ZPC des Gesteins und der Säurekonstante des individuellen Phenols. 

Ergebnisse aus 1-D Modellierungen belegen, daß die Stufenisotherme den ohnehin schon 

sehr geringen Retardationsfaktor weiter verringert. Im grundwasserrelevanten 

Konzentrationsbereich ist der mittlere Retardationsfaktor für quartäre Sedimente auf 5 

bestimmt worden. Dabei gilt es jedoch zu beachteten, daß die leichter löslichen C0 - C1 

SCAP, welche gleichzeitig durch einen ungünstigeren Verteilungskoeffizienten gegenüber 

dem Feststoff gekennzeichnet sind, noch über einen wesentlich geringeren 

Retardationsfaktor verfügen (1.2-2). Daher liegen die Retardationsfaktoren für SCAP 

einige Größenordungen unter den für organische Verbindungen wie PAK oder BTEX 

typischen Werten. 

SCAP sind daher sehr mobile Schadstoffe und Adsorption als relevanter Natural 

Attenuation Prozeß scheidet somit für diese Stoffgruppe aus. Im gleichen Zug müssen 

aber auch Sanierungstechniken welche auf Adsorptionsmechanismen basieren, wie z.B. 

Pump & Treat, auf ihre Effizienz für SCAP hin überprüft werden. Ein erwarteter schneller 

Durchbruch der SCAP am Auslauf der Adsorberkolonnen könnte diese Methoden als sehr 

ineffektiv gestalten. 

An Altlastenstandorten, welche auch SCAP enthalten, kann zusätzlich diese 

Schadstoffgruppe genutzt werden, um wertvolle Informationen über den Standort zu 

erhalten. Dazu werden in dieser Arbeit zwei Parameter vorgeschlagen. Zum einen ist dies 

der PCF (Phenols Cresols Fraction), mit welchem SCAP vorwiegend als Verteilungstracer 

genutzt werden können, zum anderen ist dies der MPR (Meta-, Paracresol Ratio), welcher 

sich die Eigenschaft einiger SCAP zunutze macht, unter aeroben Bedingungen selektiv 

abgebaut zu werden. Damit können SCAP als Sauerstofftracer eingesetzt werden. Diese 

Parameter werden durch eine Vielzahl von Wechselwirkungen im Grundwasserleiter 

erzielt, weshalb durch sie eine Art Durchschnitt der Verhältnisse im Aquifer repräsentiert 

wird. Im weiteren Sinne läßt sich z.B. der PCF nutzen, um Aussagen zur Art und zum 

Alter des Schadensherdes sowie zur Charakterisierung der Schadstoffahne zu treffen.  
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Abschließend ist darauf hinzuweisen, daß auch Brunnen im weiteren Abstrom auf SCAP 

hin zu untersuchen bzw. Brunnen im weiteren Abstrom neu anzulegen sind. Dies folgt aus 

der Erkenntnis, daß sich Phenole fast mit der Abstandsgeschwindigkeit und damit 

vergleichsweise schnell ausbreiten. In diesem Zusammenhang kann davon ausgegangen 

werden, daß SCAP die maximale organische Schadstoffahne beschreiben. 

Schlagwörter:  

Alkylphenole, SCAP, Verschwelung, Schwelteer, Felduntersuchungen, HS-SPME, 

PM-α-cyclodextrin, HPLC, Batchversuche, Adsorptionsmechanismus, SMART, 

Verteilungstracer 
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Abstract 

The presence and behaviour of individual short chained alkylphenols (SCAP) in 

groundwater has been studied and is presented in this work. It could be shown on three 

sites, which differ in terms of their geology and hydrogeology, that SCAP are present 

although the operation at these sites which caused the contamination ceased long ago. 

SCAP are toxic and widespread contaminants which demand a detailed investigation in 

terms of their persistence in the environment and also in terms of their individual transport 

behaviour. Therefore, a sophisticated chemical analysis is required and existing analytical 

methods were evaluated in terms of their applicability to groundwater contaminations.  

It is shown, that the phenolindex  is not suitable for the investigation of SCAP in 

environmental samples. Most SCAP react with a decreased sensitivity and are 

underrepresented by the index. Para-alkyl SCAP are not detectable by the phenolindex . 

Simultaneously, other contaminants such as anilines and heterocyclic compounds which 

almost always appear together with SCAP attribute to the phenolindex . Therefore, it must 

be concluded that the sum parameter is not precise enough as an input parameter for 

modelling and on its basis it is rather impossible to predict the development of 

contamination plumes. 

The separation and detection of SCAP in samples with complex matrices by HPLC 

methods even on specially developed columns is not recommended since some SCAP 

co-elute with one another or other matrix compounds. This complicates a precise analysis 

of SCAP and may lead to misinterpretations. 

All previously reported procedures for the analysis of all individual SCAP compounds by 

GC methods require a substantial effort in sample preparation. In order to investigate and 

economically monitor those phenols in the environment the development of a cost 

effective, precise and robust analytical technique has been developed and evaluated on 

field samples. This analytical method takes advantage of the latest and commonly 

established developments in sample preparation and gas chromatography column 

technique. It could be shown that the separation of underivatised SCAP on medium 

polarity columns with permethyl-cyclodextrin is possible. Together with headspace SPME, 

for the selective, water free extraction of SCAP and their selective transfer to the GC 

injector, the method is economical and is operated fully automated. It is a sensitive and 
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selective analytical procedure which can be applied to very complex samples. 

The adsorption mechanism of the highly soluble SCAP is somewhat different from 

commonly investigated insoluble contaminants such as PAK and BTEX. Their adsorption 

behaviour can not accurately be described by existing partitioning models and thus their 

adsorption is commonly overestimated. This requires a thorough investigation on the 

SCAP’s adsorption mechanism which has been done by numerous batch experiments in 

this study. The adsorption mechanism of SCAP is that they adsorb in multi-layers onto 

subbituminous coal which results in a steplike isotherm. The adsorbed layers stabilise 

themselves by aggregating in hemimicells. SCAP do not show a great tendency to diffuse 

into the adsorbent and thus intraparticle sorption processes are not predominant.  

The adsorption capacity is mainly assigned to natural organic matter (NOM). No 

adsorption was determined for coarse sand and only little adsorption was found for 

carbonates and dolomites. Overall, the partitioning coefficients of SCAP are very small 

with the consequence that they are only little retarded in aquifers. Thus, SCAP are very 

mobile compounds. Under groundwater relevant pH conditions SCAP adsorption onto 

NOM is not pH dependent. In contrast, the adsorption onto carbonate sediments is pH 

depended due to the nature of interaction. Generally, the adsorption capacity of 

carbonates increases between the point of zero charge (ZPC) of the material and the pKa 

of the SCAP compound. 

Results from 1-D transport modelling show that the steplike isotherm effectively decreases 

the retardation factor. Thus, for total SCAP concentrations in the lower mg/L range the 

mean retardation factor of SCAP is around 5. However, the easier soluble C0 - C1 SCAP 

which have a lower distribution coefficient will have retardation factors below 5. Commonly 

investigated organic contaminants such as BTEX or PAH show retardation factors several 

orders of magnitude higher than SCAP. 

SCAP were found to be very mobile compounds which implies that adsorption as a natural 

attenuation process does not work effectively for these compounds. Commonly applied 

remediation systems such as “pump and treat” and also water treatment plants which are 

both based on activated carbon adsorber columns do not retain SCAP for long. Their 

breakthrough as toxic organic contaminants happens early with the consequence that 

whole treatment concept for these soluble contaminants must be put into question.  
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The investigation of complex contaminations is always very difficult and is best done in 

combination of several different techniques. For sites which are contaminated by SCAP 

additional evidence can be gained be using the contaminants themselves as tracers. In 

order to do so, two parameters are suggested. The PCF (phenol cresols fraction) enables 

the use of SCAP as partitioning tracers and the MPR (meta- paracresol ratio) as a 

reactive tracer indicating the presence of oxygen in the aquifer. Thus, the SCAP 

distribution across contaminated sites can provide valuable information. SCAP distribution 

pattern are physico-chemically evolved and contain therefore some averaged information 

about the flow path and aquifer conditions. This in turn supports the long term prediction 

of the site development. SCAP are little retarded organic compounds describing the 

maximum extent of the organic plume and thus site investigation should therefore be 

carried out well beyond the source. 

Keywords:  

Alkylphenols, SCAP, low temperature carbonisation, coking, tar, field cases, HS-

SPME, PM-α-cyclodextrin, HPLC, batch experiments, adsorption mechanism, 

SMART, partitioning tracer 
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Preface 
 

This thesis is to be regarded as a part of an ongoing study on the behaviour of SCAP in 

the subsurface. It represents the final work of my Ph.D. study within the Hydrogeological 

Group at the Department of Geological Sciences, Faculty of Chemistry and Earth 

Sciences, Friedrich Schiller University of Jena and within the Department of Hydrogeology 

of the Environmental Research Centre Leipzig-Halle Ltd. in Halle. It serves as 

documentation of my own work between autumn 1999 and summer 2002.  

Alkylphenols came forcibly to my attention while I was employed as a research assistant 

on the aquifer vulnerability project M25 at the University College in London. I had 

determined SCAP in low concentrations in well water which supplied a brewery at this 

time. Investigations showed that the well was influenced by a discontinued gas works site 

close by. The analysed presence of SCAP at this well even 70 years after gas production 

had ceased stood in clear contradiction to the general believes on this group of 

contaminants to be easily degradable.  

When I started my Ph.D. studies in Jena in July 1999 I was given 6 month to shape a 

project which is of importance to the federal state of Thüringen (Thuringia). I soon learned 

about the extensive contamination which the closed down tar processing plant Rositz had 

left behind and where SCAP might be key contaminants. I remembered the findings from 

London and decided to take up research on this field as my supervisor agreed to this idea. 

An extensive literature review revealed little on the environmental behaviour of SCAP as 

they are little investigated to date. 

My research started with the intensive assessment of chemical analytical methods as 

applied to SCAP. This assessment led to the development of an easier analytical method 

for the determination of SCAP as individual compounds. Unfortunately, the institute in 

Jena did not have access to a GC-MS instrument and such an instrument could not be 

made accessible in Jena. HPLC methods were not satisfactory in their separation 

efficiency for real samples or to put it in other words “standards looked great but real 

samples didn’t” which is not a good base to start research on. During my undergraduate 

studies I have often worked in the Department of Hydrogeology, UfZ (Environmental 

Research Centre Leipzig-Halle Ltd.). Those connections now became very helpful as I 

was given access to a fully equipped analytical organic chemistry laboratory. Furthermore, 
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there was ongoing research on the deep injection of phenol contaminated low 

temperature carbonisation water at the UfZ and thus access to real samples was provided 

which did not only support the development of the analytical method but also the 

development of ideas on their behaviour in the subsurface. In total, about 1500 analyses 

have been carried out during this study. This simultaneously meant commuting between 

Jena and Halle for the time of this study between 2000 and 2002 and the stories on 

travelling with DEUTSCHE BAHN AG would already fill a book.  

The research has been accomplished by laboratory batch experiments done in Jena to 

investigate the adsorption mechanism of SCAP. All experiments have carefully be thought 

out and set up in order to achieve an optimum an information and cancel out artefacts. 

This series of batch experiments comprises more than 1000 batch samples, which 

needed to be prepared, stored, analysed and evaluated.  

During my studies on alkylphenols I learnt the meaning of the words: “Eine vorgefertigte 

Meinung ist schwerer zu zertrümmern als ein Atom” - ”It is more difficult to destroy a 

preconceived idea than an atom.” (A. Einstein). It seems often more complicated to bring 

up new ideas on something old than to work on something completely new. 
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The important thing  

in science is 

not so much 

to obtain new facts 

as 

to discover new ways 

of thinking about them. 

 

 

Sir William Bragg 
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1 General introduction  

In the mid 1970s the coking plant “Dortmund Dorstfeld” was closed down. Early in the 

1980s, the city council sold land on these premises cheaply to socially underprivileged 

families for founding a housing estate. In the mid 1980s, people became more frequently 

sick than other people in this area. Investigations started when brownish waters finally 

seeped into their cellars from below. The results of this investigation yielded a high short 

chained alkylphenol (SCAP) concentration in the water and soil. Medical experts 

estimated the cancer risk for people who had lived on these premises a 1000 times higher 

than average. Nowadays, the housing estate is being pulled down and the city council had 

to pay a substantial compensation to these families (WEIDENBACH & HEMSCHEMEIER (2001)). 

1.1 Current understanding on SCAP in the environment  

Early research on SCAP in groundwater was conducted by EHRLICH et al. (1982). They 

described the impact of contaminants from a coal-tar distillation plant on the groundwater 

quality. Phenols were analysed by a sum parameter but not as individual SCAP. Their 

conclusion from this phenomenological approach is that phenols are easily degradable 

compounds, even under methanogenic conditions. Other approaches deal with 

contamination plumes from coal tar plants or creosote spills (e.g. ENGWALL et al. (1999), 

GODSY et al. (1992A), GODSY et al. (1992B), GOERLITZ et al. (1985) , GUERIN (1999)) but SCAP 

were again not reported as individual compounds.  

More recently, studies on plumes from old town gas and coking plants started to focus on 

individual SCAP compounds (LERNER et al. (2000)) which however included only selected 

SCAP.  

General regulations concerning threshold values for SCAP in water or waste materials 

have not yet been established. This may be due to the lack of appropriate chemical 

analytical methods. No fast, easily applicable and cost effective analytical method was 

available for the analysis of SCAP as individual compounds. So far, only two regulations 

for phenols have been established. These are threshold values for priority phenols 

according to EPA (EPA (1996) and a sum parameter threshold value. The list of priority 

phenols includes only 4 SCAP which are the 3 cresols and 2.4-dimethylphenol. The other 

even more toxic SCAP (compare toxicity data in Tab. 4) are not accounted for in the EPA 

directive. The sum parameter however accounts for total phenols and most directives 

world wide contain such threshold values. Those sum parameter threshold values can not 

account for the vast difference in the SCAP’s toxicity. In the worst case the degree of 

toxicity from the individual SCAP components are unrecognised. 
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In Germany, the drinking water act from 1990 (TRINKWV (1990)) includes a threshold value 

for the sum parameter of 50 µg/L. In 2003 this directive will be replaced by a new version 

with a threshold value for phenols no longer included. The phenol sum parameter 

threshold values for groundwater, soils and waste are regulated in Germany by the soil 

protection act (BODSCHG (1995)), which only occasionally contains such values. 

In Europe, the “COMMISSION OF THE EUROPEAN COMMUNITIES” published a list of 

priority substances in the field of water policy (EU (2000)). So far, this list only contains C8 

and C9 alkylphenols and pentachlorophenol. No threshold values for individual SCAP nor 

for the phenol sum parameter are given there.  

1.2 Motivation and objectives  

The environmental behaviour of individual SCAP compounds in groundwater has not been 

studied in great detail. This is most likely due to the lack of an easy applicable chemical 

analytical method for their determination in heavily contaminated samples. Their overall 

presence or absence today is commonly described by insensitive sum parameters such 

as “Phenolindex”. However, as will be pointed out in more detail in chapter 2.3, SCAP are 

toxic and widespread contaminants, which demand better investigation in terms of their 

persistence in the environment and also in terms of their individual transport behaviour. 

The following questions briefly summarise the motivation and objectives of this thesis. 

The problems: 

• Which SCAP exist in groundwater in the vicinity of various coal processing 
plants? In what relative proportion to each other do they occur? 

• How do sum parameters describe the SCAP plume on such sites? 

• How can individual SCAP be economically determined in complex matrices? 

• How can the transport behaviour of SCAP in the subsurface be described? 

• Which factors may influence their transport behaviour (aquifer material, pH)? 

• How does the shape of their respective isotherms effect their transport 
behaviour? 

• What can be concluded from their investigated transport behaviour? 
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The procedures: 

• Analysis of 23 SCAP individually by the “phenolindex” to describe their 
quantitative and qualitative contribution to the sum parameter 

• Analysis of synthetic test mixtures and field samples by the “phenolindex” to 
investigate the information contained in the sum parameter for phenolic 
contaminations in the subsurface  

• Comparison of phenolindex with individual SCAP concentrations  

• Development of an easy applicable, fast and robust chemical analytical method 
for the analysis of SCAP as individual compounds in complex matrices 

• Sampling and analysis of groundwater in 3 aquifer types at various coal 
processing plants at 5 sites 

• Sampling and analysis of drilling cores at 2 sites 

• Investigation of the SCAP distribution pattern on these sites  

• Investigation of the adsorption mechanism by several controlled batch 
experiments on different materials 

 

The flow diagram in Figure 1 shows the different aspects of this work and how they 

connect to give the whole picture.  

 

Figure 1: Flow diagram of this study and how the different parts connect together 
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2 Short chained alkylphenols (SCAP) 

2.1 Phenols - a diverse group of chemical compounds 

Phenols are hydrocarbon derivatives containing at least one hydroxyl group [OH] group 

bound to an aromatic ring. This general or rather ambiguous definition allows to 

summarise many chemical compounds with very different properties into one class of 

components. Only some of these are toxic. Figure 2 gives an idea on a common 

classification together with main aspects of their diverse toxicological and physico-

chemical properties. Further details on properties and toxicity of the classified phenolic 

subgroups from Figure 2 can be found in Tab. 1.  

Figure 2: Common classification of phenolic compounds  

Tab. 1: Properties, toxicity and usage of the phenolic subgroups 

Subgroup Properties Toxicity Usage/source 

Chlorophenols Soluble, DNAPL, persistant very high Pesticide 

Biphenyl Insoluble, persistant very high Pesticide, hydraulic fluid 

Nitrophenols Soluble, persistant High Explosives 

APE Soluble, Surfactant Low Surfactant 

Hydroxyphenols Highly soluble, labile Low Developers 

Hydroxyacids Highly soluble Low-medium Pharmaceuticals 

Polyphenols Nonsoluble  No Health products 

Alkylphenols Very inhomogeneous group, see next chapter 
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Unlike the toxic chloro- and nitrophenols, which are already listed as priority pollutants, 

alkylphenols were not investigated in great detail. This work therefore focuses on a 

subgroup of the alkylphenols, the short chained alkylphenols.  

2.2 Alkylphenols-  from Endocrine Disrupters to SCAP 

The subgroup alkylphenols includes only phenols where hydrogen atoms from the 

benzene ring are substituted by alkyl groups of various chain length. The number of 

carbon atoms outside the ring is often given in the form CX, where C stands for carbon 

and x for the number of atoms outside the ring. Figure 3 shows a suitable classification for 

alkylphenols, which accounts for their different solubility, toxicity and usage. 

Figure 3: Suggested classification of environmentally relevant alkylphenols  

To clearly separate this subgroup from other alkylphenols the abbreviation SCAP is 

introduced in this study. Short chained alkylphenols are comprised by the following 8 

groups with their respective isomers (Figure 4). In total, SCAP include 34 short chained 

alkylphenols (C1-C3) and phenol (C0):  

i.) Phenol (C0) 

ii.) Cresols (C1) with 3 isomers 

iii.) Dimethylphenols (C2) with 6 isomers 

iv.) Ethylphenols (C2), with 3 isomers 

v.) Trimethylphenols (C3) with 6 isomers 

vi.) Ethyl methylphenols (C3) with 10 isomers 

vii.) n-Propylphenols (C3) with 3 isomers 

viii.) i-Propylphenols (C3) with 3 isomers 

 

 

Alkylphenols
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Figure 4: Chemical formula of an example from each of the 8 SCAP subgroups  

2.3  Main Properties of SCAP 

Concise data sets are only reported for some isomers. In fact, no data are available for 

approximately 30% of all 35 compounds. Their precise environmental behaviour therefore 

remains speculative.  

The application of quantitative structure-activity relationships (QSAR) may be helpful for 

the estimation of missing data. A WINDOWS based program called EPI-suite is a public 

domain program provided by the US-EPA. It contains several environmentally relevant 

subprograms using QSAR. Two subprograms PCKOCWIN and HENRYWIN were applied 

to calculate the octanol/water partition coefficient (KOW), the soil adsorption coefficient 

(KOC) and the dimensionless Henry coefficient (H) for two temperatures (groundwater: 

15°C and temperature of headspace analysis: 50°C)  

Soil adsorption coefficient and octanol/water partition coefficient: The soil adsorption 

coefficient subprogram (PCKOCWIN) estimates the soil adsorption coefficient (KOC) of 

organic compounds. KOC can be defined as "the ratio of the amount of a compound 
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adsorbed per unit weight of organic carbon (oc) in the soil or sediment to the 

concentration of the compound in solution at equilibrium”. KOC provides an indication of 

the extent to which a compound partitions between solid and solution phases in soil, or 

between water and sediment in aquatic ecosystems. Traditional estimation methods rely 

upon the octanol/water partition coefficient (KOW) or related parameters. Recently the first-

order molecular connectivity index (1-MCI) has been used successfully to predict KOC 

values for hydrophobic organic compounds (MEYLAN et al. (1992)). PCKOCWIN uses 1-MCI 

and a series of group contribution factors to predict KOC. The group contribution method 

outperforms traditional estimation methods based on octanol/water partition coefficients 

and water solubility (BAKER et al. (2000)). The developed new estimation method (MCI) and 

series of statistically derived fragment contribution factors for polar compounds in 

PCKOCWIN extend the model to polar compounds. Results confirm that the model covers 

a wider range of chemical structures than models based on octanol-water partition 

coefficients (KOW) or water solubility do (BAKER et al. (2000)). 

Henry coefficient:The program (HENRYWIN) estimates the Henry coefficient (H) at 25°C 

using the methodology originally described by HINE & MOOKERJEE (1975). The original 

methodology has been updated and expanded at Syracuse Research Corporation 

(MEYLAN & HOWARD (1991)). HENRYWIN allows the estimation of H for an environmentally 

relevant temperature range (0°C to 50°C) and requires only a chemical structure to make 

these predictions. The Henry coefficient is estimated by two separate methods that yield 

two separate estimates. The first method is the bond contribution method and the second 

is the group contribution method. The bond contribution method is able to estimate many 

more types of structures; however, the group method estimate is usually preferred (but not 

always) when all fragment values are available. The data provided in Tab. 2 are 

calculated applying the bond contribution method. The Henry coefficient in Tab. 2 are 

provided for groundwater relevant conditions and for the temperature applied in chemical 

analytical method (HS-SPME) later described in this study.  

Acidity: SCAP are weak acids, due to the deprotonation ability of the hydroxyl group in 

aqueous solution. However, a significant deprotonation only occurs at pH values well 

above 8. This is because the acidity constants (pKa) for the individual isomers are 

between 9.9 and 11 (HANAI et al. (1997), TAYLOR et al. (1997)). Therefore, in groundwater 

SCAP are almost always undissociated/protonated. 
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Tab. 2: QSAR derived properties of SCAP, chemical abstracts number (CAS), dimensionless 
Henry coefficients, comparison of calculated and experimental partitioning 
coefficients 

Henry coefficient  
dimensionless SCAP  CAS 
50°C 15°C 

log KOW 
calculated 

log KOW 
experimental 

log KOC 
calculated 

Phenol C6H6O 108952 0.55 e10-4 0.138 e10-4 1.51 1.46 1.25 

o-Cresol 95487 2.82 e10-4 0.224 e10-4 2.06 1.95 1.74 

m-Cresol 108394 1.87 e10-4 0.164 e10-4 2.06 1.96 1.75 

p-Cresol 

C7H8O 

106445 2.80 e10-4 0.172 e10-4 2.06 1.94 1.73 

2.3-DMP 526750 1.71 e10-4 0.138 e10-4 2.61 2.48 2.27 

2.4-DMP 105679 2.21 e10-4 0.178 e10-4 2.61 2.3 2.09 

2.5-DMP 95874 2.60 e10-4 0.210 e10-4 2.61 2.33 2.12 

2.6-DMP 576261 15.4 e10-4 0.825 e10-4 2.61 2.36 2.15 

3.4-DMP 95658 0.96 e10-4 0.077 e10-4 2.61 2.23 2.02 

3.5-DMP 

C8H10O 

108689 1.42 e10-4 0.115 e10-4 2.61 2.35 2.14 

2-EP 90006 10.7 e10-4 0.863 e10-4 2.55 2.47 2.26 

3-EP 620177 1.38 e10-4 0.120 e10-4 2.55 2.4 2.19 

4-EP 

C8H10O 

123079 1.70 e10-4 0.148 e10-4 2.55 2.58 2.37 

2.3.5-TMP 697825 1.53 e10-4 0.150 e10-4 3.15   

2.3.6-TMP 2416946 8.02 e10-4 0.782 e10-4 3.15 2.67 2.46 

2.4.5-TMP 496786 1.53 e10-4 0.150 e10-4 3.15   

2.4.6-TMP 527606 5.29 e10-4 0.516 e10-4 3.15 2.73 2.52 

3.4.5-TMP 

C9H12O 

527548 1.53 e10-4 0.150 e10-4 3.15   

2-n-PP 644359 3.04 2.93 2.72 

3-n-PP 621272 3.04   

4-n-PP 

C9H12O 

645567 

2.22 e10-4 0.216 e10-4 

3.04 3.2 2.99 

2-i-PP 88697 2.97 2.88 2.67 

3-i-PP 618451 2.97   

4-i-PP 

C9H12O 

99898 

2.22e10-4 0.216 e10-4 

2.97 2.9 2.69 
 

Aqueous solubility: SCAP are water soluble compounds with solubilities considerably 

higher than other common organic contaminants such as BTEX or PAK. This effect is 

caused by their ability to participate in hydrogen bridging bond systems. Since hydrogen is 

intensely attracted to small, electron-rich atoms such as oxygen, the hydroxyl group in 

phenols forms this electrostatic bond with water molecules. If the hydroxyl group is 

blocked by a substituent in ortho-position (like 2-ethylphenol) the solubility should 

decrease. BENNETT & LARTER (1997) describe this solubility influence of substituents with the 

help of oil-brine partitioning data. Solubility data obtained by VARHANICKOVA et al. (1995)  

show the opposite (Tab. 3). Their solubility varies between the individual compounds and 

decreases from C0 to C2 by approximately two orders of magnitude.  
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 Tab. 3: Solubilities of individual SCAP compounds at 25°C1  

Compound Solubility 
(g/l) Compound Solubility 

(g/l) 

Phenol 102.1 3,5-Dimethylphenol 6.7 
o-Cresol 26.8 2-Ethylphenol 14.0 
m-Cresol 19.6 4-Ethylphenol 8.0 
p-Cresol 22.0 2,3,5-Trimethylphenol 0.9 
2,3-Dimethylphenol 6.4 2,4,6-Trimethylphenol 1.4 
2,4-Dimethylphenol 8.2 3,4,5-Trimethylphenol 1.5 
2,5-Dimethylphenol 3.8 4-nPropylphenol 1.3 
2,6-Dimethylphenol 6.2 2-isoPropylphenol 4.4 
3,4-Dimethylphenol 7.2 4-isoPropylphenol 3.3 

 

Toxicity: Since SCAP toxicity data for humans are not available, analogies must be 

applied from data gained in microbial test and from known cresol toxicities. Some 

individual SCAP have been investigated for their toxicity with Toxkit microbiotests, 15 

minutes EC 50 (KAHRU et al. (1999)). According to these tests the toxicity increases in the 

sequence C0-C1-C2. This may result from different metabolic pathways, increased 

lipophilic character and an increased residence time in the organism. It may also be 

entirely different for humans, if not much lower (EISENBRAND & METZLER (1994)). SCAP are 

toxic to aquatic organisms; an environmental concern level of 0.02 µg/L can be 

determined by applying the modified US EPA method. Adequate data on plants and 

terrestrial organisms are lacking. Based on the environmental concern level for water, it is 

reasonable to assume that aquatic organisms may be at risk in any surface or sea water 

contaminated with phenol. The available data are summarised in Tab. 4. 

Tab. 4: Available toxicity data of SCAP2 

Compound Toxicity 
(mg/l) Compound Toxicity 

(mg/l) 

Phenol 97.3 2,3-Dimethylphenol 41.2 
o-Cresol 51.8 2,6-Dimethylphenol 29.0 
m-Cresol 83.8 3,4-Dimethylphenol 6.1 
p-Cresol 7.7   

                                                 

1 Data from VARHANICKOVA et al. (1995) 
2 Toxkit microbiotests data from KAHRU et al. (1999) 
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2.4 Sources and Environmental Relevance of SCAP 

SCAP are generally produced when complex organic matter (mainly plants) is thermally 

treated under anaerobic conditions. They are naturally produced during the formation of 

crude oil (TAYLOR et al. (1997), BENNETT et al. (1996)). Therefore, crude oil production waters 

will contain substantial amounts of the highly soluble SCAP. Coal does not contain SCAP 

naturally. However, SCAP are generated by pyrolytic breakdown of lignite during the 

technical processes used to convert coal into town gas and raw materials for the chemical 

industry as a crude oil substitute. Thus SCAP are found in smouldering condensation 

waters, tar and tar oil as well as in other by-products from these processes.  

Figure 5: Sketch of a LTC plant wi th Lurgi Cleansing Gas Technology (ABC CHEMIE (1987)) 

Figure 5 displays the flow diagram of a typical Lurgi low temperature carbonisation (LTC) 

plant. The Lurgi Cleansing Gas Technology was one of the most frequently applied low 

temperature carbonisation techniques across Europe (LISSNER & THAU (1953)). Until the 

1960s, it provided town gas, important carbo chemicals for a rapidly developing chemical 

industry and coke for the metallurgic industry. Beside the Lurgi-process, the Rolle-process 

was used as an alternative method in central Germany, i.e. in Groitzschen (KIESL (1997)). 

However, large quantities of SCAP rich LTC water remain as a hazardous by-product. 

This water was mainly dumped close by in closed open cast mines. A well known example 

is the phenol lake Schwelvollert (WIEßNER et al. (1993)).  

Only when in 1970 the Phenol-Solvan-Technology became popular the SCAP 

concentration in the LTC water was reduced (HUTH (1972), PLÖTTNER (1997)). Today, a 

determining petrol chemistry/industry and a reduced lignite mining lead to the almost 

complete disappearance of the carbonisation technique in Germany. 
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Coal is a natural product and like any other natural product subject to a high variation in its 

composition. Since the major source for phenols is lignite- its proportion in coal largely 

determines the phenol formation during carbonisation. The technological processes 

determine further SCAP output and composition. A historical regional variation and 

process dependency is given in Tab. 5. 

Tab. 5: Creosote in various lignite tars from mining areas in central Europe 3 4
 

Mining Area Process/ Product Type Creosote  
(vol %) 

Anhalt Kosag-Geißen/ LTC- Tar 11.2  

Borna Lurgi-CGC/ EGR Tar 9.2 wt % 

Helmstedt Lurgi-CGC/ EGR Tar 16  

Lower Lusatia Lurgi-CGC (1955)/Circulation Tar 20.2  

Lower Lusatia Lurgi-CGC (1958)/ EGR Tar 21.1  

Rhine area Shaft Generator/ Generator Tar 22  
Thuringia CBG/ Generator Tar 10  

East Elbian Koppers/ Generator Tar 15.7  

Saxonia  OPG/ Generator Tar 9  

Bohemia OPG/ Generator Tar 18  
 

As shown in Tab. 5, the creosote proportion in lignite tars varies from 9 to 22 vol%. 

Creosote stands for a whole class of compounds with acidic properties. In other words, 

everything in the tar, that is soluble in aqueous bases. It consists mainly of longer chained 

organic acids (C7-C12) and SCAP. Creosote has extensively been used as a wood 

preservative in some parts of Europe such as Scandinavia and also in the United States. 

To enhance its wood preserving properties some companies additionally added 

pentachlorophenol which dramatically increased its overall toxicity. SCAP only represent a 

portion of the compounds in tar creosote (Tab. 7). The LTC tar from East Elbian lignite 

coal typically contains 10-12 vol% creosote, but only 2.65 vol% SCAP. In other words, the 

creosote fraction is made up of around 25% SCAP. This is not very surprising since SCAP 

have boiling points in the 100-160°C region and tar is the remaining distillation fraction 

with boiling points of usually more than 200°C. This also explains the approximately 10 

times higher SCAP concentration in the earlier distillation fractions such as medium and 

                                                 

3 in GUNDERMANN (1964)  
4 CGC: cleansing gas carbonisation, LTC: low temperature carbonisation, EGR: electro gas 
purification, CBG: cabonisation generator OPG: oxygen pressure gassification, HTC: high 
temperature carbonisation  
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light oil. At several carbonisation sites tar and oils were only by-products and have 

therefore not been separated. In such cases, the SCAP concentration in those tars is 

higher. Furthermore, the variation of the creosote proportion in the light oil is subject to a 

higher variability (Tab. 6). Its content varies from 3.8% to 25.2%.  

Tab. 6: Creosote variation in light oil fraction 3 4 

Mining Area Process Creosote 
wt % 

Anhalt Kosag-Geißen 3.8  

Saxonia I Lurgi-CGC 5.0  

Saxonia II Lurgi-CGC 10.0  

East Elbian HTC, chamber oven 25.2  
 

Tab. 7: SCAP proportion in 5 carbonisation fractions 3 5 6 

 

The proportion of SCAP in the LTC product fractions are shown in Tab. 7. The LTC waters 

contain beside SCAP larger quantities of ammonia, methyl alcohol, acetic acid and 

hydrogen sulphide (HUTH (1972), GUNDERMANN (1964), V. ALBERTI (1983)). The composition of 

lignite together with their SCAP proportion in relation to TOC are displayed in Tab. 8. To 

summarise, the coal processing industry contributes the largest proportion of 

anthropogenically produced SCAP to the environment. 

                                                 

5 in LISSNER & THAU (1953) 
6 in BENNETT et al. (1996) 

LTC water

LTC tar

light oil

medium oil

Product Type 
C0-C1 
Vol% 

C2 
Vol% 

C3 
Vol% 

SCAP 
Vol% 

LTC Tar 6  0.50 0.96 1.19 2.65  

Medium Oil 6 12.0 7.0 3.8 22.80  

Light Oil 6 13.7 6.1 3.8 23.60  

LTC waters 7 
(Hirschfelde)  

   2.8-3.2  

Crude Oil 8 
(North Sea)  0.025 0.017 0.010 0.052  

LTC water

LTC tar

light oil

medium oil

SCAP distribution

2

2

4

5

2
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Tab. 8: Three examples for the composition of LTC waters 

In summary, SCAP were widespread contaminants across Europe originating from 

various sources. Most widespread source are manufacturing gas plants, since many 

towns had their own plant. The industry with numerous coking plants, smouldering plants, 

tar lakes, creosote spills and crude oil production waters represent the second most 

important SCAP source. Furthermore SCAP are used as petrol stabilisers in Europe 

(SCHMIDT et al. (2001)). It is estimated that at least 3000 SCAP contaminated sites exist 

across Europe. Under these aspects the question arises, why not all SCAP are not 

considered as “priority pollutants”. Only phenol, cresols and 2.4-dimethylphenol are listed 

as “priority pollutants” and consequently their environmental impact has been 

investigated.  

