Oberflächenquantifizierung an Schwarzpeliten unterschiedlicher Verwitterungsgrade

Dissertation

zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der Chemisch-Geowissenschaftlichen Fakultät der Friedrich-Schiller-Universität Jena

von Dipl.-Geol. Cornelius Fischer

geboren am 9. April 1974 in Marienberg/ Erzgebirge

Gutachter:

- Prof. R. Gaupp, Jena
 Prof. K. Heide, Jena
- 3. Prof. R. Littke, Aachen

Tag der öffentlichen Verteidigung: 8. Mai 2002

FISCHER, CORNELIUS (2002): Oberflächenquantifizierung an Schwarzpeliten unterschiedlicher Verwitterungsgrade.—117 S., Dissertation, Friedrich-Schiller-Universität, Jena.

Kurzfassung

Das Reaktionsverhalten von Gesteinsoberflächen ist durch die Quantifizierung ihrer reaktiven Anteile abschätzbar. In der vorliegenden Arbeit wird auf die Oberflächenquantifizierung von Schwarzpeliten bei Bleichungsverwitterung fokussiert.

Die oxidative Bleichungsverwitterung von Schwarzpeliten wurde exemplarisch an Alaunschiefer aus dem Silur und Unterdevon von Ost- und Südthüringen untersucht. Alaunschiefer kann in Oberflächenaufschlüssen aufgrund mesozoisch-tertiärer Verwitterung vollständig gebleicht vorliegen. Ausgehend von natürlichen Grenzflächen im Gestein treten außerdem quartärzeitliche kleinräumige, millimetergroße Bleichungshöfe im sonst großräumig ungebleichten Gestein auf.

Die geochemisch-mineralogischen Eigenschaften im unverwitterten und verwitterten Zustand sowie deren Entwicklung bei der Gesteinsbleichung wurden ermittelt. Alaunschiefer enthalten neben Quarz und Illit/ Muskovit auch organischen Kohlenstoff, letzteren im unverwitterten Gestein zwischen 6 und 23 Gew. %. Die Bleichung bewirkt einen drastischen Abbau von organischem Kohlenstoff auf weniger als 1 Gew. %. Eisen, Schwefel und Spurenelemente können bei der Bleichungsverwitterung ebenfalls mobilisiert werden.

Ein Methodenkonzept zur skalenübergreifenden Quantifizierung der Gesteinsoberflächen, von makroskopischen Grenzflächen bis zu nanometergroßen Mikroporen wird vorgestellt und auf ungebleichte und gebleichte Alaunschiefer vergleichend angewendet. Makro- und mikroskopische petrographische Methoden, mechanische und optische Rauhigkeitsanalysen sowie quecksilberporosimetrische und Stickstoff-Adsorptions-Untersuchungen sind dafür notwendig. Einerseits ist damit eine bezüglich der Ortsauflösung lückenlose Quantifizierung der Gesteinsoberflächenanteile möglich. Andererseits kann durch die Analyse derjenigen Gesteinsbestandteile, die sich bei der Bleichungsverwitterung verändern, abgeschätzt werden, wie groß diese reaktiven Anteile der Gesteinsoberfläche sind. Unter Berücksichtigung derjenigen kleinräumigen Bleichungsvolumina, die mit einer quartärzeitlichen Verwitterung im Zusammenhang stehen, kann die hochskalierte potentiell reaktive Oberfläche in einem Alaunschiefervolumen berechnet werden. Diese Oberfläche beträgt wenige km²/m³ und verkleinert sich deutlich, wenn organisches Material abgebaut wird.

Die Bleichungsverwitterung bewirkt vorrangig den Abbau meso- und mikroporöser organischer Substanz aus dem Alaunschiefer. Dieses organische Material ist im unverwitterten Gestein im wesentlichen als Überzug auf den Tonmineralen vorhanden. Im Vergleich zum organischen Material wird die Oberflächengröße der gesteinsbildenden Minerale bei der Bleichungsverwitterung über Fehlergrenzen hinausgehend nicht beeinflußt.

Das vorgestellte Methodenkonzept wird bei der Untersuchung der Reaktivität der Komponenten eines quartären Sedimentkörpers getestet. Die weitere Anwendung, bspw. auch auf anthropogenes Haldenmaterial, erscheint erfolgversprechend.

FISCHER, CORNELIUS (2002): Surface quantification of black shales in different weathering states.—117 pp., thesis, Friedrich-Schiller-Universität, Jena.

Abstract

The reactivity of rock surfaces can be valued by the quantification of their reactive surfaces. This study focusses on the surface quantification of black shales depending on different bleaching weathering states.

The oxidative bleaching of black shales was examined at Silurian and Lower Devonian alum shales from East and South Thuringia. Completely bleached alum shale occurs due to Mesozoic-Tertiary sub-uncornformity weathering. Additionally, small-scale, mm-large bleached sections in the otherwise unbleached rocks occur on the basis of natural boundary surfaces in the rock.

The geochemical and mineralogical properties of bleached and unbleached alum shales were determined. Alum shales contain Quartz and Illite/ Muscovite as well as 6 to 23 wt. % organic carbon. Bleaching causes a drastic decrease of organic carbon down to less than 1 wt. %. Iron, Sulfur and trace elements can be mobilized likewise during the bleaching weathering.

A methodical concept for the scale-skip quantification of the rock surfaces, from macroscopic bounding surfaces to nm-large micropores is presented and applied to unbleached and bleached alum shales comparatively. Macroscopic and microscopic petrographic methods, mechanical and optical roughness analyses as well as mercury-intrusion and nitrogen adsorption (B.E.T.) studies substantiate this quantification without gaps in spatial resolution. Additionally the amount of weathering-reactive rock surface area can be upscaled by the surface quantification of those rock constituents, which are altered during weathering.

On the basis of those small-scale bleaching volumes the potentially reactive surface area of alum shale has been upscaled. This surface area averages a few km²/m³ and decreases by oxidative destruction of the organic material in the alum shale.

The bleaching weathering causes the decrease of meso- and micro-porous organic substance from the alum shale. This organic material appears to coat the surface of the clay minerals of unbleached alum shale. The specific surface area of the siliclastic rock constituents is not influenced during the bleaching decomposition beyond the analytical error limits.

The presented methodical concept is applied to the investigation of the reactive portion of Quarternary sediments. Other applications of this concept are promising, such as the quantification of reactive surface portions of anthropogenic dump sediments.

Inhaltsverzeichnis

Ku	ırzfassung	III
Ab	ostract	IV
Ab	bildungsverzeichnis	VII
Ta	bellenverzeichnis	VIII
Ab	skürzungen und Symbole	IX
1	Einleitung 1.1 Motivation, Ziele 1.2 Reaktivität von Gesteinsoberflächen, Stand der Forschung 1.3 Strategie 1.4 Geologischer Rahmen 1.5 Bisherige Untersuchungen 1.6 Aufschlüsse, Beprobung	. 2 . 6 . 8
2	Methodik 2.1 Mineralogisch-geochemische Methoden	
3	Ergebnisse und Diskussion 3.1 Petrographie 3.2 Geochemie der Verwitterung Kohlenstoff-, Stickstoffgehalt Hauptelemente Spurenelementgehalte Ortsaufgelöste Geochemie Mineralneubildungen, Minerallösung 3.3 Quantifizierung der Gesteinsoberfläche Geometrische Gesteinsoberfläche, m-mm-Auflösung Äußere Gesteinsoberfläche, mm-µm-Auflösung Innere Gesteinsoberfläche, µm-nm-Auflösung Dichte des bei der Bleichung abgeführten Materials AFM-Untersuchungen an Alaunschiefer-Präparaten 3.4 Zeitliche Aspekte der Bleichung von Alaunschiefer 3.5 Hochskalierung der Oberflächendaten 3.6 Anwendung der Oberflächenquantifizierung	. 43 . 44 . 46 . 59 . 63 . 64 . 85 . 85 . 91
4	Schlußfolgerungen und Zusammenfassung	101
5	Danksagungen	108
6	Literatur	109
Δn	hanσ	