2.5 Degradability of SCAP 

All SCAP can potentially be degraded under aerobic conditions (MÜLLER et al. (1991), 

NIELSEN & CHRISTENSEN (1994)). Degradation of phenol, o-cresol, m-cresol, p-cresol, 2.4-

dimethylphenol and 3.4-dimethylphenol has been observed under anoxic (nitrate and/or 

iron reducing) conditions in laboratory experiments (LOVLEY & LONERGAN (1990), FLYVBJERG et 

al. (1993), NIELSEN et al. (1995)) whereas 2.3-, 2.5-, 2.6- and 3.5-dimethylphenol were 

persistent under nitrate reducing conditions (FLYVBJERG et al. (1993)). Phenol was degraded 

in the field under anoxic conditions (NO3
- /Fe reducing) in a leachate plume after a long 

lag-phase, but o-cresol was shown to be persistent (NIELSEN et al. (1995)). The results from 

lab microcosm studies (M), batch reactor experiment (B) and from field investigations 

Fatty acids

other C-org
SCAPSCAP

Fatty acids

other C-org other C-org SCAP

Fatty acids

component in g/L Böhlen Hirschfelde Espenhain 

H2CO3 4.0-5.6 0.5-2.0 3.7-4.6 

H2S 0.1-0.2 0.05-0.1 1.2-2.1 

NH3 tota l 5.5-6.7 2.1-5.2 6.4-7.6 

S total 0.7-1.0 0.7-1.2 2.2-2.6 

SCAP 12.8-15.2 28.0-32.0 19.3-21.2 

Fatty acids 6.8-8.4 17.0-20.0 12.4-13.0 

Corg 13.0-13.5 18.5 20.3 

pH 8.7 5.0-7.5 8.0-8.4 

 

Fatty acids

other C-org
SCAPSCAP

Fatty acids

other C-org other C-org SCAP

Fatty acids

Organic carbon composition (TOC)



LICHA (2002). SHORT CHAINED ALKYLPHENOLS IN THE ENVIRONMENT - 14 - 

 

 

concerning the microbial degradability of SCAP are summarised in Tab. 9. 

Tab. 9: Degradability of SCAP under the various redox conditions  

Name Aerobic Nitrogen 
reduction 

Fe/Mn 
reduction 

Sulphate 
reduction 

CH4 
Genesis 

 pos. neg. pos. neg. pos. neg. pos. neg. pos. neg. 
M1 M3 
M5 M11 
M15 M16 
B2 B3 

 M1 M2 
M5 M9 
M11 M14 
B2 M17 

 M7 M9 
M11 M17 

 M1 M5 
M8  

 M1 M4 
M5 M8 
M14 

 Phenol 

F1 F2/3  F4 F5  F2/3 F5  F2/3    
M3 M11 
M15 M16 

 M9 M11 
M14 M17 

M2 B1 M9 M11 
M17 

  B1 M14 B1 o-Cresol 

F1   F5  F5     
M3 M15 
B2 M16 

 M3 M14 
B2 M17 
M18 

 M17  M6 M18  M10 M14 M18 m-Cresol 

          
M3 M11 
M15 M16 

 M2, M3 
M9 M11 
M14 M17 

 M7 M9 
M11 M17 

 M8  M8 M14  p-Cresol 

          
M15   M13 M17  M13  M13  M12 M13 2,3 DMP 
          
M3 M15  M17 M13 M17 M13  M13  M12 M13 2,4 DMP 
          
M3 M11 
M15 

 M9 M11 M13 M17 M9 M11 M13 M17  M13  M12 M13 2,5 DMP 

          
M3 M15   M9 M13 

B1 M17 
 M9 M13  M9 M13 

B1 
 M12 M13 

B1 
2,6 DMP 

F1 F2/3    F2/3  F2/3    
M11 M15  M9 M11 

M17 
M13 M9 M11 

M17 
M13  M13  M12 M13 3,4 DMP 

          
M11 M15  M9 M11 M13 M17 M9 M11 M13  M13  M12 M13 3,5 DMP 
F1          

2-EP    M13 B1  M13  M13 B1  M12 M13 
B1 

¾-EP    M13  M13  M13  M12 M13 
TMP 
PP 

No data avaliable on these SCAP 

M1: Pickup et al. (2001), M2: Spence et al. (2001), M3: Harrison et al. (2001), M4: Kobayashi et al. 

(1989), M5: van Schie & Young (2000), M6: Müller et al. (1999), M7: Lovley et al. (1989), M8: 

Wang & Barlaz (1998), M9: Broholm, M. et al. (2000), M10: Londry & Fedorak (1993), M11: 

Broholm & Arvin (2000), M12: Grbic-Galic (1990), M13: Thomas & Lester (1993), M14: O’Connor & 

Young (1996), M15: Müller et al. (1991), M16: Nielsen & Christensen (1994), M17: Flyvbjerg et al. 

(1993), M18: Ramanand & Suflita (1991), B1: Puig-Grajales et al. (2000), B2: Fang & Zhou (1999), 

B3: Buitron et al. (1993), F1: Broholm, K. et al. (2000), F2: King & Barker (1999), F3: King et al. 

(1999), F4: Davison & Lerner (1998), F5: Nielsen et al. (1995),  

M : laboratory microscosm study, B: batch experiments, F: field investigations 
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3 Introduction to analytical methods as applied to SCAP 

This chapter summarises the most common chemical analytical techniques as applied to 

phenols. Information was taken from periodicals, from textbooks and from the internet. 

The internet sources are cited in footnotes at the respective positions. The textbooks used 

are as follows: BUCH DER UMWELTANALYTIK (1-4) (1998), MACALADY (1998), PAWLISZYN (1997), 

HEIN & KUNZE (1995), DOERFFEL et al. (1994), SMITH (1993), SKOOG & LEARY (1992), WAGNER & 

YOGIS (1992). The first section explains how to determine the extent of phenolic 

contaminations by means of sum parameters. It introduces the reader to various 

commonly applied parameters, especially to the German Phenolindex . A concise 

description of this parameter, including the step by step reaction equations, is provided. 

The next section introduces the sample preparation methods commonly applied to phenol 

analysis from aqueous and solid environmental samples. The last section describes the 

here applied chemical analytical techniques based on chromatographic separations. 

3.1 Sum Parameters for Phenolic Compounds 

Sum parameters have first been developed for the easy and cost effective monitoring of 

hazardous waste waters from industrial plants. Meanwhile, several sum parameters like 

AOX, DOC or IC are well established. However, sum parameters are by definition not 

capable of differentiating between individual compounds.  

Early sum parameter developments for phenols were mainly based on the evaluation of 

chlorophenols and/or nitrophenols in industrial effluents. Currently, several standardised 

sum parameters exist, such as: 

• ISO-6439:1990 (Canada, Poland, Czech Republic, Republic of Slovakia, 
Republic of Lithuania, Malta, Russia) 

• EPA 9065, EPA 402.20 (Canada, USA) 

• DIN 38409- H16, commonly referred to as phenolindex  (Germany, Austria, 
Switzerland)  

• BS 6068-2.12:1990 (UK, Republic of Ireland, British Common Wealth) 

• APHA Standard Methods 19th ed. P5-33 method 5530D (Europe) 

• ASTMD 1783-91 (application area unknown) 

The working procedures for the respective standardised sum parameters do not differ 

much from each other and are based on the formation of a dye. Modifications are for 

example based on the change of the oxidising agent form potassium peroxidisulphate to 

potassium ferricyanide (HASSAN et al. (1987), Majewskaja (1941)).  

Most samples require a special treatment, such as the removal of sulphite or a preliminary 
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distillation to remove interferences. Phenols belong to the group of steam volatile organic 

compounds which enables the distillation of an acidified sample to yield the phenolic 

distillate. Acidification increases the yield of phenols in the distillate and discriminates 

basic steam volatile compounds such as aniline which would also distil over. However, it 

is questionable whether this discrimination works quantitatively.  

The colour reaction between phenol and 4-AAP was first investigated in greater detail by 

EMERSON (1943) for its applicability to various phenols. He reports that many substituted 

phenol dyes do not have the same molar specific absorbance as phenol. How well the 

priority phenols (phenols from EPA, METHOD 604 (1984)) can be detected by the 4-AAP 

method is reported by e.g. NEUFELD & PALADINE (1985). The reasons for the different 

detectabilities of the various phenolic compounds by the 4-AAP method is explained by 

BARTON et al. (1987). They report the various structures of the pyrazolones formed by the 

oxidative coupling of phenols with 4-AAP in aqueous solution. Because phenolic-type 

wastes usually contain a variety of phenols, it is not possible to duplicate a mixture of 

phenols to be used as calibration standard. This is why phenol has been selected as a 

standard and any colour produced by the reaction of other phenolic compounds is 

reported as phenol.  

The German standard method - Phenolindex The German standard DIN 38409/H16 is very 

similar to the American method: EPA, METHOD 9065 (1986). It is commonly referred to as 

phenolindex  and divided into 3 sections: 

• H16/1: Determination of the phenolindex  after dye extraction 

• H16/2: Determination of the phenolindex  after distillation and dye extraction 

• H16/3: Determination of the phenolindex  after distillation 

After the dye has formed (30-60 minutes) it is extracted into chloroform and the extract 

filled into a 25ml vial through anhydrous sodium sulphate, which removes water traces 

from the organic phase. Immediately after extraction its absorption is determined at 

460nm. Hereby it needs to be assured that the absorbance is determined relative to a 

blank sample. This is especially important, if the reactants (4-AAP, K2S2O8) are not freshly 

prepared. Once prepared, reactant solutions easily oxidise and turn brownish. This lets 

them adsorb at the determination wavelength of 460nm leading to an insufficiently high 

blank value.  
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Figure 6: Working procedure as given in DIN 38409- H16/1 

The manually determined sum parameter is rather time and labour intensive (Figure 6). 

Attempts have been made to reduce the manual work involved in the determination of the 

phenols by the phenolindex. A flow injection analysis is suggested by Frenzel et al. (1992)  

and Frenzel & Krekler (1995). The first instruments have been introduced in Germany by 

SKALAR, Erkelenz. Although the manually determined sum parameter already uses large 

quantities of toxic chemicals, the automated method requires even larger amounts. This 

increases the cost and furthermore widens the gap between environmental analysis and 

the production of hazardous waste.  

Several attempts have been made to improve (i.e. automate, improve selectivity) the 

above described standardised sum parameters or replace them by other phenolic group 

selective parameters. A concise overview of these is reported in the following paragraphs.  

Infrared spectroscopy (IR) which is not applicable to water samples but highly attractive 

for air monitoring, leakage tests and industrial warning systems due to its possibility for 

directly readable continuous measurement has been suggested by i.e. ETZKORN et al. 

(1999) and (RAJAKOVIC et al. (1995)). 

Add 0.5g CuSO4 to 500 mL of homogenised sample

Place in a separatory funnel and add 20 mL buffer, pH 10 ± 0,2

Add 3 mL of Amino antipyrine (4-AAP) solution, shake briefly

Add 3 mL of K2S2O8 solution and shake briefly

Allow the sample to react between 30 and max. 60 minutes in a dark place

Filter the chloroform phase over 5g NaSO4 in a flask (25 mL) and wash with
further chloroform to yield exactly 25 mL

Determine the absorption of this chloroform solution within 4 hours at 460 nm

Always do a blank!
The reagents do deteriorate with time and give high self absorption

Add 25 mL of chloroform and shake the funnel vigorously for approximately
5 minutes to extract the dye
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Figure 7: Reaction steps for the phenolindex DIN 38409- H16/1 

FOUNTAINE et al. (1974) report about a new Ultraviolet Ratio Spectrophotometric System 

(URS) based on the 4-AAP reaction for the determination of phenolic traces in water 

samples. Two lamps are used in the URS method. Their difference in adsorption by rising 

the pH of the sample is assigned to the phenol concentration. The authors conclude that 

the advantages of the URS method over standardised procedures are: a) it provides more 

accurate analysis for samples containing para blocked phenols, b) only one reagent is 

needed, c) it is simple to use and d) analysis can be performed on smaller samples. 

The determination of total phenols in waters and wastewater using flow injection with 

electrochemical detection (FIAS-ED) as reported by CHRISTOPHERSEN & CARDWELL (1996)  

offers an alternative to the standard colorimetric procedure. More reliable data can be 

 

N
N

O

NH
2

CH
3

CH
3 à N

C

N
O

CH
3

NH
2
+

CH
3

N

C

N
O

CH
3

NH
2
+

CH
3 + C O à

N
N

O

CH
3

N
H

OH

CH
3

N
N

O

CH
3

N
H

OH

CH
3

+ K2S2 O8 à
CH
3

N
N

O

CH
3

N

O

OH + OH- à O ↔ C O + H2O

Phenol Hydroxy-ion Mesomeric structures of the Phenolate ion Water

I. Addition of buffer solution to the phenolic solution, raising pH to 10 

4- Amino antipyrine (4-AAP)

II. Keto-Enol- Tautometry of 4-AAP 

4- Amino antipyrine (4-AAP)

4- Amino antipyrine (Enol Form)

III.  Addition of 4-AAP to the Phenolic Solution

Intermediate ProductPhenolate

N
N

O

NH
2

CH
3

CH
3 à N

C

N
O

CH
3

NH
2
+

CH
3

N

C

N
O

CH
3

NH
2
+

CH
3 + C O à

N
N

O

CH
3

N
H

OH

CH
3

N
N

O

CH
3

N
H

OH

CH
3

+ K2S2 O8 à
CH
3

N
N

O

CH
3

N

OIntermediate Product Peroxy disulphate Desired dye

IV.  Oxydation of the intermediate product to the coloured dye



LICHA (2002). SHORT CHAINED ALKYLPHENOLS IN THE ENVIRONMENT - 19 - 

 

 

obtained for samples containing para-substituted phenols and nitrophenols with this 

method.  

Newer developments for the determination of phenols as a sum parameter in water are 

based on biosensors (RAININA et al. (1996), BRECHT & GAUGLITZ (1992), WEI et al. (1991)) and 

sensitive electrodes (GARCIA & ORTIZ (1999)).  

Nonetheless, a sum parameter does not account for the significantly different toxicities 

and properties of the individual phenols (Tab. 4, p. 9). Furthermore, the determination of 

total phenols neglects valuable information existing in the distribution pattern of individual 

compounds. Overall, this demands more sophisticated chemical analytical methods which 

can distinguish between the SCAP and report them as individual compounds. 

3.2 Determination of SCAP as individual compounds 

A number of methods for the analysis of individual phenols have been published. A 

summary of those has been reported by e.g. Möder (2000), LÜDERS (1999) and PUIG & 

BARCELO (1996). These include: liquid chromatography, gas chromatography and capillary 

zone electrophoresis. Further analytical methods applied to the separation of SCAP 

include the successful application of open-tubular liquid chromatography (MASKARINEC 

(1983)) and the application of thin layer chromatography to the acetic esters of phenols 

(KUNTE (1971)). Chromatography encompasses a diverse and important group of 

technologies that allow the separation of closely related compounds from complex 

mixtures, with many of those separations being impossible by other techniques. In all 

chromatographic separations the sample is dissolved in a mobile phase, which may be a 

gas (GC, gas chromatography), a liquid (HPLC, high performance liquid chromatography) 

or sometimes a super critical fluid (SFC, super critical fluid chromatography). The mobile 

phase is then forced through an immiscible stationary phase, which is fixed in a place in a 

column or on a solid (analogy: flow through porous media). The two phases are chosen in 

a manner so that the compounds in the sample distribute themselves between the mobile 

and the stationary phase at varying degrees. Compounds which are strongly retained by 

the stationary phase move only slowly with the flow of the mobile phase. Whereas, 

components that are weakly held by the stationary phase travel rapidly. As a 

consequence, sample compounds separate into discrete bands that can then be detected 

by various techniques as individual peaks.  

3.2.1 HPLC  

LÜDERS (1999) tested various liquid chromatographic methods, different stationary phase 

such as reversed phases (RP) and normal phases (NP) and several detection systems 
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including HPLC-MS (HPLC – mass spectrometry) and HPLC-NMR (HPLC-nuclear 

magnetic resonance). He reports, that SCAP are separated on RP-phases (hydrophobic 

interactions) according to the number of carbon atoms in the side chain. The more carbon 

atoms outside the benzene ring of the analyte, the stronger is its interaction with the 

stationary phase and the longer is its retention time. However, the separation efficiency of 

RP-phases for positional isomers is rather low since these isomers differ only slightly in 

their hydrophobicity. He further describes that alkylphenols can be separated on NP-

phases with different selectivities. The analytes will be separated on this phase according 

to their polarity and geometry, but not hydrophobicity. This allows in fact the separation of 

positional isomers but no longer the distinct separation between C0-C3 SCAP. He 

concludes that both stationary phases result in overlapping peaks. 

The application of liquid chromatographic separations is nonetheless a suitable method 

for aqueous samples with little interfering matrix containing only non interfering SCAP. 

Such samples are often derived in controlled laboratory studies. They can be directly 

injected without further treatment (LÜDERS (1999)) and thus greatly improve sample 

throughput and precision. The identification of phenols using HPLC is further improved by 

the reaction with p-nitrobenzene diazonium tetrafluoroborate as their azo derivatives 

(KUWATA et al. (1981)). 

The analysis of coal tar derived phenols in soils by cold extraction with methanol-water 

and HPLC has recently been standardised in the UK as BS 8855-2:2000. Resorcinol, 

catechol, phenol, m/p/o cresol, 3.4/2.6/3.5/2.3/2.5/2.4-dimethylphenol, 1-naphthol, 2-

isopropylphenol and 2.3.5-trimethylphenol are claimed to be separated isocraticly on a 

5 µm octadecyl silica (25 cm x 4.5 mm) with methanol-citric acid/acetate buffer (60:40) 

and detected by electrochemical oxidation. However, reported retention times are often so 

close together, that it seems questionable, if the chromatograms can be analysed as 

individual compounds. Furthermore, the described cold extraction without extract cleaning 

prior to analysis may add severe matrix interference to the chromatograms. Note that not 

all SCAP are included in this method. In total, this may lead to misinterpretation of the 

resulting chromatograms. 

BENNETT et al. (1996) describe the separation of SCAP in crude oils and water by reversed 

phase HPLC with sodium acetate buffer/acetonitrile as eluent at pH 11.6. The phenols are 

fully ionised at this pH and this applied method is comparable to the ion chromatography 

operation mode. Finally the phenols are detected electrochemically (amperometrically). 

The major drawback of this method is the extensive peak broadening observed for peaks 

beyond 4 minutes (i.e. dimethylphenols) which results in loss of sensitivity. C3 Phenols 

cannot be determined by this method. 
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YOSHIKAWA et al. (1986) developed a HPLC method utilising beta-cyclodextrin for a complete 

separation of cresol isomers in urine samples within 16 minutes. With at least 1.5% of β-

cyclodextrin in the mobile phase, cresol isomers were separated completely. The optimal 

amount of beta-CD was determined to be 2.5 g considering relative peak separation and 

retention time. Detection limits of cresol isomers were about 15 ng. As reported by the 

authors, this method could unfortunately not successfully be extended to other SCAP.  

3.2.2 Gas chromatography mass spectroscopy (GCMS) 

Gas chromatography is an excellent method to separate complex mixtures of semi-volatile 

and volatile organic compounds. Its principle lays in the interaction of the volatilised 

organic compounds in the gas stream (mobile phase) with the adsorbent compounds on 

the column walls (stationary phase) resulting in a retardation of the analytes. The different 

interaction strengths of the individual analytes, as well as their different boiling points 

causes this separation. Complex samples contain a variety of compounds, which may 

influence the separation efficiency and could complicate interpretation of chromatograms. 

Those samples require a preliminary preparation as described in chapter 3.3. 

The mass spectroscopic detector allows the very selective determination of analytes by 

their mass spectra. For the case that only the most intense key ions are monitored 

(selected ion monitoring, SIM) a very good signal to noise ratio in combination with a good 

sensitivity can be obtained. Beside this, an MS detector in its various modifications allows 

e.g. the identification of unknown compounds and the determination of isotopic ratios.  

The priority phenols, mainly chloro- and nitrophenols as well as 2.4-dimethylphenol, 

cresols and phenol have attracted the most attention in the development of analytical 

methods. Numerous standardised analytical procedures for these priority phenols are 

available (EPA, METHOD 604 (1984), EPA, METHOD 625 (1984), EPA, METHOD 8040 (1986)). But 

the analysis of all SCAP in various matrices is only little reported. 

The separation of all SCAP by GC is challenging since certain isomers (i.e. m-cresol and 

p-cresol) show only little variation in their physicochemical properties. Their separation 

requires a considerable effort. It can be done either by utilising derivatisation techniques, 

using GCMS in the selected-ion mode (SIM), choosing a specialised or a thick coated 

capillary column. SCHOMBURG (1987) describes the separation of the 3 cresols and 6 

dimethylphenols without derivatisation on a non polar capillary column (OV 1) which 

however had a film thickness of 0.70 µm. Those columns are not favoured in GCMS.  

The development of polar columns on polyethylene glycol basis supported the separation 

of SCAP. Strong acids often exhibit peak tailing for standard columns. Terephthalic acid 
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modified polyethylene glycols (DB-FFAP) decrease the amount of tailing and are 

especially useful for the analysis of phenols (HOSHIKA (1977)). Stabilwax-DA capillary 

columns and Stabilwax capillary columns have successfully been applied to the analysis 

of cresols. PENDERGRASS (1994) reports the baseline separation of all cresol isomers. Peak 

resolution, overall peak shape and precision were improved with the Stabilwax-DA 

column. 

A derivatisation step is commonly included in the sample preparation to achieve the 

desired separation of the individual phenols. In the following these techniques and their 

application to the analysis of SCAP is introduced.  

Derivatisation  

Although derivatisation was not applied in this study its overall importance for the analysis 

of SCAP by GC expressed by the numerous applications described deserves some 

introduction.  

Derivatisation is used when analytes are either not sufficiently volatile, too strongly 

attracted to the stationary phases or thermally labile compounds. For SCAP, derivatisation 

is performed to convert the polar hydroxyl group (active hydrogen atom) into a non-polar 

group. Consequently, the derivatisation technique reduces the undesirable interactions 

(i.e. irreversible adsorption) between column and analytes. The disadvantages associated 

with derivatisation are: a) the derivatisation conditions may cause unintended chemical 

changes in a compound, b) the derivatisation step may increase the analysis time and c) 

the derivatisation may complicate the interpretation of non-target screening analysis.  

Chemical derivatisation usually involves simple chemical reactions which are likely to 

result in good quantitative quality. There are many derivatisation reactions, that are used 

in GC sample preparation. Derivatisation methods can be classified into 4 groups based 

on the reagents applied and the reaction achieved, namely: silylation, acylation, 

esterification and alkylation. It needs to be assured that the derivatisation is 

quantitative. Solvents with active hydrogen atoms such as water and alcohols cannot be 

used. This is why a derivatisation requires prior extraction to transfer the analytes from an 

aqueous phase to a derivatisation compatible phase.  

NANNI et al. (1990) reported the successful separation of all 3 cresol isomers in cigarette 

smoke condensate by derivatisation. A GC method for the analysis of all cresol isomers 

as their heptafluorobutyrate esters in urine is reported by DILLS et al. (1997)). The use of 

heptafluorobutyric anhydride as derivatising agent furthermore enables the use of an 

electron capture detector. Chromatographic resolution was achieved between all cresol 
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isomers and their 2H7 analogues. Calibration ranged from 0.001 to 500 µg/mL. 

Recoveries were 55-97% and showed no trend with respect to analyte concentration. 

Within-day precision of analyses of benchmark urine samples had a coefficient of variation 

of less than 4%. DASGUPTA et al. (1997) describe a method for urinary phenols using 4-

carbethoxyhexafluorobutyryl chloride after extraction from urine and subsequent analysis 

by GCMS. The derivative elutes at significantly higher temperature than the subsequent 

phenols which in turn eliminates interferences from volatile compounds. Excellent 

chromatographic properties of these derivatives were observed with strong molecular ions 

for the 4-carbethoxyhexafluoro butyryl derivative of phenol (m/z 344), p-cresol (m/z 358) 

and other characteristic ions in the electron ionisation, thus aiding the unambiguous 

identification of these compounds (FOGELQVIST et al. (1980)). The determination of 

carboxylic acids and phenols in water by extractive alkylation using pentafluorobenzylation 

and GC-ECD determination using pentafluorobenzylbromide as alkylating agent is 

described by HOSHIKA & MUTO (1979). They suggest the conversion of phenol, o-, m- and p-

cresol, 2,3-, 2,5-, 3,4- and 3,5-dimethylphenol into their corresponding bromophenols by 

reaction with Br. The minimum detectable amount of the bromophenols with an ECD was 

approximately 0.01 ng. However, this method cannot be applied to all matrices. 

The most applied derivatisation agent for GCMS or GC-FID determination of phenols is 

acetic anhydride. BALLESTEROS et al. (1990) describe two gas chromatography procedures 

for the determination of a variety of substituted phenols in water samples. The phenols 

were extracted or extracted-derivatised by using a continuous liquid-liquid extraction-

derivatisation system and quantified with flame ionisation detection. Ethyl acetate was 

found to be the most efficient solvent for phenols whereas n-hexane yielded essentially 

the same recoveries for the derivatised phenols. The limit of detection (LoD) is between 

0.1 and 300 mg/L for the different phenols at a relative standard deviation between 1.1 

and 3.7%. The successful extractive acetylation for SCAP in urine samples resulting in a 

complete separation of all cresols and dimethylphenols on a Se-54 capillary column was 

described by WEBER (1992). The overall recoveries of urinary phenols relative to the 

internal standard, 3-chlorophenol, were in the range 92-99%. The acid hydrolysis of 

phenol conjugates in urine by concentrated H3PO4 followed by the extraction of phenols 

with n-hexane and their acetylation before gas chromatography on columns packed with 

OV-1 or OV-17 is reported by BALIKOVA & KOHLICEK (1989). The detection limit is 1 mg/L. 

COUTTS et al. (1979) report an aqueous derivatisation method for environmental samples. 

Acetate esters of 6 priority phenols were formed by the direct addition of 500 µL acetic 

anhydride to 250 mL of a dilute aqueous phenolic solution containing 10 g sodium 

bicarbonate. In the concentration range of 0.08-0.24 µmol/L, phenol, o-cresol, m-cresol, p-

cresol, 2,4-dichlorophenol and l-naphthol easily formed acetate esters which fully 

separated on an OV-17 or OV-101 column. HARGESHEIMER et al. (1984) applied this method 
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to the analysis of ppb levels of phenolic compounds in waste waters from the Syncrude 

Canada Ltd. oil sands plant in northern Alberta (Canada). They identified several SCAP 

whereby only 4 SCAP appeared as individual peaks in the chromatogram.  

The use of diazomethane as derivatisation agent is described by LEGA et al. (1997). This 

enables the simultaneous determination of organochlorine pesticides, PCBs, PAHs, 

phthalates, chloroaromatics, phenolics, phenoxy acids and other base/neutral compounds 

in environmental samples.  

The conversion of SCAP into trimethylsilyl derivatives as a further method for the 

separation of the cresol isomers has been developed by OYDVIN et al. (1966). However, this 

method requires the addition of tri-o-cresyl phosphate to the stationary phase in order to 

separate all SCAP. The method was further developed and applied by ISHIGURO & 

SUGAWARA (1978) and WITTKOWSKI et al. (1981) for the simultaneous analysis of SCAP in 

tobacco smoke condensate. It has further been applied to the microanalysis of aqueous 

samples for phenols and organic acids by PRATER et al. (1980). Trace concentrations in the 

parts-per-billion levels of these water pollutants were determined which is accomplished 

by a concentration step using macroreticular resins with pyridine elution and subsequent 

derivatisation with bis-trimethylsilyl acetamide. 

A method for the nearly fully separated analysis of SCAP as their ferrocenecarboxylic acid 

esters by CG-AED (atomic emission detector) in crude oil has been described by ROLFES & 

ANDERSSON (2001). This method is easy applicable for the analysis of SCAP in crude oil. 

However, the AED is not a common detector in GC which makes this method less 

favourable in practise. 

The most commonly applied derivatisation agents for phenols are summarised in Tab. 10. 
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Tab. 10: Summary of typical derivatisation reagents applied to phenols (MÖDER (2000)) 

Introducing cyclodextrin GC-phases 

Cyclodextrin based capillary columns in the gas chromatographic separation have been 

reported to be an excellent stationary phase to separate not only enantiomers but also 

positional isomers (BECK et al. (2000), MIRANDA et al. (1998)). Its application in this study as 

the stationary phase material to the separation of SCAP demands some introduction to 

this type of column. 

There are three native cyclodextrins (alpha, beta and gamma cyclodextrin indexed by the 

prefix A, B and G) used as their derivatives as stationary phase additive in capillary gas 

chromatography. They differ in size and are derivatised by various groups at varying 

degrees thus allowing the separation of a wide variety of analytes. This additive can be 

dissolved in the stationary phase which is bonded to the fused silica or is itself bonded to 

the fused silica. Selectivity of these phases is a function of the derivative, the degree of 

derivatisation as well as the position of the derivative on the cyclodextrin. Seven phase 

types, each with either alpha, beta or gamma cyclodextrin, are commercially available. 

Most important for the separation of positional isomers seem the DA/DM/PH/PM phases 

in which the separation is caused by inclusion effects and H-bonding. The choice of the 

cyclodextrin determines the size of the analytes to which the stationary phase is most 

selective. Major drawbacks of inclusion dominated separations are a lower analyte 

capacity due to fewer interaction sites as compared to a surface interaction dominated 

mechanism. This limits the calibration range to only two orders of magnitude maximum.  

 

Reagent CAS No. Transferred
group

Analysis by

                              Trimethylsilylation

Bis(trimethylsilyl)acetamide 10416-59-8 (CH3)3Si GC / FID, MS
Bis(trimethylsilyl)trifluoroacetamide 25561-30-2 (CH3)3Si GC / FID, MS
Trimethylchlorosilane 75-77-4 (CH3)3Si GC / FID, MS
1,1,1,3,3,3-Hexamethyldisilazane 999-97-3 (CH3)3Si GC / FID, MS
N-(Trimethylsilyl)diethylamine 996-50-9 (CH3)3Si GC / FID, MS
N-(Trimethylsilyl)imidazol 18156-74-6 (CH3)3Si GC / FID, MS

                              Acylation

Heptafluorobutyric anhydride 336-59-4 C3F7CO GC / ECD, MS, FID
N-[Methyl-bis(trifluoroacetamide)] 685-27-8 CF3CO GC / ECD, MS, FID
Trifluoroacetic anhydride 407-25-0 CF3CO GC / ECD, MS, FID
Acetic anhydride 108-24-7 CH3CO GC / FID

                              Alkylation

Pentafluorobenzyl bromide 1765-40-8 C6F5CH2 GC / ECD, MS, FID
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Non bonded cyclodextrin columns are very sensitive towards moisture and oxygen 

which can both affect the columns selectivity and stability. Dry carrier gas, oxygen traps 

and the injection of virtually water free samples are essential for continued optimum 

performance. These columns have a very limited temperature operating range which 

should not be more than 220°C for most applications. Additionally, the heating rate or 

cooling down rate should not be more than 10°C/min. Otherwise the stationary phase may 

deteriorate more rapidly.  

Bonded cyclodextrin phases are bound the fused silica together with the non-polar 

phase (5% Phenyl/95% Methylpolysiloxane). This makes them more robust towards water 

traces. Their separation is almost only caused by cyclodextrin. This may be an advantage 

for the separation of optical isomers but not really for the separation of positional isomers 

with polar nature (Chrompack Application Note #1449, Figure 8). Those analytes appear 

in extremely broad peaks since the non-polar phase can not work against the dispersion 

and diffusion and thereby sharpening the peaks. Figure 8 shows the opportunities existing 

with such columns for the underivatised separation of SCAP.  
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Figure 8: Bonded cyclodextrin column, Application #1449 Chrompack7  

Cyclodextrin columns should best be operated with hydrogen or helium, which are gases 

with high diffusion coefficients. The inclusion mechanism is based on diffusion and back 

diffusion mechanisms which result in rather broad peaks. The term A in the van Deemter 

equation for such columns becomes predominant resulting in a very flat van Deemter 

curve. A possibility can be an increased flow rate to minimise peak broadening. Such 

columns are often operated with approximately 20-30 kPa higher front inlet pressures. 

The vacuum conditions in the MS detector however often limit the maximum flow to 

around 2 – 4 mL/min. 

3.3 Sample preparation methods as applied to phenols 

Sample preparation is as important as sample analysis. If the sample is ill prepared, the 

analysis can be incorrect. Main aspect of the sample preparation are e.g. minimising 

interferences by matrix reduction and the enrichment of analytes. The preparation of 

aqueous samples usually begins with the enrichment of the organic analytes by any of the 

following procedures: liquid-liquid extraction (LLE), solid phase extraction (SPE), solid 

phase micro extraction (SPME), Purge and Trap (P&T) or headspace sampling, solid 

                                                 

7 Own trials gave a different elution order under identical conditions. 
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phase dynamic extraction (SPDE, MUSSHOFF et al. (2001)), stir bar adsorptive extraction 

(TWISTER, POPP et al. (2001), BALTUSSEN ET AL (1999A), BALTUSSEN et al. (1999B)) or 

headspace solvent micro extraction (THEIS et al. (2001)). The most commonly applied 

extraction procedures for solid and aqueous environmental samples are summarised in 

Figure 9.  

Figure 9: Overview of most commonly applied extraction procedures  

Favoured extraction methods for solid samples include Soxhlet extraction, microwave 

assisted extraction (MAE), accelerated solvent extraction (ASE, WENNRICH et al. (2000)), 

supercritical fluid extraction (SFE, LI et al. (1998B), RAMSEY et al. (1997), REIGARD & OLESIK 

(1996), YUAN & OLESIK (1997)), thermo desorption (TDS, GERSTEL APPLICATION NOTE 02/1994, 

PEREZ-COELLO et al. (1997)) and SPME from headspace at elevated temperatures (BACIOCCHI 

et al. (2001), LEE et al. (1998)). All of the above listed sample preparation methods have their 

advantages and disadvantages as well as their field of application in which they are most 

selective. 

3.3.1 Liquid-liquid extraction (LLE) 

Although not applied in this study, LLE is as one of the more commonly used forms of 

sample preparation widely applied to SCAP in routine analysis (MÖDER (2000), EPA, 

METHOD 604 (1984), EPA, METHOD 625 (1984)). 

Liquid-liquid extraction is a separation process that takes advantage of the relative 

solubilities of solutes in immiscible solvents. It is generally used to a) separate analytes 

selectively from matrices b) move components from a method incompatible into a method 

compatible solvent i.e. for gas chromatography from a less volatile liquid into a more 

volatile liquid or c) provide better conditions for derivatisation. The distribution coefficient 

determines the ratio of the solute’s concentration in each solvent (ROBBINS (1980)). Due to 

the high water solubilities of phenol and cresols this coefficient is rather small, suggesting 

that LLE cannot directly be applied to the selective enrichment of those SCAP (HRIVNAK & 
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STEKLAC (1984)). It is however applicable to their acetic ester derivates (HARGESHEIMER et al. 

(1984), JUSI & LIHUI (1992)) . 

Overall, LLE is rather time and labour intensive. An extraction procedure with extract 

clean up and volume reduction can easily require 2 to 5 hours per sample. Besides, LLE 

requires large amounts of sample and of organic solvents. Therefore, this extraction 

method has not been considered during the SCAP method development.  