Abbildungsverzeichnis

Abb. 1:	Vorgehensweise zur Quantifizierung der reaktiven Gesteinsoberfläche	7
Abb. 2:	Vereinfachte geol. Karte von Südthüringen mit Markierung der Beprobungspunkte	9
Abb. 3:	Paläogeographische Karte von Laurentia, Baltica, Nordgondwana im Unterdevon	10
Abb. 4:	Prinzip der Paraffintauchmethode	23
Abb. 5:	Gesteinspolyeder-Oberfläche aus Paraffinummantelung und Quadermodell	24
Abb. 6:	Schematische Darstellung einer Adsorptionsisothermen	28
Abb. 7:	Aufschluß Gammigtal (STEINBACH et al. 1970)	31
Abb. 8:	Aufschlüsse und Proben aus dem Gammigtal	32
Abb. 9:	Tertiäre Verebnungsfläche bei Hohenleuben sowie Aufschlüsse und Proben	34
Abb. 10:	Dünnschliffmikroskopische Aufnahmen (Gammigtal, Hohenleuben) I	36
Abb. 11:	Dünnschliffmikroskopische Aufnahmen (Gammigtal, Hohenleuben) II	37
Abb. 12:	Aufschlüsse und Proben an der "Steinernen Rose" und am Auberg	39
Abb. 13:	Zonierte Probe 211-2	43
Abb. 14:	Vanadiumgehalt über Kohlenstoffgehalt für Graptolithenschiefer	46
Abb. 15:	Steinbruch Hohenleuben, Urankonzentrationen an Alaunschiefern	48
Abb. 16:	Steinbruch Hohenleuben, Urankonzentrationen an Kieselschiefern	48
Abb. 17:	Elementhäufigkeitskartierungen an 224-1	51
Abb. 18:	Elementhäufigkeitskartierungen an 224-2	52
Abb. 19:	Elementhäufigkeitskartierungen an 129c	53
Abb. 20:	Häufigkeit von Si und Al im Alaunschiefer (ICP-MS-LA-Standard)	55
Abb. 21:	Übersicht: Proben für ICP-MS-LA	55
Abb. 22:	Elementverhältnisse aus ICP-MS-LA-Messungen an 129	57
Abb. 23:	Elementverhältnisse aus ICP-MS-LA-Messungen an 140	57
Abb. 24:	Elementverhältnisse aus ICP-MS-LA-Messungen an 187	58
Abb. 25:	Röntgendiffraktometrie an der Tonkornfraktion von Alaunschiefer	60
Abb. 26:	Innere Oberfläche: inter- und intragranularer Porenraum	63
Abb. 27:	Methodenkonzept der skalenübergreifenden Oberflächenquantifizierung	63
Abb. 28:	Gesteinspolyeder-Entstehung (WALTHER 1905)	65
Abb. 29:	Histogramme der Oberflächengröße von Gesteinspolyedern aus Hohenleuben	66
Abb. 30:	Histogramme der Grenzflächendichte von Gesteinspolyedern aus Hohenleuben	67
Abb. 31:	Rauhigkeit (Rq) in Abhängigkeit vom Verwitterungszustand (DEKTAK)	70
Abb. 32:	Rauhigkeitsfaktor (F) in Abhängigkeit vom Verwitterungszustand (DEKTAK)	70
Abb. 33:	Periodische Oberflächenformen, Welligkeit	72
Abb. 34:	Rauhigkeit (Rq) in Abhängigkeit vom Verwitterungszustand (LSM, WLI)	72
Abb. 35:	Rauhigkeitsfaktor (F) in Abhängigkeit vom Verwitterungszustand (LSM, WLI)	73
Abb. 36:	Oberflächen mit gleicher Rauhigkeit und unterschiedlichem Rauhigkeitsfaktor	74
Abb. 37:	REM-Aufnahmen, Alaunschiefer	76
Abb. 38:	REM-Aufnahmen, Kieselschiefer	77
Abb. 39:	Lichtmikroskopie an organischem Material	78
Abb. 40:	REM-Aufnahmen, Sekundärminerale, Lösungserscheinungen	78 79
Abb. 41:	Porenradius, Porosität (Quecksilberporosimetrie)	
Abb. 41:	Innere Gesteinsoberfläche (BET, Hg-Porosimetrie)	81 83
Abb. 43:	Dichte für Alaunschiefer aus dem Unteren und Oberen Graptolithenschiefer	84
Abb. 44:	1	84
	Dichte des mikroporösen Gesteins Schemetische Derstallung der Beren auf einer nelierten Schliffsberfläche	89
Abb. 45:	Schematische Darstellung der Poren auf einer polierten Schliffoberfläche	90
Abb. 46:	Oberfläche von polierten Dünnschliffen mit AFM	
Abb. 47:	Zeitlicher Verlauf der Bleichungsverwitterung	93 95
Abb. 48: Abb. 49:	Zusammenhang zwischen innerer Oberfläche und Kohlenstoffgehalt	95 95
Abb. 50:	Konzept zur Quantifizierung der inneren Gesteinsoberfläche Lithologie quartärer Sedimente aus dem Gessental	93 97
Abb. 51:	Schematische Darstellung der inneren Gesteinsoberfläche und ihrer Änderung	103
AUU. JI .	beneficialised Darstending der mileten Gestellisoberhache und milet Allderung	103

Tabellenverzeichnis

Tab. 1:	Klassifikation der karbonatfreien Schwarzpelite (ZIMMERLE & STRIBRNY 1992)	8
Tab. 2:	Stratigraphie und lithologische Gliederung der Graptolithenschiefer in Thüringen	9
Tab. 3:	Mineralgehalt der Kiesel- und Alaunschiefer (SZUROWSKI 1967)	13
Tab. 4:	Chem. Zusammensetzung von Kiesel- und Alaunschiefern nach LEUTWEIN (1951), HUNDT (1939), MEINEL (1974)	14
Tab. 5:	Spurenelementgehalte in Anthraxolith (SZUROWSKI 1967)	15
Tab. 6:	Spurenelementgehalte in Alaunschiefer aus dem Schwarzburger Sattel (LÜTZNER et al. 1984)	15
Tab. 7:	Übersicht über Aufschlüsse und Probenlokationen	18
Tab. 8:	Petrophysikalisches und geochemisches Methodenkonzept	19
Tab. 9:	Räumliches Auflösungsvermögen des LSM	26
Tab. 10:	Kohlenstoff- und Stickstoffgehalt der zonierten Probe 211-2	43
Tab. 11:	Chemismus des Unteren Graptolithenschiefer in Thüringen (SZUROWSKI 1967, LEUTWEIN 1951)	45
Tab. 12:	Beobachtungen aus Mikrosonden-Elementhäufigkeitskartierungen	50
Tab. 13:	Röntgendiffraktometrie an der Tonkornfraktion von Alaunschiefer aus Hohenleuben	61
Tab. 14:	Mikrosondenanalytik an Probe 129	61
Tab. 15:	Porenklassifikation: Mikro-, Meso- und Makroporen	64
Tab. 16:	Grenzflächenabstände im Gestein	65
Tab. 17:	Polyederoberflächengröße	67
Tab. 18:	Rauhigkeitsparameter	69
Tab. 19:	Rauhigkeit an Probe 211-2	70
Tab. 20:	Innere Gesteinsoberfläche (BET, Hg-Porosimetrie)	82
Tab. 21:	Oberflächendaten für Alaunschiefer	94

Verzeichnis verwendeter Abkürzungen und Symbole

AFM atomic force microscopy

BET Adsorbtion von Gasmolekülen an einer Festkörperoberfläche nach BRUNAUER,

EMMET & TELLER (1938) zur Bestimmung der inneren Oberfläche

 $\begin{array}{ll} C_{org} & organischer \, Kohlenstoff \\ DEKTAK & Gerätename \, des \, Profilometers \end{array}$

EMA Elektronenstrahl-Mikrosondenanalyse

EMP engl. für EMA Fauhigkeitsfaktor

ICP-MS-LA Massenspektrometrie mit induktiv gekoppelter Plasmaionenquelle und

Laserablation

LOI lost on ignition (Glühverlust) LSM Laser-Scanning-Mikroskop

Ra Rauhigkeit, aus arithmetischem Mittel der Abweichungen berechnet

REM Rasterlektronenmikroskop RFA Röntgenfluoreszenzanalyse

rms root mean square, quadratischer Mittelwert; rms-Rauhigkeit = Rq Rq Rauhigkeit, aus quadratischem Mittel der Abweichungen berechnet

S₁ Unterer Graptolithenschiefer

S₂ Ockerkalk

S₃ Oberer Graptolithenschiefer

SEM engl. für REM SFM engl. für AFM

TEM Transmissionselektronenmikroskop

TIC total inorganic carbon
TOC total organic carbon
WLI Weißlicht-Interferometer

XRD x ray diffraction (Röntgenbeugung)

XRF engl. für RFA

X00 mehrere Hundert, analog verwendt X0 etc.

1 Einleitung

1.1 Motivation und Ziele

Aus Schwarzpeliten wurde im Ronneburger Revier (Ostthüringen) zwischen 1952 und 1990 von der SDAG WISMUT Uran gewonnen. Flutungswasser aus den Grubengebäuden und Grundwasser treten jetzt bei der Rekultivierung der ehemaligen Bergbaulandschaft durch die WISMUT GmbH in Interaktion mit Talsedimenten sowie Haldenmaterial, mit dem ein ehemaliger Tagebau verfüllt wurde.

Ausgangspunkt der vorliegenden Untersuchungen war die Frage nach der Oberflächenreaktivität von Alaunschiefer, der im umgelagerten Haldenmaterial und in Bachsedimenten auftritt. Um die Oberflächenreaktivität zu quantifizieren, wurde frischer Alaunschiefer aus Aufschlüssen in Ost- und Südthüringen mit Alaunschiefer verglichen, der in diesen Aufschlüssen gebleicht vorliegt.

Die Quantifizierung der Gesteinsoberfläche mit unterschiedlich hoher Ortsauflösung ist Gegenstand dieser Arbeit. Mit dieser Oberflächenquantifizierung werden Aussagen zu den flächenmäßig dominierenden Gesteinsbestandteilen und zur Gesamtoberfläche eines Gesteinsvolumens gewonnen. Weiterhin wird durch den Vergleich der Gesteinsoberfläche unterschiedlich stark verwitterter Lithotypen die Oberflächenänderung durch Verwitterungsprozesse quantifizierbar; gleichzeitig sind damit Rückschlüsse auf die reaktiven Anteile der Gesteinsoberfläche möglich. Während bisher überwiegend die Flächenänderungen monomineralischer Modellsysteme bei Ad- und Desorptionsvorgängen analysiert bzw. polymineralische Systeme summarisch bzgl. ihrer Lösungsverwitterung betrachtet wurden, sollen mit den vorliegenden Untersuchungen diejenigen Gesteinsflächen des polymineralischen Systems "Alaunschiefer" quantifiziert werden, die an der Bleichungsverwitterung im Gestein beteiligt sind. Dazu ist es notwendig, die geochemisch-mineralogischen Randbedingungen der verwitterten und unverwitterten Lithotypen mit der Flächenänderung zu parallelisieren.

Kernpunkt der Untersuchungen ist die Abschätzung der potentiellen reaktiven Gesteinsoberfläche im natürlichen System. Die Quantifizierung der spezifischen inneren und äußeren Oberfläche des Gesteins kann dann durch Hochskalierung der Oberflächendaten von Probenvolumina auf natürliche Gesteins-Kompartimente geschehen, wenn deren Oberflächenanisotropien – analysierbar in unterschiedlich hochauflösender Betrachtungsweise – berücksichtigt werden. Aus dieser skalenübergreifenden Flächenquantifizierung und ihrer Anwendung für verwittertes und unverwittertes Gestein ist die Reaktivität der Gesteinsoberfläche erfaßbar.

1.2 Reaktivität von Gesteinsoberflächen: Stand der Forschung

Spezifische Oberfläche, Porenradienverteilung, Petrophysikalische Fazies

Direkt anschließend an die grundlegenden Untersuchungen zur BET-Adsorption (BRUNAUER et al. 1938) zeigten EMMET et al. (1938) das Potential der Stickstoffadsorption zur Bestimmung der spezifischen Oberfläche von Bodenmaterial. An nicht näher mineralogisch charakterisierten Bodenproben wurden spezifische Oberflächen in der Größe von mehreren Zehner m²/g ermittelt, ähnliche Ergebnisse erzielten MAKOWER et al. (1937). Als Hauptursache der inneren Oberfläche wurden Kolloide angegeben, nach SPOSITO (1998) handelt es sich bei Bodenkolloiden um schwerlösliche feste Teilchen (Tonminerale, Metalloxide, Bodenhumus etc.) mit Durchmesser zwischen 0.01 und 10 μm.

Die spezifische Oberfläche von Tonmineralen ist gut bekannt (NELSON & HENDRICKS 1944, SCHACHTSCHABEL et al. 1992, CZURDA 1998), auch die Abhängigkeit der gemessenen Oberfläche insbesondere quellfähiger Minerale von dem verwendeten Analyse-Adsorbat (GRIM 1968). Die spezifische Oberfläche von mineralischen Materialien kann bei bekannten Kristalldimensionen und -dichten auch berechnet werden. CORNELL & SCHWERTMANN (1996) benennen mögliche Abweichungen zwischen Berechung und Messung mit bis zu 10-20 %. Berechnete Flächendaten sind kleiner als gemessene, wenn poröse Minerale, nämlich solche mit innerer Oberfläche, vorliegen. Zu beachten ist der deutliche Einfluß der Korngrößenverteilung der Kristalle auf die Gesamtfläche.

CORNELL & SCHWERTMANN (1996) vergleichen spezifische Oberflächen von Eisenoxiden und betonen die in Größenordnungen variierenden Flächenunterschiede in Abhängigkeit der isochemischen Kristallform, bspw. für Spekularit mit deutlich weniger als 1 m²/g im Kontrast zu feinpulvrigem synthetischen Hämatit, dessen spezifische Oberfläche mehrere hundert m²/g erreichen kann.

Summarische Beschreibungen von Gesteinsoberflächen können modellhaft mit fraktaler Geometrie erfolgen (POON et al. 1992). Die fraktale Dimension wird in Beziehung gesetzt zu Materialeigenschaften, die die Oberfläche, bspw. von Böden (SOKOLOWSKA & SOKOLOWSKI 2000) beeinflussen können.

Nach der Klassifikation der "International Union of Pure and Applied Chemistry" (IUPAC 1985) werden Poren nach ihrem Durchmesser eingeteilt in

- Makroporen, d > 50 nm
- Mesoporen, $2 \text{ nm} < d \le 50 \text{ nm}$
- Mikroporen, $0.02 \text{ nm} < d \le 2 \text{ nm}$.

Mit Stickstoffadsorption werden Mesoporen untersucht (ROUQUEROL et al. 1999, DIN 66131, DIN 66134), Makro- und Mesoporen können quecksilberporosimetrisch (DIN 66133) analysiert werden. Mikroporen, die insbesondere bei quellfähigen Tonmineralen auftreten, sind bspw. durch Wasserdampfadsorption zu ermitteln (CZURDA 1998). Verifizierung und Änderung der

Porenanteile überhaupt und in-situ-Änderungen durch Minerallösung und -präzipitation (BOS-BACH et al. 1998) sind insbesondere mit AFM-Methodik erfaßbar.

Äußere Materialoberflächen werden zur Oberflächencharakterisierung mechanisch oder optisch abgetastet. Nadelinstrumente arbeiten im direkten Kontakt von Tastspitze und Untersuchungsmaterial. Hier sind Welligkeiten und Rauhigkeiten mit großer Amplitude meßbar (Thomas 1999, Untersuchungen zu Gesteinsoberflächen bei POON et al. 1992). Lichtmikroskopische Verfahren verwenden Bildschnitte mit geringen Abständen in vertikaler Richtung und entsprechend kleiner Tiefenschärfe (konfokales Laser-Scanning). Die Anwendung von Interferometern gestattet darüberhinaus höhere Ortsauflösung in z-Richtung und einen schnelleren Aufbau der Bildschnitte (GLIECH et al. 1999, THOMAS 1999).

Anwendung finden oberflächen- und porenspezifische Parameter insbesondere bei petrophysikalischen Analysen von Reservoirgesteinen (SONG et al. 2000, TANGUAY & FRIEDMANN 2001) oder bei Barriereeigenschafts-Untersuchungen (HILTMANN & STRIBRNY 1998).

Änderung der spezifischen Oberfläche, Lösungserscheinungen

Kinetische Modelle beschreiben mathematisch die Lösungsraten für monomineralische Systeme mit Modell-Bedingungen hinsichtlich Konzentration, Temperatur und pH-Wert der Lösungen (HELGESON et al. 1984, LASAGA 1984, GLYNN et al. 1990, NAGY et al. 1991, WHITE & BRANTLEY 1995, LASAGA 1998) oder natürliche Systeme mit beschränkten Randbedingungen (SVERDRUP & WARFVINGE 1988, HARPER et al. 1998). BALAN et al. (2001) untersuchten das Lösungsverhalten von Zirkon, BURCH et al. (1993) das von Albit. Durch Lösungserscheinungen entstehende Oberflächen-Veränderungen an Albit beschreiben HELLMANN et al. (1990). Die pH-Abhängigkeit der Lösungsraten für gesteinsbildende Silikate wurde von BRADY & WALTHER (1989) untersucht. ROSSO et al. (1999) diskutieren die Interaktion von Pyritoberflächen mit Sauerstoff und Wasserdampf. Hierbei gewinnen auch hochauflösende in-situ-Visualisierungs-Methoden (Atomkraftmikroskopie) für das räumliche Verständnis der Lösungserscheinungen an Bedeutung (DOVE & PLATT 1996), derartige Untersuchungen wurden von JOHNSSON et al. (1992) an Muskovit-Flächen und von PUTNIS et al. (1995) an Baryt durchgeführt. RUFE & HOCHELLA (1999) konnten unter Benutzung einer Fluidzelle mit dem AFM die reaktive Oberfläche von Phlogopit abschätzen.