3.3.2 Solid-phase extraction (SPE) 

SPE is an extraction method based on adsorbent extraction and back elution of analyte 

into a small volume of solvent. From a variety of adsorbent phases (AMBROSE et al. (1997), 

SUN & FRITZ (1992)) the most selective for the extraction problem can be chosen allowing a 

wide application range for this method (MENEY et al. (1998), SUPELCO (1998), TORIBIO et al. 

(1998) SONG et al. (1997), KOCH & VÖLKER (1995)). Several extraction procedures for EPA-

Phenols and some SCAP are described (DUPEYRON et al. (1995), MASQUE et al. (1998), 

MUßMANN et al. (1994)). Phenols, as polar compounds, are best extracted on hydroxylated 

polystyrene-divinylbenzene phases (ENV+,Figure 10). A commercially available SPE 

system as routinely applied in praxis is shown in Figure 10. The cartridges containing the 

adsorbent are placed onto the manifold and the sample is applied on top of these 

cartridges. An adjustable negative pressure applied to the manifold ensures a constant 

flow rate during extraction. Although, the manifold allows to extract 10 samples 

simultaneously, practically this seems rather impossible.  
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Figure 10: ENV as a adsorbent for phenols8 (left), illustration of a SPE set-up9 (right) 

3.3.3 Solid phase micro extraction (SPME) 10 

The development of this solvent free extraction technique offers a simple way of analyte 

enrichment from environmental samples. Based on sorption processes this technique 

combines sampling, extraction, analyte enrichment and even injection into a single device. 

SPME is a major breakthrough in chemical analysis and significantly decreases the cost 

as well as the time needed for sample preparation for the main chromatographic methods 

like gas chromatography and HPLC (BOYD-BOLAND & PAWLISZYN (1996)). 

The SPME device consists of a thinly coated (20-100 µm of a polymer adsorbent) fused 

silica fibre attached to a stainless steel plunger and installed in a holder with the fragile 

fibre mechanically protected by a hollow needle. The general work procedure of SPME is 

illustrated in Figure 11. In the first step the device with the retracted fibre passes through 

the sample vial septum. Then the plunger is pushed to expose the fibre within the vial, and 

extraction starts as organic analytes adsorb at the coating on the fibre. Hereby, sample 

agitation enhances extraction thus reducing the extraction time. After a set time the fibre is 

retracted into the needle and the device withdrawn from the vial. Finally, the needle of the 

device is introduced into the injector of the chromatographic system, where the analytes 

                                                 

8 http://www.argotech.com/products/spe_columns/resin.html - 23.05.2002 
9 http://www.chem.vt.edu/chem-ed/sep/extract/spe.html - 25.05.2002 
10 http://info.sial.com/Graphics/Supelco/objects/4600/4547.pdf - 30.06.2002 
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are made to desorb from the fibre.  

Figure 11: Illustration of the SPME procedure 11 

Figure 12: Headspace sampling vs. Direct immersion (Direct sampling)12 

Two SPME modes exist: a) direct immersion of the fibre to the sample and b) sampling 

the headspace above the sample (Figure 12) which have been both considered 

complementary (YANG & PEPPARD (1994)). Depending on the vapour pressure of the analyte 

either method is favoured. If extracting the analytes by using an immersion sampling 

technique, minimising the headspace in the sample vial is vital while the opposite applies 

to analytes that accumulate in the headspace. Increasing the sample volume while 

keeping the liquid to headspace ratio constant increased analyte adsorption by either 

                                                 

11 http://info.sial.com/Graphics/Supelco/objects/4600/4547.pdf - 24.06.2002 
12 http://www-fst.ag.ohio-state.edu/min/IFT-SPME-2000.ppt - 25.06.2002 
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immersion or headspace SPME (YANG & PEPPARD (1994)). For higher sensitivity from 

headspace SPME, the sample headspace should be as small as possible in a practical 

sense (ZHANG & PAWLISZYN (1993)). Direct immersion of the fibre to a prepared sample 

(acidified and salt added) dramatically decrease the performance of the fibre. As shown 

by Möder et al. (1997), salt inactivates the fibre during the desorption step in the GC injector 

since it bakes onto the fibre during desorption because of the high temperature applied. 

Under most conditions, an assembly can provide 50 to 100 extractions in direct immersion 

mode and up to 500 extractions in headspace mode.  

In SPME, equilibria are established among the concentrations of an analyte in the sample, 

in the headspace above the sample, and in the polymer coating on the fused silica fibre. 

The amount of analyte adsorbed by the fibre depends on the thickness of the polymer 

coating and on the distribution constant for the analyte. The extraction time is determined 

by the time required to obtain precise extractions for the analytes with the highest 

distribution constants. The distribution constant generally increases with increasing 

molecular weight and boiling point of the analyte. 

For SPME coatings, the amount of analyte adsorbed by the coating at equilibrium is 

directly related to the concentration of the analyte in the sample (ZHANG et al. (1994))13:  

0
sffs

sffs c  
V V K

V V Kn ⋅
+

=  

 
where n is the mass of analyte adsorbed by coating, c0 is the initial concentration of 
analyte in sample, Kfs is the partition coefficient for analyte between coating and sample 
matrix, Vf is the volume of coating and Vs is the volume of sample  
 

If Vs is very large, the amount extracted by the fibre coating is no longer related to sample 

volume which makes SPME suitable for field sampling (GORECKI & PAWLISZYN (1997)). The 

selectivity of SPME can be altered by changing the type of polymer coating on the fibre, 

the coating thickness, the extraction/desorption temperature, the sampling mode as well 

as the pH and the ionic strength of the sample. Saturating the sample with sodium 

sulphate increases the ionic strength of the solution and in turn can reduce the solubility of 

some analytes (SETSCHENOW (1889)). This effect only little applies to analytes with high 

distribution constants and polar compounds such as SCAP. Phenols are more effectively 

                                                 

13 Kfs values usually are not sufficiently large to exhaustively extract the analyte from the matrix.  
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extracted under acidic pH. A combination of salt and pH modification often enhances the 

extraction of analytes from headspace.  

Results of SPME generally compare very favourably to results from other sample 

preparation methodologies (PAWLISZYN (1997)). For high accuracy and precision from 

SPME, consistency in sampling time and all other SPME parameters is more important 

than full equilibration. For most applications a linear relationship for a wide concentration 

range is observed (e.g. ARTHUR et al. (1992A), ARTHUR et al. (1992B), ARTHUR et al. (1992/93), 

GILL & BROWN (2002)). 

The desorption step in the injector of the chromatographic system is an important 

parameter for peak resolution and peak width. Since in GC the desorption is done 

thermally the desorption of an analyte from a SPME fibre depends on the boiling point of 

the analyte, the temperature of the injection port and the thickness of the coating on the 

fibre. Additionally, an inlet liner with a narrow internal diameter (e.g., 0.75mm ID, 

compared to conventional 2mm ID liners) sharpens the peaks (LANGENFELD et al. (1996)).  

SPME has been successfully applied to the enrichment of polar compounds from water 

samples (MATISOVA et al. (1999)) including EPA-Phenols BUCHHOLZ & PAWLISZYN (1993) and 

BUCHHOLZ & PAWLISZYN (1994). The selective enrichment of chloro- and nitrophenols from 

rather complex matrices by using a polyacrylate fibre has been described in greater detail 

by MÖDER et al. (1997). They discuss the SPME parameters together with their respective 

advantages and disadvantages and overall suggest the enrichment of those phenols in 

direct immersion mode from sodium chloride saturated and acidified (pH 2) samples. They 

suggest the addition of a surrogate internal standard to overcome this drawback. The 

application of this internal standard yields the precision and accuracy required even at the 

presence of dissolved natural organic matter (NOM) as shown by PÖRSCHMANN et al. (1998).  

BARTAK & CAP (1997) investigated the extraction efficiency of EPA-Phenols from the 

headspace above the sample. They report that a polyacrylate fibre has a significantly 

higher extraction efficiency for underivatised phenols from headspace than a 

polydimethylsiloxane fibre has. The conditions for reproducible data by HS-SPME are 

a) NaCl saturation of the sample, b) addition of HCl to a pH about 1 and c) an extraction 

time of 60 minutes. They assigned the long extraction time required to the fact that the 

analyte diffusion into the solid polyacrylate fibre is rather difficult. For that reason, the 

analyte desorption time was also increased to 8 min. The lack of reproducibility by 

applying the HS-SPME mode when working under non-equilibrium conditions has been 

critically mentioned. Further investigations on headspace sampling of polar and/or semi-

volatile compounds have been reported by DE LA CALLE GARCIA et al. (1998) and HELALEH et 

al. (2001). The latter successfully applied this sampling mode to aqueous solutions of C9-



LICHA (2002). SHORT CHAINED ALKYLPHENOLS IN THE ENVIRONMENT - 34 - 

 

 

C12 alkylphenols. 

3.3.4 Soxhlet extraction 14 

The soxhlet extractor is one of the most widely used apparatuses to extract organic 

compounds from solids by solvents. The solid samples are weighed into thimbles, covered 

with glass wool and placed into the soxhlet chamber. The round bottom flask containing 

an organic solvent is heated to create enough vapour pressure to produce a steady flow 

of liquid drops from the condenser at the top into the soxhlet chamber. Once the solvent in 

the soxhlet chamber rises above the relief arm, the solvent is returned to the round bottom 

flask and the process repeats itself. Most extractions require one day. Since heat is 

constantly applied to the bulk solution degradation of thermally labile compounds, favour 

oxidation processes, polymerisation loss of analytes may be caused. Ultra-pure solvents 

must be used with each extraction requiring up to 250 mL (PEREZ-COELLO et al. (1997)). The 

large solvent volume produces rather dilute extracts that need to be concentrated before 

analysis which often contributes to poor recovery.  

The application of soxhlet extraction to EPA-Phenols from soil has been described by 

ALONSO et al. (1998). Despite many successfully described recoveries using soxhlet 

extraction for a broad range of compounds, the long extraction time reduces sample 

throughput and makes soxhlet extraction an unattractive technique especially when a 

large number of samples must be analysed or when analytical data are quickly required 

as in clinical emergency screening. 

3.3.5 Microwave assisted extraction (MAE) 

The characteristic of microwave extraction (MAE) is accelerated dissolution kinetics as a 

consequence of the rapid heating processes that occur when a microwave field is applied 

to a sample. Since SALGO & GANZLER (1986) published applications using a conventional 

microwave oven to enhance extraction of organic compounds from solid matrices such as 

soils, seeds, food and feeds this method has been established in most routine 

laboratories. The technique exploits the Arrhenius relationship of temperature to rate of 

desorption which is the increased mass transfer as a result of higher temperatures. The 

heating associated with MAE allows the solvent to rapidly overcome matrix effects and 

                                                 

14 http://www.instrumentalchemistry.com/sampleprep/pages/soxhlet.htm 02.07.2002 
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promotes faster desorption of the target analytes and other extractables. 

Currently, there are two types of microwave extractors that are commercially available: a 

closed-system (Figure 13, applied here) and an open-vessel system. The main 

parameters to be considered for method development in a closed-system are solvent, 

temperature, pressure, power applied and the extraction time. This system operates under 

controlled pressure and allows the temperature of the solvent to be raised above its 

boiling point. Most closed-vessel systems can extract up to 24 samples simultaneously, 

which greatly increases sample throughput. The extraction efficiency may be determined 

by the sample size since the energy is split between the extraction vessels. This can 

reduce the heating rate of the solvent when not compensated by increasing the extraction 

time or power. 

Figure 13: Design of closed-vessel system microwave 15 

MAE has mainly been used to isolate polar components from complex matrices since the 

solvent must be polar to excitable by the microwaves. ALONSO et al. (1998) and HANCOCK & 

DEAN (1997) report the successful application of MAE to the extraction of phenol from 

various solids. 

 

 

                                                 

15 http://scholar.lib.vt.edu/theses/available/etd-060899-161452/ unrestricted/Diss.pdf 30.06.2002 
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4 Method development for SCAP-analysis 

The precise and accurate analysis of any pollutant is a fundamental requirement for the 

monitoring at contaminated sites. This is especially crucial when a monitored natural 

attenuation (MNA) scheme is employed at a site. It implies that SCAP should rather be 

analysed as individual compounds than as a sum by an index parameter.  

The first subchapter describes the detectability of SCAP by the sum parameter 

phenolindex. The results are presented in terms of their implication for such 

contaminations in the subsurface. 

The next chapters outline the development of an analytical method to determine individual 

SCAP concentrations in environmental samples. Within the stage of method development 

the recently introduced British Standard (BS 8855-2:2000) for soil samples based on 

ultrasonic extraction and HPLC was evaluated for its application to the analysis of all 

SCAP in water samples. In contrast to existing methods for the analysis of SCAP as 

individual compounds (compare chapter 3.2, pp. 19), which require elaborate extraction 

and derivatisation steps, an easier method has been developed and is described.  

4.1 Phenolindex 

The systematic characterisation of the sensitivity and selectivity of SCAP on the 

phenolindex  as well as the systematic quantification of this sensitivity are presented in this 

chapter. 

4.1.1 Experimental 

Standard stock solutions of 18 SCAP (phenol, o/m/p cresols, 2.3/2.4/2.5/2.6/3.4/3.5-

dimethylphenol, 2.4.6/2.3.5/3.4.5/2.3.6-trimethylphenol, o/m/p ethylphenols  and o-tertbu-

tylphenol and p-chloro phenol) each with a concentration of 1000 mg/L were prepared in 

dionised water (18 MΩ, 4 µg/L TOC) by accurately weighing in the pure substances. The 

stock solutions of 100 mL were stored at 4°C in the dark. The phenolindex  was 

determined according to DIN 38409/H16-1. A detailed description of the work procedure 

can be found in chapter 3.1, pp. 15. Reactant solutions and adequate dilutions of the 

standard stock solution were prepared according to the DIN procedure. 

Dilutions of the standard stock phenolic solutions to 800 µg/L were prepared for the 

characterisation of the sensitivity of individual alkylphenols towards the phenolindex . To 

quantify their contribution, subsequent dilutions of 100 µg/L were used. The resulting UV-

VIS absorption spectra were always recorded in the range of 385-585 nm. 
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4.1.2 Results and discussion 

The experimental results of the characterisation experiments are presented as UV-VIS 

spectra (385-490 nm) of selected alkylphenol-AAP dyes and shown in Figure 14-

Figure 16.  

Figure 14 shows the influence of one methyl group at the three possible sites on the ring 

towards the observable absorption. The intensity at the determination wavelength of 

460 nm decreases from 76% for o-cresol to nearly zero for p-cresol. This implies that para 

alkyl substituted phenols may not form this dye under these conditions. This is in 

accordance with the reaction pathway (Figure 7, p. 18). Figure 15 shows the effect of an 

increasing chain length in ortho position. The intensity at the determination wavelength of 

460 nm decreases from 76% for o-cresol to nearly zero for 2-tert-butylphenol. This implies 

that C3 phenols may not contribute much to the phenolindex  and it must be concluded that 

the higher alkylphenols such as endocrine disrupters (nonylphenol) can not be detected 

by this parameter. Figure 16 shows the dependency of varying the number of methyl 

groups on the ring on the observable absorption at 460 nm. It is clearly visible that the 

intensity for dimethylphenols and trimethylphenols is rather low. Their real concentration in 

a sample will not be accounted for in the phenolindex .  

Generally, the observed absorption intensities at the determination wavelength of 460 nm 

are rather different. Non of the short chained alkylphenols show a higher sensitivity 

towards this test than phenol itself. The phenolindex  does not indicate the presence of 

para alkyl substituted SCAP. The other SCAP are detected with a significantly decreased 

sensitivity. Hydroxy and dihydroxy phenols and their alkyl derivatives are excluded from 

this index since their dyes can not be extracted into chloroform (EMERSON (1943)). 
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Figure 14: Influence of the position of a methyl group on absorption 

Figure 15: Influence of the chain length on absorption 

Figure 16: Influence of the number of methyl groups and their position on absorption 
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 Figure 17: Sensitivity factors for selected SCAP determined by applying DIN 38409/H16-1 

It appears that a methyl group in meta position leads to a greater quenching effect than 

one in ortho position (compare UV-VIS spectra). This effect also applies to dimethyl- and 

trimethylphenols. However, signal quenching is not the only artefact that may lead to the 

tremendously decreased sensitivity. The calibration of the phenolindex  is mass based and 

done with phenol only (i.e. µg/L). Phenol has the lowest molecular weight within the group 

of SCAP since each substituent increases the molecular weight of the compound. 

Consequently, this leads to a discrimination of the C1-C3 SCAP since Lambert Beer’s law 

applies to UV-VIS determinations. In other words, at the same mass concentration a 

dimethylphenol solution contains 23 % less molecules than a phenol solution does (Figure 

18). The maximum observable readout for a dimethylphenol solution will never be more 

than 77 % of the phenol solution with the same mass concentration (i.e. µg/L). This will be 

called molecular threshold value. For cresols this value is 87 % and for trimethylphenols it 

is 69 %, respectively. However, since all observed signals are well below the molecular 

threshold value, the remaining signal depression must be assigned to quenching effects 

mainly due to the +I effect of methyl group substituents on aromatic systems and also due 

to different extinction coefficients for the various 4-AAPdyes. 
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Figure 18: Simplified sketch of molecular concentration vs. weight concentration 

To investigate whether the individual sensitivity factors also apply to a mixture of SCAP, a 

synthetic SCAP solution was freshly prepared. This aqueous solution contained 106 µL 

certified Phenol-MIX 1 (14 SCAP in methanol, each 50 ng/µL, Dr. Ehrendorfer) in 500 mL 

de-ionised water (Tab. 11).  

Tab. 11: Calculated phenolindex  vs. experimentally determined16 

SCAP Sensitivity 
Factor 

Concentration in 
prepared sample 

Calculated 
phenolindex  in µg/L 

Phenol 1.00 10.6 10.6 
o-Kresol 0.76 10.6 8.06 
m-Kresol 0.65 10.6 6.89 
p-Kresol 0.00 10.6 0.00 
2.3 DMP 0.41 10.6 4.30 
2.4 DMP 0.00 10.6 0.00 
2.5 DMP 0.53 10.6 5.61 
2.6 DMP 0.54 10.6 5.72 
3.4 DMP 0.00 10.6 0.00 
3.5 DMP 0.10 10.6 1.06 

2.4.6 TMP 0.00 10.6 0.00 
2.3.5 TMP 0.11 10.6 1.21 
3.4.5 TMP 0.00 10.6 0.00 
2.3.6 TMP 0.35 10.6 3.66 

CALCULATED 47.11 
EXPERIMENTALLY DETERMINED 48.64 

 

                                                 

16 Multiplication of the sensitivity factor in column 2 by the concentration in the prepared sample in 
column 3 yields the calculated phenolindex value in column 4 for each SCAP. By adding all 
calculated phenol values in column 4 the theoretically calculated phenolindex value of 47.11 is 
obtained. 

C0 C1 C2 C3

SCAP solutions
with identical
wt/vol (mg/l)
concentrations

Percentage of 
phenol molecules 
in each solution

100% 87% 77% 69%
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The phenolindex  (DIN 38409/H16-1) was immediately determined from that solution. The 

results are summarised in Tab. 11. Applying the earlier determined sensitivity factors 

(Figure 17) the phenolindex  was calculated for each SCAP. Finally, their individual 

contribution is added which yields a calculated phenolindex  of 47.11. The determined 

phenolindex  value was in fact 48.6 µg/L. This is in good agreement with the calculated 

phenolindex  implying that the sum parameter is of incremental nature.  

To emphasise the exceptional role that must be assigned to SCAP, the phenolindex  was 

performed on a freshly prepared p-chlorophenol solution (100 µg/L). The readout was 

72 µg/L (i.e. 72%). This equals the molecular threshold value implying that para-

chlorophenol does not belong to the para blocked phenols. Consequently, SCAP are 

among the toxic phenols probably the least able phenols to be detected by the 

phenolindex . 

4.1.3 Implications 

The results from the previous section show that SCAP are underrepresented by the 

phenolindex . This implies that the real concentration of these phenols must always be 

higher than indicated by the sum parameter. To investigate whether this assumption can 

be generalised, samples from a contaminated site (Rositz, 7.2, p. 102) were taken and 

analysed within 24h. The individual SCAP compounds were determined by GCMS as 

outlined in chapter 4.3. and the phenolindex  was determined in accordance with DIN 

38409/H16-1. The results, summarised in Tab. 12 and Figure 19, show that the finding 

gained from laboratory experiments carried out on synthetic samples could not directly be 

transferred to field samples. As shown in Figure 19, the analysed phenolindex  is almost 

twice as high as the calculated one. The analysed phenolindex for well 2 (Tab. 12) seems 

to be comparable to the total SCAP concentration and for well 3 (Tab. 12) the least 

expected mismatch applies. All possible deviations between phenolindex  and total SCAP 

concentration could be observed on those 3 wells. This can only be explained when other 

compounds will also give an absorption signal at 460 nm. However, it is rather unlikely 

and confirmed by own experiments that compounds are present in these samples which 

can absorb at 460 nm in their chloroform extracts to such an extent. One possible 

explanation is that those interfering compounds must also undergo some reaction; either 

with 4-AAP or due to the pH-shift. The formed products must than be extractable into 

chloroform and show some absorption at 460 nm. Likely candidates which can perform 

this reaction and fulfil the requirements are heterocyclic compounds and anilines. These 

compounds are always associated with SCAP (ZAMFIRESCU (2000)). Anilines for example 

can not even be removed by steam distillation as suggested in DIN 38409/H16-2. 
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Tab. 12: Comparison of phenolindex  with total SCAP at 3 wells  

µg/l Well 1 Well 2 Well 3 

Total SCAP by GCMS 825.7 128.4 48.6 

analysed Phenolindex  521 130 257 

Figure 19: Total SCAP vs. phenolindex for well 1 (compare Tab. 12) 

In sum, the phenolindex  is not suitable for the investigation of SCAP in environmental 

samples, but can still provide some idea on the presence of a characteristic 

contamination. It is far too imprecise as an input parameter for modelling and on its basis 

it is rather impossible to predict the extent of contamination plumes.  

4.2 HPLC 

The application of HPLC in reversed phase mode was tested in the process of 

establishing an economic and fully automated analytical method for the investigation of 

SCAP as individual compounds in aqueous and solid environmental samples. Although it 

has been established, that the separation of all SCAP in complex matrices by HPLC is 

rather difficult (Lüders (1999)), an especially developed phenol column has been tested for 

its separation capacity for 14 SCAP. Furthermore, this was done since a standardised 

analytical procedure exists for the analysis of SCAP with HPLC.  
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4.2.1 Experimental 

A Dionex/Gyncotek combined LC system was used. This system comprises an 

autosampler (AS50) with auto dilution and injection valve, a low pressure gradient 

quaternary pump with integrated degaser (P580, LPG) and a diode array detector (UV-

340D). The analytical column (Ultrasep ES-Phenole 5MY, 250*3 mm i.D.) was supplied by 

Sepserv.  

The eluents applied were acetonitrile (Baker, gradient grade), water (18 MΩ, 4 µg/L TOC) 

and phosphoric acid (85%, for electrochemical detectors, Fisher). Water and phosphoric 

acid were mixed to yield the required pH in the dilute phosphoric acid eluent. The phenol 

standard was purchased from Dr Ehrendorfer as Phenol Mix 1, containing 50 ng/µL of 

each compound (phenol, 3 cresols, 6 dimethylphenols and 4 trimethylphenols). 

4.2.2 Results and discussion 

The observed separations for 14 SCAP are summarised in Figure 20. In order to widen 

the polarity range of SCAP, the eluent is made acidic. As can be seen, the best separation 

is observed when the phosphoric acid has a pH of 2.5 and the acetonitrile gradient is 

slowly increased from 26% to 32% within 60 minutes. However, no separation was 

achieved for m- and p-cresol. The separation of 2.3-, 2.4- and 2.5-dimethylphenol remains 

difficult. Field samples may contain more than the 14 SCAP tested. This leads to even 

more co-eluting peaks, such as 4-ethylphenol co-elutes with 2.5-dimethylphenol and 3-

ethylphenol or 3-isopropylphenol co-elutes with 3.4.5-trimethylphenol.  

4.2.3 Implications 

Due to the rather unselective determination of analytes by DAD the individual SCAP can 

not be identified by their spectra alone. Indications are retention time and phenolic 

spectra. For this reason, co-eluting compounds cannot be quantified. Their absence or 

presence as individual compounds can further not be identified since it is not possible to 

state which compound(s) the peak comprises. The chromatograms in Figure 20 only show 

standards (SCAP in de-ionised water). The analysis time of 2 hours is rather long. 

In summary, it can be stated that the application of HPLC to the analysis of SCAP in real 

samples with complex matrices is not the method of choice. In this study the application of 

an especially developed analytical column could not be shown to be successful for the 

separation problem. 
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Figure 20: HPLC-Chromatograms of 14 SCAP at 3 pH values 
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4.3 GCMS 

In order to investigate and economically monitor contamination plumes the development 

of a precise, robust and cost effective analytical procedure is required. Currently, there are 

medium polarity capillary columns available for the analysis of phenols by gas 

chromatography. Those are especially designed for the separation of the EPA priority 

phenols (EPA 604) such as phenol, cresols, chlorophenols and nitrophenols without 

derivatisation. However, German (DIN 38409-F15) and European standards (EN 12673) 

for the analysis of some chlorophenols require their derivatisation with acetic acid followed 

by extraction into hexane as necessary sampling preparation steps. The nearly full 

separation of all SCAP without derivatisation by GCMS has not yet been described. 

This direct method has been proven by own investigations to fail on standard columns as 

well as on columns especially designed for EPA-phenols. The newly developed method 

for the analysis of all SCAP without derivatisation is described below.  

4.3.1 Experimental 

Standards 

Phenol standards were purchased from Dr Ehrendorfer as Phenol Mix 1, containing 

50ng/µL of each compound (phenol, 3 cresols, 6 dimethylphenols and 4 trimethylphenols). 

The 3 ethylphenols and 5 propylphenols were purchased from Acros, Aldrich and Merck, 

respectively. The internal standard d3-2,4-dimethylphenol was supplied by Promochem. 

GCMS and capillary column 

A Hewlett Packard GCMS instrument (GC: 6890, MSD: HP5972A) was used in 

combination with a Combi-PAL auto sampler (CTC Analytics). The separation was 

performed on an enantioselective capillary column (α-DEX 120, 60 m × 0.25 mm I.D., 

0.25 µm film thickness) supplied by SUPELCO. It contains 20% permethyl-α-cyclodextrin 

dissolved in a medium polarity siloxan phase (Poly 35%phenyl/65%methyl siloxan). 

Carrier gas flow rate was set at 1.8 mL/min. The GC oven program started at 50°C. The 

initial temperature was held for 3 minutes and was than increased at a rate of 7°C/min to 

136°C. After an isothermal period of 2 minutes a very slow temperature gradient of only 

0.4°C/min was applied until 142°C was reached and held for another minute. A final ramp 

of 8°C/min up to a temperature of 215°C, which was finally held for 7 minutes ensured the 

cleanup of the column. Consequently, one analysis requires 60 minutes in total. By 

applying the SIM mode a very good signal to noise ratio was observed. The following ions 

were monitored: 65, 66, 77, 90, 91, 94, 107, 108, 110, 121, 122, 125, 134, 135, 136 (m/z) 

with a dwell time of 100 ns each.  
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Headspace-Solid phase micro extraction (HS-SPME) 

A polyacrylate fibre (85 µm film thickness) supplied by SUPELCO was used for the 

automated selective enrichment of phenols from headspace. Prior to their application to 

real samples, the fibres were conditioned at 300°C for 2 hours. Blank analysis confirmed 

the quality of conditioning.  

The sample was prepared by placing an aliquot of 10 mL in a 21.5 mL headspace vial 

containing 2.5 g of NaSO4. This mixture was spiked with 5 µL internal standard (d3-2.4-

dimethylphenol). The addition of 5 drops of H2SO4 (96% p. A.) should enhance the phenol 

transfer from solution into headspace. The vials were immediately sealed and placed into 

the auto sampler rack (Combi-PAL, CTC). Prior to the extraction step each vial was 

automatically agitated at 50°C for 10 minutes. The HS-SPME was then carried out at 50°C 

for 45 minutes. Finally, the analytes were thermally desorbed in the split/splitless injector 

port of the GC at 280°C for 3 minutes with a splitless time of 60 s. A special SPME-liner 

(0.75 mm) purchased from Agilent improved the chromatographic performance.  

SPE 

The solid phase extraction was performed on a VACMASTER® system (IST) similar to the 

one illustrated in Figure 10 (p.4). Hydroxylated polystyrene-divinylbenzene filled cartridges 

(ISOLUTE ENV+,IST, 200 mg, 6mL) were used for the extraction and enrichment of 

SCAP. This phase has previously been described to be suitable for the quantitative 

extraction of priority phenols from environmental samples (RODRIGUEZ & CELA (1997)). To 

minimise clogging of the extraction cartridge by particles a guard cartridge was placed on 

top of the extraction cartridge. The guard cartridge (ISOLUTE depth filter reservoir, IST. 

70 mL) contains a non absorptive sponge filter of about 3 cm. After the manifold was 

assembled, the two cartridges were washed with 35 mL methanol (HPLC-grade). The 

system was then conditioned with 300 mL HCl-acidified water (pH=2) at a flow rate of 

10 mL/min. Immediately after, the sample was applied at the same flow rate. Then the 

matrix was removed from the cartridges by applying 300 mL of HCl-acidified water (pH=2) 

at a flow rate of 15 mL/min. The cartridge was allowed to dry in a nitrogen stream for 

20min to minimise water carry-over. Finally, the analytes were eluted from the extraction 

cartridge with 3 mL of methanol into a sample vial. For further concentration, the sample 

was reduced in volume to 1 mL in a nitrogen stream at room temperature.  

4.3.2 Method description for aqueous samples 

As apparent from the chromatogram in Figure 21 the inclusion mechanism that exists in 

permethyl-cyclodextrin columns shows an excellent selectivity for the structural isomers of 

SCAP. Separation was further enhanced when the cyclodextrin is dissolved in a medium 

polarity siloxan phase. The achieved separation of underivatised SCAP on the selected 
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column is comparable to reported separations of their derivatives on standard capillary 

columns (ROLFES & ANDERSSON (2001)).  

Nevertheless, there are also drawbacks of such stationary phases. Inclusion dominated 

chiral separations have lower analyte capacity due to fewer interaction sites. Both, 

moisture and oxygen affect the selectivity and stability of these phases, therefore, good 

drying and oxygen traps are essential for continued optimum performance. This requires 

that the samples must not contain traces of water or oxygen when injected into the GC 

port. Last, but not least, these columns have a very limited temperature operating range 

which should not be more than 220°C for most applications. Additionally, the heating rate 

or cooling down rate should not be more than 10°C/min. Otherwise the stationary phase 

will deteriorate into little droplets.  

These drawbacks limit the choice of applicable sample preparation techniques. LLE was 

primarily excluded from the list since large amounts of toxic, high purity solvents are 

required for this extraction process. This procedure would make the whole analytical 

method neither economic nor satisfy the requirements to be fast. 

The application of SPE to the preparation of environmental aqueous samples followed by 

the analysis on a described column was examined. Although, good recovery rates (80-

102%) were achieved, it was extremely difficult to fully eliminate water traces from the 

SCAP analytes on the cartridge. After cartridge drying in an nitrogen stream for 30 

minutes and elution with methanol the extract still contained too much water as a rapidly 

deteriorating column (50 samples) indicated i.e. very broad peaks were observed. The 

chromatograms became no longer interpretable.  

A simple method, which can satisfy the requirements to be fast and economical, is SPME 

from headspace. It keeps the introduction of water vapour onto the column to a minimum 

and has further advantages. The limited capacity of a SPME fibre is in good agreement 

with the low analyte capacity of the analytical column. The extraction from headspace 

yields more reliable results, increases the life time of the fibre, capillary column and mass 

selective detector and enables an economical application of this combined technique to a 

wide variety of samples. The lifetime of the column could be extended from 50 samples, 

when SPE is used to more than 3000 samples. HS-SPME was shown to be a suitable 

technique for the water free selective SCAP enrichment. 
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Figure 21: GC-MS chromatogram of 22 individual SCAP in tar matrix 
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However, the enrichment of SCAP from headspace seems rather unorthodox due to their 

high solubility in water. The addition of salt (250 g/L of Na2SO4) and H2SO4 (pH should be 

below 2) minimise the solubility of SCAP in water and support the enrichment of SCAP in 

the headspace. Nevertheless, the amounts of SCAP extracted from each sample is rather 

small compared to volatile compound extractions such as TCE or PCE. In total, between 

0.15 and 1.5% SCAP are extracted by this technique (Tab. 13). On this account, sample 

vials can twice be analysed and still yield the same result. 

Tab. 13: Proportion of SCAP in % which are removed from solution during headspace 

SCAP % SCAP % 

phenol 0.15 2.3-dimethylphenol 0.51 

o-cresol 0.32 3.4-dimethylphenol 0.40 

p-cresol 0.16 3.5-dimethylphenol 0.43 

m-cresol 0.21 2.4.6-trimethylphenol 1.55 

2.6-dimethylphenol 0.76 2.3.6-trimethylphenol 1.25 

2.4-dimethylphenol 0.78 2.3.5-trimethylphenol 0.97 

2.5-dimethylphenol 0.72 3.4.5-trimethylphenol 0.34 
 

The main parameters have been selected to demonstrate the influence of parameter 

variation on the extraction efficiency of SCAP from headspace with a 85 µm PA-fibre. The 

internal standard d3-2.4-dimethylphenol was selected as the target analyte. As 

demonstrated in Figure 22, the extraction efficiency is more influenced by the extraction 

temperature than by the salt concentration within the sample. Therefore, salt addition is 

not a sensitive parameter when extraction is carried out at 50°C and pH 1. The 

temperature dependency is very critical on the other hand. A maximum is observed at 

around 50°C. This is since the adsorption equilibrium at the fibre has an inverse 

temperature dependency than the Henry coefficient of the SCAP (also compare Tab. 2, 

p.8).  

The pH dependency, as shown in Figure 23, shows an increased extraction efficiency for 

SCAP at pH values generally lower than 2. At values lower than 2, the pH dependency of 

the extraction efficiency becomes insensitive. 

The extraction time, as shown in Figure 24, shows an increase in extraction efficiency for 

SCAP with time. A significant increase is observed up an extraction period of 50 min. This 

slow adsorption kinetic may be assigned to the solid nature of the polyacrylate film 

(BARTAK & CAP (1997)). Equilibrium might not be fully reached within the plotted time range. 

An extraction time between 40 and 60 min seems sufficient when working with an internal 

standard to correct for the conditions.  
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Figure 22: Temperature and ionic strength dependency of the extraction efficiency 

(polyacrylate fibre) 

Figure 23: pH dependency of the extraction efficiency (PA-fibre) 
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Figure 24: Extraction time vs. extraction efficiency on a PA-fibre 

The lifetime of the fibre in head space mode for the analysis of SCAP by applying the 

parameters stated is shown in Figure 25. 