Die Änderung der spezifischen Mineraloberfläche bei Lösungsvorgängen wird mit folgenden Schwerpunkten diskutiert: Anbeek (1992a) findet als dominierenden Faktor der Feldspatverwitterung den Zuwachs der inneren Mineraloberfläche im mikroporösen Bereich (d < 2 nm) und stellt dafür ein kinetisches Modell (Anbeek 1992b) vor. Der Zuwachs an innerer Oberfläche ist ein besserer Indikator für Verwitterungsvorgänge als die Ätzgruben-Veränderungen (HOLDREN & SPEYER 1984) mit Beitrag zur äußeren Oberfläche. Somit sind BET-Untersuchungen sensitiver für den Test auf Lösungsverwitterung als Rauhigkeitsuntersuchungen auf Mineralober-

flächen (ANBEEK 1993). Bei der Lösungsverwitterung reagiert Quarz träger als Feldspat (ANBEEK et al. 1994). Allerdings verursacht fortschreitende Lösung, beginnend an Kristalldefekten, keine Erhöhung der reaktiven Oberfläche, da nichtreaktive Wände zwischen den Mikroporen eine gerichtete Lösung und damit Vertiefung (vs. Lateral-Ausbreitung) verursachen (ANBEEK 1993, GAUTIER et al. 2001).

WELCH & BANFIELD (2002) zeigen, daß die in ihrer Form durch kristallographische Randbedingungen bestimmte Ätzgrubenausbildung auf Mineraloberflächen nicht pH-Wert-abhängig für Olivin-Lösungsexperimente ist. Dies ist insbesondere für die Bewertung von Oberflächendaten aus chemisch unterschiedlichen Milieus von Interesse. LASAGA & BLUM (1986) und LASAGA et al. (1994) beschreiben die Entwicklung von Ätzgruben auf Mineraloberflächen in Abhängigkeit von ΔG (freie Energie) zwischen Lösung und Mineral.

Lösungsexperimente an unverwitterten Mineralen oder Mineralgemengen in wäßrigen Lösungen haben die Lösungskinetik und summarische Lösungsfracht unter Laborbedingungen gezeigt (DAHMKE 1988, DAHMKE et al. 1988, HARPER et al. 1998, BULLEN et al. 1998). Summarische Sorptionskapazitäten geogenen Materials werden in Schüttel- ("Batch"-) Versuchen, Perkolations- (Säulenversuchen mit hydraulischem Gradienten) und Diffusionsversuchen (Säulenversuchen ohne hydraulischen Gradienten) bestimmt. Gravierende Unterschiede können bei dem Vergleich von Sorptionsergebnissen aus Batch- und Perkolationsversuchen mit Ergebnissen aus Diffusionsversuchen auftreten. Verantwortlich dafür sind die verwendeten Sickerwassersimulate mit stark konzentrationsabhängigen Diffusionskonstanten konkurrierender Komponenten (WAGNER et al. 1998). NUGENT et al. (1998) finden für Feldspatverwitterung einen Unterschied zwischen Labor- und Feldbedingungen in der Ausbildung von "dünnen, wasserhaltigen, ungleichmäßigen Kutanen" amorpher und kristalliner Alumosilikate im natürlichen System. Diese Kutinierung kann für die Oberflächen-Inhibierung verantwortlich sein, die die Diskrepanz zwischen Labor- und Feld-Lösungsraten für Minerale erklärt.

Der Einfluß von mikrobieller Aktivität auf die Lösungsverwitterung wird exemplarisch für Minerale untersucht, bspw. für Olivin (WELCH & BANFIELD 2002) oder Amphibole (BANFIELD & BARKER 1994). Einerseits wird hier für Olivin eine Abbremsung der Lösungsvorgänge bei Vorherrschen biotischer Oxidation (*Acidithiobacillus ferrooxidans*) im Vergleich zur abiotischen Oxidation festgestellt, die Olivinoberfläche wird durch Fe³⁺-Ionen inhibiert (SANTELLI et al. 2001). Zusätzlich ist zu beobachten, daß die mikrobielle Interaktion mit der Mineraloberfläche von deren Topographie gesteuert ist. Adhäsion von Bakterien erfolgt bei Pyrit außerdem nach kristallographischen Vorzugsrichtungen. Auch scheint nicht die Tiefe sondern der Querschnitt einer Oberflächenunregelmäßigkeit das Aufsitzen von Bakterien zu begünstigen (EDWARDS & RUTENBERG 2001). Feldspatverwitterung wird von JONGMANS et al. (1997) für bestimmte Standorte mit organischen Säuren von Pilz-Hyphen in Zusammenhang gebracht. Die beobachteten Porenräume liegen in der Größenordnung von wenigen Mikrometern.

Änderung der spezifischen Oberfläche, Adsorptionsmechanismen

Die Kationenaustauschkapazität (KAK), die das Adsorptionsvermögen des geogenen Materials gegenüber Kationen beschreibt, wird maßgeblich durch den Anteil quellfähiger Tonminerale im Gestein beeinflußt. Das Sorptionsvermögen gegenüber unpolaren Stoffen (bspw. organisches Material) ist durch die spezifische Oberfläche des untersuchten Materials abzuschätzen (WAGNER et al. 1998).

Mit Schwerpunkt wird derzeit in der Literatur die Sorption von Ionen an monomineralische Substrate, oft an Tonminerale, diskutiert (COPPIN et al. 2002, SYLVESTER et al. 2000, BOILY & FEIN 1996, FARQUHAR et al. 1997). Insbesondere wird hier das Verhalten von den zu Actiniden chemisch homologen Lanthaniden studiert. Die unter bestimmten chemischen Bedingungen (bspw. für bestimmte pH-Werte) hohe Rückhaltefähigkeit von Tonmineralen wird durch deren physikalische Eigenschaften, nämlich große spezifische Oberfläche und Oberflächenladung, begünstigt. Besondere Bedeutung haben deshalb quellfähige Tonminerale (SYLVESTER et al. 2000, PUTTER et al. 2000, BAUER et al. 2001).

ANBEEK et al. (1994) stellen keine signifikante Änderung der Oberflächenrauhigkeit von Quarzund Feldspatkörnern durch Sekundärmineralüberzüge (COSTON et al. 1995) fest. Die Mineralisation von Fe-Sekundärmineralen (Schwertmannit, Jarosit, Goethit) kann durch Mikrooganismen beschleunigt ablaufen, da diese die Eisenoxidation begünstigten können (KAWANO & TO-MITA 2001).

Die Verbindung von Oberflächenanalytik mit der Modellierung der Sorptionsmechanismen kann monomineralische Systeme unter Laborbedingungen beschreiben (BECKER et al. 1997, BECKER et al. 2001).

Reaktive Gesteinsoberfläche

Reaktive Anteile des Systems "Gestein" werden wegen der Systemkomplexität einzeln, beispielsweise für bestimmte Silikate mit definierten chemischen und physikalischen Randbedingungen betrachtet (FARQUHAR et al. 1997). Aus der summarischen Betrachtung der jeweiligen spezifischen Oberfläche der Bestandteile des Systems können Verwitterungsraten abgeschätzt werden, wenn die Reaktivität der internen und externen Festkörperoberfläche und ihre Anteile an der Gesamtoberfläche bekannt sind (BRANTLEY & MELLOTT 2000).

Monomineralische Systeme werden mit festen chemischen Randbedingungen erfaßbar, bspw. das anisotrope Anwachsen von BaSO₄ auf gleichem Substrat (Wachstums-Selbst-Hemmung, Ursache: Kristallsymmetrie; BOSBACH et al. 1998). Desweiteren liegen Untersuchungen zum Einfluß der Versetzungsdichte in Quarz vor, die zeigen, daß der Hauptteil der Lösungsrate nicht von der Störungsdichte im Kristall gesteuert wird (BLUM et al. 1990).