Figure 25: Fibre life time shown as the peak area of the internal standard 
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From Figure 25 can be seen, that the transferred mass per injection varies significantly. 

Therefore an analysis without internal standard is not recommended and leads to the 

drawbacks as described by PÖRSCHMANN et al. (1998), BARTAK & CAP (1997). The here applied 

ring deuterated internal standard 2.4-dimethylphenol was validated to be a suitable 

standard for all SCAP by the standard addition method. Additionally, this internal 

standardisation allows the use of the same calibration plot for different polyacrylate fibres 

of the same thickness.  

Figure 26: Combined calibration plot for 2.6-dimethylphenol observed from 4 different fibres 

Figure 26 shows a combined calibration plot observed with 3 different fibres over the time 

interval of 5 months. This implies that the use of internal standardisation lets all calibration 

data for each compound plot on a single straight line.  

4.3.3 Extension to solid samples 
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organics in soil samples (e.g. PAWLISZYN (1997), BACIOCCHI et al. (2001)). As most samples 

were carbonate samples (limestone, dolomite) the sample acidification was due to a CO2 

generation in a sealed headspace vial impossible. 

Unfortunately, SCAP are rather soluble in water and the water content largely determines 

their extraction efficiency when acidification is impossible. The application of freeze drying 

for phenol analysis has proved to fail since samples had lost most SCAP during the drying 
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process. The likely approach to achieve constant extraction conditions was mixing the wet 

ground samples with anhydrous sodium sulphate. This however makes precise calibration 

very complicated due to the lack of standards. For those reasons this direct approach was 

no longer followed and the samples needed to be extracted. Almost all methods reported 

for the extraction of organic contaminants from solid samples make use of organic 

solvents. However, as demonstrated in Figure 27, such organic solvents are not 

compatible with SCAP extraction by HS-SPME as described before.  

Figure 27: Average signal suppression on phenol in HS-SPME vs. methanol content in % 
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dimethylphenol solution (50 ng/µL) was added. Glass wool was placed on top of the 

sample to keep the extract solution free of particles and the system assembled for 

extraction. The spiked sediment was extracted with 100 mL 0.05 N NaOH for 12 hours. 

Boiling chips were added to the solvent to ensure the boiling process. After the extract 

was allowed to cool down, it was removed and stored in glass bottles at 4°C until analysis.  

Microwave Assisted Extraction of Solid Samples 

Approximately 25 g wet sample was added to the extraction vessels and mixed with 

40 mL of 0.05 N NaOH and 50 µL of the deuterated internal standard (50 ng/µL). The 

vessels were heated for 55 minutes at 120°C in the microwave. After cooling down, the 

extract together with the solid was transferred into two 50 mL centrifuge vials and 

centrifuged for 15 minutes at 8000 rpm. The extract was finally transferred into a 100 mL 

flask and filled with distilled water to give an end volume of 100 mL. The extract was 

stored at 4°C until analysis, which was carried out no longer than 10 days after extraction.  

Results and discussion 

The freeze dried samples showed a 100 times reduced SCAP concentration as their wet 

weight in counterparts. This was expected, since SCAP and water are close boiling 

compounds in vacuum. Therefore, freeze drying of samples is not recommended.  

Results from soxhlet extraction showed no observable SCAP concentration at all (i.e. 

recovery rates equal 0). It is suspected, that the phenols polymerised under the extraction 

conditions (high pH, oxygen, light and heat). This is in agreement with HAMDI et al. (1993), 

HIGASHIMURA et al. (2000) and PÖRSCHMANN et al. (1996) because a brownish to black 

precipitate had formed on the walls of the extraction flask. Since soxhlet extraction 

proofed to be a rather work intensive, energy and time consuming procedure, its 

optimisation for SCAP extraction from dolomite and clay was no longer continued. In order 

to use HS-SPME together with the benefits of the analysis of SCAP without derivatisation, 

an organic solvent free microwave assisted extraction method for solid samples was 

developed. The results for this extraction procedure showed a good recovery rate of 

SCAP from dolomite samples. Observed recoveries are summarised in Tab. 14. The 

method was easy applicable, fast and allowed the simultaneous extraction of 12 samples 

as desired in the process of extending the HS-SPME-GCMS to solid samples.  
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Tab. 14: Recovery rates for SCAP from ground dolomite samples with MAE  

SCAP % SCAP % 
phenol 99 3.4-dimethylphenol 100 

o-cresol 102 3.5-dimethylphenol 102 

m-cresol 104 2.4.6-trimethylphenol 91 

p-cresol 105 2.3.6-trimethylphenol 85 

2-ethylphenol 92 2.3.5-trimethylphenol 95 

3-ethylphenol 98 3.4.5-trimethylphenol 91 

4-ethylphenol 98 2-iso-propylphenol 91 

2.6-dimethylphenol 77 3-iso-propylphenol 94 

2.5-dimethylphenol 97 4-iso-propylphenol 87 

2.4-dimethylphenol 90 2-n-propylphenol 85 

2.3-dimethylphenol 98 4-n-propylphenol 85 
 

4.3.4 Summarising the analytical method for SCAP 

The direct17 analytical technique (HS-SPME-GCMS) allows the analysis of 24 samples per 

day in a fully automated process. Achievable limits of detection using a polyacrylate 

SPME fibre are 0.5, 0.3, 0.2, and 0.1 µg/l for C0, C1, C2 and C3 - phenols, respectively. By 

using a deuterated internal standard (ring deuterated 2,4-dimethylphenol) a high 

reproducibility (100% +/- 5%) is achieved. The internal standard addition technique allows 

to evaluate the partitioning the SCAP between the aqueous phase and dissolved organic 

matter simultaneously (e.g. PÖRSCHMANN et al. (2000), DOLL et al. (1999)).  

Tab. 15: Characteristic data for the analytical method 18 

Aqueous sample (µg/L) Solid sample (µg/kg) 

SCAP 
Limit of 

detection 
Limit of 

determination 
Limit of 

quantification 
Limit of 

detection 
Limit of 

determination 
Limit of 

quantification 

Phenol 2.95 5.90 8.85 11.80 23.60 35.40 
Cresols 0.21 0.42 0.63 0.84 1.68 2.52 

Ethylphenols 0.35 0.70 1.05 1.40 2.80 4.20 
Dimethylphenols 0.14 0.28 0.42 0.56 1.12 1.68 

Trimethylphenols 0.08 0.16 0.24 0.32 0.64 0.96 

The characteristic data for the developed analytical method (HS-SPME-GCMS) are 

                                                 

17 direct: without derivatisation 
18 method applied: DIN 32645, blank procedure 
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summarised in Tab. 15. The data were determined in accordance with DIN 32645, blank 

procedure. The method was further verified and evaluated on real samples. The results 

are presented in chapter 7. 

4.4 Looking back at the chapter  

It is shown, that the phenolindex  is not suitable for the investigation of SCAP in 

environmental samples. Most SCAP react with a decreased sensitivity and are 

underrepresented by the index. Paraalkyl-SCAP are not detectable by this method. 

Simultaneously, other contaminants such as anilines and heterocyclic compounds which 

almost always appear together with SCAP give a positive phenolindex  result. Therefore it 

must be concluded that the sum parameter is far too imprecise for the assessment of the 

extent of a plume.  

The separation and detection of SCAP in samples with complex matrices by HPLC 

methods even on specially developed columns is not recommended since some SCAP 

co-elute with one another or other matrix compounds. This complicates the analysis of 

SCAP and may lead to misinterpretations. 

All previously reported procedures for the analysis of all individual SCAP compounds by 

GC methods require a substantial effort in sample preparation. The nearly full separation 

of all SCAP by GC-MS without the elaborate derivatisation step has not yet been 

described. In order to investigate and economically monitor those phenols in the 

environment a precise, robust and cost effective analytical has been developed and 

evaluated on field samples. This analytical method takes advantage of the latest and 

commonly established developments in sample preparation and gas chromatography 

column technique. It could be shown that the separation of underivatised SCAP on 

medium polarity columns with permethyl-α-cyclodextrin added is possible. Together with 

headspace SPME, for the selective, water free extraction of SCAP and their selective 

transfer to the GC injector, the method is economic and works fully automated. It is a 

sensitive and selective analytical procedure which can be applied to very complex 

samples. 

The developed analytical method has been applied to a variety of field samples. The 

results are presented in Chapter 7 and in the Appendix.  
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5 SCAP adsorption- a mechanistic approach  

5.1 General introduction 

Definitions 

Sorption is a general term which describes the distribution process of compounds across 

an interface. It includes the processes of adsorption, desorption and absorption. In 

geosciences the term sorption is often applied to all interfaces.  

Absorption takes places across a liquid interface and therefore involves liquid-gas and 

liquid-liquid interfaces. Very viscous phases are still treated as liquid, whereas sub-cooled 

phases must be treated as solid phases. 

Adsorption is the process which describes the partitioning of compounds from a gaseous 

or liquid phase onto a solid or liquid surface. This process is observed on gas-solid 

interfaces and solid-liquid interfaces. Desorption describes the reverse process of 

adsorption. Adsorption has traditionally been divided into two extremes: weak 

physisorption and strong chemisorption. Physisorption has adsorption energies 

typically –5...-40 kJ/mol. It is rapid and reversible. Chemisorption (specific adsorption) 

involves the strong bonding of the adsorbate to the adsorbent, often resulting in a change 

in both the surface and adsorbate chemical character. It is characterised by high 

adsorption energies (< -40 kJ/mol). The reactions are likely to be slow, and less readily 

reversible. 

Isotherms describe the equilibrium relationship between bulk activity of adsorbate in 

solution and the amount adsorbed on the surface at constant temperature. Experimental 

data are usually characterised by one of the following empirical isotherms: Henry, 

Freundlich, Langmuir or BET. 

Factors affecting adsorption 

Generally, the factors affecting adsorption of organic molecules (i.e. contaminant) are 

surface area, surface properties, the soil organic matter (SOM) accessible at the surface 

and the nature of this SOM, solubility of the organic molecules (i.e. contaminant) in the 

liquid phase (i.e. contaminant pool or polluted water), the salinity, pH, co-solvents or DOC 

and finally the temperature. Since adsorption is an exothermic process, adsorption 

decreases with increasing temperature. Adsorption is directly related to the specific 

surface area. Increasing the specific surface area results in an increase in the specific 
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adsorption. Only compounds that tend to ionise are affected by pH, the only influence on 

neutral molecules would be the change in the character of the surface. Changes in pH will 

dramatically affect organic acids and bases by changing their solubility in water. Cations 

resulting from the protonation of an organic base, for example, may more strongly sorb to 

soils then their neutral species. As pH changes, surface charge also changes, and the 

adsorption of charged species will be affected. Neutral molecules are generally less 

affected by salinity, but often show an increased adsorption with increasing salt 

concentration due to the salting out (KARICKHOFF et al. (1979)). Increased salinity may also 

change the interlayer spacing of layer clays, as well as the morphology of soil organic 

matter.  

Adsorption from solutions of non-electrolytes 

Generally, aqueous solutions of organics (non-electrolytes) represent at least a two 

component system, i.e. aqueous phenol solutions contain phenol and water. Depending 

on the nature of the solid surface either the water as the solvent or the organic as the 

solute (i.e. phenol) is preferentially adsorbed. The resulting function is known as the 

surface excess isotherm (SEI). “SURFACE EXCESS OF A GIVEN COMPONENT IS DEFINED AS THE 

DIFFERENCE BETWEEN THE AMOUNT OF COMPONENT ACTUALLY PRESENT IN THE SYSTEM AND THAT WHICH 

WOULD BE PRESENT ( IN A REFERENCE SYSTEM) IF THE BULK CONCENTRATION IN THE ADJOINING PHASES 

WERE MAINTAINED UP TO A CHOSEN GEOMETRICAL DIVIDING SURFACE.” (IUPAC). In other words, 

surface excess represents the adsorbed amount of a given component relative to its 

concentration in the liquid phase, i.e. the higher the solubility of a compound in the liquid 

phase the less it is adsorbed.  

For dilute solutions the adsorption isotherm for the solute is usually of interest and is 

therefore recorded. This isotherm lays in the first quadrant of the coordinate system when 

the concentration of the solute in solution is plotted against the surface excess in 

equilibrium. If water is preferentially adsorbed, the isotherm for the solute is negative and 

is found in the fourth quadrant. This is because the solution gets more concentrated when 

it is reduced in its water content.  

Beside a preferential adsorption, this solvent solute competition is important in 

groundwater aquifer interaction. Many aquifer materials are silicates or oxides. These 

surfaces possess hydroxyl sites which strongly attract water, creating a layer of tightly-

bound water at the surface. Thus, the adsorbing organic molecule “sees” a layer of water 

and any direct association with the aquifer surface must first displace that water. This 

correlation is shown on substituted phenols by EVANKO & DZOMBAK (1998). When 

hydrophobic molecules associate with soil organic matter, however, there is no 

competition with water. This difference may complicate interpretations for phenolic 
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groundwater contaminations when laws derived from insoluble organic contaminants are 

straight forwardly applied to these contaminants.  

Relevance of adsorption in aquifer systems 

Surfaces capable of adsorbing ions and compounds are ubiquitous and therefore 

adsorption is an attenuation mechanism that can be present in virtually any groundwater 

system. Adsorption to immobile sediments is the basic concept of retardation, and as such 

is fundamental to an understanding of contaminant transport. Adsorption to mobile 

sediments can also be of critical importance. 

Current knowledge suggests that adsorbed compounds are no longer available to micro-

organisms. Certain surfaces such as manganese III/IV oxids (STONE & MORGAN (1984A), 

STONE & MORGAN (1984B), STONE et al. (1987)) can however accelerate abiotic and biotic 

transformation reactions, such as hydrolysis and redox. Adsorption can both; mobilise and 

immobilise a dissolved contaminant, enhance and inhibit contaminant degradation.  

Frequently employed empirical isotherms 

Freundlich: A frequently employed empirical isotherm is the Freundlich relationship, 

which is often applied to describe the adsorption processes seen in natural systems.  

This relationship is expressed by the following equation:  

n
wFrs   K CC ⋅=  

cS: equilibrium concentration on solid,  
cw: equilibrium concentration in liquid,  
K: partitioning constant,  
n: Freundlich exponent 

[1] 

For organic solutes n is often found to be slightly greater than 1. Ambiguities originating 

from the concentration dependent nature of the Freundlich coefficient are discussed by 

Carmo et al. (CARMO et al. (2000)). URANO et al. (1981) and MANES (1998) suggested an unit-

equivalent Freundlich coefficient by normalising Cw to the water solubility of the 

compound: 

n
W

Frs
S

C
KC

/1
* 






=  [2] 

 

where S and KFr
* denote the water solubility [mg L-1] of the compound, and the unit-

equivalent Freundlich coefficient [mg kg-1], which can be calculated by KFr
* = KFr S

1/n. 
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Langmuir Type: This isotherm mainly represents chemisorption. Adsorbing molecules 

sequentially fill surface sites until a mono-layer coverage is achieved. However, no multi-

layer coverage is included. Each site is equivalent in energy. Langmuir behaviour 

assumes fast reversible adsorption, and interaction only between adsorbate molecules 

and the surface site. The equation for the Langmuir isotherm is usually given as: 

L

Lmax
s c   1

c  
 c

α
α

+
Γ

=
 

cS: equilibrium concentration on solid,  
cL: equilibrium concentration in liquid,  
α: adsorption constant,  
Γmax: maximum amount adsorbed in a mono-layer 

[3] 

While the Langmuir isotherm is rarely useful in real, heterogeneous systems, it illustrates 

the concept of a mono-layer coverage rather well. 

Langmuir-Freundlich Equation:  

This combined isotherm has been proposed by DABROWSKI (1986) to analytically describe 

S-shaped isotherms. So far, this approach has been used to describe the adsorption 

isotherms for non-ideal mixtures on heterogeneous surfaces. 

BET Type: The BET equation accounts for a multi-layer coverage and is often applied to 

gas adsorption on solids. Main application of this isotherm type is in determination of the 

specific surface area of solids with nitrogen at its boiling point (77.35K). At high pressures 

P, the adsorbate condenses to a bulk liquid on the surface, the number of layers becomes 

infinite. This isotherm describes well the physisorption of an organic vapour onto very dry 

surface soils.  
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p: 
p 0:  

equilibrium concentration on solid, 
maximum adsorbed amount., 
adsorption constant related to enthalpy of 
adsorption,  
partial pressure,  
saturated vapour pressure 

[4] 

While this is effective in describing vapour-phase adsorption on dry soils, it does not 

describe electrostatic interactions of ions onto a heterogeneous surface in an aqueous 

system.  

Mechanistical approaches to adsorption 

The adsorption literature has reported numerous adsorption isotherms, measured for 

many different adsorbents and adsorptives. A general classification of adsorption 

isotherms from solution onto solids was made by OSTWALD & DE IZAGUIRRE (1922). They 

describe various curves, having maxima in adsorption from binary solutions in molar 

fraction ratios. BRUNAUER et al. (1938) later defined five types of vapour-phase adsorption 

isotherms. A widely accepted and applied classification of solute adsorption isotherms is 



LICHA (2002). SHORT CHAINED ALKYLPHENOLS IN THE ENVIRONMENT - 61 - 
 

 

given by GILES et al. (1974A). These concepts (Tab. 16) where mainly drawn from earlier 

mechanistic orientated studies (GILES et al. (1960)). Isotherms for adsorption of organic 

solutes are divided into four main classes, according to the nature of slope of the initial 

portion of the curve, and thereafter into sub-groups. The main classes are: (a) S Curves, 

indicative of vertical orientation of adsorbed molecules at the surface. (b) L Curves, the 

normal or “Langmuir” isotherms, usually indicative of molecules adsorbed flat on the 

surface, or, sometimes, of vertically oriented adsorbed ions with particularly strong 

intermolecular attraction. (c) H Curves (“high affinity”) (commencing at a positive value on 

the “concentration in solid” axis), often given by solutes adsorbed as ionic micelles, and by 

high-affinity ions exchanging with low-affinity ions. (d) C Curves (“constant partition”), 

linear curves, given by solutes which penetrate into the solid more readily than does the 

solvent. Thus, if the adsorbed solute molecules in the mono-layer are so oriented that the 

new surface they present to the solution has low attraction for more solute molecules, the 

curve has a long plateau; if they are oriented so that the new surface has high attraction 

for more solute, the curve rises steadily and has no plateau.  

Tab. 16: General Isotherm classification according to GILES et al. (1960)  

Type Interpretation Conditions required Example 

S adsorption becomes easier 
as concentration rises 

- solute molecule is monofunctional 
- solute molecule has moderate 

intermolecular attraction 
- strong competition for substrate sites 

phenol on 
alumina from 
water 

L 
the more sites are filled the 
more difficult to find vacant 
sites 

- adsorbed solute is not vertically oriented 
- no strong competition from solvent 

phenol on 
alumina from 
benzene 

H 

special case of L-curve, 
where in dilute solutions 
solvent is completely 
adsorbed 

- as in L, often species are adsorbed in 
large units i.e. micells 

chemisorption 
of fatty acids on 
Raney Nickel 

C 
linear distribution till a 
plateau occurs due to site all 
occupied 

- porous substrate with flexible molecules 
- regions of differing degrees of 

crystallinity 
- higher affinity for substrate than solvent 
- better penetration power 

PAH on NOM 

The theoretical concepts as shown in Tab. 16 where testified by a number of experiments 

GILES et al. (1974B). 

Experimental methods for investigating adsorption 

Generally one can divide the experimental methods to investigate the adsorption 

behaviour into dynamic experiments and static experiments.  
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Dynamic experiments are very common in investigating the adsorption behaviour of 

materials which are exposed to a flow of adsorptive, i.e. materials in adsorber columns 

and aquifer material or even liquid chromatography. The dynamic method is often also 

referred to as column experiment. The experimental design contains a column, which is 

filled with water saturated adsorber material. A pump or hydraulic potential creates a flow 

across the column with the inflow set at the bottom. In those studies it is vital to know the 

hydraulic properties which is usually assured by applying a conservative tracer. The 

boundary and starting conditions in column studies help to simulate the adsorption 

property and adsorption capacity under various flow conditions and to forecast the 

behaviour of real systems. It can also provide some idea on the transport controlled 

adsorption kinetics. The shape of the resulting breakthrough curves provide only little 

information on the adsorption mechanism.  

Static experiments, also referred to as batch experiments, are done under controlled and 

partition equilibrium conditions. Therefore such experiments allow the investigation of the 

adsorption mechanism. The experimental design varies with the aim of the experiment, 

i.e. the investigation of a diffusion controlled adsorption mechanism starts with solvent 

equilibrated adsorbent to which the adsorptive is added and the batch is left standing 

without shaking until eventually the adsorption equilibrium is reached. If diffusion and 

displacement of adsorbed water as limiting factors should be cancelled out the (dilute) 

solution of adsorptive is added to the dry adsorbent. Regularly shaking of the sample 

should force the reaction and thus decrease the time needed to reach equilibrium.  

5.2 Previous research on phenol adsorption  

Adsorption processes of phenol and its derivatives from aqueous solutions were 

extensively studied under technological aspects such as production processes and the 

purification of industrial waste-waters or drinking water (BANAT et al. (2000), BERCIC & PINTAR 

(1996), BINIAK et al. (1990), CEYHAN et al. (1999), HAGHSERESHT & LU (1998), QADEER & REHAN 

(2002), WOLFF et al. (1986)). Adsorption of SCAP on activated carbon is in the above cited 

papers mainly described by Freundlich or Langmuir isotherms. A comprehensive 

compilation of the adsorption behaviour of various phenols from several solvents onto 

different adsorbates is presented in a paper from GILES et al. (1960) and summarised in 

Tab. 17.  
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Tab. 17: Adsorption Isotherms for phenolics according to GILES et al. (1960) 

Adsorptive Solvent Adsorbate Type 

m-, p-Nitrophenol H2O Silk S1 

2,4-Dinitrophenol H2O Al2O3 (anodic film) S1 

Phenol H2O Nylon S1(?) 

Phenol H2O, Ethanol Wool S1 

Phenol, p-cresol, m- and p-fluorophenol H2O polyglycine S1(?) 

Monosubstituted Phenol: H2O Wool S1 

p-Nitrophenol H2O SiO2 S2 

Phenol H2O Al2O3 S2 

Phenol H2O, iso-Octanol Charcol S2 

Phenol H2O anthra quinonene 
derivative pigment L2 

Phenol H2O charcol L2 

p-Nitrophenol C6H6 Al2O3 L3 

Phenol iso-Octanol wool L3 

Phenol H2O graphite L5 

p-Nitrophenol H2O graphite H5 (?) 

p-Nitrophenol C6H6 nylon C1 

p-Nitrophenol, p-bromophenol H2O polyglycine C1 

Phenol H2O cellulose triacetate C1 

Phenol iso-Octanol cellulose triacetate C1 

Phenol H2O silk C1 (?) 

Phenol H2O Terylen polyester  C1 

Phenol, p-cresol, and monohal.-phenols H2O Polyphenylalanine C1 
 

A sophisticated mechanistic interpretation of experimental isotherms requires fundamental 

knowledge on the specific interaction of phenol molecules with the adsorbent surface. 

GILES et al. (1960) (Tab. 17) observed a s-shaped isotherm for phenol from its aqueous 

solution onto graphite. They assigned the S-Type isotherm to multimolecular adsorption 

effects. This isotherm has a very similar shape as the Brunauer type II has which itself 

had been reported for gas adsorption onto nonporous solids and is also interpreted to be 

caused by multimolecular adsorption effects (BRUNAUER et al. (1938)). URANO et al. (1981) 

studied the adsorption isotherms for 16 organic compounds including phenol on activated 

carbons and used a modified Freundlich isotherm for plotting the adsorbed amounts of 

phenol against the reduced subsequent aqueous concentration. This approach draws a 

clearer picture for very soluble compounds when their surface excess isotherms are 

compared. 

From the descriptions of GILES et al. (1960) the following phenol orientation is suggested in 

the system: water- natural organic matter (NOM) ( Figure 28). A detailed introduction to 
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this change in orientation is provided for 3,4-dimethylphenol later in this chapter. 

 Figure 28: Orientation of phenol molecules from their aqueous solution onto natural organic 

matter (NOM)  

Distribution coefficients of phenolic solutes between water and polar or non-polar organic 

solvents are given in ABRAMS & PRAUSNITZ (1975) and WON & PRAUSNITZ (1975). Investigations 

on the adsorption of phenol from multicomponent systems has been described by FLEIG 

(1995) and HALHOULI et al. (1997). The adsorption capacity of the quaternary sediments in 

the area Deuben was investigated by BLUHM-JANßEN (1998). She describes a very low 

adsorption capacity for those sediments.  

SEIDEL et al. (1985) measured the adsorption isotherms of phenol and indol on activated 

carbons. In contrast to the general temperature dependency of adsorption, it was 

observed that at higher temperature more phenol is adsorbed. The competitive adsorption 

of phenol and indol on activated carbon from aqueous solutions has been reported 

ANTONJUK et al. (1991). GELBIN et al. (1982) investigated the phenol adsorption properties in 

relation to the structure of the activated carbon (i.e. containing partially micro porous 

structures) by measuring breakthrough curves of phenol. For the short-time adsorption the 

authors used a diffusion coefficient of D = 33 10-10 cm2/s and for the long time range a 

diffusion coefficient of 3.4 10-10 cm2/s.  

5.3 Characterising the adsorbents 

In order to investigate the adsorption mechanism in greater detail, the adsorbents must be 

characterised in terms of their surface properties.  

5.3.1 Subbituminous coal 

This type of coal was chosen as a model adsorbent since this is the predominant coal 

type of the seams present in the field areas described in chapter 7. The coal samples 

were derived from seam 1 of the open cast mine “Profen Süd”. The analysis for sulphur 

Molecular orientation at 
low phenol concentrations

(1-1000 µg/L)

Molecular orientation at 
high phenol concentration
(well beyond 1000 µg/L)

A B
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and TOC yielded 55% TOC and 1.2% sulphur, which confirmed its classification as 

subbituminous coal. Subbituminous coals are thermally altered residues of developed 

plants that remain after exposure to higher temperatures and pressure (40 - 100 °C). It 

should be emphasised that coals and kerogen are heterogeneous by definition (VAN 

KREVELEN (1993)), consisting of a variety of different components (macerals). Coals are 

composites consisting of a macromolecular three-dimensional network of condensed 

aromatics (polymers) and separate molecular compounds (not polymeric), with only the 

latter being typically soluble in organic solvents (aliphatic, aromatic hydrocarbons and 

heterocyclic compounds). 

Figure 29: Molecular structure of subbituminous coal19 

The adsorption of phenol from aqueous solution for determining the surface area was 

suggested in KIPLING (1965). A single curve is observed if adsorption per unit area is plotted 

for three carbon blacks of different surface characteristics. A multi-layer approach 

however, was not investigated. An attempt was made by BOEHM & GROMES (1959) to apply 

the modified BET equation to the adsorption of phenol. With carbon tetrachloride as the 

solvent and clays and silica gels as the adsorbents, this gives “mono-layer values” from 

which specific surface areas were calculated in close agreement with those obtained from 

low-temperature adsorption of nitrogen. In an extended study on porous carbons NAUCKE 

(1963) showed that the ratio of the specific surface areas determined from adsorption of 

phenol and of nitrogen or argon widely varied between samples. Interpretations are based 

on mole sieve effects and multi-layer surface coverage.  

 

                                                 

19 in: HÜTTINGER & MICHENFELDER (1987) 
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Nitrogen adsorption isotherm 

The coal sample was degassed at 180 °C for 24 h. Nitrogen adsorption isotherms were 

derived at 77.1 K (-196°C, boiling point of N2) on an ASAP 2010 (Micromeritics). The 

resulting plot is shown in Figure 30. The isotherm is a little concave to the p/p° axis, then 

almost linear and finally convex to the p/p° axis. It indicates the formation of an adsorbed 

layer whose thickness increases progressively with increasing relative pressure until 

p/p°?  1. This indicates a non-porous or macroporous adsorbent. No micro or meso pores 

were detected. This may be due to a blockage of the pores by highly viscous organic 

compounds, present in subbituminous coals.  

Figure 30: N2 isotherm, surface area characterisation of subbituminous coals20  

The BET-surface calculated from nitrogen adsorption isotherm 5 m²/g. This is rather low 

for coals, but represents the accessible surface in such coals rather well (Figure 45). 

 

                                                 

20 N2-isotherms were provided by Dr. G. Kalies, Universität Leipzig  
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Isopiestical data21 

The total amount of phenol sorbed from the gas phase onto the coal sample was 

determined isopiestically at room temperature in a desiccator22. Prior to the experiments, 

the coal was activated at 180°C for 3 hours. The amount sorbed was determined by 

regularly recording the weight increase of the coal sample until a constant value was 

eventually reached. The values are shown in Figure 31. 

Figure 31: Isopiestical adsorption of phenol onto the subbituminous coal 

The specific surface area A for the subbituminous coal sample is calculated using the 

limiting adsorption value sΓ  of phenol. After a period of 800h ( sΓ = 330 mg/g) it was 

assumed that adsorption equilibrium had established. The molar surface area a of pure 

phenol was calculated at 0.1944 m2/µmol from the equation presented in KNAPIKOWSKI et al. 

(1996)23 which gave a specific surface area of 682 m2/g24. The calculated area is much 

higher than the one determined by the N2-adsorption method (ABET = 5 m2/g). The 

                                                 

21 isopiestical: constant vapour pressure 
22 Isopiestical data were provided by Prof. Dr. U. Messow, Universität Leipzig 
23 a = 1.208 *108 

*
 V 2/3 

24 194.4 m2 : 94.1 mg (Phenol) = x : 330 mg/g yields A = 682 m2/g 
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deviation is even greater considering continuos recording which indicates that even after 

5000 hours equilibrium is not achieved. 

 

[5] 

Using the surface area from the N2-BET-Plot, it becomes apparent that 136 layers (d) will 

have accumulated after 800 hours (Equation 5). Beyond 800 h the curve still rises which 

implies that even more layers will build up.  

This mismatch of BET and isopiestical data for phenols needs to be expected. The 

isopiestical measurements were carried out at room temperature at which phenol is still a 

solid but close enough to its melting point and can therefore exhibit a substantial vapour 

pressure. The phenol could now condense at the coal and build up several layers. Such a 

behaviour has been described for the water air interface of phenolic solutions at room 

temperature by neutron reflection studies which showed phenol aggregates of more than 

one layer (LI et al. (1998B)). Further, MESSOW et al. (1986) generally attributed the mismatch 

between BET and isopiestical data to the different temperatures used in the two methods 

as well as the different time scales applied in the experiments. 

5.3.2 Coarse sand 

The coarse sand was purchased from a drilling company in Baden-Württemberg and has 

a grain size of 0.71-1.25 mm. The sand has been treated (washed, burned, rounded, 

97.5% quartz ) according to the requirements in DIN EN 12904. It is certified to be free of 

organic matter.  

BET-N2 data yield a surface area well below the detection limit of 0.5 m2/g. Approximation 

of the surface area from the medium grain size by treating the grains as sphere yields 19 

cm2/g. Overall, the surface area is rather small. Isopiestical data show only little 

adsorption of phenol, which may be within the error bars of the applied method. 
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Figure 32: Isopiestical adsorption of phenol onto the coarse sand 

5.3.3 Dolomite 

Two dolomite samples were provided by Rehberg (UFZ). XRD data confirm that both 

samples are identified as dolomite (spectra can be found in appendix III). 

The dolomites are obtained from the Zechstein formation sampled in a quarry south of 

Leipzig. According to Rehberg, these carbonates represent the type of rock predominant 

in the contaminated deep aquifers in the vicinity of Deuben well. For this reason the two 

dolomites were chosen as model adsorbents to evaluate the retardation of SCAP at that 

site (chapter 7.3). The dry dolomite samples were pulverised in a ceramic ball mill for 30 

minutes. The powder was furthermore sieved through a fine mesh screen (0.085 mm). 

The obtained pulverised samples were dried again at 100°C for 2 days and kept in a 

desiccator until used.  

DEGAS-Data25 

As described in the previous chapter, the natural organic matter (NOM) proportion in 

sediments and rocks dominates their adsorption capacity. The precise analysis of NOM in 

                                                 

25 DEGAS-Analysis (Directly coupled Evolved Gas Analysing System) were carried out and data 
were provided by Dipl. Chem. Ch. Schmidt, FSU Jena.  
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dolomite samples is crucial. It cannot be done by the differential method (TC-IC=TOC), 

since IC is with more than 98% the dominating TC source. An often applied method is 

eliminating the IC by washing the sample with acid and analysing the remains for TC, 

which in this case equals the TOC fraction. The acid washing procedure was performed 

as follows. Approximately 30 mL of HCl (30%, p. A.) were added very slowly to 4g of 

pulverised sample placed in a 250 mL round bottom flask. After the vigorous 

effervescence had ceased another 20 mL of HCl and a magnetic stir bar were added. The 

system was allowed to stir for 1 week. After a settle time of 1 day the remaining sediment 

was filtered off, dried and weighed back. Evolved gas analysis (EGA) analysis confirmed 

the complete removal of carbonate (IC) by procedure. Results from TOC determinations 

from the cold acid extract show that Limestone II may have a 10 times higher TOC value 

than Dolomite I has (data were provided by S. Leider UfZ). This would be in agreement 

with their observed adsorption capacities. Nonetheless, this high TOC difference of the 

two dolomite samples appears rather questionable, since the TOC mass traces from the 

DEGAS data differ less than 1%.  

The pulverised dolomites and the remains of their acid extract were analysed as 

described in SCHMIDT & HEIDE (2001). Gas analyses were carried out using a specific device 

of high-temperature mass-spectrometry (DEGAS, directly coupled evolved gas analysing 

system). The system comprises a NETZSCH STA 429 thermoanalyser coupled directly to 

a Balzers QMG 421 quadrupole mass spectrometer. Measurements were carried out 

under vacuum of 10-4
 to 10-3

 Pa using a linear heating rate of 10 K/min in the temperature 

range 20 to 1450°C. The mass spectrometer was operated at 100 eV in a multiple ion 

detection mode for some selected mass to charge (m/z) ratio. The system runs under 

highly non-equilibrated conditions thus hindering reverse reactions of the evolved volatiles 

to occur.  

The cold acid extract remains data do not differ by an order of magnitude for the two 

dolomite samples (Figure 33). Although the applied method does not allow to determine a 

TOC value in the two samples, it can be concluded, that they have a similar TOC.  

As shown from the adsorption experiments (Figure 49, page 85), the adsorption capacity 

of the two dolomites differs significantly. Dolomite II has a much higher adsorption 

capacity than dolomite I. This observation may be due to a different TOC distribution 

across the sample. This could be confirmed by DEGAS (Figure 34-Figure 36). 
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Figure 33: Bulk TOC comparison for the remains of the could acid extracts 

Figure 34: Aromatic TOC comparison for the pulverised dolomite samples 
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Figure 35: Aliphatic TOC comparison for the pulverised dolomite samples  

Figure 36: Comparison of extract remains and pulverised dolomite aromatic TOC 

The main organic matter is released, when the carbonate structure is thermally broken 

down, which is indicated by high CO2-signal occurring at the same temperature as the 

aromatic indicator peak (m/z=91). This indicates, that the organic carbon released under 

these conditions must be trapped in the carbonate structure and cannot freely be 

accessed by surface processes. 
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complementary (Figure 36). This indicates the presence of organic matter on the surface 

of the carbonate which can be accessed by surface processes.  