Andererseits kann das Verhalten von Gestein als polymineralisches System auf bestimmte chemische Zusätze getestet werden. HAUS (1993) diskutiert den möglichen Einflusses von alipha-

tischen und aromatischen Mineralöl-Kohlenwasserstoffen auf das Mikrogefüge von Tonstein. Von CRAW (2000) wird der Lösungsaustrag aus Gesteinen und Haldenmaterial summarisch quantifiziert.

Biomineralogische Untersuchungen zur Auswirkung mikrobieller Aktivität auf Mineralaggregate liefern Aussagen zur Strukturierung feinkörniger Sedimente (RANSOM et al. 1999). Möglicherweise sind die Auswirkungen derartiger Interaktionsmechanismen auch von Bedeutung für Verwitterungs-Vorgänge.

Summarisch werden Transportmechanismen in einer Stofftransportgleichung zusammengefaßt (SCHNEIDER & WIENBERG 1998). Massenflüsse und Phasenübergänge bzw. Reaktionen werden nach dem Massenerhaltungsgesetz bilanziert, wobei nach Mechanismen unterteilt wird in Massenflüsse (Advektion, Diffusion, Dispersion), Phasenübergänge (Fällung/Lösung, Sorption/Desorption, Ionenaustausch) und chemische bzw. mikrobielle Reaktionen.

Verwitterung von Schwarzpeliten

Charakteristikum von Schwarzpeliten ist ihr hoher Gehalt an organischem Kohlenstoff, idealisiert betrachtet als CH₂O. Bei Verwitterung kann der C_{org}-Gehalt der Schwarzpelite deutlich verringert werden (PEUCKER-EHRENBRINK & HANNIGAN 2000).

In Schwarzpeliten treten aufgrund der reduzierenden Bedingungen während der Ablagerung einerseits angereichert Spurenelemente, wie bspw. U, Mo, Re, Os (VINE & TOURTELOT 1970), andererseits häufig Sulfide, insbesondere Eisensulfide auf. Biogeochemische Experimente liegen hierzu von SCHIPPERS & JØRGENSEN (2002) vor. Der Abbau von Eisensulfiden wird von EVANGELOU (1995) diskutiert: Von besonderer Bedeutung ist bei dem Vorgang der Pyritoxidation einerseits die Entstehung von Schwefelsäure, die die Pyritverwitterung begünstigt. Andererseits wird die Eisenoxidation bakteriell (*Thiobacillus ferrooxidans*) katalysiert und dadurch erheblich beschleunigt. Pyritverwitterung wird gebremst durch (a) inhibierende Fe³⁺-Anreicherung, (b) Komplexierung und Präzipitation von Eisen sowie (c) Sauerstoffentzug. Letzterer kann erreicht werden durch Anwesenheit von organischem Material.

Insbesondere ist die Schwarzschieferverwitterung durch Oxidation von organischem Kohlenstoff charakterisiert. Dieser Vorgang wirkt sich auf die Mobilisierung von Spurenelementen besonders deutlich aus (BECHTEL et al. 2001).

1.3 Strategie

Wie die quantifizierbaren Oberflächenanteile von Mineralen die Reaktivität natürlicher Systeme widerspiegeln, ist nicht bekannt (BRANTLEY & MELLOTT 2000). Auch die Übertragbarkeit der ermittelten Daten aus dem Probenmaterial auf ungleich größere Volumina in der natürlichen Umgebung bedarf der Untersuchung.

Daraus ergibt sich der Ansatz für die hier vorgestellten Untersuchungen. Oberflächendaten von Gesteinsbestandteilen im Nanometerbereich bis zum Gesteinspolyeder mit natürlichen Grenzflächen werden quantifiziert, unter Berücksichtigung des geochemischen Rahmens. Vergleichend wird auf die Änderungen der Gesteinsoberfläche in allen Skalenbereichen durch (oxidative) Bleichungsverwitterung des Gesteins eingegangen. In einer schließlich skalenunabhängigen Zusammenschau der Oberflächenquantifizierung, geochemischen Charakterisierung und dem Vergleich diesbezüglicher Änderungen durch Verwitterung wird das reaktive Verhalten des untersuchten Gesteins im natürlichen System abschätzbar.

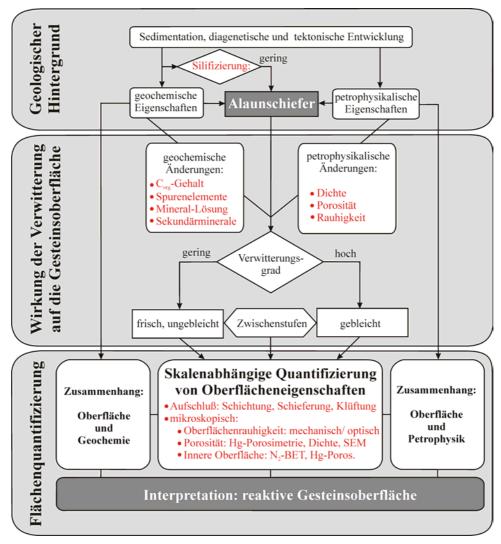


Abb. 1: Vorgehensweise zur Quantifizierung der reaktiven Gesteinsoberfläche aus der Analyse geochemischer und petrophysikalischer Eigenschaften von Alaunschiefern. Rot sind die analysierbaren Eigenschaften des Untersuchungsmaterials markiert.

Schwach bzw. nichtverkieselter Alaunschiefer wurde für die Quantifizierung der Gesteinsoberfläche ausgewählt und geochemisch charakterisiert. Porosimetrische und Rauhigkeitsanalysen führen zur Quantifizierung der Gesteinsoberfläche in Abhängigkeit von der räumlichen Auflösung der Analysemethoden. Die Kopplung der Flächendaten mit geochemisch-mineralogischen Parametern erlaubt Aussagen zur Größe der reaktiven Gesteinsoberfläche (Abb. 1).

1.4 Geologischer Rahmen

Lithofazies und Stratigraphie

Tonsteine werden nach ZIMMERLE & STRIBRNY (1992) mit einem Quarz-Karbonat-Schichtsilikat-Dreieckdiagramm klassifiziert. Für Schwarzpelite, deren C_{org}-Gehalt größer als 1 Gew. % ist, wird die gleiche Klassifikation verwendet, der jeweilige Gesteinsnamen drückt jedoch den hohen Gehalt des Gesteins an organischem Kohlenstoff aus.

Für die hier vorgestellten Untersuchungen ist aufgrund der karbonatfreien Proben nur das binäre System Quarz-Pelit aus der Dreieckdarstellung relevant, in Tab. 1 ist diese Klassifikation dargestellt.

Tab. 1: Klassifikation der karbonatfreien Schwarzpelite, nach ZIMMERLE & STRIBRNY (1992). Der normative Mineralbestand umfaßt hier Schichtsilikate und Quarz; Karbonat tritt nicht auf.

	C _{org} -reicher	kieseliger	tonig-kieseliger	toniger	C _{org} -reicher
	Lydit	Schwarzpelit	Schwarzpelit	Schwarzpelit	Pelit
Schichtsilikate [Vol. %]	0 - 20	20 - 40	40 - 60	60 - 80	80 - 100
Quarz [Vol. %]	80 - 100	60 - 80	40 - 60	20 - 40	0 - 20

Drei Lithofaziestypen sind nach MEINEL (1974) in Thüringen im Graptolithenschiefer (vgl. Tab. 2) zu unterscheiden:

- stark verkieselte Schwarzschiefer (C_{org}-reiche Lydite),
- dünnschichtige Wechsellagerungen von kieseligen Gesteinen und Alaunschieferhäutchen,
- "milde", SiO₂-arme Alaunschiefer (C_{org}-reiche Pelite).

Alaunschiefer sind kohlenstoff- und eisensulfidführende Tonschiefer, die teilweise zu leichtlöslichem Kaliumaluminiumsulfat, dem sogenannten Alaun (KAl(SO₄)₂ * 12 H₂O) verwittern. Die hier vorgestellten Untersuchungen wurden an Alaunschiefern aus dem ost- und südostthüringischen Raum vorgenommen (Abb. 2).

Alaun- und Kieselschiefer sind in Thüringen in einer etwa 60-80 m mächtigen Graptolithenschieferserie vorhanden, die direkt aufliegend auf oberordovizischem Lederschiefer in das Silur und Unterdevon gestellt wird und durch eine kalkige Abfolge (Ockerkalk, S₂) geteilt ist (Tab. 2, SCHLEGEL 1995). Die stratigraphische Gliederung in Zonen erfolgt durch Graptolithen; im Kontrast zu den Unteren Graptolithenschiefern (S₁) (SCHAUER 1971) werden überwiegend in den Oberen Graptolithenschiefern (S₃) einzeilige gerade Graptolithen (JAEGER 1964) gefunden.