This difference is further confirmed by XRD data. The dolomite peak of dolomite II has a 

lower intensity than that of dolomite I. This signal suppression may be caused by the 

organic matter present on its surface.  

Nitrogen adsorption isotherms and isopiestical data 

The experiments have been carried out under the conditions as described in chapter 5.3.1 

at the University of Leipzig. The nitrogen adsorption isotherm method (BET) yields for 

both dolomites a surface area of less than 0.5 m2/g. A more detailed surface area can not 

be reported since it is below the detectable area. 

 Figure 37: Isopiestical adsorption at room temperature (RT) of phenol onto the dolomitic   

samples 

Isopiestical data show a significant adsorption for dolomite II, but virtually no adsorption 

for dolomite I (Figure 37, Figure 38). For dolomite II, a similar graph as for subbituminous 

coal is observed and it is concluded, that a similar multi-layer coverage occurs. Presuming 

136 layers will yield a specific surface area of 0.17 m2/g for dolomite II, which is approx. 

20 times less than the specific surface area of the subbituminous coal used. No surface 

area can be given for dolomite I, since the approximation does not seem to apply. 
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Figure 38: Isopiestical adsorption at RT of phenol onto the dolomite I and CaCO3 

5.4 Investigat ions on the total adsorbed amount26  

The total adsorbed amount can be a very valuable parameter for further thermodynamic 

interpretations as well as for the interpretation of the adsorption mechanism. This total 

adsorbed amount is not accessible from dilute solutions since they almost only allow the 

estimation of the surface excess amount. Isopiestical data represent the total adsorbed 

amount and are a preferred method for their determination. 

The total adsorbed concentration of phenol and trimethylphenol onto subbituminous coal 

gained in two individual isopiestical studies at room temperature are shown in Figure 39. 

At the start, the surface amount for both phenols is similar. After 1 day (20-30 hours) the 

phenol curve rises well above the trimethylphenol curve. This may indicate that phenols 

condense in several layers (689 layers at 800 hours), as expected before.  

A reason for this different behaviour of the two phenols may originate from their vapour 

pressure, which is 40.7 hPa for phenol and 0.02 hPa for 2.4.6-trimethylphenol. This 

reduces the rate at which the trimethylphenol layers could build up since its concentration 

                                                 

26 All isopiestical data were supplied by the working group of Prof. Dr. U. Messow, Universität 
Leipzig and were carried out using the provided adsorbents. 
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is much lower in the gaseous phase and a still rising curve indicates a much slower build 

up. A further reason for this different behaviour of the two phenols may result from the 

adsorption mechanism itself. Assuming that adsorption of further layers is caused by the 

interaction of the hydroxylgroups from the phenols, than a sterical blockage of this group 

by e.g. neighbouring alkylgroups may result in fewer layers to be built up. This may 

especially apply to 2.4.6-trimethylphenol, where the hydroxylgroup is sandwiched by 2 

methylgroups. 

Figure 39: Isopiestical isotherm of phenol and 2.4.6-trimethylphenol onto coal 

The following experiments were carried out to investigate the interaction existing for the 

adsorption of phenol from its aqueous solution. For this reason the total adsorption of 

water, phenol and methanol (as a reference) on subbituminous coal, sand and both 

dolomites was studied. 

The isopiestical isotherms for methanol, water and phenol onto subbituminous coal are 

shown in Figure 40. The isotherms can be interpreted based on the respective vapour 

pressure data. The two liquids (methanol and water) start with comparable surface 

amounts. While the methanol curve steadily rises, the water curve does not rise much and 

eventually crosses the phenol isotherm after 100 hours. These findings would predict that 

phenol is preferentially adsorbed from its aqueous solution and can replace the water film 

existing on organic matter within aquifers.  
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Figure 40: Isopiestical studies of methanol, water and phenol on coal 

The isopiestical isotherms for methanol, water and phenol onto coarse sand are shown in 

Figure 41. No significant adsorption was observed. The water and phenol isotherms are 

close to each other. This would predict, that neither water nor phenol would preferentially 

be adsorbed from an aqueous phenol solution. 

Figure 41: Isopiestical studies of methanol, water and phenol on coarse sand 
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Figure 42: Isopiestical studies of methanol, water and phenol on dolomite I 

The isopiestical isotherms for methanol, water and phenol onto the dolomite I are shown 

in Figure 42. The behaviour of water and methanol with respect to this adsorbent is 

reversed to their behaviour on subbituminous coal. Phenol is virtually not adsorbed by this 

dolomite sample. Water on the other hand is rather well adsorbed. Those findings would 

predict, that water is preferentially adsorbed from an aqueous phenol solution resulting in 

a negative SEI for phenol. 

The dolomite II sample (Figure 43) shows no real preference of any of the three 

adsorptives for the first day. After 100 hours phenol and methanol are preferentially 

adsorbed. This changes at 1000 hours, when the water curve rises and crosses the 

phenol curve. This behaviour could be explained by a very inhomogeneous surface which 

consists of organic matter and uncovered dolomite. The organic matter prefers phenol and 

methanol, while the dolomite surface prefers water. Depending on how these materials 

are exposed to the vapours this behaviour could result. Those findings would predict, that 

phenol could preferentially be adsorbed from its aqueous solution. This however, strongly 

depends on the distribution of the organic matter on the dolomite surface. 
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Figure 43: Isopiestical studies of methanol, water and phenol on dolomite II 

5.5 SCAP adsorption from their aqueous solution 

Several preliminary laboratory experiments showed a spread of the distribution 

coefficients for the various SCAP compounds of about a factor of 50 between phenol and 

the lowest soluble SCAP class propylphenols (also compare Tab. 2, p. 8). In order to 

demonstrate the adsorption mechanism one SCAP compound was selected from those 

preliminary experiments. This will be 3.4-dimethylphenol. It is believed that this SCAP 

represents an average adsorption behaviour of all SCAP.  

5.5.1 Experimental 

The experiments were conducted as batch experiments which have been successfully 

applied to the investigation of adsorption mechanisms as reported by e.g. ARNARSON & KEIL 

(2000), KARAPANAGIOTI et al. (2000), RÜGNER et al. (1999), XIA & BALL (1999), JARDINE et al. (1989). 

The phenol solutions were prepared by accurately weighing in a stock standard for each 

selected SCAP in methanol to a final concentration of 1000 mg/L per SCAP. Aqueous 

phase buffered solutions were prepared from the methanol stock solutions. Those buffers 

should maintain the pH at a constant value during the experiment. The following buffers 

with their respective ionic strength (I) were applied: 

• pH 4: citric-acid-phosphate buffer after McIloaine, I= 0.24 

• pH 6: citric-acid-phosphate buffer after McIloaine, I= 0.33 

• pH 8: phosphate buffer after Sörensen, I= 0.20  
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Sodium azide at a concentration of 500 mg/L was added in order to inhibit bacterial 

growth. Methanol concentrations in the aqueous solutions were always less than 0.5% 

(vol/vol), a level at which methanol is known to have no measurable effect on the 

adsorption process (NKEDI-KIZZA et al. (1987)).  

The experiments of the various solid materials were conducted as follows.  

dolomite samples: Approximately 7 g (exact weight recorded) of the pulverised sample 

was placed into a 22 mL screw top amber vial. Exactly 15.5 mL of the subsequent 

aqueous phenol-buffer solution was added.  

sand-subbituminous coal-mixture: Pulverised subbituminous coal and sand (filter sand 

pre-washed with acetone, grain size 0.71-1.25 mm) were mixed thoroughly and 15.5 g of 

this mixture placed into each 42 mL screw top amber vial. Exactly 31 mL of the 

subsequent aqueous phenol-buffer solution were added.  

sand, subbituminous coal: Exactly 77.1 mg of subbituminous coal and 15.423g Sand (filter 

sand pre-washed with acetone, grain size 0.75-1.25 mm) were weighed into each 42 mL 

screw top amber vial. Exactly 31 mL of the subsequent aqueous phenol-buffer solution 

were added. 

control vials containing no solids: For each phenol concentration, two separate vials were 

filled with 31 mL (big vials) /15.5 mL (small vials) of the phenol-buffer solution with no 

adsorbent added. Those vials always represent the start concentration c0 under storing 

conditions. Errors during storage are minimised in this way. 

After the phenol-buffer solution has been added, the vials were immediately sealed with 

Teflon faced butyl rubber septa. The vials were stored at 11 °C in the dark and shaken 

vigorously by hand at the start and every 24 hours until sampling. All experiments were 

carried out in duplicate/triplicate. After an equilibration time of 5 days the aqueous phase 

was sampled by opening the vials and withdrawing a small aliquot (2 mL) of the 

supernatant buffer. The samples were centrifuged in 2 ml vials and where applied prior to 

analysis diluted to a final concentration of 2-200 µg/L. Analysis was carried out by HPLC, 

with the system and column described in chapter 4.2.1 on page 43. Surface excess was 

calculated based on the decrease of the solute concentration in the aqueous phase from 

the vials with the adsorbent present relative to the control vials. 
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5.5.2 Results and Discussion 

Sand + Subbituminous coal 

To provide similar material as present in an unconsolidated quaternary aquifer, sand and 

subbituminous coal were mixed in the ratio 99.5%/0.5% wt/wt. This ratio was chosen as it 

represents equal surface areas for the two solids.  

From individual experiments carried out for pH 4, 6 and 8 over a wide concentration range 

(10-10000 µg/L phenol) no phenol adsorption was observed for the coarse sand. This is in 

agreement with the isopiestical data (Figure 41). Thus, observed adsorption can solely be 

attributed to the added coal.  

Preliminary experiments, which have led to the development of the transport parameter 

PCF (chapter 6.2) were carried out on a pre-mixed adsorbent. Although care was taken, 

the difference in grain size by a factor of 10 inevitably forced the separation of the two 

materials (sand + subbituminous coal) present in the pre-mixed adsorbent and thus the 

ratio for the two materials was not constant in all batch experiments.  

Figure 44: SEI of 3.4 DMP at 11°C and pH 8 on pre-mixed adsorbent vs. individual addition 

An investigation on the adsorption mechanism has been made by means of a highly 

resolved isotherm (Figure 45) for 3.4-dimethylphenol on individually added subbituminous 

coal and sand at pH=8. This SCAP was chosen since its adsorption properties towards 

this adsorbent represents the mean value for all SCAP as tested in preliminary 

experiments (C0 is less adsorbed while C3 are better adsorbed than 3.4-dimethylphenol). 

Additionally, the hydroxylgroup on this chosen SCAP is not ortho-blocked by an 
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alkylgroup. As preliminary experiments showed, the isotherms for ortho-blocked 

alkylphenols are not as clearly defined. 

Figure 45: SEI of 3.4 DMP at 11°C and pH 8 on subbituminous coal/sand  

The error bars in Figure 45 were calculated using the Gaussian error distribution function 

and the standard deviations from 3 HPLC determinations: 

As apparent from Figure 45 the isotherm can be divided into 6 sections, each represented 

by individual Freundlich parameters. The first section, represented by the equation 

y=1.056x+0.4139, has a Freundlich exponent very close to 1. This indicates a 

monofunctional and unspecific interaction of DMP with the coal surface which is best 

achieved when the DMP molecules lie flat on the coal surface as indicated  Figure 28 (A). 

When the phenol concentration in solution increases, the coal surface becomes more and 

more “crowded” and at a threshold concentration the phenol molecules overcome this 

crowded state by changing their orientation. This transition state is indicated in Figure 45 

by a decreased slope � which represents a state with lying and standing phenol 

molecules present at the surface. The further filling with only standing phenol molecules  ( 

Figure 28 (B)) is characterised by an unspecific interaction, as indicated by a Freundlich 

exponent very close to 1 which is almost identical to the one from the first section of the 

isotherm. This filling is continued until a mono-layer coverage is observed which is 
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indicated by a plateau within the isotherm�. The mono-layer coverage was furthermore 

verified by the surface area derived from the BET-N2-isotherm together with the area 

required by a single 3.4-dimethylphenol molecule. The hydroxyl group belonging to the 

sorbed phenols is directed towards the water. Via hydrogen bonds a water film consisting 

of 2 to 4 layers of water molecules is aggregated around the phenol layer (PESCHEL et al. 

(1978)). It is obvious, that some driving force is required to replace the water molecules 

from the first layer by further phenols and this can only be achieved at a higher phenol 

threshold concentration. Then slowly a second layer builds up. It is noticeable, that the 

Freundlich exponent (0.8578) from this part of the isotherm equals approximately the 

mean of the second (0.6166) and the third part (1.0398) of the isotherm. This supports a 

double layer second coverage as indicated by Figure 46. From thermodynamic 

interpretations, the hydroxyl groups of the first layer must interact with hydroxyl groups of 

the second layer and also the second layer must direct their hydroxyl groups towards the 

water. However, since only one hydroxyl group is present in the phenol molecule, double 

layer coverage becomes apparent. The data however suggest that the second layer is 

represented by a 2.5 times coverage. This leads to the fact that only 4 out of 5 molecules 

from the first layer function as anchor molecules in the building of the second layer, which 

is a double layer having hydroxylgroups at either end. In this way, hemimicelles27 form in 

the second layer thus stabilising the whole layer. The concentration range beyond the 

second coverage was not investigated. However, from isopiestical data it can be 

concluded that further layers may build up as the concentration in the water increases. 

The long term stability of these hemimicells was tested by preparing 22 identical batch 

samples of the highest concentration (100 mg/L) and ten blank samples. Over a period of 

100 days, every 10th day 2 vials were sampled and discarded afterwards. The samples 

were frozen and analysed at the end of the experiment. No change in adsorbed 

concentration with time after the 3rd day was observed. Since the adsorbed mass did not 

further increase with time a diffusion process into a micro-porous media will not be 

dominating (intraparticle diffusion). This is also supported by the fact, that the adsorbed 

phenol layer supports the hydrophobic coal to stay in solution by providing hydrogen 

bonding contact to the water. This mechanism may be regarded similar to micell 

formation. 

                                                 

27 Hemimicelles are interfacial aggregates of surfactants and co-surfactants. SCAP are co-
surfactants (FLEIG (1995), PATRICK et al. (1999)). 
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Figure 46: Sketch of the suggested SCAP adsorption mechanism onto organic matter 

The layers beyond the first layer may be much easier displaceable in desorption 

experiments than the first layer. FINDENEGG et al. (1983) report about the lower adsorption 

energy that is observed for layers beyond the mono-layer coverage. This may also be 

expected for the aqueous phenolic solution / subbituminous coal system and can here be 

assigned to the different forces and interaction mechanisms present between the coal and 

phenol as well as between the mono-layer and the layers beyond.  

The factors influencing the adsorption of phenols from aqueous solution onto carbon may 

be predominantly the ionic strength and the pH of the solution. The influence of the ionic 

strength has been discussed by PESCHEL et al. (1978). Unlike SETSCHENOW (1889) they 

distinguish between ions that strengthen the water aggregate structure (Na+) and ions that 

weaken the water aggregate structure (K+). Since the buffers used in own experiments 

contain both ions in similar concentrations, the influence of the ionic strength is probably 

minimised. As explained earlier, the influence of the ionic strength on polar substances is 

not really significant. The pH influence seems more important since phenols are weak 

acids (chapter 2.3, page 6). This influence becomes dominant, when the second layer 

forms. At higher pH values (pH 12) phenols are deprotonised (negatively charged) and a 

second layer cannot build up on the basis of hydrogen bond interaction (Figure 47) and 

also repelling forces of the deprotonised hydroxylgroup prevent a further build up of 

layers. This is in agreement with DIVINCENZO & SPARKS (2001) who investigated the different 

adsorption mechanisms of charged and uncharged pentachlorophenol onto soil. It is 

furthermore supported by investigations of MADHUKUMAR & ANIRUDHAN (1994) who describe 

the phenol exchange characteristics of sediment samples from coconut husk retting. They 
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report a general decrease in the adsorption capacity of organic material with increasing 

pH. On the basis of own experiments this can be interpreted as a mono-layer coverage. A 

decrease of the adsorption capacity has also been described by those authors with 

decreasing pH and can also be explained by a mono-layer coverage.  

Figure 47: SEI (11°C) of 3.4 DMP at pH 8 and pH 12 on subbituminous coal/sand 

Dolomite  

The two ground dolomite samples could be characterised as different with respect to their 

distribution of organic matter (also compare chapter 5.3.3). Dolomite I contains the 

organic matter more or less only within its dolomite natrix, while dolomite II shows the 

presence of organic matter at its surface. Isopiestical studies suggest that no adsorption 

of SCAP onto dolomite I occurs from aqueous solution. However, a positive surface 

excess for SCAP may be observed under certain surface conditions. The adsorption 

properties of dolomite I in aqueous solution of SCAP strongly depend on the dolomite 

surface protonation (respectively: surface charge). Own investigations give evidence of a 

negative surface excess for SCAP at pH 6 (Figure 48), which changes to a positive 

surface excess at pH 8 (Figure 49). Unfortunately, the zero point of charge of dolomite I 

was not determined. Literature data28 indicate a ZPC between 6.5 and 8.5 supporting the 

observed adsorption behaviour. This finding further implies that the pH margin in which a 

positive surface excess for SCAP occurs lies between the ZPC of the dolomite and the 

                                                 

28 lyre.mit.edu/3.52/2001/chapter9.pdf, 23.09.2002 
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acid constant (pKa) of the respective SCAP (also compare Figure 50). For groundwater 

relevant pH conditions the SCAP adsorption onto dolomite can be described as negligible. 

Figure 48: Negative SEI for phenol adsorption onto dolomite I, pH 6 

Figure 49: SEI of 2.4 DMP at 11°C and pH 8 on carbonates  

The adsorption behaviour for 2.4-dimethylphenol onto both dolomites and calcium 

carbonate powder (p. A.) at a pH of 8 is shown in Figure 49. Pure calcium carbonate also 

shows some adsorption capacity for phenol from aqueous solution at this pH, possibly 

caused by hydrogen bond interaction. Unfortunately, no organic free dolomite could be 

provided since dolomitisation is a secondary mineral forming process. However, calcium 

carbonate appears to represent similar adsorption properties to dolomite at pH 8. More 
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important however is the adsorption due to organic matter. For dolomite II a 40 times 

higher adsorption capacity is observed, which is solely attributed to the organic matter 

present on its surface. The lack of accessible organic carbon in dolomite I forces its 

isotherm onto the calcium carbonate isotherm. 

The pH of the solution influences the adsorption on dolomite differently compared to the 

experiments on the sand/subbituminous coal samples. This furthermore suggests that the 

adsorption on carbonate is caused by hydrogen bridging bonds (Figure 50) and the ZPC 

of the material greatly influences its adsorption property. The decline of adsorption 

capacity at pH 6 compared to pH 8 indicates that the ZPC of dolomite was surpassed.  

Figure 50: SEI of 2.4 DMP at 11°C and pH 8, 6 on dolomite II  

All further experiments were carried out at a pH of 6, which represents the pH in the 

Zechstei n formation in Deuben/Profen (chapter 7.3). Negative surface excess was solely 

observed for dolomite I. In the following the data for dolomite II will be presented and 

interpreted on the basis of the adsorption mechanism. The SEI of 5 SCAP obtained on 

dolomite II at 11°C and pH 6 are presented in Figure 51.  
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Figure 51: Isotherms of various SCAP on dolomite II at 11°C and pH 6 

It is apparent from the above plot that the isotherms of the various SCAP run parallel in 

the concentration range log cw 1-3, while they partly overlap in the higher concentration 

region. Only 2.4-dimethylphenol and 2.4.6-trimethylphenol show a different behaviour at 

higher concentrations compared to the other 3 SCAP. This may be due to the fact that 

they contain an alkyl group in opposite position to the hydroxyl group. When the phenols 

now change their orientation with increasing concentration in solution by “standing up” the 

interaction between of the aromatic ring of those two phenols must occur through the 

methyl group.  

URANO et al. (1981) and MANES (1998) suggested a unit-equivalent Freundlich coefficient by 

normalising Cw to the water solubility of the compound as described in greater detail in  

chapter 5.1. This normalises solubility controlled partitioning equilibria and the resulting 

isotherms should plot on the same line. Any deviation suggests that the adsorption is 

based on specific interactions.   

The solubility normalisation has been applied to the isotherms from Figure 51 and the 

results are shown in Figure 52. Only in the low concentration range (log cw 1-3) the 

isotherms of the various SCAP fall onto the same line (A) which implies a non-specific 

interaction between the adsorbent and SCAP. This means that SCAP must lie flat on the 

dolomite surface since only in this orientation there is no great difference between the 

individual SCAP. When the SCAP change their orientation, the interactions become more 

specific and the phenols do no longer plot on a single straight line (B). 
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Figure 52: Solubility reduced isotherms from Figure 51 

5.6 Looking back at the chapter  

The adsorption of SCAP is somewhat different from commonly investigated contaminants 

such as PAK (RÜGNER et al. (1999), MOREHEAD ET AL (1986)). Therefore, their adsorption 

behaviour cannot accurately be described by existing partitioning models. Thus, their 

adsorption is commonly overestimated when described by common isotherms only. 

The adsorption mechanism was investigated for SCAP. It could be shown that they 

adsorb in multi-layers onto subbituminous coal. The adsorbed layers stabilise themselves 

by aggregating to hemimicells. Thus SCAP do not show an expressed tendency to diffuse 

into the adsorbent and thus intraparticle sorption processes are not predominant.  

Generally, the adsorption capacity is mainly assigned to natural organic matter. No 

adsorption was determined for coarse sand and only little adsorption was found for 

carbonates and dolomites. Overall, the partitioning coefficients of SCAP are very small 

with the consequence that they are only little retarded in aquifers. Thus, SCAP are very 

mobile compounds. 

At groundwater relevant pH values SCAP adsorption onto NOM is not pH dependent. In 

contrast, the adsorption onto carbonate sediments is pH dependant due to the nature of 

interaction. Generally, the adsorption capacity of carbonates is observable between the 

ZPC of the carbonate material and the acid constant of SCAP.   
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6 Conceptual models on SCAP transport in groundwater 

The earlier introduced chemical analytical technique (HS-SPME-GCMS, chapter 4.3, pp. 

45) allows a more detailed investigation of SCAP in water and sediments at contaminated 

sites. It enables the hydrogeochemical investigation of individual SCAP compounds in 

very complex matrices as present at such sites. The next chapter describes two transport 

parameters which have been derived from site and laboratory investigations. They are 

furthermore supported by experiments described in literature. These parameters should 

assign some properties of reactive tracers to SCAP (CAIN et al. (2000), DAVIS et al. (2000)). 

From their distribution at the site, a long-term prediction of the groundwater and 

contaminant pathway, the type and age of contamination and some prediction about its 

further development should be derived. The parameter development is demonstrated with 

a simple 1-D transport modelling approach to investigate the impact of the nature of the 

steplike phenol isotherm on its transport behaviour in aquifer systems. 

The derived and theoretically described parameters can be found applied in chapter 7.  

6.1 Modelling the steplike phenol isotherm 

The applied model code SMART (Streamtube Model for Advective and Reactive 

Transport, Universität Tübingen), a one dimensional Lagrangian streamtube model was 

chosen because the steplike phenol isotherm can be easily integrated. The parameters 

chosen for the model runs simulating the 1D transport through a column filled with sand 

and subbituminous coal (99.5/0.5 % wt/wt) are summarised in Tab. 18. 

Tab. 18: Applied model parameters 

Length [m] : 1 
Diameter [m] : 0.11 

Discharge [l/h] : 0.36 
Eff. Porosity : 0.15 

Velocity [m/s] : 7.3E-05 
Dispersivity [m] : 0.005 

Dispersion coefficient [m/s2] : 3.6E-07 
time step length [sec] : 600 

 

The initial concentrations were chosen below a mono-layer coverage (part � in Figure 45 

on page 81), at the mono-layer coverage and at the double-layer coverage. The resulting 

breakthrough curves are compared to the breakthrough of an ideal tracer and the 

Freundlich approximation (Figure 53). 
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Figure 53: Freundlich approximation of the phenol isotherm (below mono-layer coverage) 

The significant deviation of the breakthrough curves derived from the phenol steplike 

isotherm and its Freundlich approximation begins once the mono-layer coverage is 

achieved (Figure 54). 

Figure 54: Breakthrough curves for ideal tracer and total SCAP input concentrations within 

the first step modelled by phenol isotherm (P) and its Freundlich approximation 

(F, dotted line)  
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Figure 55: Breakthrough curves for ideal tracer and several input concentrations within the 

second layer coverage modelled by phenol isotherm (P) and its Freundlich 

approximation (F, dotted line)  

The breakthrough curves for 3 input concentrations within the second step of the phenol 

isotherm (part � in Figure 45 on page 81) are shown in Figure 55. Generally it can be 

concluded that the higher the concentration the larger the deviation in arrival times 

between both isotherms (F & P) and the earlier the breakthrough of SCAP when modelled 

on the steplike isotherm after a mono-layer coverage is achieved. This trend is expected 

since any SCAP at a concentration higher than the one needed for the first layer to be 

filled and lower than the threshold value for filling the second layer travels unretarded.  

The dependency of the retardation factor on the input concentration and the two modelled 

isotherms is shown in Figure 56. Especially for concentrations between 30 mg/L and 100 

mg/L total SCAP (within the second step of the phenol isotherm) their retardation by 

applying the Freundlich approximation will be overestimated by a factor of 5. The 

displayed results are an average value for SCAP. The effect is enhanced with C0 - C1 

SCAP which have a lower distribution coefficient and therefore within the above 

concentration range a retardation coefficient below 5. Commonly investigated organic 

contaminants such as BTEX or PAH have retardation factors orders of magnitude higher 

than SCAP. It must be further expected that within a complex contamination plume such 

as a tar oil plume those highly retarded substances are preferentially adsorbed resulting in 

even lower retardation factors for SCAP close to the source.  
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Figure 56: Retardation factors derived from steplike isotherm and its Freundlich 

approximation 

In sum, adsorption as a natural attenuation process does not work effectively for SCAP. 

Commonly applied remediation systems such as “pump and treat” and also water 

treatment plants which are both based on activated carbon adsorber columns do not 

retain SCAP for a long period. Their breakthrough as toxic organic contaminants occurs 

quickly with the consequence that the treatment concept for these soluble contaminants 

must be reconsidered. 

6.2 Phenol-Cresols-Fraction, PCF 

As apparent from the modelling results, SCAP are very mobile compounds with rather low 

retardation factors. However, these properties which imply a major drawback concerning 

the risk due to contaminant migration can be very beneficial in the characterisation of 

contaminant plumes, i.e. by employing SCAP as partitioning tracers. Their rapid 

movement always provides fresh adsorbent material (aquifer material) to the SCAP-plume 

thus allowing the small difference in the C0-C3 SCAP distribution coefficients (compare 

Tab. 2 on page 8) to result in a separation of the SCAP classes along the flow path 

(chromatographic effect). It could be demonstrated in experiments that the Freundlich 

Coefficients for C0 and C3 SCAP on sand/subbituminous coal differ by a factor of about 

50. This lead to the development of a transport parameter which should account for this 

difference in their retardation behaviour.  
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The parameter is termed phenol-cresols-fraction, abbreviated as PCF, and is defined as: 

 

[6] 

M: molarity 

Molar concentrations are used to compare the relative proportion of the SCAP 

compounds.   

The PCF can take on a value between 0 and 1. A total SCAP concentration of 0.0 mmol/L 

has no PCF by definition. PCF variations are caused by surface processes. Thus, travel 

velocity, travel time, travel distance and surface properties are the most sensitive 

parameters to cause this variation. By applying the PCF values across a contaminated 

site SCAP can be used as partitioning tracers (CAIN et al. (2000), DAVIS et al. (2000)). A 

certain PCF furthermore typical for the SCAP source i.e. contaminated site (Tab. 19). 

Carbonisation plant waters derived from subbituminous coal have a PCF of approximately 

0.8 while the subsequent tar has only a PCF of 0.25. This is due to the process of steam 

distillation in which the carbonisation plant waters are produced and also due to a higher 

solubility of C2-C3 in tar (Tab. 20). The presence of organic matter in the aquifer leads to a 

further separation of the SCAP classes resulting in a continuing enrichment of the plume’s 

tip in the easily soluble and little retarded C0-C1 SCAP (Figure 60). The data in Tab. 19 

gained from field investigations support the above statements. 

Tab. 19: PCF variation with source, time and space  

Anaerobic, no 
degradation Input Ageing source Tip of the 

plume 

LTC plant waters 0.75-0.85 0.30-0.60 0.90-1.00 

Tar contamination 0.20-0.30 0.00-0.15 0.40-0.65 

Tab. 20: SCAP distribution pattern and PCF in various SCAP containing materials 

Product Type C0-C1 
vol% 

C2 
vol% 

C3 
vol% 

Total Phenols 
vol% PCF 

Carbonisation Tar  0.50 0.96 1.19 2.65 0.23 

Medium Oil 12.0 7.0 3.8 22.80 0.58 

Light Oil 13.7 6.1 3.8 23.60 0.62 

LTC waters 1.22 0.2 0.09 1.51 0.81 

Crude Oil (North Sea) 0.025 0.017 0.010 0.052 0.52 
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PCF variation across a plume without SCAP degradation (strictly anaerobic conditions) 

The SCAP differentiation across a plume and its development over time can be expressed 

by the PCF. This is visualised in the next 3 figures (Figure 57 - Figure 59) by three 

different scenarios. LTC water which has a PCF of 0.8 acts in all three scenarios as the 

SCAP source. All scenarios are simulated under anaerobic conditions to minimise 

superimposing effects from degradation. 

Figure 57: PCF variation depending on the aquifer system (without biodegradation) 

In Figure 57 the influence of the natural organic matter (NOM) on the SCAP differentiation 

(PCF variation) is presented. A PCF differentiation only occurs in the presence of 

retarding matter (NOM) within the aquifer. Since C0 is migrates more or less unretarded, 

the plume length is not greatly affected by the presence of NOM. The percentage, 

distribution and type of NOM in the aquifer together with the number of interactions 

between the contaminants and the NOM surface determines the degree of differentiation. 

From a continuous source with a PCF of 0.8 its variation is limited to the range of 0.8 to 

1.0. 

A gradually depleting source due to e.g. the differential dissolution of SCAP as shown in 

Figure 58 has not a constant PCF over time. The source is more rapidly depleted with 

respect to the highly soluble C0 and C1 SCAP while the less soluble C2 and C3 SCAP 

remain longer in the source. Therefore, the PCF in the source gradually decreases and 

may in some cases even reach 0. A decreasing PCF of the source gradually changes the 

starting conditions for the plume. The PCF variation across the plume simultaneously 

increases until it eventually covers the whole range of PCF starting with 0 at the source 

and ending with 1 at the plume tip. A short lived source behaves similarly (Figure 59). 

Continuous source                                                                                      Anaerobic conditions

retardation

transport direction

c - c0 2

PCF = 0.9
c - c0 1

PCF = 1.0
c - c0 3

PCF = 0.8aquifer with NOM
c - c0 3

PCF = 0.8

source

no retardation
aquifer without NOM

distance [m]

original LTC water (PCF = 0.8)

0 500

c - c0 3

PCF = 0.8
c - c0 3

PCF = 0.8

source

1000



LICHA (2002). SHORT CHAINED ALKYLPHENOLS IN THE ENVIRONMENT - 95 - 
 

 

Figure 58: PCF change in the plume from a gradually depleting source over time 

Figure 59: PCF change in the plume from a short lived source 
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Figure 60: PCF variation across a tar contaminated site over time 

A suggestion on the observable PCF in a coal tar contaminated site with distance (x) from 

the source and with age of the source is shown in Figure 60. The plot is a synthesis of 

theoretical considerations and field observations. The straight lines in the plot are very 

schematic. In fact, they are likely not straight. 

PCF variation across a plume with SCAP degradation 

The following statements are derived from theoretical studies and could not yet be 

supported by field data from the sites investigated in this study due to their complex 

nature. Once a contamination enters an aquifer the redox condition changes and a redox 

zonation develops (Figure 61). Close to the source sulphate reduction/ methanogenic 

conditions evolve. Beyond the source and the plume aerobic conditions can still exist. 

Fast travelling contaminants such as SCAP can leave the reducing zones and may be 

degraded in the aerobic zone.  

Figure 61: Redox zonation around a plume in an aerobic aquifer 
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Figure 62: PCF variation within a plume at a certain time with biodegradation 

According to the degradation studies summarised in Tab. 9 (p. 14) especially C0-C1 SCAP 

degrade rather rapidly under aerobic and nitrate reducing conditions while simultaneously 

those SCAP are enriched in the tip of the plume. As a consequence, the PCF rises from a 

source value in flow direction until the plume eventually experiences a change in redox 

conditions. Degradation processes, i.e. preferential biodegradation of C0, are responsible 

for a decrease in the PCF value (Figure 62).  

6.3 Meta Para cresol Ratio (MPR)  

The formulation of a parameter which accounts for the selective degradation of SCAP is 

difficult. As apparent from Tab. 9 on page 14 contradicting results have been reported for 

most SCAP. At the same time this degradation parameter must not be superimposed by 

the PCF data and furthermore the SCAP used for this parameter must be well 

investigated and almost always present within the contamination plume. Only cresols fulfil 

those requirements.  

For m- and p-cresol GRBIC-GALIC (1990) report a different degradation pathway under 

aerobic conditions. The methyl group on the aromatic ring of p-cresol provides a site for 

an initial oxidative attack by water-derived oxygen. This results in the production of p-

hydroxybenzoate which is then decarboxylated and enters the phenol pathway. The 

methyl group on the aromatic ring of m-cresol is not initially oxidised before ring cleavage. 

Radiolabel studies show that the methyl group is mainly converted to methane. Initially m-

cresol is carboxylated forming o-methyl-hydroxybenzoate which is then believed to 

undergo ring cleavage followed by β-oxidation to acetate. Since m- and p-cresol have 
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almost identical physico-chemical properties (Tab. 2, page 8) their ratio can only be 

affected by aerobic degradation. Thus, the ratio of m- and p-cresol may very selectively 

indicate the presence of oxygen even if oxygen is only temporarily present. The MPR 

(meta-para-cresol ratio) will be defined as: 

By the above definition oxygen is indicated in a rising MPR well above 10. Since such 

data may be able to average out along a flow path, this parameter can be more selective 

than reference date measurements.  
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7 SCAP in the subsurface- case studies 

In the following chapter the distribution of SCAP at 3 field sites is illustrated and 

interpreted together with supplementary data from those sites. Each field site has been 

selected to cover a broad range of different conditions and contaminant scenarios in order 

to draw a broad picture about the behaviour of SCAP in the subsurface. The cases differ 

as follows: 

a) Geology b) Source of Contamination c) Typ of SCAP-Source 

• alluvial valley fill aquifer 

• tertiary sandy aquifer                

• deep carbonate (carstic) 
aquifer 

• gasworks site 

• tar processing plant/ tar 
oil lakes 

• deep well disposal of 
LTC waters 

• LTC water 

• tar/ tar oil 

• point source 

• diffuse source 

Unfortunately, no access was gained to a well investigated field site without ongoing 

remediation scheme installed and with a shallow contamination in a rather homogeneous 

aquifer.  