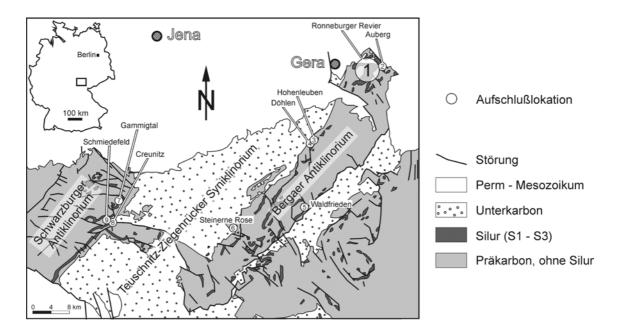


Abb. 2: Vereinfachte geologische Karte von Südthüringen. Im Silur (Tab. 2) des Bergaer und Schwarzburger Sattels sind die Probenlokationen markiert.

Tab. 2: Stratigraphische Position und lithofazielle Gliederung der silurischen Unteren und unterdevonischen Oberen Graptolithenschiefer, Mächtigkeiten für Ostthüringen (nach JÄGER 1964, SZUROWSKI 1967, FALK & WIEFEL 1995, MEINEL, WIEFEL & WUCHER 1970 sowie SCHLEGEL 1995)

		Tentakulitenkalk	Lithologie:	Mächtigkeit:
Devon	Oberer Graptolithenschiefer		Alaunschiefer, basal mit Dolomit- und Sandsteinbänken, am Top: Kalklagen	15-20 m
(435-410 Ma)	S ₂ Ockerkalk		Kalkstein, (sapro-) pelitische Zwischenlagen	15-50 m
(435	٧,	S_1	kieselschieferarme Alaunschiefer, Phosphorithorizont	8-10 m
Silur	Llandovery, Wenlock	Unterer Graptolithenschiefer	kieselschieferreiche Alaunschiefer	25-30 m
Ordovizium	Ashgill	Lederschiefer	Tonschiefer mit Geröllen	200-250 m

Beckenentwicklung

Dominierend für die äquatoriale Kontinentkonstellation im Übergang Silur/ Devon (~ 400 Ma) ist der kaledonisch gebildete "Old-Red"-Großkontinent (Abb. 3). Die kaledonische Orogenese wurde durch Subduktion von Iapetus-Ozeanboden unter Laurentia westlich von Baltica verursacht (Silur, ~ 425 Ma). Der neue Großkontinent Euramerika ist von Gondwana durch den Rheïschen Ozean getrennt. Für die dortige epikontinentale, küstenferne Sedimentation in tieferen Meeresbereichen sind euxinische, stark saure Verhältnisse prägend. In Thüringen sind keine Diskordanzen als Begrenzungen der lithostratigraphischen Einheiten bekannt (LÜTZNER et al. 1980, MEINEL et al.1970, SCHLEGEL 1995).

Die Ablagerungen aus dem Rheïschen Ozean treten heute als Graptolithenschiefer-Folge in Wales, Spanien, im Harz und Thüringischen Schiefergebirge auf. Die Kalksteine der Ockerkalk-Folge deuten auf zeitweise geringere Meerestiefen im Ablagerungsraum. Der geringere Gehalt an organischem Kohlenstoff in den Oberen Graptolithenschiefern weist auf eine Erhöhung der klastischen Sedimentationsrate hin.

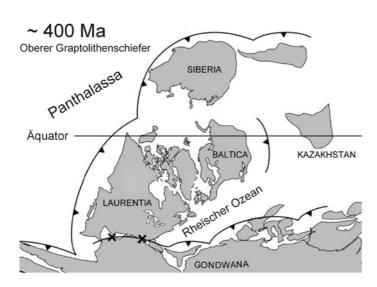


Abb. 3: Paläogeographische Konstellation vor etwa 400 Ma im Unterdevon zur Ablagerungszeit der Oberen Graptolithenschiefer (nach SCO-TESE 2001).

Das epikontinentale Sedimentationsgebiet der Graptolithenschiefer befindet sich im Bereich der Südflanke des Rheïschen Ozeans.

Die silurischen und unterdevonischen Ablagerungen in Süd- und Ostthüringen sind Mangelsedimente, die chemogen (Kiesel- und Karbonatgesteine), biogen (kieselig, phosphoritisch) und feinstklastisch (sapropelitisch) geprägt sind (JÄGER 1964, SCHLEGEL 1995). SZUROWSKI (1967) verwendet das V/Mo- und V/Cr-Verhältnis zur Faziesdiagnostik: Ersteres ist niedrig für Gyttjabildungen, letzteres hoch für Sapropelfazies. Diese Elementverhältnisse deuten für den Unteren Graptolithenschiefer überwiegend sapropelitische und für den Oberen Graptolithenschiefer mehrheitlich gyttjaartige Bedingungen an, weitere in diese Richtung weisende Indikatoren sind das C/N-Verhältnis und der Phosphorgehalt. Die Redoxbedingungen im Meerwasser können nach MANGINI et al. (2001) anhand der Uran- und Manganverteilung rekonstruiert werden.

Der küstenferne Ablagerungsraum der Graptolithenschiefer wurde eingerahmt durch Bereiche mit karbonatischer Sedimentation (SCHÖNENBERG & NEUGEBAUER 1997): Riff- oder Orthoceren-Kalke (Gotland, Baltikum) resp. Brachiopoden-Pflaster und -Schille (England, Oslo-Ge-

biet). Die variscische Orogenese führte zum Zusammenschluß der Kontinente zum Superkontinent Pangäa, der Rheïsche Ozean zwischen Gondwana und Euramerika wurde subduziert.

Gesteinsüberprägung

Für Mitteleuropa werden die variscisch deformierten paläozoischen Gesteine nach einem Schema von KOSSMAT (1927) gegliedert. Die ostthüringischen Graptolithenschiefer gehören zum Saxothuringikum des Thüringisch-Vogtländischen Schiefergebirges, welches durch erzgebirgisch streichende Syn- und Antiklinorien geprägt ist (Abb. 2) und im NW von der Mitteldeutschen Kristallinzone und im SE vom Erzgebirge begrenzt wird. Falten höherer Ordnung (und kleinerer Wellenlänge) besitzen ähnliche Streichrichtungen, es treten mehrere Richtungen von Schieferungsflächen sowie deren Verfaltung und Krenulation auf. Der Aufbruch der Saxothuringischen Zone wird von NW-SE-streichenden Störungen eingerahmt, von der Fränkischen Linie im SW und von der Westsächsischen Störung im NE.

MEINEL (1974) charakterisiert die grünschieferfazielle variscische Regionalmetamorphose der paläozoischen Gesteine des thüringischen Schiefergebirges: Auch das sehr schieferungsfreundliche Material liegt mit nur schwacher Schieferung, vorwiegend Bruchschieferung vor, dadurch ist das Primärkorngefüge weitgehend erhalten. Wichtige Neubildungen sind Quarz, Serizit, Chlorit, Anthraxolith. Lokal werden Albit, Adular, Karbonat, Pyrit, Rutil, Magnetit und Hämatit angetroffen. Serizit besitzt Korngrößen um 1-10 μm, die Schüppchen sind oft ohne deutliche Regelung im Gestein verteilt und orientieren sich einerseits an der Schichtung, andererseits an den s_1 -Flächen. Diese besitzen Abstände von ≥ 100 μm. Daraus resultiert bei der vorliegenden Transversalschieferung eine Gitterregelung.

SZUROWSKI (1967) betont das mobile Verhalten der Graptolithenschiefer bei Faltung, das zu disharmonischen Faltungsbildern mit wechselnder Vergenz, mitunter aber auch zu Meiler- oder Fächerstellung führt, häufig ist die kleinräumige Faltenbildung bis in den Handstückbereich. Verschuppungen bzw. schüsselförmige Überschiebungen bedingen die mehrfache Wiederholung der gesamten silurischen Ablagerungen in einzelnen Mulden oder auch den vollständigen Ausfall der silurischen und unterdevonischen Schichten.

Klüftung wurde von RUSSE (1991) im Bereich des Ronneburger Horstes analysiert: Zweischarige Querklüftung (Streichrichtung senkrecht zu s_x) dominiert mit steilem Einfallen (NE, SW), untergeordent kommen Längsklüfte (parallel s_x) und Diagonalklüfte vor.

1.5 Bisherige Untersuchungen an Alaunschiefer

Petrographie

Der untere kieselschieferreiche Teil der Unteren Graptolithenschiefer (Mächtigkeit ca. 25-30 m) besteht hauptsächlich aus cm- bis dm-mächtigen Kieselgesteinsbänken (Lyditen) und nur unter-

geordnet aus Kieselschiefern im eigentlichen Sinn, nämlich einer eben bis wellig lamellierten Wechsellagerung von Kieselgestein und schwarzen, kohlenstoff- und pyritreichen Tonschiefern (Alaunschiefer). Im oberen Teil der Unteren Graptolithenschiefer (etwa 8-10 m) verlieren die Lydite ihre Dominanz. Die Mächtigkeit der Unteren Graptolithenschiefer wird auf 35 bis 40 m geschätzt; exakte Messungen sind aufgrund intensiver tektonischer Beanspruchung nicht möglich. Die Oberen Graptolithenschiefer werden von bankigen Alaunschiefern aufgebaut (SCHLEGEL 1995). SCHAUER (1971) betont den Härteunterschied zwischen den weichen Alaunschiefern und den spröden Kieselschiefern. Letztere zeigen häufig weißen Gangquarz in a/c-Klüften.

Dünnschliffpetrographie

Unterer Graptolithenschiefer:

SZUROWSKI (1967) hat Graptolithenschiefer aus dem Ronneburger Raum untersucht und beschreibt **Kieselschiefer** nach dünnschliffpetrographischen Untersuchungen als ein feinkörniges Gemenge von Quarz, wenig feinschuppigem Glimmer, kohliger Substanz und vereinzelten Erzmineralen. Rundliche oder längliche Quarzgebilde bis 150 μ m Länge können deformierte Radiolarien sein. Die Quarz-Körner besitzen Durchmesser von durchschnittlich 20 μ m, sind oft jedoch auch kleiner. Eine innige Verfilzung mit Glimmermineralen tritt auf. Größere Quarz-Körner sind seltener, mitunter werden Chalcedonausscheidungen beobachtet. Die "kohlige Substanz" wird als "feinverteilt" in der kieseligen Grundmasse beschrieben. Erzminerale treten als isolierte Körner mit durchschnittlich ~ 20 μ m Durchmesser auf, mitunter auch als größere schmitzenförmige Aggregate. Quarz-Trümchen stehen senkrecht zur Schichtung und erreichen Mächtigkeiten von 30 μ m – 1 mm.

Im **Alaunschiefer** sind die Erzminerale, hauptsächlich Pyrit, häufiger als in Kieselschiefern. Parallel zur Schichtung findet man Schmitzen mit den gesteinsbildenden Mineralien: Quarz, Muskovit (Ø 30-50 μ m), Serizit (Ø 2-5 μ m). Einige Proben sind besonders radiolarienreich. Der Radiolarienkern ist vorwiegend opak, die Hülle besteht aus Quarz, auch hier beträgt der Durchmesser bis zu ~ 150 μ m. 20 μ m lange Nädelchen im geglühten Schliff sind als Rutil identifiziert worden (SZUROWSKI 1967).

Oberer Graptolithenschiefer:

Visuell ist kein Unterschied zum Alaunschiefer aus dem Unteren Graptolithenschiefer erkennbar. Auch hier ist dieser überwiegend geschiefert, bricht aber nach der Schichtung. Wiederum treten helle Quarz- und Serizit-Schmitzen in der opaken Grundmasse auf. Mitunter vorkommende dolomitreiche Lagen geben dem Gestein dann ein gebändertes Aussehen (SZUROWSKI 1967).

Mineralinhalt

Röntgendiffraktometrisch wurden von SZUROWSKI (1967) Pyrit, Quarz, Kaolinit, Muscovit/ Illit, aber kein Chlorit nachgewiesen. LÜTZNER et al. (1984) beschreiben einen Anteil von ca. 40 Gew. % Glimmer für Alaunschiefer aus dem Unteren Graptolithenschiefer des Schwarzburger Sattels.

Unter den opaken Substanzen in den Schwarzpeliten dominiert nach SZUROWSKI (1967) Pyrit in

Tab. 3: Mineralgehalt der Kiesel- und Alaunschiefer nach SZUROWSKI (1967), Angaben in Gew. %.

	S ₁ : Kieselschiefer	S ₁ : Alaunschiefer	S ₃ : Alaunschiefer
Quarz	90	58	32
Muskovit/ Illit	3	17	34
Kaolinit	=	3	3
Chlorit	=	2-3 (?)	2-3 (?)
Pyrit	=	5	7
Dolomit	=	1	7
Siderit	-	-	2
Phosphorit	=	2	3
Corg	1.5	9	6
Hämatit	4	2	3
Rest	1.5	3	3

geringmächtigen Lagen und Schmitzen. Daneben ist eine disperse Pyritverteilung mikroskopisch erkennbar.

Kupferkies, Markasit und Bravoit (Fe,NiS₂) treten seltener auf, Besonderheiten sind Gelpyrit (Melnikovit), Zinkblende, Bleiglanz, Millerit, Kobaltglanz und Arsenkies.

Anthraxolith tritt nicht nur in Klüften, sondern auch an kleinen Quarztrümchen auf. SZU-

ROWSKI (1967) bestimmt an Anthraxolith bei Verbrennung (700 °C) neben 89.3 % Kohlenstoff weiterhin 1.3 % Stickstoff, 1.3 % Wasserstoff und 2.5 % Asche. Spektralanalytische Untersuchungen der gleichen Probe zeigten hohe Spurenelementgehalte (Tab. 5).

Geochemie der Hauptelemente

Mischproben aus den Graptolithenschiefern widerspiegeln den stratigraphiebezogenen Gehalt an ausgewählten Elementen (Tab. 11). Wegen der Wechsellagerung von stärker- und schwächer verkieselten Alaunschiefern im Unteren Graptolithenschiefer sind Analysen von Einzelproben zur Abschätzung des Silifizierungsgrades und der Tonmineral- sowie TOC-Führung der Lithotypen geeignet (Tab. 4). Dabei wurde Kieselschiefer aus Hohenleuben einerseits punktuell, andererseits als Durchschnitt über einen bankigen Horizont beprobt. Hier ist insbesondere der deutliche Unterschied in der ermittelten Kohlenstoff-Menge hervorzuheben (Oberer Graptolithenschiefer: Vergleich mit LOI).

SiO₂

LEUTWEIN (1951) unterscheidet Alaunschiefer mit etwa 50-80 Gew. % SiO₂ von Kieselschiefern (80-95 %), SZUROWSKI (1967) diskriminiert bei 85 % und charakterisiert die Kieselschiefer durch ihre Durchtrümerung mit Quarz. Eine Zwischenstellung nehmen bei SZUROWSKI die

"stark verkieselten Alaunschiefer" mit 70-85 % SiO₂ ein. Der SiO₂-Gehalt der Alaunschiefer aus dem Oberen Graptolithenschiefer liegt nach SZUROWSKI (1967) durchschnittlich bei ~51 % (vs. Tab. 4). Dagegen ist der Anteil von Al₂O₃ erhöht (~12 %). Allerdings sind die Analysenergebnisse der Schlitzproben insbesondere aus dem Unteren Graptolithenschiefer (LEUTWEIN 1951 bzw. SZUROSKI 1967) als Durchschnittswerte von Mischproben aus Alaun- **und** Kieselschiefer zu werten.

\mathbf{C}_{org}

LEUTWEIN (1951) führt aus, daß "einige" Prozent kohlige Substanz in den Alaun- und Kieselschiefern enthalten sind. Für den Unteren Graptolithenschiefer gibt SZUROWSKI (1967) eine Spannweite des C_{org}-Inhaltes zwischen 5.5-15 % an, hier wird auch die farbgebende Funktion

Tab. 4: Chemischen Zusammensetzung von Kieselschiefer aus Hohenleuben (Schlitz- bzw. Übersichtsprobe) und Alaunschiefer aus Garnsdorf, nach LEUTWEIN (1951) bzw. HUNDT (1939), Oberer Graptolithenschiefer (S3) von der Wetterabrücke (MEINEL 1974), Analyse naßchemisch ohne Fehlerangabe, teilw. ohne Analyse der Alkalien und Phosphor (Summe ungleich 100 %)

dieser Komponente genannt. MEINEL (1974) betont die starke Variabilität in der C_{org}-Führung des Graptolithenschiefers.