The sampling was carried out together with consultants or site owners within the context 

of their sampling scheme. All samples were analysed by the author and carried out in 

triplicate with the HS-SPME-GCMS method as described in chapter 4.3. The geological 

and hydrogeological background information and other chemical analytical data not 

including the phenolindex were provided by the site owners or as stated otherwise. More 

data are summarised in the Appendix. 

7.1 Shallow contamination in an alluvial aquifer at a 

gasworks site 

For the geological and hydrogeological description of the site the unpublished report from 

ARGE NUKEM DRESDEN (1995) has been used. Further data were provided by HPC Gera. 

7.1.1 Introduction to the field site 

The site was in operation until the early 1990s. It produced town gas from subbituminous 

coal (brown coal) and has an area of ca. 50,000 m2 (200 by 250 m). The site is situated on 

alluvial deposits in a SW-NE directed syncline adjacent to a river and is additionally 

covered by a 2 m thick anthropogenic fill deposited during plant operation. The typical 

unconsolidated alluvial sediments such as loam, gravel and boulder represent the local 

aquifer and are found up to 7 m bgl with varying thickness of unconsolidated material. The 

bedrock (aquitard) comprises Devonian phyllites and intrusive gabbroic and dioritic rocks.  
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The contaminant flow direction is towards a river and may influence the surface water 

quality. In October 1994 the following depths to the water table were measured: 1.53 m at 

monitoring well 13 (inflow) and 3.03 m at monitoring well 14 (outflow), which represents a 

rather shallow water table. The main groundwater flow direction is NNW to SSE. The 

aquifer can be described as slightly confined. It is highly transmissive and has a hydraulic 

conductivity of 1.4*10-4 m/s and a water velocity of approximately to 1 m/d (ne=0.06). 

The subsurface at the gasworks site is extensively contaminated by phenols, PAH and 

BTEX. The BTEX contamination was caused by refuelling loss during gasworks operation 

time. The maximum BTEX concentrations in the loam were analysed at 2.9 g/kg. Pump-

and-treat systems have been installed at the site, which may influenced the spatial 

distribution of SCAP.  

7.1.2 Sampling 

Sampling was carried out twice at this site (November 2001 and January 2002) and 

samples are derived from pumped water. Samples were filled into 100 mL Duran glass 

bottles, 100 mg CuSO4 added, the top sealed with an aluminium foil cap and a screw 

bottle cap tightly screwed on top. The samples were then frozen and kept at –18°C until 

analysis was carried out. The bottles were only filled half and stored lying in the freezer to 

avoid bottle bursting.  

7.1.3 SCAP distribution and discussion 

SCAP contamination was found near a tar pit source and along the assumed groundwater 

flow path (Figure 63). First sampling (11/2001) took place after an extended dry period. 

The highest SCAP concentration was found at the tar pit with 16,000 µg/L and a PCF of 

0.28. Groundwater abstracted from an observation well 50 m down gradient of the tar pit 

was highly contaminated. The PCF in this well is 0.44 which indicates enrichment in C0/C1 

SCAP relative to that of the tar pit which shows a PCF as expected of a typical tar 

contamination. It further has a MPR of almost 400 which indicates that oxygen is present 

in this well and degradation is ongoing.  



LICHA (2002). SHORT CHAINED ALKYLPHENOLS IN THE ENVIRONMENT - 101 - 
 

 

 

 

 

 

a) 

 

 

 

 

b) 

Figure 63: SCAP distribution across the gasworks site in autumn (a) and after aquifer 

recharge in winter (b) 

The second sampling campaign (01/2002) was carried out 2 months later when numerous 

rainstorm events lead to significant aquifer recharge. The highest SCAP concentration 

was now measured at the downstream well with an even higher concentration of 20,000 

µg/L than observed at the tar pit two months ago. Simultaneously, the SCAP 

concentration at the source well near the tar pit had dropped to only 50 µg/l which is just 

above the target value for remediation. Assuming that SCAP easily dissolve in the new 
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recharge water in the area of the tar pit and with a groundwater velocity of 1 m/d it can be 

concluded that the water sampled in the observation well represents the recharge water 

that flushed the source 60 days earlier. The PCF at the tar pit has dropped to 0.21 within 

these 60 days while the PCF at the observation well increased to 0.55. The MPR has also 

decreased to only 6. The contaminant flow is much faster than degradation processes. 

This may complicate the mapping of a steady phenol plume in such aquifers. 

Unfortunately, there are no more wells within the assumed SCAP plume to further 

investigate its progress and to determine if the river water is at risk. 

In sum, these findings indicate that C0-C1 SCAP can travel quasi non-retarded. SCAP can 

be easily flushed from the source under the present hydrogeological conditions. One can 

further assume, that the dissolution process of SCAP from tar is slow compared to the 

intensive flushing during a recharge period. This implies large uncertainties in the 

prediction of the temporal and spatial distribution of SCAP contamination. 

7.2 SCAP in a tertiary sandy aquifer from a tar plant  

The unpublished report of the consultant Jena GEOS is the basis for the site description. 

Further data were provided by Hannes & Partner (Rositz), LEG Thüringen and TLUG 

Jena. Although, many observation wells have been installed at this site, only  very limited 

monitoring took place while this study was conducted. Only about 10% of all monitoring 

wells could be sampled.  

7.2.1 Introduction to the field site 

The next section describes and discusses some aspects of the geological and 

hydrogeological settings in the vicinity of Rositz. The geology is rather complicated and 

influenced by open cast and deep mining. A comprehensive overview can be found in 

KOLDITZ (2002) and MÜLLER (2002). A simplified overview is given in Tab. 21.  

Without prominent marker horizons, the Quaternary strata classification is rather difficult. 

Quaternary deposits such as Pleistocene terrace gravel or glacifluviatile deposits do not 

form extensive aquifers and are only of local importance. Often these sandy or gravel 

layers are unsaturated. Nonetheless, they can be relevant for the transport of pollutants 

via hydraulic connections to the more important Tertiary aquifers below (KELLER et al. 

(1992)). 
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Tab. 21: Quaternary and Tertiary geology and hydrogeology in the vicinity of Rositz  

Strata Average Thickness  

Holocene  0,3 – 0,4 m 

Aquifer 11 no details possible 

Ground moraine of the Saale-glacial period 4 m 

Aquifer 15, 17 no details possible 

Ground moraine of the Elster-glacial period 2 m 

Aquifer 2, i.e. aquifer 28 no details possible 

Q
u

atern
ery 

Seam 4 6,5 (with aquifer 282) 

Aquifer 3 4 m 

Seam 23 about 11 m 

Aquifer 4 about 7 m 

Seam 23 about 11 m 

Aquifer 5/6, i.e. aquifer 52 about 17 m 

Seam 1, separates aquifer 5 and 6 5 m  

T
ertiary 

Pretertiary (Triassic, Zechstein rocks) 
 

The limnic Luckenau clay complex  together with the Thuringian-Saxonian Seam (Seam 23) 

lie above aquifer 5 and and represent an aquitard. The grey to grey brown coloured clays 

beneath the seam have a thickness of 0.4 m to 6.8 m. 

The Thuringian- Saxonian Lower Seam  (Seam 1) is only occasionally present. With this 

aquitard missing the aquifers 5 and 6 are connected and can therefore be treated as a 

single unit which represents the main local aquifer system. The aquifer system is very 

inhomogeneous and consists of the fluvial deposits from the tertiary Altenburg river 

system. In most cases the aquifer is constituated of fine to medium gravels and/or 

medium to coarse sands (90 % (wt/wt) quartz pebbles, KUHN (1998)). Locally, it also 

appears in form of very thin clayey, silty and coarse gravely layers. Gutter-like structures 

are of great importance to the groundwater flow behaviour in the adjacent area to Rositz 

as published by HÄNEL, THÜRINGER GEOLOGISCHER VEREIN E.V. (1998) or WUCHER et al. (1994). 

Thickness as well as transmissivity increase from south-east to north-west and thus mark 

the former flow of the Altenburg river (STEINMÜLLER (1995)). The grain size decreases 

significantly from the lower (5/6) to the upper aquifers (4 and 3). 

The hydrogeological conditions observed today are seriously effected by the extensive 

opencast and deep mining which took place in this region until the 20 (th) century. Mainly, 

the underlying and overlying sediments of Seam 23 were destroyed and have only 

occasionally been back-filled. Stratification disruptions in the underlying beds often occurs 

in areas where underground mining was carried out. This mining of aquitards has lead to 

some hydraulic contacts between different aquifers with the consequence of extensive 
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pollution in all aquifers. 

The former opencast mine “Neue Sorge” resulted in a pit of 16 – 18 m depth, not deep 

enough to touch the aquifer 52. Today this mining pit is filled with tar residuals. It is not 

confirmed but suspected that the “Neue Sorge” contributes to the high pollutant 

concentrations found north of the tar processing plant. It is currently discussed that the tar 

residues consolidate at the bottom of such lakes, forming an impermeable base (POETKE 

(2001)).  

7.2.2 Sampling 

Sampling was carried out twice at this site. The plume downgradient to the site was 

sampled in July 2000 (109/91, 121/92, 311/92, 408/94– displayed in italic letters ) and the 

wells at the factory premises were sampled in June 2002. All samples are derived from 

pumped water from the aquifer 52. Samples were filled into 100 mL Duran glass bottles, 

100 mg CuSO4 added, the top sealed with an aluminium foil cap and a screw bottle cap 

tightly screwed on top. The samples were then frozen and kept at –18°C until analysis 

was carried out. The bottles were only filled half and stored lying in the freezer to avoid 

bottle bursting. 

7.2.3 SCAP Distribution 

The SCAP distribution, its concentration and the PCF across the site and its downgradient 

plume are summarised in Tab. 22.  

Tab. 22: Concentration and PCF observed at sampled observation wells (Full data in 
Apendix)  

Name SCAP 
µg/L PCF Name SCAP 

µg/L PCF 

102/91 20.8 0.00 306/92 10100 0.60 

105/92 30.6 0.88 307/92 4.61 0.00 

109/91 48.6 0.00 311/92 127 0.00 

121/92 827 0.00 408/94 0.00 0.00 

203/92 0.50 0.00 BK84 0.00 0.00 

304/92 4200 0.02 7/94 4010 0.21 
 

From the few data it is rather difficult to derive some final analysis for this field site. 

Nonetheless, an attempt is made. By looking closely at the points displayed in the map in 

Figure 64 and Figure 65 it becomes apparent, that SCAP move along with the preferential 
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groundwater flow. The downstream wells 311/92 and 121/92 are SCAP contaminated and 

lay within the predicted plume within aquifer 52. The plume may easily be 2 km in length 

and corresponds to a travel time of 50 years. The earlier supported statement that the 

contaminated groundwater sinks into the Plattendolomit  at the factory premises and then 

rises up again into the tertiary aquifers (5/6) further north (WUCHER et al. (1994)) can based 

on the zero PCF observed at 121/92 not be supported. This zero PCF value indicates that 

degradation processes must have occurred along the flow path to this observation well but 

further studies within the same Zechstein formation at Deuben and Profen showed no 

evidence for a degradation potential of those deeply buried aquifer systems. In fact, such 

deep aquifers show an increased PCF at the tip of the plume. Therefore, if SCAP would 

sink into the Plattendolomit  and would rise up again further north must lead to a PCF > 0 

should be observable in the downstream wells. 

The observation well 408/94, which is placed inside the aquifer 6, is as expected 

uncontaminated. The SCAP plume must divert into north west western direction once the 

aquifer 52 meets the aquifer 6 due to the water velocity expected with the extensive 

aquifer 6. 

The tar lakes may not directly recharge to the Tertiary aquifers either due to a 

consolidated basement of the lakes or that they are not excavated into this aquifer. If no 

hydraulic windows are present close by and the protecting clay layer and/or coal seam 

above the aquifer 52 are still present the tar lakes will not directly contribute to the 

contamination in aquifer 52. 

From the few data collected at only one sampling event on the site the following 

interpretation can be derived. It is possible to clearly distinguish between contaminated 

and uncontaminated wells. It is also possible to identify the geologically predicted 

hydraulic connections at the site (WUCHER et al. (1994)) by the SCAP data. 

A PCF of 0.21 at the observation well 7/94 may indicate that this well is close to a 

hydraulic connection between the Quaternary and the Tertiary aquifer (=hydraulic window) 

where tar contaminated water recharges the aquifer. In fact, a tar pit is close to the 

hydraulic window in that area as postulated by KOLDITZ (2002) as shown in Figure 66. 



LICHA (2002). SHORT CHAINED ALKYLPHENOLS IN THE ENVIRONMENT - 106 - 
 

 

Figure 64: SCAP distribution across the site, underlined well contain SCAP 

The contaminated well 306/92 has a PCF of 0.6 and displays with more than 10 mg/L the 

highest concentration observed at the site. The PCF most likely indicates that this well is 

downgradient of the contamination found in 7/94. Inorganic compounds such as sodium 

and chloride as shown in Tab. 23 support this hypothesis. The highest salt concentration 

observed at the site corresponds well with the highest SCAP concentration that has an 

increased PCF relative to the source.  
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Figure 65: Sketch of predicted SCAP plumes at the tar processing plant premises 

Figure 66: mapped hydraulic windows at the plant premises (KOLDITZ (2002)) 

The observed PCF of 0.02 at 304/92 with its concentration of 4 mg/L would then indicate 

the tip of the plume since as stated earlier such a low PCF can only be a result of 

degradation processes. This well showed an elevated temperature of more than 2°C 

above site average which could indicate degradation processes occurring. Unfortunately, 

no redox potential measurements were carried out during sampling. However, with low 

salt concentrations it is very likely that OW 306/92 represents the fringe of the plume.  
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Tab. 23: Inorganic data from water analysis at three wells within one plume (June 2002) 

concentration 
in mg/l 

7/94 
(source) 

304/92 
(plume) 

306/92 
(fringe) 

Potassium  262 291 223 
Sodium  56.3 324 131 
Chloride 61.0 102 100 
Sulphate 390 270 140 
Calcium 8.8 8.3 7.3 
Magnesium 42.5 59.1 46 
Bicarbonate 634 1600 923 
Ammonia 1.8 10.4 2.5 
Nitrate 0.9 2.0 1.1 

 

The observation well 105/92 north-west of well 306/92 has a very low concentration (30 

µg/L) with a very high PCF of 0.88. This could indicate that this well is contaminated by a 

source different  from that of the other wells on the site. The contamination observed may 

be caused by LTC waters which could have been produced from the power plant 

surrounding the well. In sum, that yields a very narrow plume leaving the site in north- 

western direction and crossing the premise’s border within its north-western third. 

7.3 Deep injection of LTC water in a carbonate aquifer 

The LTC plants Profen and Deuben of the A. Riebeck’schen Montan Werke AG began in 

1936 with the extraction of tar, light oil and LTC coke by the Lurgi-LTC from 

subbituminous coal or its briquettes in the Zeitz-Weißenfels mining area. After 1949 the 

LTC plants continued their production within the VEB Braunkohlewerk „Erich Weinert“ 

which has been closed down in the early 1990’s. According to STRUZINA (1997) brown coal 

briquettes were carbonised by the Lurgi-process in the LTC plant Deuben. There is no 

information on the carbonisation process for the LTC plant Profen, but the Lurgi-process 

may have been applied here too. Within a period of approximately 30 years around 8 

million m³ of waste water were injected, which corresponds to a total mass of 

approximately 120,000 t phenol (Figure 67). There are significant differences between the 

two sites in relation to their operation time and their quantity of waste water injected. 

Five injection wells in Profen and six injection wells in Deuben/Trebnitz were drilled into 

the reef limestone and into the Zechstein-Plattendolomit until 1944 (see map Figure 68). 

The borehole diameter at the Zechstein horizon was 165 – 216 mm. The areas above the 

Zechstein were cased off while the injection sections were completed as open hole. 
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Figure 67: Injection scheme for the two sites (translated from REHBERG (2002)) 

Figure 68: Geological /hydrogeological map with injection wells and piezometric surface in 

the Zechstein aquifers as proposed by REHBERG (2002) 

In 2001, six wells (3 at both sites) were drilled by the Umweltforschungszentrum (UFZ) to 

investigate the present state of the contamination at the 2 sites. 
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Sampling: Based on own previously conducted experiments the following sample 

procedure was applied. Once every meter within the Zechstein formation a piece of core 

material (about 100-150 g) was removed with a clean tongs and immediately immersed 

into liquid nitrogen for about 15 seconds. This shock frozen piece is then wrapped into 

clean aluminium foil and placed into an argon filled gas tight bag and tightly sealed. Those 

bags were stored at –18°C until the samples were further prepared. 

Sample preparation: The frozen samples were treated individually. In the frozen state 

the samples were divided into smaller pieces with a hammer and chisel. Those smaller 

pieces were than placed into a cooled clean ball mill together with 3 small pieces of dry 

ice. The dry ice kept the temperature low during grinding and covered the sample with a 

carbon dioxide atmosphere. The ground sample was placed into clean aluminium foil and 

together with a small piece of dry ice into a gas tight bag. It was then stored until 

extraction at –18°C. This work procedure needed to be followed, since the samples were 

grind in Jena, but extraction and analysis was only possible at the UFZ in Halle. 

Sample extraction and extract analysis: The samples were extracted by the author 

following the method as described in chapter 4.3.3. The analysis of the extracts was 

carried out by the author with the method developed for aqueous samples (chapter 4.3).  

In total, about 100 solid samples were prepared, extracted in duplicate and analysed in 

triplicate which amounts to 600 analyses in total. Together with blanks, standards and 

dilutions around 700 analyses were performed. 

Water samples were taken within 6-8 week intervals between summer 2001 and summer 

2002. Unfortunately, the samples were bailed and not pumped. Due to the depth of the 

contamination, the bailing lead to rather dilute samples as the inorganic data from the 

latest pumped samples showed. Although water samples were analysed for SCAP those 

data will not be presented in this study. SCAP data in water samples however, are 

included in a more general report on those 2 sites (REHBERG (2002)). 

7.3.1 Profen 

With permission of the Prussian mining authority in Zeitz the LTC plant Profen began the 

injection of LTC waters at the end of 1944 into the wells 3/44 and 4/44. Later, the injection 

was continued into well 5/44. The wells 1/43 and 2/44 were not used for injection due to 

their low hydraulic conductivity. The waste water quantities injected amount to 

approximately 100-150 m³ per day. From 1965 to 1968 the waste waters were cleaned by 

alkaline treatment, reduced in volume and discharged into the river Weiße Elster (HUTH 

(1972)). From 1969 to January 1971 (time of closing down) the waste waters were 
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transported in tank wagons to Deuben, cleaned up there (alkaline treatment) and the 

treated water injected into the wells 5/44 and 6/44. 

Three boreholes (UFZ 101, UFZ 201 and UFZ 301 short: UFZ 1, UFZ 2, UFZ 3) were 

drilled in 2001 to investigate the phenol contamination together with the geology of the site 

Profen. 

7.3.1.1 Geology and Hydrogeology 

The boreholes show the injection horizon, a Zechstein reef as well as its lateral facies 

representations. Below the reef a dense greyish green, shale siltstone is developed. It is 

assigned to the bedrock and is of Ordovician to early Palaeozoic age. Its joints are almost 

completely filled with calcite or hematite. The top of the bedrock was found to be at –51 m 

AOD (UFZ 101), -60.11 m AOD (UFZ 201) and –47.9 m AOD (UFZ 301). It dips 

westwards. It has a low porosity (~4%) and works as an aquitard. 

It is followed by a porous Bryozoa reef, which is highly suspected to be the injection 

horizon. The reef has a maximum thickness of 110 m. The transitional stratification 

between basement and reef is about 1.5 – 5 m in thickness and rather differently 

developed. In borehole UFZ 101 it is an alteration of dolomite and limestone fragments 

with shale fragments, in borehole UFZ 301 a dark grey claystone with thin layers of 

gypsum and pyrite. Data on UFZ 201 are missing. 

The Zechstein surface in UFZ 101 lies at 63.96 m AOD, in UFZ 201 at –49.11 m AOD and 

in UFZ 301 at 13.5 m AOD. There is no fundamental evidence on why the Zechstein 

surface should be at 13.5 m AOD in UFZ 301. It is even more likely that this surface will 

occur at approximately –30 m AOD, since a compact dolomite structure occurs at this 

point. Just above this structure a collapsed formation is described, which cannot be 

assigned to a single stratigraphic unit. The reef surface, which is postulated to be this 

dolomite structure, dips steeply into NW and slightly from SSW to NNE. The facts, that the 

bedrock was found at different depths in UFZ 101 and UFZ 201 and that the reef surface 

in Profen 1/43 is at –50 m NN confirm the existence of a geological fault in the bedrock as 

well as in the Zechstein formation. 

Karstified limestones are found at the top of UFZ 101 with increasing dolomitisation with 

depth. The high porosity of the dolomites decreases with depth from 24.5% at 45.5 m 

AOD to 19,3% at –4.3 m AOD. A decrease in the number of joints can also be noticed. 

The proportion of biogenic material (shells, Bryozoa, corals) is very high. In the pores and 

at the fracture surfaces greyish to black coatings with noticeable smell are found. Calcite, 

dolomite and pyrite precipitates at these surfaces have been described by REHBERG (2002). 
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The Zechstein in UFZ 201 occurs as a very hard, dense dolomite with a thickness of 11 m 

only. It contains single thin clay layers of up to 5 mm thickness. Compared to UFZ 101 the 

proportion of biogenic material is rather low. The dolomite has a porosity of around 0.2 – 

6.3% only. Just a few open joints have been described. 

A 16.4 m thick limestone associated in a collapsed structural formation with a high clay 

content has been reported in the top of borehole UFZ 301. It is followed by a 20.5 m thick 

complex of clay and little consolidated chalky clay-/siltstones and fine sandstones. They 

were probably deposited during a period of reef destruction. Below, a 22 m thick dolomite 

structure is found, which contains ca. 17 m of cellular-porous dolomite. The proportion of 

biogenic material is again high. There are indications of intensively jointed horizons at –

38.9 m AOD (loss of core area). At its base the dolomite changes into a dense dolomitic 

claystone. 

Within the last 50 years the operation of open cast mines and extensive waterworks in this 

region induced a decline of the confined water table in the Zechstein aquifer from 127.5 m 

AOD (1944) to about 97 m AOD (2002). This results in a decrease of about 30.5 m. In 

spite of variations caused by atmospheric pressure during the period of water level 

recording (12.05.01-28.03.02) a steady rise of the water table could be observed. On 

22./23.07.2002 the water table lies at 96.82 m AOD (UFZ 101), 96.83 m AOD (UFZ 201) 

and 96.76 m AOD (UFZ 301) (Figure 69). The unusual behaviour of the water table in the 

UFZ 201 represents nothing but the declining curve of the slug test carried several months 

earlier. This emphasises the fact that the Plattendolomit  in UFZ 201 is of very dense 

nature and there is only very limited groundwater flow to the Zechstein formation in 

borehole UFZ 201. The few open joints bear some groundwater and thus no hydraulic 

contacts to the water bearing parts of the reef in the SE exist. 

The water table fluctuations are identical in the boreholes UFZ 101 and UFZ 301. This 

may be due to a similar connection to the Tertiary sediments. They may also well be 

connected to each other. 
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Figure 69: Watertable fluctuation in the Zechstein formation at Profen recorded with a 

pressure transducer 

7.3.1.2 SCAP distribution and interpretation 

A SCAP contamination was found only in UFZ 101 and UFZ 301 at this site. Those two 

wells are shown together with their lithology in Figure 70. The well UFZ 202 was 

uncontaminated mainly due to its dense formation and is not displayed. Unfortunately, the 

first cores prepared and provided for analysis by the samplers onsite for UFZ 101 and 

UFZ 301 already contained SCAP. Thus, nothing can be said about the point at which the 

contamination exactly starts at. Although the broyoza reef is more than 100 m in 

thickness, only the upper half has been sampled for SCAP analysis. There were still 

SCAP present in the core sample extract at the point were no more drilling cores were 

prepared and provided for analysis. For this reason, it can not clearly be stated, that the 

reef is uncontaminated blow -6 m AOD. 
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Figure 70: SCAP contamination together with the geological setting at Profen 

UFZ 101 is the well closed to the former injection well nest 1/43, 2/44-5/44. It is suspected 

that it still represents the conditions present today in the source wells. Although the 

contamination is only split into two sections (60 m to 1 m AOD and –4 m to –6 m AOD), 

the first section must be further split (Figure 70). The SCAP contamination in the 

downstream well UFZ 301 can be divided into 3 individual sections (Figure 70). Those 

may represent 3 individual flow paths. Section � starts at 11 m AOD (137 m bgl). Section 

� lays below the section of coreloss at -30 m AOD (179 m bgl) and section � can be 

found between -40 m and –42 m AOD (189 m bgl – 191 m bgl ). 

In the following chapter the SCAP distribution in the core samples at UFZ 101 will be 

discussed in greater detail. The assumed injection horizon at 123 m bgl (28 m AOD) is still 

visible today which indicates that the contamination did not get washed out. An MPR of 

150 at this depth clearly indicates, that oxygen containing water must have reached this 

depth. As illustrated in Figure 71, the MPR peaks very sharply at this horizon. The LTC 

waters at Profen were not directly injected but transported several miles in pipelines and 

channels to a reservoir thus the water had time to get enriched in oxygen and phenol and 
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p-cresol degradation processes may already have been induced above ground before 

injection.  

Figure 71: MPR data within the core samples from UFZ 101 

With the MPR indicating degradation, the PCF data can not be taken without correction. 

They have been corrected in the following way. It is assumed that the ratio of para to meta 

cresol does not change and the phenol concentration is constant with respect to all other 

SCAP. This correction greatly reduces the noise in the PCF and brings it to an almost 

constant value of 0.8 within the depth of 111 m bgl and 131 m bgl (40 m – 20 m AOD) 

(Figure 72). This PCF value of 0.8 is similar if not identical to the PCF of the injected 

water. LTC water typically has a PCF of 0.8 (GUNDERMANN (1964), V. ALBERTI (1983)). 

Above and below section � in UFZ 101 lay the sections � and � in which the PCF value 

has decreased to 0.4. A decreasing PCF can only be observed if the easier soluble SCAP 

fractions get washed out over time. This requirement is fulfilled since groundwater flow 

has been shown to occur within the two sections.  

Section � in UFZ 101 lays in a very uniformly formation which is characterised by a low 

clay content (Figure 72) and an effective porosity of 0.15-0.2. From those data one should 

expect a highly conductive horizon. But SCAP data and flow meter measurements in the 

open borehole showed that this section seems to be hydraulically inactive. This 

corresponds to the high PCF value found as well as with this MPR signature still present 

today after more than 30 years past closure. It may however have some joints and 

fractures.  
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The same pattern is again demonstrated in Figure 73, which displays a corrected PCF 

together with the total SCAP concentration for the core samples in UFZ 101. The highest 

SCAP concentrations within the analysed core samples are found just above section � 

(point A in Figure 73), at the suspected injection depth and just below section � (point B 

in Figure 73). At point A, the high SCAP concentration (8.8 mg/kg) is related to a low PCF 

(0.48) while at point B the high SCAP concentration (10.3 mg/kg) is related to a high PCF 

(0.8). This may indicate, that preferential contaminant flow occurred in section �. Point A 

coincides with the lowest clay content observed within this section, indicating excellent 

hydraulic conditions. The highest concentration found at point B does unfortunately not 

correlate as well with the clay content. It could however indicate the presence of a horizon 

with a low effective porosity at 133 m bgl (18 m AOD). 

Figure 72: Clay content in UFZ 101, corrected by inorganic data29 

                                                 

29 Clay concent curve provided by Dr. H. Gläser, UFZ Halle, core samples for inorganic analysis 
were prepared according to DIN 38414/7 (S7) digestion method. 
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Figure 73: Depth profile of corrected PCF and corrected total SCAP concentration UFZ 101 

The situation in the downgradient well UFZ 301 can be interpreted as follows. Generally, 

the following principles apply. A higher PCF can be observed with:  

a) increasing travel distance 

b) increasing adsorption capacity of the aquifer material 

c) deacreasing flow velocity, increased contact time  

If adsorption capacity and water velocity are minimised in their influence due to the nature 

of the aquifer than the length of the flow path becomes dominant. 

Section � in UFZ 301, starting at 11 m AOD (137 m bgl), is characterised by a PCF of 0.8 

to 0.95 with a steady rise in PCF with depth (Figure 74). The upper part of section � can 

be found at the same depth as section � and � from UFZ 101. This may indicate a rather 

horizontal contaminant flow from UFZ 101 to UFZ 301. The other 2 sections in UFZ 301 

have PCF values of at least 0.95 which could be the result of a longer SCAP flow path. At 

–38.9 m AOD extensive joints were detected by borehole logging and those correspond 

very well with the highest PCF observed in this well.  

However, a general correlation between the contamination in UFZ 101 and UFZ 301 can 

not be given. This is mainly due to the complex geological structure existing within such 

reef systems which cannot be investigated by only 2 boreholes. Further investigations 

need to be carried out. 
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Figure 74: Clay content in UFZ 301, corrected by inorganic data 

7.3.2 Deuben 

With permission of the Oberbergamt Halle the LTC plant Deuben began around 1939/40 

with the injection of phenolic waste waters in the subsoil. The waste water quantities in 

Deuben reached up to 450 m³ per day. Until 1961 the LTC waters were discharged into 

the former open cast mine Siegfried respectively Vollert-Süd for an intermediate storage 

and pre-treatment (ECCARIUS (2000)) and then injected into the four deep wells in Trebnitz.  

The injection capacity of the wells decreased with time and some wells had to be 

abandoned. The wells 1/40, 2/41 and 3/42 at the site in Trebnitz reached their maximum 

injectable amount already in 1955. In 1959 the injection capacity of the well 4/44 was very 

restricted so that the LTC waters were injected with a pressure of 4 at (58 psi, 405 kPa). 

From 1961 to 1975 (time of closing down) waters were injected directly into the wells 5/44 

and 6/44. 

The introduction of a waste water treatment by the phenolsolvan process strongly reduced 

the SCAP concentrations from 10 – 12 g/l in the beginning to 1 – 2 g/l (data are 

phenolindex  meassurements). The first phenolsolvan plant was completed by 1945 (V. 

ALBERTI (1983)), however removed by the Soviet Union as war reparation. A new 

phenolsolvan plant in Deuben did not start operation until 1968 (HUTH (1972); PLÖTTNER 

(1997)). This water treatment was accomplished in 1970 with a biological treatment. 
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7.3.2.1 Geology and Hydrogeology 

At this site boreholes UFZ 401, UFZ 501 and UFZ 601 have been drilled. The injection 

horizon is developed in bedded facies as the so-called Plattendolomit. Below the 

Plattendolomit lies a grey clay with fragments of dolomite, clay- and siltstone known as 

Grauer Salzton. Its top can be found at 77.72 m AOD (UFZ 401), 61.18 m AOD (UFZ 501) 

and –2.01 m NN (UFZ 601). The displacement of about 63 m between UFZ 501 and UFZ 

601 is caused by a fault and leaching processes (REHBERG (2002)). 

The mainly dense Plattendolomit  in UFZ 401 reaches a thickness of 19 m. It is 

characterised by many joints. At its top clayey to silty, partly sandy strata of the Upper 

Letten and the Lower Buntsandstein follow. The Plattendolomit of the UFZ 501 has a 

thickness of 24 m. It is a grey to dark grey, platy to bedded, fine crystalline dolomite. It has 

narrow, open joints. Single joints have dark grey to black coatings. Clayey to silty 

sediments of the Upper Letten and the weathered Lower Buntsandstein are at the top with 

a thickness of 10 m. In UFZ 601 the Plattendolomit  reaches a thickness of 9 m only. The 

so-called collapsed formation is found above the Plattendolomit. A local steep subsidence 

structure (subrosion depression) has developed between UFZ 501 and UFZ 601. It is filled 

with material (up to 80 m – UFZ 601) of the collapsed formation. This material consists of 

tertiary clays, sands, quartz gravel, clay- and siltstones, oolitic limestones of the Lower 

Buntsandstein and single fragments of dolomite of the Zechstein. 

Within last 50 years the operation of open cast mines and large waterworks in this region 

induced a decline of the confined water table in the Zechstein aquifer in the area of 

Deuben/Trebnitz. The difference between 131.1 m AOD (1940) and 96.4 m AOD (2002) 

adds up to 34.7 m. Tab. 24 shows the latest water level measurements in the Zechstein 

aquifer: 

Tab. 24: Water level in m AOD for UFZ 401-601 

borehole water level in m AOD 
(11.04.2002) 

water level in m AOD 
(22./23.07.2002) 

UFZ 401 99.78 100.79 

UFZ 501 99.63 100.37 

UFZ 601 99.54 100.55 
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Figure 75: Watertable fluctuation in the Zechstein formation at Deuben recorded with a 

pressure transducer 

Generally, the Plattendolomit  can be described as confined and with a steadily rising 

water table (Figure 75). The aquifer is only slightly confined at UFZ 401 (+4 m) but 

increases to +15m at UFZ 501 and then to extremely confined conditions at UFZ 601 (+94 

m). The possibly present subsidence structure may have hydraulicly conductive joints 

which could feed the Plattendolomit . 

The water table in UFZ 401 rose by about 2 m during the period of observation (21.11.01-

28.03.02). The water table fluctuations in UFZ 401 are not as well defined as in the other 

two wells at the site (Figure 75). This may imply that the UFZ 401 is not well connected to 

the Tertiary sediments and/or the hydraulic connection to the other two wells at the site is 

not very effective. According to REHBERG (2002) UFZ 501 is located downgradient of UFZ 

401. SCAP distribution patterns and watertable fluctuations (Figure 75) however do not 

seem to confirm this. The determination of a definite groundwater flow direction is very 

difficult at this site. The drilled wells are not arranged in a triangular geometry and 

therefore do not allow the determination of the groundwater flow direction. 

7.3.2.2 SCAP distribution and interpretation 

SCAP contamination was found in all 3 wells as shown together with the lithology in 

Figure 76. Unfortunately, the first cores prepared and provided for analysis by the 

samplers onsite already contained SCAP. Thus, nothing can be said about the point at 
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which the contamination exactly starts at. From the site in Profen it was learned to provide 

cores also from the Zechstein clay (Salzton) below.  

UFZ 401 and UFZ 501 are close to the former injection wells while UFZ 601 is situated in 

the expected downstream but influenced by a geological fault. The SCAP contamination in 

UFZ 401 can already be found in the Bundsandstein formation. Unfortunately, no sample 

cores from this formation has been provided for analysis by the samplers onsite from the 

other two wells. In all three wells the SCAP contamination is also found in the Zechstein 

clay. 

As a general trend, the total SCAP concentration decreases from UFZ 401 to 601 (Figure 

77) and so does the PCF. However in such a complicated geological system it is rather 

difficult to interpret this general trend. Therefore a closer look and interpretation will be 

attempted based on the PCF values.  

Tab. 25: Total SCAP concentration and water content in the Zechstein clay at the 
Plattendolomit-clay-interface in Deuben 

 water content 
in % 

total SCAP 
in mg /kg 

UFZ 4 10.8 % 88.6 

UFZ 5 6.2 % 75.4 

UFZ 6 12.3 % 28.0 

 

An increased PCF value, relative to the injected LTC water, is found in the Zechstein clay 

in all three wells. Additionally, the clay shows the highest SCAP concentration in the 3 well 

profiles. This may be explained by the clay’s high total porosity thus having a high water 

content. Since clay is rather impermeable, SCAP must have diffused into the clay. Based 

on diffusion it may be explained why the PCF in the Zechstein clay is so high relative to 

the respective value in the Plattendolomit . Generally, the smaller the organic molecule, the 

higher its diffusion coefficient. Phenol and cresols which are the smallest molecules 

among the SCAP may diffuse into the clay more easily than the other SCAP might do. 

Fractures within the clay further assist in the spread of SCAP into the clay. The high 

concentration can further be regarded as a memory effect that exists in the immobile 

water of the clay. To achieve such a high concentration as present today in the clay the 

Plattendolomit  must have been exposed to considerably higher concentrations compared 

to those of today. 
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Figure 76: SCAP contamination in Deuben relative to the geological settings 
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The same phenomenon is observed at the Bundsandstein-Plattendolomit-Interface in 

UFZ 401 at a depth of 99 m bgl (Figure 77, Figure 78). As the clay content rises well 

above the average for the Plattendolomit , the PCF increases with it.  

Figure 77: Total SCAP profiles in the core samples at Deuben 

The PCF values within the Plattendolomit formation in UFZ 401 are increased relative to 

the injected LTC water (Figure 78). In UFZ 501 and UFZ 601, generally decreased PCF 

values (0.2-0.6) were determined within the Plattendolomit (Figure 76). MPR data, which 

are between 3 and 10 in all samples at the site, do not indicate similar degradation 

processes as in UFZ 101. This complicates the interpretation of the observed PCF data 

since the source wells are indicated by the PCF as downstream wells and vice versa. 

A possible interpretation is presented here. At the time of operation of the injection wells, 

the water injected under pressure was distributed around the wells. The radius of 

influence of the total injected volume, calculated from an estimated total porosity of 25% 

and under the assumption of cylindrical and uniformly distribution around the injection 

well, is around 1500m in radius. That means that UFZ 601 is affected by the injection at 

the injection well nearest to UFZ 501. The very low gradient in the Zechstein water table 

and the fault may have helped to direct the injected water towards UFZ 601. This may 

explain the highly contaminated Zechstein clay found at the bottom of UFZ 601 as well as 

the high PCF within this clay. Uncontaminated water now flashes the contamination out 

from UFZ 601 in northward direction. It is not likely that the SCAP migrate back to UFZ 

501 as the low PCF indicates in the Plattendolomit formation at UFZ 501. The very high 

PCF at UFZ 401 still comes as a surprise. However, hydraulic gradients present in June 

2002 indicate a water flow from UFZ 501 to UFZ 601. 
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Figure 78: Depth profiles of PCF and clay content for UFZ 401 

7.3.3 Discussion 

The presence of SCAP in this deep aquifer system long after injection has been 

discontinued could clearly be proven. This implies, that SCAP do not easily degrade as 

often stated. 

It could be shown that SCAP can be used as a further helpful tool in the investigations at 

the sites in Profen and Deuben. To draw a clearer picture, yet more data are needed. This 

includes water samples which are obtained by pumping rather than bailing and the 

investigation/drilling of more wells. 

7.4 Looking back at the chapter  

Generally, all quantifiable 22 SCAP have been detected at the investigated site in various 

proportions. C2-SCAP were always found in higher concentrations than C3-SCAP. 

Trimethylphenols are predominant within the group of C3-SCAP. Together with the 

quantifiable 5 Propylphenols they represent 76 to 89 % of all C3 SCAP based on the 

comparison of the mass 136. This means, that the analysed 22 SCAP represent at least 

95% of the total SCAP concentration (compare results in the appendix).   

The contamination at the investigated sites is rather different and so are the geology and 

hydrogeology. Nonetheless, the earlier derived similar principles for the spread of SCAP 

appears justified in principle. It can generally be concluded, that for sites which are 

contaminated by SCAP additional information can be gained by using the SCAP 
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distribution pattern PCF and MPR. Source derived SCAP with extensive plumes can be 

ideally used as partitioning/reactive tracers in monitored natural attenuation. SCAP 

distribution pattern contain averaged information about the flow path and the aquifer 

condition. This greatly supports the long term prediction of the site development. 

Simultaneously, SCAP show a quick response in shallow aquifers as soon as aquifer 

recharge occurs which in turn makes them to useful tracers describing the maximum 

extent of the organic plume. Site investigation should therefore be carried out well beyond 

the source. From the PCF it can further be concluded if degradation processes occur. 

Since some SCAP compounds are oxygen sensitive, their disappearance may be used as 

oxygen marker. 
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8 Outlook 

“Every scientific fulfilment raises new questions; it asks to be surpassed 

and outdated.”  

- Max Weber - 

The work was intended to investigate the environmental behaviour of SCAP in the 

subsurface. It may have answered some of questions but may have left as many open. 

Most of all, degradation experiments and toxicity data are needed for the individual SCAP 

compounds to better understand and evaluate their impact on groundwater quality and its 

development. So remains subject to further investigations on a homogenous well 

investigated aquifer if the group of SCAP does not even contain more valuable information 

on the aquifer conditions. All here investigated sites will be monitored in future and with 

more data the picture about SCAP will become clearer.  

The principles shown in this study on the transport behaviour of SCAP may also be 

applicable to other readily soluble organic contaminates. Form literature data it was even 

seen, that other soluble organics have steplike isotherms. 

The laboratory batch experiments may be completed by column studies. The observed 

isotherm could further be modelled by the combined Freundlich-Langmuir-Isotherm. 
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• well design of the observation wells at Deuben and Profen  

(UFZ 101- UFZ 601) 

• SCAP data as analysed in the drilling cores in Deuben and Profen 
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UFZ 01/01

Compactonit

link seal

gravel pack 5,6 - 8,0 mm

Compactonit

gravel pack

Compactonit

gravel pack 5,6 - 8,0 mm

Compactonit

gravel pack

Compactonit

gravel pack 5,6 - 8,0 mm

Compactonit

drilling Ø 253 mm

well casing, stainless steel

stainless steel filter

well casing, stainless steel

stainless steel filter

well casing, stainless steel

bottom plate, stainless steel

stainless steel filter

66

60

54

48

42

36

30

24

18

12

6

0

-6

-12

-18

-24

-30

-36

-42

-48

88,0

92,0

110,0

120,0

130,0

140,0

146,0

156,0

166,0

176,0

182,0

195,0

202,0

horizontal scale 1:10vertical scale 1:200

87,0

well design 

project: research drillings Profen-Deuben 

drilling: UFZ 01/01 

x coordinate: 

y coordinate: 

4514041 

5665475 

UFZ 101

UFZ 101
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 well design 

project: research drillings Profen-Deuben 

drilling: UFZ 03/01 

x coordinate: 

y coordinate: 

4514258 

5666161 

UFZ 301

UFZ 301
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 well design 

project: research drillings Profen-Deuben 

drilling: UFZ 401 

x coordinate: 

y coordinate: 

4504230 

5662616 

UFZ 401
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 well design 

project: research drillings Profen-Deuben 

drilling: UFZ 501 

x coordinate: 

y coordinate: 

4505547 

5664266 
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 well design 

project: research drillings Profen-Deuben 

drilling: UFZ 601 

x coordinate: 

y coordinate: 

4506483 

5664959 

UFZ 601
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UFZ 101, water content, C0 - C1 concentration data in µg/kg, PCF, corrected PCF (C) and 

MPR 

 

 

depth 
in m 

H2O 
 in % Phenol o-Cresol p-Cresol m-Cresol PCF PCF (c) MPR 

91 3.00 413 ± 7.8 279 ± 6.37 248 ± 0.55 531 ± 18.1 0.498 0.498 2.143 

92 4.11 421 ± 10.9 326 ± 1.85 269 ± 3.12 623 ± 16.0 0.453 0.453 2.315 

94 2.01 592 ± 10.9 304 ± 6.85 215 ± 3.18 473 ± 24.8 0.501 0.501 2.205 

96 12.23 711 ± 30.3 463 ± 2.63 285 ± 15.6 621 ± 12.6 0.457 0.511 2.176 

98 4.17 1568 ± 42.3 500 ± 1.03 391 ± 12.4 920 ± 47.1 0.587 0.629 2.351 

102 2.73 322 ± 0.56 421 ± 0.34 352 ± 4.17 814 ± 37.2 0.404 0.449 2.311 

104 6.54 2043 ± 80.2 650 ± 8.40 513 ± 6.89 1214 ± 29.7 0.623 0.671 2.366 

106 6.17 856 ± 14.7 573 ± 15.1 274 ± 6.76 1272 ± 2.90 0.532 0.559 4.635 

108 3.88 463 ± 19.7 802 ± 35.4 518 ± 24.1 1932 ± 38.5 0.443 0.474 3.732 

110 7.22 667 ± 14.9 568 ± 27.9 274 ± 2.96 1222 ± 48.3 0.567 0.582 4.459 

111 4.78 603 ± 25.6 580 ± 0.86 166 ± 7.29 865 ± 44.7 0.527 0.559 5.212 

112 8.91 2326 ± 73.0 868 ± 27.6 191 ± 6.90 1130 ± 9.44 0.715 0.734 5.932 

113 4.74 1961 ± 42.6 609 ± 12.9 556 ± 7.01 986 ± 50.7 0.810 0.808 1.772 

114 9.45 < 35.4 381 ± 18.4 9.3 ± 0.15 466 ± 23.8 0.505 0.796 49.94 

115 8.29 2838 ± 97.6 1018 ± 27.0 816 ± 39.6 1594 ± 71.1 0.815 0.808 1.953 

117 5.75 673 ± 24.7 412 ± 18.3 66.3 ± 3.35 562 ± 0.53 0.663 0.810 8.478 

118 6.96 333 ± 6.14 410 ± 0.40 34.1 ± 1.68 503 ± 20.3 0.583 0.805 14.77 

119 8.98 2312 ± 106 518 ± 25.8 326 ± 4.59 768 ± 29.6 0.795 0.800 2.357 

120 9.16 105 ± 2.06 422 ± 12.7 16.7 ± 0.35 489 ± 4.06 0.509 0.807 29.39 

121 9.41 542 ± 24.0 10.7 ± 0.49 609 ± 16.8 0.469 0.803 57.06 

122 6.52 
< 35.4 

315 ± 15.5 11.7 ± 0.63 371 ± 17.1 0.492 0.803 31.75 

123 9.14 1298 ± 43.2 891 ± 31.8 323 ± 9.56 1102 ± 50.8 0.647 0.800 3.413 

124 4.76 62.8 ± 0.60 309 ± 7.64 <2.52 350 ± 14.2 0.521 0.810 156. 9 

125 8.70 231 ± 6.00 869 ± 12.7 37.7 ± 1.05 935 ± 16.4 0.555 0.797 24.79 

126 8.74 90.4 ± 2.73 469 ± 16.2 26.2 ± 1.39 535 ± 3.89 0.518 0.799 20.39 

127 7.54 1919 ± 70.9 452 ± 0.49 245 ± 2.24 574 ± 0.21 0.772 0.809 2.348 

128 7.87 3386 ± 101 695 ± 28.9 564 ± 1.20 944 ± 25.1 0.826 0.812 1.675 

129 7.99 4167 ± 87.0 763 ± 6.69 678 ± 7.98 1101 ± 50.3 0.835 0.818 1.624 

133 8.25 4147 ± 136 1068 ± 19.7 923 ± 31.0 1438 ± 20.0 0.770 0.783 1.558 

136 8.42 < 35.4 449 ± 7.34 391 ± 19.7 619 ± 5.72 0.593 0.610 1.585 

140 8.13 118 ± 5.83 12.6 ± 0.27 <2.52 10.3 ± 0.25 0.388 0.455 1.906 

142 4.30 130 ± 3.21 39.5 ± 1.55 138 ± 5.35 0.545 0.566 3.483 

146 8.43 9.4 ± 0.40 9.5 ± 0.09 10.5 ± 0.53 0.408 0.355 1.105 

149 4.88 7.8 ± 0.37 8.4 ± 0.32 9.8 ± 0.33 0.516 0.518 1.168 

150 5.34 34.1 ± 0.43 17.0 ± 0.45 32.1 ± 0.36 0.487 0.487 1.885 

153 4.66 <2.52 0.000 0.000 1.000 

155 7.16 8.9 ± 0.03 6.6 ± 0.11 10.0 ± 0.17 0.344 0.344 1.517 

156 6.21 

< 35.4 

20.3 ± 0.17 13.9 ± 0.17 21.1 ± 0.35 0.506 0.506 1.520 
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UFZ 101, C2 concentration data in µg/kg (d = depth in meters) 

d 2-EP 4-EP 3-EP 2.6-DMP 2.4-DMP 2.5-DMP 2.3-DMP 3.4-DMP 3.5-DMP 

91 94.2 ± 5.07 215 ± 0.34 338 ± 2.09 39.4 ± 1.10 155 ± 4.23 109 ± 4.31 70.3 ± 3.72 75.0 ± 3.19 222 ± 9.23 

92 142 ± 5.25 230 ± 10.6 521 ± 1.85 52.7 ± 0.27 193 ± 7.22 138 ± 6.64 91.4 ± 4.02 96.6 ± 4.41 278 ± 16.0 

94 98.3 ± 0.32 186 ± 3.17 408 ± 4.29 43.4 ± 0.64 161 ± 7.61 116 ± 5.42 77.1 ± 2.02 83.6 ± 2.27 232 ± 10.3 

96 160 ± 2.75 267 ± 4.86 477 ± 16.6 57.3 ± 0.87 269 ± 7.29 177 ± 3.11 123 ± 1.99 134 ± 1.91 396 ± 6.57 

98 141 ± 7.49 265 ± 2.94 491 ± 14.0 65.2 ± 1.28 281 ± 11.6 174 ± 2.60 120 ± 6.16 137 ± 0.04 406 ± 14.0 

102 156 ± 5.63 303 ± 11.1 602 ± 2.19 71.9 ± 2.61 299 ± 0.86 199 ± 6.66 127 ± 5.15 146 ± 8.30 431 ± 22.3 

104 130 ± 0.30 298 ± 11.3 462 ± 21.9 92.3 ± 1.44 400 ± 7.11 223 ± 3.75 161 ± 4.54 144 ± 7.02 427 ± 12.5 

106 202 ± 7.66 350 ± 2.36 827 ± 40.5 65.2 ± 2.46 237 ± 12.2 174 ± 8.86 115 ± 4.83 129 ± 1.37 375 ± 21.1 

108 231 ± 4.95 739 ± 7.23 1476 ± 48.8 118 ± 3.87 402 ± 4.90 294 ± 14.2 192 ± 7.70 150 ± 3.44 639 ± 4.32 

110 152 ± 5.27 293 ± 7.12 665 ± 20.9 53.3 ± 1.57 196 ± 8.11 134 ± 4.44 85.4 ± 2.24 93.0 ± 3.83 286 ± 15.9 

111 128 ± 3.12 246 ± 7.24 654 ± 23.7 49.6 ± 1.84 198 ± 1.47 128 ± 2.93 82.8 ± 3.43 93.3 ± 4.02 277 ± 8.51 

112 130 ± 5.65 268 ± 12.2 636 ± 10.4 55.4 ± 1.82 177 ± 3.70 130 ± 2.71 82.2 ± 2.34 88.2 ± 3.59 283 ± 10.1 

113 63.4 ± 0.91 213 ± 1.46 319 ± 7.42 24.1 ± 0.78 105 ± 2.01 73.8 ± 2.63 39.1 ± 1.22 44.5 ± 2.01 132 ± 4.58 

114 70.2 ± 3.64 49.9 ± 1.63 311 ± 0.64 20.7 ± 0.75 81.7 ± 1.29 57.3 ± 3.10 34.8 ± 0.85 38.3 ± 1.70 126 ± 5.21 

115 93.0 ± 0.77 278 ± 10.2 502 ± 9.04 33.7 ± 0.15 156 ± 5.07 107 ± 3.65 60.1 ± 0.91 76.1 ± 0.07 201 ± 7.25 

117 61.1 ± 2.68 111 ± 4.18 284 ± 4.92 22.6 ± 0.99 89.9 ± 3.34 64.9 ± 2.94 40.9 ± 1.60 49.9 ± 0.59 148 ± 2.31 

118 61.8 ± 3.06 104 ± 3.48 298 ± 3.67 25.2 ± 0.81 94.0 ± 2.33 64.5 ± 3.24 42.0 ± 1.92 50.2 ± 1.32 149 ± 7.07 

119 70.7 ± 3.04 170 ± 4.45 329 ± 5.54 27.4 ± 0.66 107 ± 2.63 75.3 ± 3.18 47.2 ± 0.53 54.8 ± 2.23 162 ± 3.88 

120 75.1 ± 2.54 62.3 ± 0.29 324 ± 14.3 27.9 ± 0.97 113 ± 4.54 68.5 ± 2.40 45.0 ± 1.55 52.8 ± 0.93 156 ± 6.25 

121 81.4 ± 4.20 59.3 ± 1.77 395 ± 18.6 33.0 ± 0.76 127 ± 2.21 83.1 ± 3.40 52.2 ± 0.88 61.4 ± 2.42 184 ± 4.84 

122 48.7 ± 2.43 38.4 ± 0.50 235 ± 4.41 19.4 ± 0.39 81.1 ± 1.63 49.6 ± 0.43 31.4 ± 1.48 38.7 ± 2.20 115 ± 4.17 

123 143 ± 0.13 222 ± 3.33 617 ± 15.1 63.4 ± 2.15 234 ± 3.61 151 ± 2.54 90.7 ± 4.81 102 ± 1.99 303 ± 6.41 

124 47.6 ± 0.33 42.2 ± 1.50 203 ± 10.7 19.4 ± 0.08 78.6 ± 3.60 48.4 ± 2.39 31.4 ± 1.41 38.0 ± 1.74 113 ± 2.65 

125 109 ± 2.18 106 ± 0.26 557 ± 23.5 56.2 ± 1.78 202 ± 7.80 127 ± 5.15 78.4 ± 2.61 85.9 ± 0.79 264 ± 4.97 

126 72.0 ± 3.19 69.1 ± 1.61 367 ± 15.4 26.8 ± 0.58 111 ± 3.36 73.0 ± 3.93 48.5 ± 2.56 56.7 ± 0.21 165 ± 4.30 

127 67.0 ± 1.26 150 ± 1.94 322 ± 1.94 26.3 ± 0.79 104 ± 2.76 74.3 ± 0.35 47.5 ± 2.64 51.4 ± 0.50 151 ± 5.76 

128 84.6 ± 1.40 234 ± 12.2 372 ± 7.74 36.7 ± 0.76 142 ± 5.50 91.6 ± 3.13 61.4 ± 0.25 56.3 ± 2.92 167 ± 2.87 

129 92.5 ± 1.27 276 ± 7.61 442 ± 1.40 35.4 ± 0.55 152 ± 3.31 101 ± 4.01 70.9 ± 2.01 63.8 ± 3.62 189 ± 5.42 

133 154 ± 4.96 437 ± 22.2 794 ± 12.3 66.4 ± 0.74 247 ± 6.89 162 ± 8.15 107 ± 3.46 105 ± 3.79 311 ± 3.82 

136 54.6 ± 0.68 184 ± 2.44 345 ± 18.2 25.4 ± 0.15 86.6 ± 0.58 65.0 ± 0.76 42.6 ± 0.65 43.1 ± 0.15 120 ± 6.91 

140 6.73 ± 0.26 7.70 ± 0.33 11.2 ± 0.15 24.3 ± 0.21 57.1 ± 1.70 23.1 ± 0.10 19.7 ± 0.68 9.52 ± 0.47 28.2 ± 1.09 

142 18.9 ± 0.04 17.3 ± 0.51 47.2 ± 0.95 14.2 ± 0.56 41.2 ± 1.11 24.1 ± 0.15 16.9 ± 0.50 16.8 ± 0.13 49.8 ± 2.69 

146 3.81 ± 0.06 9.07 ± 0.31 9.15 ± 0.17 7.07 ± 0.27 6.23 ± 0.16 3.73 ± 0.11 2.50 ± 0.11 1.76 ± 0.02 5.12 ± 0.01 

149 1.44 ± 0.01 3.82 ± 0.20 0.00 ± 0.00 3.93 ± 0.06 3.60 ± 0.10 1.91 ± 0.05 <1.68 <1.68 3.30 ± 0.16 

150 5.24 ± 0.22 27.4 ± 0.38 17.6 ± 0.79 5.79 ± 0.26 12.0 ± 0.51 7.82 ± 0.34 3.43 ± 0.10 2.10 ± 0.02 6.23 ± 0.01 

153 <4.20 <1.68 

155 2.93 ± 0.11 5.07 ± 0.25 6.53 ± 0.31 5.48 ± 0.04 5.41 ± 0.06 2.73 ± 0.11 2.17 ± 0.06 1.77 ± 0.09 5.24 ± 0.00 

156 3.18 ± 0.11 13.7 ± 0.31 9.05 ± 0.20 5.62 ± 0.10 8.51 ± 0.08 4.61 ± 0.07 2.57 ± 0.00 1.60 ± 0.09 4.74 ± 0.21 
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UFZ 101, C3 concentration data in µg/kg and total SCAP (d = depth in meters) 

d 2.4.6 TMP 2.3.6 TMP 2.3.5 TMP 3.4.5 TMP 2i-PP 2n-PP 4i-PP 3i-PP 4n-PP total amount 

91 21.7 ± 0.41 25.0 ± 0.11 126 ± 3.97 18.1 ± 0.68 6.43 31.64 129.89 2.70 54.14 2792 ± 71.3 

92 30.8 ± 0.71 35.1 ± 0.16 181 ± 6.07 24.7 ± 0.95 5.88 26.47 172.93 3.76 64.42 3505 ± 96.2 

94 25.6 ± 1.27 30.5 ± 1.46 142 ± 6.69 19.6 ± 0.72 5.53 24.67 150.52 2.80 57.09 2855 ± 91.8 

96 34.7 ± 0.91 37.9 ± 0.67 234 ± 0.14 33.8 ± 0.97 13.19 62.67 270.86 4.86 31.00 4151 ± 110 

98 36.9 ± 0.70 45.1 ± 0.33 245 ± 11.8 34.9 ± 2.33 11.73 40.45 240.15 5.37 99.69 4649 ± 178 

102 40.4 ± 0.27 53.1 ± 3.51 294 ± 1.57 37.0 ± 0.33 12.17 62.34 268.14 5.34 106.66 4802 ± 113 

104 49.4 ± 0.92 63.6 ± 1.90 159 ± 10.3 43.9 ± 2.94 16.63 82.34 338.70 7.88 134.92 5611 ± 211 

106 27.6 ± 1.57 32.1 ± 0.69 242 ± 10.2 24.1 ± 1.58 5.79 23.65 169.62 2.97 63.03 5185 ± 155 

108 56.6 ± 2.82 70.6 ± 1.33 378 ± 21.7 50.6 ± 1.37 12.17 60.93 364.87 5.92 143.57 8636 ± 244 

110 32.4 ± 1.48 22.0 ± 0.38 154 ± 9.13 166 ± 8.24 4.55 21.49 121.99 1.18 47.49 4593 ± 183 

111 15.7 ± 0.08 24.2 ± 0.18 187 ± 6.62 17.9 ± 0.90 5.22 25.34 136.14 54.97 3934 ± 142 

112 14.5 ± 0.13 18.1 ± 0.54 145 ± 8.86 11.2 ± 0.44 4.05 18.14 95.97 40.69 4386 ± 179 

113 6.19 ± 0.31 7.35 ± 0.29 64.2 ± 3.71 5.28 ± 0.31 2.00 8.34 44.89 20.14 3324 ± 141 

114 5.70 ± 0.23 6.43 ± 0.23 63.0 ± 0.38 5.07 ± 0.16 1.72 9.39 43.55 18.51 1799 ± 62.2 

115 7.86 ± 0.42 9.11 ± 0.57 87.5 ± 0.81 7.42 ± 0.15 2.39 11.21 61.80 25.53 5149 ± 274 

117 6.46 ± 0.14 7.39 ± 0.45 70.8 ± 3.69 4.99 ± 0.15 2.47 11.14 46.33 21.11 2083 ± 74.8 

118 7.29 ± 0.24 9.37 ± 0.08 81.7 ± 5.10 6.25 ± 0.12 2.66 10.72 53.22 23.13 2030 ± 60.9 

119 6.44 ± 0.29 9.38 ± 0.19 86.0 ± 0.81 6.88 ± 0.13 2.81 13.55 56.94 25.63 2863 ± 193 

120 9.49 ± 0.24 11.5 ± 0.72 90.9 ± 4.03 6.52 ± 0.17 3.02 12.14 62.30 25.69 2075 ± 58.1 

121 10.0 ± 0.59 12.2 ± 0.15 102 ± 2.34 7.61 ± 0.31 9.40 37.87 187.09 79.37 2684 ± 83.7 

122 6.61 ± 0.43 7.88 ± 0.23 64.1 ± 0.04 6.22 ± 0.06 2.25 9.21 46.02 19.41 1517 ± 51.6 

123 18.8 ± 0.30 24.0 ± 1.20 163 ± 1.08 14.4 ± 0.07 6.46 14.48 126.48 56.67 4668 ± 178 

124 6.17 ± 0.21 6.97 ± 0.13 60.1 ± 0.44 4.04 ± 0.03 2.07 7.75 37.61 16.28 1423 ± 47.7 

125 15.3 ± 0.20 19.1 ± 0.30 135 ± 1.71 10.5 ± 0.28 4.04 19.20 97.17 39.37 3767 ± 87.8 

126 6.11 ± 0.10 8.30 ± 0.04 78.9 ± 3.68 7.01 ± 0.19 2.69 12.53 58.08 24.66 2216 ± 63.4 

127 6.83 ± 0.18 8.07 ± 0.33 74.5 ± 0.86 5.98 ± 0.00 2.49 10.17 50.89 22.05 2444 ± 93.1 

128 11.8 ± 0.02 12.3 ± 0.68 87.9 ± 1.07 7.26 ± 0.16 3.30 12.08 63.58 26.98 3673 ± 195 

129 9.39 ± 0.59 10.9 ± 0.65 89.8 ± 5.63 7.79 ± 0.51 3.20 12.00 63.15 27.43 4190 ± 189 

133 13.6 ± 0.50 20.6 ± 1.23 161 ± 7.00 16.0 ± 0.92 5.31 23.87 120.79 52.75 6226 ± 283 

136 6.75 ± 0.35 7.26 ± 0.11 67.4 ± 3.35 14.7 ± 0.03 2.07 11.93 51.71 20.35 2608 ± 67.1 

140 6.67 ± 0.30 8.37 ± 0.32 11.2 ± 0.60 3.91 ± 0.18 2.07 10.36 45.52 9.42 308 ± 12.7 

142 2.82 ± 0.02 4.12 ± 0.12 12.1 ± 0.19 2.38 ± 0.02 <0.96 1.51 21.84 

<0.96 

4.63 603 ± 17.1 

146 2.97 ± 0.11 4.68 ± 0.01 4.83 ± 0.21 1.06 ± 0.07 92 ± 2.64 

149 1.34 ± 0.04 2.40 ± 0.02 2.97 ± 0.14 <0.96 
<0.96 

54 ± 1.87 

150 1.25 ± 0.05 2.72 ± 0.08 4.04 ± 0.24 <0.96 <0.96 2.47 5.06 <0.96 <0.96 187 ± 4.27 

153 <0.96    

155 1.55 ± 0.07 3.14 ± 0.00 4.58 ± 0.10 0.96 ± 0.06 <0.96 <0.96 7.83 <0.96 <0.96 85 ± 1.58 

156 1.57 ± 0.06 2.50 ± 0.08 6.49 ± 0.42 <0.96 <0.96 3.84 5.07 <0.96 2.34 131 ± 2.44 
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UFZ 301, water content, C0 - C1 concentration data in µg/kg, PCF and MPR 

depth in 
m 

H2O in 
% Phenol o-Cresol p-Cresol m-Cresol PCF MPR 

137 6.89 <2.52 0.000  

138 4.82 134.0 ± 3.01 113 ± 5.33 14.1 ± 0.44 0.628 0.124 

139 7.51 

< 35.4 

42.3 ± 0.01 31.1 ± 0.51 2.18 ± 0.06 0.657 0.070 

144 5.93 2302 ± 51.4 418.5 ± 0.11 165 ± 5.00 320 ± 9.42 0.832 1.940 

146 2.63 550 ± 3.82 100.8 ± 5.37 59.7 ± 1.06 130 ± 2.28 0.827 2.184 

148 1.60 523 ± 10.7 174.2 ± 7.93 116 ± 7.63 199 ± 3.32 0.740 1.720 

150 2.04 2038 ± 18.7 497.2 ± 34.1 172 ± 5.29 487 ± 20.5 0.766 2.826 

152 3.40 1715 ± 47.3 415.0 ± 8.77 104 ± 5.10 371 ± 25.5 0.759 3.573 

153 6.32 782 ± 1.19 237.1 ± 15.1 227 ± 1.20 335 ± 13.0 0.964 1.475 

154 2.33   

157 10.94   

158 11.54   

160 9.13 

< 35.4 <2.52 

  

179 4.04 20751 ± 1047 2599.1 ± 28.8 2391 ± 116 3213 ± 94.4 0.980 1.344 

180 4.46 2389 ± 40.5 30.0 ± 1.00 26.8 ± 0.42 28.0 ± 0.87 0.997 1.045 

181 3.94 912 ± 4.6 <2.52 1.000  

182 12.84 21128 ± 150 2437.4 ± 109 2220 ± 96.2 3226 ± 192 0.951 1.453 

183 5.45 2954 ± 6.14 585.1 ± 25.7 526 ± 34.5 629 ± 29.0 0.942 1.196 

184 8.04 16138 ± 187 2293.7 ± 85.1 2036 ± 101 2895 ± 202 0.893 1.422 

185 3.89 8110 ± 127 1409.4 ± 2.99 1348 ± 72.7 1977 ± 35.4 0.879 1.467 

186 3.34   

187 3.65 
< 35.4 <2.52 

  

189 5.50 10125 ± 245 1244.5 ± 56.5 1163 ± 17.4 1645 ± 38.4 0.941 1.415 

190 7.76 18088 ± 914 2615.5 ± 77.6 2359 ± 34.2 3428 ± 213 0.919 1.453 

191 3.87 9409 ± 118 1183.1 ± 22.7 1057 ± 69.3 1747 ± 110 0.930 1.654 

192 2.19 < 35.4 <2.52   
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UFZ 301, C2 concentration data in µg/kg (d = depth in meters) 

d 2-EP 4-EP 3-EP 2,6-DMP 2,4-DMP 2,5-DMP 2,3-DMP 3,4-DMP 3,5-DMP 

137 5.28 ± 0.43 <4.20 <4.20 <1.68 

138 10.1 ± 0.66 29.3 ± 2.37 28.5 ± 2.03 3.07 ± 0.16 14.2 ± 0.66 12.2 ± 0.72 8.74 ± 0.41 8.78 ± 0.42 31.7 ± 0.45 

139 <4.20 6.67 ± 0.27 4.05 ± 0.20 <1.68 2.88 ± 0.06 3.09 ± 0.00 2.53 ± 0.16 2.83 ± 0.08 12.8 ± 0.54 

144 42.3 ± 1.75 49.8 ± 3.78 162 ± 1.42 17.1 ± 0.19 75.5 ± 3.78 46.7 ± 1.58 27.7 ± 0.50 35.0 ± 2.30 111 ± 8.29 

146 14.2 ± 0.32 29.0 ± 0.39 63.2 ± 2.14 1.86 ± 0.07 9.27 ± 0.48 10.4 ± 0.25 6.22 ± 0.30 5.19 ± 0.32 27.5 ± 0.57 

148 24.1 ± 0.71 54.4 ± 2.27 114 ± 4.49 6.85 ± 0.37 28.8 ± 0.77 21.5 ± 0.72 14.0 ± 0.51 14.5 ± 0.58 48.1 ± 1.95 

150 58.1 ± 3.31 76.2 ± 2.21 278 ± 12.2 28.6 ± 1.96 103 ± 5.79 65.9 ± 1.19 39.5 ± 2.23 48.2 ± 2.06 145 ± 4.26 

152 54.8 ± 3.04 39.6 ± 1.09 244 ± 6.73 23.7 ± 0.92 84.4 ± 4.47 57.6 ± 0.38 34.3 ± 1.73 37.5 ± 0.64 131 ± 8.20 

153 <4.20 9.21 ± 0.34 10.9 ± 0.18 <1.68 7.79 ± 0.04 3.62 ± 0.05 4.21 ± 0.27 6.00 ± 0.22 12.6 ± 0.51 

154 

157 

158 

160 

<4.20 <1.68 

179 26.5 ± 0.77 86.7 ± 6.03 130 ± 3.41 11.3 ± 0.21 64.2 ± 1.04 35.5 ± 2.42 54.1 ± 0.47 92.7 ± 2.72 89.0 ± 4.68 

180 <1.68 2.27 ± 0.12 <1.68 <1.68 <1.68 3.60 ± 0.24 

181 
<4.20 

<1.68 

182 77.0 ± 6.18 257 ± 18.4 465 ± 34.1 29.1 ± 1.37 129 ± 6.79 87.1 ± 6.08 85.1 ± 1.96 116 ± 5.02 214 ± 8.53 

183 13.5 ± 0.68 34.6 ± 2.77 67.4 ± 3.13 4.34 ± 0.22 24.3 ± 0.13 13.4 ± 0.17 16.8 ± 0.19 22.1 ± 0.92 85.3 ± 5.40 

184 171 ± 12.6 607 ± 6.39 605 ± 44.1 88.5 ± 6.45 304 ± 4.78 200 ± 11.8 137 ± 7.66 167 ± 2.70 300 ± 15.7 

185 95.6 ± 2.20 366 ± 27.2 481 ± 40.9 46.0 ± 0.75 160 ± 11.0 113 ± 0.26 88.8 ± 0.96 112 ± 7.43 189 ± 3.87 

186 

187 
<4.20 <1.68 

189 44.3 ± 2.66 169 ± 3.93 225 ± 2.61 21.3 ± 1.31 88.4 ± 5.33 55.3 ± 1.85 54.4 ± 2.54 68.2 ± 0.13 123 ± 1.72 

190 144 ± 5.34 475 ± 31.8 619 ± 52.8 59.2 ± 1.51 215 ± 1.38 151 ± 9.40 126 ± 5.04 160 ± 11.0 271 ± 0.58 

191 49.8 ± 1.50 159 ± 9.46 297 ± 17.9 22.6 ± 0.74 82.9 ± 0.27 55.9 ± 0.01 51.8 ± 2.51 109 ± 2.15 122 ± 7.66 

192 <4.20 <1.68 
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UFZ 301, C3 concentration data in µg/kg and total SCAP (d = depth in meters) 

d 2.4.6 TMP 2.3.6 TMP 2.3.5 TMP 3.4.5 TMP 2i-PP 2n-PP 4i-PP 3i-PP 4n-PP total SCAP 

137 1.78 ± 0.01 10.5 ± 0.50 

138 6.92 ± 0.48 416.0 ± 16.8 

139 

<0.96 

1.09 ± 0.03 

<0.96 

115.0 ± 2.0 

144 2.85 ± 0.06 3.26 ± 0.15 46.5 ± 2.38 3.24 ± 0.23 <0.96 1.99 15.61 <0.96 6.19 3851.8 ± 91.9 

146 <0.96 <0.96 7.35 ± 0.18 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 1016.1 ± 17.3 

148 0.92 ± 0.04 1.25 ± 0.09 22.8 ± 1.29 1.50 ± 0.05 <0.96 <0.96 2.75 <0.96 1.03 1369.0 ± 42.9 

150 5.13 ± 0.03 6.95 ± 0.23 78.0 ± 3.44 5.56 ± 0.09 1.34 4.68 17.80 <0.96 12.56 4168.9 ± 115 

152 4.73 ± 0.22 6.12 ± 0.31 74.4 ± 5.60 4.92 ± 0.36 <0.96 2.86 17.89 <0.96 7.61 3429.7 ± 119 

153 1640.7 ± 32.2 

154 0 ± 0 

157 0 ± 0 

158 0 ± 0 

160 

<0.96 

0 ± 0 

179 <0.96 <0.96 2.12 ± 0.08 1.31 ± 0.06 <0.96 <0.96 <0.96 <0.96 <0.96 29547.4 ± 1308 

180 2481.6 ± 43.3 

181 
<0.96 

912.0 ± 4.64 

182 <0.96 <0.96 34.5 ± 0.48 4.15 ± 0.11 <0.96 <0.96 <0.96 <0.96 <0.96 30510.2 ± 634 

183 <0.96 <0.96 4.11 ± 0.30 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 4980 ± 109 

184 8.33 ± 0.26 12.2 ± 0.46 168 ± 2.60 12.0 ± 0.85 <0.96 2.37 19.65 <0.96 7.80 26171.6 ± 684 

185 1.51 ± 0.02 2.69 ± 0.20 104 ± 3.42 7.00 ± 0.17 <0.96 <0.96 5.00 <0.96 <0.96 14616.1 ± 336 

186 0 ± 0 

187 
<0.96 

0 ± 0 

189 <0.96 <0.96 37.6 ± 1.76 3.46 ± 0.06 15068.3 ± 379 

190 1.61 ± 0.04 2.62 ± 0.18 102 ± 5.00 7.87 ± 0.19 28825.0 ± 1358 

191 <0.96 1.33 ± 0.03 51.5 ± 2.47 3.33 ± 0.20 

<0.96 

14403.3 ± 362 

192 <0.96 0 ± 0 
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UFZ 401, water content, C0 - C1 concentration data in µg/kg, PCF and MPR 

depth in 
m 

H2O 
in % Phenol o-Cresol p-Cresol m-Cresol PCF MPR 

80 10.5 137 ± 3.31 37.7 ± 1.6 18.4 ± 0.9 53.9 ± 0.3 0.632 2.929 

83 9.8   

87 10.9 
< 35.4 <2.52 

  

90 11.2 1411 ± 57.4 127 ± 4.7 144 ± 0.2 228 ± 4.8 0.718 1.583 

94 8.4 31320 ± 598 3110 ± 38 5180 ± 23 5370 ± 22 0.778 1.037 

97 9.2 4521 ± 141 326 ± 0.3 531 ± 24 548 ± 3.8 0.828 1.032 

99 12.1 77076 ± 1260 8410 ± 263 14800 ± 361 15100 ± 502 0.298 1.020 

101 14.5 8295 ± 186 1300 ± 61 2240 ± 2.9 2510 ± 51 0.255 1.121 

103 4.74 6946 ± 315 792 ± 18 1440 ± 39 1490 ± 6.2 0.282 1.035 

110 2.12 8950 ± 310 988 ± 5.3 1700 ± 36 1800 ± 77 0.295 1.059 

112 15.2 6822 ± 112 1020 ± 49 1820 ± 50 1900 ± 7 0.329 1.044 

113 0.36 957.3 ± 21.3 144 ± 2.2 200 ± 1.8 214 ± 0.2 0.246 1.070 

114 11.2 1509 ± 65.3 267 ± 0.8 400 ± 9.6 446 ± 4.5 0.307 1.115 

115 3.58 2311 ± 68.8 339 ± 3.6 579 ± 21 571 ± 10 0.304 0.986 

115.9 8.25 874 ± 12.1 147 ± 0.7 213 ± 2.6 239 ± 11 0.276 1.122 

119.6 3.72 1506 ± 37.7 507 ± 10 1420 ± 55 2210 ± 33 0.312 1.556 

120 8.43 22986 ± 294 2680 ± 116 4460 ± 175 4610 ± 221 0.308 1.034 

121 10.1 12100 ± 487 961 ± 2.3 1420 ± 53 1520 ± 29 0.231 1.070 

122 10.8 51640 ± 804 6290 ± 281 10300 ± 188 10600 ± 381 0.307 1.029 

123 10.2 32850 ± 1400 3820 ± 68 6460 ± 54 7150 ± 160 0.308 1.107 

124.5 13.5 16000 ± 278 1370 ± 36 1920 ± 72 2060 ± 58 0.242 1.073 

125 6.76   

126 9.04   

127 13.7 

< 35.4 <2.52 
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UFZ 401, C2 concentration data in µg/kg (d = depth in meters) 

d 2-EP 4-EP 3-EP 2,6-DMP 2,4-DMP 2,5-DMP 2,3-DMP 3,4-DMP 3,5-DMP 

80 6.6 ± 0.2 14.2 ± 0.1 12.3 ± 0.3 1.7 ± 0.1 6.71 ± 0.1 5.99 ± 0.3 4.7 ± 0.1 <1.68 9.61 ± 0.3 

83 

87 
<4.20 <1.68 

90 16 ± 0.2 56.6 ± 0.9 28.4 ± 0.5 4 ± 0.1 22.2 ± 0.6 17.3 ± 0.2 14 ± 0.3 29.8 ± 1.1 

94 263 ± 9.4 1140 ± 47 509 ± 21 84 ± 2.2 579 ± 7.1 348 ± 7.8 282 ± 12 595 ± 7.2 

97 21 ± 0.1 95.2 ± 2.9 38.5 ± 0.9 6 ± 0.3 38.7 ± 1.1 25.1 ± 0.9 21 ± 0.1 41 ± 0.8 

99 888 ± 24 3540 ± 0 1800 ± 38 302 ± 3.4 2000 ± 65 1190 ± 39 941 ± 12 2010 ± 65 

101 464 ± 11 2450 ± 88 1080 ± 1.6 140 ± 3.2 1141 ± 24 614 ± 31 502 ± 14 

<1.68 

1540 ± 58 

103 149 ± 6.6 724 ± 6.8 233 ± 11 41 ± 1.1 318 ± 23 191 ± 1.2 160 ± 2.8 210 ± 8.2 306 ± 9.8 

110 132 ± 5.5 510 ± 25 270 ± 6.5 29 ± 0.6 203 ± 3.7 153 ± 1.8 129 ± 4.7 114 ± 1.7 204 ± 8.2 

112 195 ± 5.9 758 ± 24 419 ± 20 47 ± 0.9 318 ± 12 239 ± 3.4 202 ± 5.9 177 ± 5.5 348 ± 4.1 

113 69 ± 0.9 149 ± 5.5 86.1 ± 1.1 29 ± 1.3 98.5 ± 4.5 60.7 ± 2.1 45 ± 2.3 31.5 ± 1.6 102 ± 4.4 

114 91 ± 2.1 213 ± 2.7 63.1 ± 1.5 27 ± 0.6 127 ± 1.5 81.9 ± 3.4 73 ± 2.1 72.8 ± 2 156 ± 1.5 

115 84 ± 1.9 252 ± 4.9 110 ± 3.4 29 ± 0.9 150 ± 4.8 88.9 ± 2.2 79 ± 3.3 69.3 ± 2.6 140 ± 6.4 

115.9 64 ± 0.3 115 ± 5.2 53.3 ± 1.3 20 ± 0.1 88.8 ± 3.7 55.3 ± 1.7 57 ± 0.1 59.1 ± 2 105 ± 1.8 

119.6 608 ± 30 1620 ± 68 1160 ± 25 271 ± 14 958 ± 36 680 ± 22 503 ± 17 245 ± 2.5 972 ± 1.4 

120 274 ± 5.6 911 ± 44 344 ± 3.3 91 ± 0.8 467 ± 17 328 ± 8.9 259 ± 12 249 ± 2.2 393 ± 7.2 

121 66 ± 0.2 205 ± 7.1 119 ± 4.8 22 ± 1.0 120 ± 3.6 77.6 ± 1.0 87 ± 0.9 75 ± 0.1 107 ± 5.1 

122 731 ± 35 2500 ± 38 1310 ± 40 175 ± 2.3 1400 ± 43 814 ± 4.4 653 ± 4.5 1050 ± 35 961 ± 43 

123 484 ± 21 1760 ± 87 864 ± 40 125 ± 3.8 876 ± 27 548 ± 18 387 ± 29 348 ± 15 704 ± 5.7 

124.5 61 ± 0.6 150 ± 7.2 106 ± 2.2 20 ± 0.3 112 ± 0.5 74.1 ± 0.1 86 ± 1.4 62.4 ± 0.7 95.1 ± 0.7 

125 

126 

127 

<4.20 <1.68 
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UFZ 401, C3 concentration data in µg/kg and total SCAP (d = depth in meters), no 

propylphenols present 

d 2,4,6 TMP 2,3,6 TMP 2,3,5 TMP 3,4,5 TMP total amount 

80 <0.96 <0.96 1.2 ± 0 <0.96 174 ± 7.5 

83    

87 
<0.96 

   

90 1.1 ± 0 1.51 ± 0 3.6 ± 0.1 2 ± 0 695 ± 71.1 

94 15 ± 0.2 18.4 ± 0.8 46 ± 1.6 29 ± 0.2 17568 ± 797 

97 <0.96 1.11 ± 0 2.5 ± 0.1 1.7 ± 0.1 1697 ± 175.8 

99 84 ± 0.9 81.2 ± 0.7 187 ± 5.7 120 ± 2.7 128529 ± 2642 

101 299 ± 8.1 252 ± 9.5 564 ± 22 315 ± 0.3 23706 ± 571 

103 33 ± 1.2 40.9 ± 0.4 91 ± 4.3 54 ± 2.2 13219 ± 457 

110 6.4 ± 0.2 8.8 ± 0.1 28 ± 1 13 ± 0.3 15238 ± 487 

112 16 ± 0.3 24.5 ± 1.2 72 ± 0.1 38 ± 1 14415 ± 302 

113 16 ± 0.6 23.8 ± 0.9 31 ± 0.1 11 ± 0.3 2267 ± 51.1 

114 19 ± 0.1 18 ± 0.3 43 ± 0.7 15 ± 0.5 3622 ± 99.2 

115 16 ± 0.1 23 ± 0.3 38 ± 1.6 17 ± 0.4 4895 ± 136 

115.9 15 ± 0.3 15.5 ± 0.3 35 ± 1.5 12 ± 0.4 2168 ± 44.8 

119.6 106 ± 4.8 178 ± 4.6 234 ± 5.2 93 ± 3.9 13271 ± 369 

120 13 ± 0.2 14.1 ± 0.4 38 ± 0.6 28 ± 0.4 38145 ± 909 

121 2 ± 0.1 3.5 ± 0.1 6.4 ± 0 5.6 ± 0.1 16898 ± 596 

122 34 ± 1.4 27.6 ± 0.9 97 ± 3.1 73 ± 1.3 88656 ± 1905 

123 25 ± 0.7 27.6 ± 0.9 81 ± 2.1 52 ± 2.5 56561 ± 1935 

124.5 <0.96 2.8 ± 0.1 <0.96 22120 ± 458 

125    

126    

127 

<0.96 
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UFZ 501, water content, C0 - C1 concentration data in µg/kg, PCF and MPR 

depth in 
m H2O in % Phenol o-Cresol p-Cresol m-Cresol PCF MPR 

103 1.30 < 35.4 <2.52   

105 1.20 49.3 ± 1.02 10.2 ± 0.18 8.58 ± 0.16 3.76 ± 0.03 0.603 0.438 

106 1.80 <2.52 1.69 ± 0.05 5.86 ± 0.04  3.466 

107 1.10 2.59 ± 0.02 2.10 ± 0.03 2.81 ± 0.10  1.333 

108 1.20 

< 35.4 

<2.52 1.89 ± 0.03 3.00 ± 0.08  1.587 

110 1.90 312 ± 1.71 7.99 ± 0.07 11.6 ± 0.35 14.1 ± 0.59 2.097 1.213 

113 1.90 183 ± 6.41 8.40 ± 0.18 7.82 ± 0.02 10.2 ± 0.04 2.031 1.301 

115 2.20 401 ± 5.62 3.64 ± 0.03 4.60 ± 0.15 4.96 ± 0.11 7.050 1.078 

116 2.10 220 ± 5.89 4.74 ± 0.02 6.10 ± 0.27 7.77 ± 0.15 2.306 1.273 

117 2.20 473 ± 14.5 16.1 ± 0.21 15.4 ± 0.03 19.9 ± 0.86 1.053 1.289 

118 1.70 184 ± 2.32 5.01 ± 0.14 6.52 ± 0.16 7.72 ± 0.20 2.174 1.184 

119 1.50 140 ± 2.10 24.0 ± 0.82 18.2 ± 0.88 26.8 ± 1.28 0.160 1.472 

123 1.40 76.8 ± 3.18 11.6 ± 0.16 10.4 ± 0.13 13.7 ± 0.45 0.581 1.323 

124 1.90 90.2 ± 0.98 21.7 ± 0.01 15.9 ± 0.79 16.7 ± 0.41 0.787 1.052 

125 1.40 65.4 ± 1.92 134 ± 4.55 127 ± 4.39 170 ± 6.90 0.271 1.331 

126 6.20 55091 ± 92.1 3839 ± 53.2 4313 ± 22.1 6308 ± 258 3.354 1.462 

127a 9.80 2689 ± 61.6 871 ± 17.1 1319 ± 53.2 2304 ± 52.4 0.915 1.746 

127b 2.20 324 ± 8.89 98.36 ± 1.34 193 ± 7.10 333 ± 16.3 0.647 1.729 

129 10.20 20203 ± 853 1302 ± 58.6 1379 ± 61.7 1814 ± 37.9 4.536 1.315 

 

UFZ 501, C2 concentration data in µg/kg (d = depth in meters) 

d 2-EP 4-EP 3-EP 2.6-DMP 2.4-DMP 2.5-DMP 2.3-DMP 3.4-DMP 3.5-DMP 

103 <4.20 <1.68 

105 10.6 ± 0.17 12.7 ± 0.25 9.39 ± 0.45 4.81 ± 0.09 15.60 ± 0.65 6.08 ± 0.19 3.46 ± 0.05 

106 4.14 ± 0.22 8.45 ± 0.39 

107 2.09 ± 0.12 5.59 ± 0.09 

108 

<4.20 

3.21 ± 0.12 8.13 ± 0.08 

<1.68 
<1.68 <1.68 

110 4.22 ± 0.20 8.04 ± 0.39 5.30 ± 0.17 6.66 ± 0.19 21.1 ± 1.11 2.45 ± 0.03 8.01 ± 0.24 19.6 ± 0.22 

113 <4.20 6.56 ± 0.18 5.72 ± 0.13 4.55 ± 0.17 10.1 ± 0.53 1.77 ± 0 4.59 ± 0.02 11.2 ± 0.13 

115 <4.20 2.73 ± 0.11 7.38 ± 0.18 <1.68 2.94 ± 0.04 7.20 ± 0.06 

116 <4.20 4.46 ± 0.18 5.40 ± 0.16 5.52 ± 0.06 12.4 ± 0.20 <1.68 

<1.68 

5.57 ± 0.15 13.6 ± 0.02 

117 12.8 ± 0.04 13.8 ± 0.09 20.2 ± 1.00 28.3 ± 1.45 51.8 ± 0.97 9.98 ± 0.42 8.43 ± 0.15 28.9 ± 0.36 70.9 ± 0.40 

118 <4.20 5.28 ± 0.01 4.84 ± 0.16 3.87 ± 0.00 7.57 ± 0.40 1.73 ± 0.08 1.81 ± 0.05 4.24 ± 0.08 10.4 ± 0.02 

119 29.9 ± 1.46 31.0 ± 0.87 52.4 ± 1.40 84.6 ± 3.63 147 ± 2.23 24.1 ± 0.39 24.5 ± 0.89 85.2 ± 1.15 209 ± 1.75 

123 5.22 ± 0.02 5.05 ± 0.06 8.52 ± 0.08 5.48 ± 0.21 21.8 ± 0.28 5.47 ± 0.21 2.87 ± 0.09 11.4 ± 0.03 28.0 ± 0.18 

124 8.23 ± 0.01 10.6 ± 0.03 8.83 ± 0.10 6.30 ± 0.02 21.8 ± 0.80 6.03 ± 0.29 3.22 ± 0.12 5.81 ± 0.15 14.2 ± 0.21 

125 81.4 ± 2.07 236 ± 8.92 155 ± 2.86 49.4 ± 1.54 180 ± 3.39 83.5 ± 2.39 56.3 ± 2.42 74.8 ± 0.73 183 ± 3.02 

126 299 ± 8.89 1320 ± 42.1 1667 ± 67.0 113 ± 5.40 575 ± 23.9 346 ± 1.63 286 ± 2.32 299 ± 1.99 733 ± 9.83 

127a 158 ± 5.51 611 ± 13.5 887 ± 33.7 62.0 ± 1.79 340 ± 9.31 178 ± 2.68 130 ± 4.42 224 ± 1.78 549 ± 2.76 

127b 20.2 ± 0.37 102 ± 1.12 149 ± 4.40 4.44 ± 0.17 49.3 ± 1.22 25.4 ± 0.84 19.0 ± 0.10 37.2 ± 0.12 91.1 ± 1.49 

129 57.8 ± 1.62 248 ± 3.98 136 ± 5.15 26.8 ± 0.47 107 ± 2.39 81.4 ± 3.40 65.5 ± 3.32 54.5 ± 2.40 133 ± 3.01 
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UFZ 501, C3 concentration data in µg/kg and total SCAP (d = depth in meters) 

d 2.4.6 TMP 2.3.6 TMP 2.3.5 TMP 3.4.5 TMP 2i-PP 2n-PP 4i-PP 3i-PP 4n-PP total amount 

103 1.08 ± 0.07 1.28 ± 0.07 4.87 ± 0.32 <0.96 1.13 5.87 <0.96 21.7 ± 0.65 

105 2.39 ± 0.05 2.58 ± 0.17 8.96 ± 0.32 0.95 ± 0.05 2.88 12.01 3.69 119.0 ± 3.83 

106 2.19 ± 0.13 2.26 ± 0.17 7.71 ± 0.50 1.12 ± 0.04 1.95 8.94 <0.96 52.8 ± 1.70 

107 1.36 ± 0.06 1.29 ± 0.07 3.96 ± 0.17 <0.96 

<0.96 

<0.96 3.11 <0.96 28.5 ± 0.72 

108 1.54 ± 0.07 1.79 ± 0.11 8.09 ± 0.15 1.20 ± 0.05 1.52 4.06 21.97 1.91 39.5 ± 0.87 

110 2.62 ± 0.05 3.85 ± 0.09 17.2 ± 0.32 2.48 ± 0.04 <0.96 1.80 10.55 1.22 164.7 ± 5.76 

113 1.73 ± 0.10 2.32 ± 0.16 9.66 ± 0.06 1.39 ± 0.02 <0.96 <0.96 5.09 <0.96 102.9 ± 8.22 

115 1.81 ± 0.05 2.04 ± 0.10 5.51 ± 0.13 1.13 ± 0.02 1.20 2.41 12.34 <0.96 58.8 ± 6.80 

116 2.74 ± 0.04 3.55 ± 0.11 10.9 ± 0.77 1.44 ± 0.07 5.00 11.27 75.97 10.27 103.3 ± 8.16 

117 12.4 ± 0.84 19.4 ± 1.16 63.4 ± 1.68 2.78 ± 0.07 1.41 2.16 11.36 

<0.96 

2.42 497.9 ± 24.3 

118 2.60 ± 0.07 3.42 ± 0.11 7.09 ± 0.36 1.36 ± 0.10 9.45 40.73 210 1.97 34.29 93.7 ± 4.33 

119 30.8 ± 1.53 51.8 ± 3.40 160 ± 0.19 17.3 ± 1.08 1.54 3.14 15.99 3.01 1312.9 ± 25.0 

123 4.93 ± 0.06 6.00 ± 0.33 25.9 ± 0.55 3.13 ± 0.12 2.43 3.30 12.18 
<0.96 

3.91 193.5 ± 6.15 

124 6.51 ± 0.30 4.93 ± 0.31 8.72 ± 0.07 1.40 ± 0.03 4.51 18.99 83.08 1.14 26.70 183.6 ± 4.64 

125 22.1 ± 1.08 34.6 ± 2.18 98.9 ± 2.51 15.1 ± 0.49 9.71 67.93 284 <0.96 111 1836.4 ± 51.4 

126 15.8 ± 1.17 20.1 ± 0.53 93.4 ± 2.32 32.4 ± 0.47 6.65 42.62 199 1.20 62.45 20734.4 ± 593 

127a  13.3 ± 0.27 18.8 ± 0.69 157 ± 10.0 26.0 ± 0.31 1.10 4.47 14.94 6.40 7848.1 ± 271 

127b  1.63 ± 0.06 1.77 ± 0.03 26.2 ± 1.46 3.83 ± 0.01 <0.96 1.13 5.87 <0.96 1466.6 ± 45.1 

129 1.28 ± 0.05 2.44 ± 0.17 5.61 ± 0.39 4.03 ± 0.02 <0.96 2.88 12.01 

<0.96 

3.69 5444.7 ± 1038 

 

UFZ 601, water content, C0 - C1 concentration data in µg/kg, PCF and MPR 

depth in 
m 

H2O in 
% 

Phenol o-Cresol p-Cresol m-Cresol PCF MPR 

180 2.18 9480 ± 117 1340 ± 61 2420 ± 46 2630 ± 98 0.825 1.087 

181 1.15 293 ± 1.9 59.5 ± 1.8 60.2 ± 1.9 141 ± 0.1 0.531 2.342 

183 2.73 398 ± 18 118 ± 0.2 135 ± 4.5 269 ± 6.9 0.538 1.993 

184.5 0.14 138 ± 5.9 60.4 ± 0.8 49.1 ± 2.3 69.7 ± 1.6 0.454 1.420 

186 1.74 286 ± 9.5 163 ± 5.7 132 ± 5.5 179 ± 2.3 0.438 1.356 

187 1.29 318 ± 16 186 ± 7.1 252 ± 5.9 401 ± 19 0.676 1.591 

188 0.57 185 ± 0.7 186 ± 4.6 340 ± 8.2 753 ± 17 0.507 2.215 

189 3.00 761 ± 2.2 629 ± 29 1190 ± 45 2220 ± 77 0.626 1.866 

190 12.9 13100 ± 280 2330 ± 61 3550 ± 12 6080 ± 158 0.894 1.713 

191 10.5 7720 ± 3.9 827 ± 27 1289 ± 56 2190 ± 0.3 0.944 1.699 

192 11.8 < 35.4 <2.52   
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UFZ 601, C2 concentration data in µg/kg (d = depth in meters) 

d 2-EP 4-EP 3-EP 2.6-DMP 2.4-DMP 2.5-DMP 2.3-DMP 3.4-DMP 3.5-DMP 

180 255 ± 12 963 ± 10 454 ± 18 37 ± 0.7 345 ± 13 279 ± 7.9 238 ± 8.8 289 ± 2.1 404 ± 17 

181 52 ± 0.7 75 ± 0.1 100 ± 4.0 13 ± 0.6 44.1 ± 0.8 34 ± 0.6 26 ± 0.4 16 ± 0.6 92 ± 1.5 

183 94 ± 1.1 115 ± 2.7 176 ± 7.3 18 ± 0.4 58.4 ± 1.4 61 ± 2.1 42 ± 0.5 32 ± 0.9 142 ± 4.2 

184.5 52 ± 2.3 49 ± 0.6 70 ± 3.1 25 ± 0.3 80.3 ± 2.3 48 ± 1.5 30 ± 1.1 <1.68 94 ± 2.3 

186 100 ± 2.3 97 ± 0.1 36 ± 1.2 51 ± 1.3 155 ± 6.5 106 ± 0.1 64 ± 2.9 25 ± 0.9 198 ± 8.6 

187 58 ± 2.1 162 ± 2.4 193 ± 1.1 28 ± 0.5 96.1 ± 1.2 65 ± 1.7 45 ± 1.9 35 ± 1.5 116 ± 4.4 

188 84 ± 1.5 219 ± 3.3 399 ± 7.8 38 ± 0.8 125 ± 0.4 90 ± 1.1 78 ± 3.4 81 ± 0.3 177 ± 0.7 

189 159 ± 6.7 567 ± 27 748 ± 4.6 69 ± 3.1 250 ± 4.2 186 ± 3.4 144 ± 1.8 128 ± 3.4 409 ± 3.6 

190 141 ± 5.7 671 ± 25 779 ± 32 40 ± 0.8 217 ± 1.4 186 ± 5.9 149 ± 1.7 641 ± 23 

191 37 ± 0.8 181 ± 0.7 141 ± 4.1 9.3 ± 0.4 52.4 ± 0.9 49 ± 0.5 42 ± 0.2 
<1.68 

172 ± 7.4 

192 <4.20 <1.68 

 

UFZ 601, C3 concentration data in µg/kg and total SCAP (d = depth in meters), no 

propylphenols are present 

d 2.4.6 TMP 2.3.6 TMP 2.3.5 TMP 3.4.5 TMP total amount 

180 8.1 ± 0.1 9.9 ± 0.4 57 ± 2.1 25 ± 0.2 19234 ± 414.4 

181 1.3 ± 0 1.9 ± 0.1 35 ± 1.7 1044 ± 16.9 

183 1.3 ± 0.1 2.4 ± 0.1 47 ± 1.5 1709 ± 51.4 

184.5 5.1 ± 0.2 7.4 ± 0.3 59 ± 0.4 

< 0.96 

699 ± 24.7 

186 8.2 ± 0.2 11.3 ± 0.2 113 ± 1.2 11 ± 0.3 1735 ± 48.1 

187 4.2 ± 0 5.6 ± 0.1 59 ± 2.9 5 ± 0.2 1711 ± 67.5 

188 6.7 ± 0 12.6 ± 0.4 106 ± 3.4 7.6 ± 0.1 2889 ± 53.8 

189 3.2 ± 0 5.3 ± 0 185 ± 5.6 12 ± 0.2 7665 ± 217.0 

190 152 ± 7.5 28036 ± 613.5 

191 
< 0.96 

26 ± 0.7 
< 0.96 

12736 ± 103.4 

192 < 0.96   
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• SCAP data on gasworks site 
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Sampling 14.11.2001, µg/L, no propylphenols present at the site 

OW Phenol o-Cresol p-Cresol m-Cresol PCF MPR P.Index Total SCAP 

B6 15.3 ± 0.9 2.50 ± 0.2 1.60 ± 0.14 0.70 ± 0.02 0.65 0.43 60 33.7 ± 1.1 

B7 75.0 ± 1.2 7.40 ± 0.26 12.3 ± 0.42 0.09 1.66 500 1130 ± 52 

B8 1.00 ± 0.1 0.01  130 204 ± 9.4 

B9 12.5 ± 0.2 0.02  460 771 ± 33.1 

B10 4.00 ± 0.1 0.07  180 66.8 ± 2.4 

B11 16.9 ± 0.2 

< 0.63 < 0.63 

0.06  320 326 ± 12.6 

B12 

< 8.85 

28.0 ± 0.5 0.61 ± 0.03 3.10 ± 0.13 0.21 5.08 120 164 ± 7.4 

G2 61.3 ± 4.2 644 ± 12 112 ± 5.1 244 ± 5.5 0.27 2.01 12520 4270 ± 145 

G7 272 ± 4.1 495 ± 18 0.61 ± 0.02 199 ± 3.9 0.45 326 1660 2350 ± 104 

G12   30 7.70 ± 2.3 

G16 
< 8.85 < 0.63 

  10  

 

OW 2-EP 4-EP 3-EP 2.6-DMP 2.4-DMP 2.5-DMP 2.3-DMP 3.4-DMP 3.5-DMP 

B6 3.50 ± 0.1 0.90 ± 0.1 2.20 ± 0.1 2.80 ± 0.2 2.80 ± 0.2 1.40 ± 0.1 

B7 22.3 ± 1.1 108 ± 2.3 179 ± 3.5 131 ± 3.2 47.5 ± 1.7 254 ± 11 

B8 1.00 ± 0.1 75.0 ± 2.4 1.80 ± 0.1 6.00 ± 0.3 1.30 ± 0.1 17.8 ± 0.4 

B9 34.5 ± 12 128 ± 3.2 87.1 ± 2.8 105 ± 2.8 42.4 ± 0.6 246 ± 9.8 

B10 1.50 ± 0.1 3.50 ± 0.1 7.50 ± 0.2 4.60 ± 0.2 2.80 ± 0.2 16.0 ± 0.4 

B11 6.10 ± 0.3 20.0 ± 0.5 39.0 ± 1.2 22.0 ± 0.3 10.4 ± 0.3 69.7 ± 1.1 

B12 4.60 ± 0.2 12.5 ± 0.2 22.1 ± 0.3 21.8 ± 0.3 7.90 ± 0.3 39.9 ± 1.8 

G2 110 ± 3.2 288 ± 11 644 ± 25 580 ± 27 231 ± 11 1060 ± 23 

G7 59.4 ± 2.1 

< 1.05 < 1.05 

163 ± 4.6 78.6 ± 2.1 327 ± 14 126 ± 6.4 

< 0.42 

420 ± 17 

G12 7.70 ± 0.1 < 0.42 

G16 
< 1.05 

< 0.42 

 

OW 2.4.6 TMP 2.3.6 TMP 2.3.5 TMP 3.4.5 TMP 

B6 < 0.24 

B7 146 ± 5.2 62.6 ± 2.9 87.2 ± 2.7 < 0.24 

B8 59.9 ± 2.7 24.6 ± 1.1 8.90 ± 0.3 6.30 ± 0.2 

B9 45.8 ± 2.2 28.9 ± 1.2 40.9 ± 2.1 < 0.24 

B10 7.00 ± 0.2 3.40 ± 0.1 11.3 ± 0.3 5.20 ± 0.2 

B11 62.7 ± 3.1 27.9 ± 1.1 51.4 ± 2.5 

B12 9.00 ± 0.03 5.30 ± 0,2 10.0 ± 0.2 

G2 148 ± 6.2 53.6 ± 1.7 94.2 ± 4.2 

G7 85.6 ± 3.9 49.2 ± 2.2 72.8 ± 3.1 

< 0.24 

G12 

G16 
< 0.24 

 

 



LICHA (2002). SHORT CHAINED ALKYLPHENOLS IN THE ENVIRONMENT -APPENDIX- 
 

- xxi - 

Sampling 17.01.2002, µg/L, no propylphenols present at the site 

OW Phenol o-Cresol p-Cresol m-Cresol PCF MPR P.Index Total SCAP 

B6 < 0.63 0  10 37.70 ± 1.1 

B7 142 ± 5.2 36.8 ± 1.6 47.8 ± 1.9 0.47 1.5 820 511.9 ± 22 

B8 5.60 ± 0.1 0.01  250 429.3 ± 9.4 

B9 

< 8.85 

48.6 ± 2.1 
< 0.63 < 0.63 

0.23  180 232.8 ± 8.1 

B10 37.1 ± 1.2 85.6 ± 3.7 17.6 ± 0.5 30.7 ± 0.9 0.30 2 530 637.3 ± 16.4 

B11   80    

B12 
< 0.63 

  20    

G2 

 

10.8 ± 0.4 < 0.63 0.23  240 52.70 ± 1.4 

G7 1442 ± 34.1 4891 ± 145 356 ± 14.5 2339 ± 24 0.55 6 11470 19520 ± 504 

G12 < 8.85 < 0.63   60 17.6 ± 0.3 

 

OW 2-EP 4-EP 3-EP 2.6-DMP 2.4-DMP 2.5-DMP 2.3-DMP 3.4-DMP 3.5-DMP 

B6 < 1.05 2.10 ± 0 9.10 ± 0.2 2.80 ± 0.1 5.10 ± 0.2 1.40 ± 0.1 1.10 ± 0 6.30 ± 0.2 

B7 21.0 ± 1.0 6.60 ± 0.2 18.5 ± 1 6.50 ± 0.2 38.4 ± 1.2 35.6 ± 1.2 14.4 ± 0.7 26.1 ± 0 104 ± 5.2 

B8 10.3 ± 0.4 1.00 ± 0 62.1 ± 2.8 8.00 ± 0.2 27.7 ± 1.3 5.60 ± 0.3 215 ± 3 28.6 ± 0.9 

B9 4.10 ± 0.1 
< 1.05 

3.20 ± 0 26.2 ± 1.1 30.5 ± 1.3 32.0 ± 1.2 12.3 ± 0.4 7.60 ± 0 44.9 ± 1.4 

B10 14.8 ± 0.9 8.50 ± 0.3 20.5 ± 1 32.2 ± 1.3 66.9 ± 2.1 44.9 ± 1.9 22.3 ± 0.9 197 ± 2 < 0.42 

B11 

B12 
< 1.05 < 0.42 

G2 2.60 ± 0.1 0.70 ± 0.1 2.40 ± 0 3.10 ± 0.1 7.90 ± 0.3 6.90 ± 0.2 2.40 ± 0.1 11.0 ± 0.4 

G7 405 ± 14 214 ± 8.1 944 ± 9 1270 ± 52 270 ± 8.1 2549 ± 61 964 ± 17 
< 0.42 

2155 ± 19 

G12 < 1.05 17.9 ± 1.2 < 0.42 

 

OW 2.4.6 TMP 2.3.6 TMP 2.3.5 TMP 3.4.5 TMP 

B6 4.00 ± 0.19 2.30 ± 0.11 2.80 ± 0.12 0.70 ± 0.10 

B7 4.50 ± 0.22 1.10 ± 0.10 6.40 ± 0.25 2.10 ± 0.11 

B8 34.6 ± 1.62 14.3 ± 0.71 11.3 ± 0.41 5.50 ± 0.23 

B9 5.20 ± 0.24 4.00 ± 0.16 10.4 ± 0.24 3.20 ± 0.12 

B10 21.6 ± 1.13 12.6 ± 0.54 8.90 ± 0.32 16.5 ± 0.78 

B11 

B12 
< 0.24 

G2 1.40 ± 0.10 0.70 ± 0.10 2.00 ± 0.10 0.80 ± 0.10 

G7 671 ± 31.7 341 ± 17.5 556 ± 27.6 154 ± 11.5 

G12 < 0.24 
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• XRD 
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