	S_1 :	S_1 :	S_3 :
Kieselschiefer	Kieselschiefer	Alaunschiefer	Alaunschiefer
	Horizont: 50 m		
80.20	79.02	50.13	67.9
2.62	3.72	10.73	16.6
1.95	2.80	2.27	4.5
n.b.	n.b.	n.b.	3.3
n.b.	n.b.	n.b.	0.6
0.30	0.13	0.40	1.1
0.36	0.51	1.00	1.3
0.23	0.45	n.b.	in Al ₂ O ₃
0.06	0.11	n h	n.b.
	****		LOI: 5.0
0.32	0.26	2.21	0.7
	80.20 2.62 1.95 n.b. n.b. 0.30 0.36 0.23 0.06 0.53 1.25	80.20 79.02 2.62 3.72 1.95 2.80 n.b. n.b. n.b. n.b. 0.30 0.13 0.36 0.51 0.23 0.45 0.06 0.11 0.53 1.55 1.25 11.18	No. No.

= SCHLEGEL (1995) findet für Alaunschiefer einen Mittelwert für Corg von etwa 20 % und weist darauf hin, daß ein Vielfaches dieses Betrages in kohlenstoffreichen Lagen anzutreffen ist, insbesondere bitumenreiche, de-

karbonatisierte Bänke können einen "kohleflözartigen Habitus" annehmen.

Geochemie der Spurenelemente

LEUTWEIN (1951) analysierte Phosphoritknollen und fand kaum Molybdän, Vanadium, Gold. LÜTZNER et al. (1984) beschreiben die Anreicherung von Spurenelementen im Graptolithenschiefer aus dem Thüringischen Schiefergebirge (bspw. mehr als 2000 ppm V, mehr als 50 ppm Mo) (Tab. 6). SZUROWSKI (1967) hat Anthraxolith spektralanalytisch auf Spurenelemente untersucht und insbesondere hohe V-, Ni- und Sr-Gehalte (0.1 Gew. %) festgestellt (Tab. 5), findet jedoch keine Hinweise auf adsorptive Bindung von Vanadium und Molybdän an organischen Kohlenstoff. Schon LEUTWEIN (1951) vermutet, daß solche Bindungen

frühdiagenetisch aufgehoben wurden. Spektralanalysen von SZUROWSKI (1967) an Pyrit zeigten, daß hohe Titan-, Arsen- und Antimongehalte typisch sind.

Der hohe **Vanadium**gehalt der Alaunschiefer im Unteren Graptolithenschiefer kann nach SZU-ROWSKI (1967) durch adsorptive Bindung von Vanadium an Schichtsilikate bzw. den Ersatz von

Tab. 5: Spurenelement-gehalte in Anthraxolith

genate in a managentin						
Element	[ppm]					
As Sr Cu Pb Cr Ni	100 1000 100 100 10 100 1000 1000					
Mo Zn	10 10					

Aluminium durch Vanadium in Glimmern verursacht sein, ähnliches wird für Chrom und untergeordnet Titan vermutet, bei Barium ist ein rein adsorptives Bindungsverhalten wahrscheinlich. Lithium ist wahrscheinlich am Aufbau der Schichtsilikate beteiligt. Strontium ersetzt Fluor in Apatit. Titan bevorzugt die adsorptive Bindung an Schichtsilikate bzw. den Einbau in Minerale der Rutilgruppe, die in den Alaunschiefern angereichert sind. Nickel, Kupfer, Blei und Zink liegen sulfidisch, entweder als eigenständige Beimengung oder als Beimengungen im Pyrit, vor. Für Molybdän sowie Silber, Kobalt, Arsen, Antimon scheint die sulfidische Bindung am wahrscheinlich-

sten (LEUTWEIN 1951, SZUROWSKI 1967). SZUROWSKI (1967) resümiert, daß die höchsten Gehalte an Begleitelementen in kieselschieferarmen bzw. -freien Bereichen der Unteren Graptolithenschiefer auftreten. Insgesamt ist die chemische Variabilität erheblich; makroskopisch ähnliche Varietäten zeigen mitunter stark differierende geochemische Signaturen. Dies ist auch durch die unterschiedlichen, nämlich terrigenen, biogenen und authigenen Quellen für Spurenelemente nicht verwunderlich (KATO et al. 2002).

Tab. 6: Spurenelementgehalte in Alaunschiefern aus dem Schwarzburger Sattel (LÜTZNER et al. 1984)

	Li	Pb	Ga	Mn	Zr	Ni	Cu	Zn	V	Cr	Mo
S1	24	52	-	-	-	-	270	980	2400	460	52
S3	-	30	25	-	131	74,5	-	_	2280	148	46,6
Min.		18	15		80	12			-	78	2
Max.		14	33		220	225			-	300	134

LÜTZNER et al. (1984) finden für den Oberen Graptolithenschiefer im Schwarzburger Sattel stark variierende Mengen für Ni, Cr, Pb, Mo, Zr und Ga, wobei keine gesetzmäßigen Änderungen feststellbar sind (Tab. 6).

Exposition, Bleichung

WIEFEL (1965) hat autochthone und parautochthone Verwitterungsbildungen im ostthüringischvogtländischen Schiefergebirge (Bergaer Sattel) untersucht und verweist darauf, daß nach den Überlegungen von WÜST (1909) und PHILIPPI (1910) nicht mehr die Möglichkeit einer permi-

schen bzw. präpermischen Exposition als Ursache der heute aufgeschlossenen Zersatzbildungen diskutiert wird. PHILIPPI (1910) betont in diesem Zusammenhang den Abtragungsmechanismus (flächig vs. linear) und hebt hervor, daß eine metergenaue Freilegung der präpermischen Abrasionsebene, die unter den widerstandsfähigen aufliegenden Kalksteinen (Muschelkalk, Zeichsteinbasis) lag, unwahrscheinlich ist. V. FREYBERG (1923) findet mehrere Einebnungsperioden im Spätmesozoikum-Tertiär, die jüngste, für die heutige Morphologie verantwortliche, reichte bis ins Altpliozän.

STEINMÜLLER (1974) begründet die im Thüringischen Schiefergebirge weite Verbreitung tertiärer Verwitterungsrelikte damit, daß die tertiären Reliefteile kaum erniedrigt wurden. Insbesondere illitischer Gesteinszersatz (Gefügeerhalt, Materialumwandlung) ist in Hochflächenbereichen typisch.

SCHAUER (1971) gibt die Beobachtung wider, daß Ausbleichung von Alaun- *und* Kieselschiefern häufig in unmittelbarer Nähe zu Diabaskörpern auftritt und schließt auf thermische oder chemische Beeinflussung. Auch hier werden eine nicht näher charakterisierte Oxidation und Abfuhr des Bitumenanteils vermutet.

Die Bedeutung der rotliegendzeitlichen Verwitterung für die Uranlagerstättenbildung im Ronneburger Revier wurde von Szurowski et al. (1991) hervorgehoben. In einer tiefreichenden Oxidationszone wurde feindispers im Gestein enthaltenes U (IV) mobilisiert, einhergehend mit Rotfärbung und Bleichung des Gesteins. MEINEL & MÄDLER (1995) diskutieren die Kombination von permosilesischer Oberflächenverwitterung und gleichzeitiger hydrothermaler Alteration silurischer Schwarzschieferserien ausgehend von der Gera-Jachymov-Störungszone als Ursache für die Bildung der Uranlagerstätte Ronneburg auf dem Geraer Vorsprung des Bergaer Sattels. Grundsätzlich ist nicht auszuschließen, daß die tertiäre Verebnungsfläche im ostthüringischen Schiefergebirge Relikte der dekametermächtigen prämesozoischen Verwitterungsdecke anschneidet. Insbesondere an Kluftsysteme gebundene, zungenförmig tief ins liegende Gestein hineinziehende Bleichungszonen aus dem Rotliegenden können im späten Mesozoikum bzw. Tertiär erneut exponiert gewesen sein.

Die zur Bleichung benötigte Expositionszeit (mit den beeinflussenden Faktoren wie Feuchtigkeit, Abfluß, Lösungsfracht, Temperatur etc.) ist unbekannt. Ebensowenig finden sich Angaben in der Literatur darüber, ob auch in kühleren Perioden, außerhalb der Expositionszeiten von Tertiär und Perm, Bleichungserscheinungen möglich sind. Mögliche kurzfristige Bleichungsereignisse aus dem Quartär – wie bspw. die teilweise Ausbleichung von Dachschiefern während ihrer Liegezeit auf Dächern – werden in der Literatur nicht diskutiert.

Geochemische Signaturen der Bleichung: Mineralinhalt

SCHLEGEL (1995) stellt fest, daß schon "bei relativ geringen" Verwitterungsintensitäten in den Alaunschiefern die Zersetzung von Pyriten und Karbonaten beginnt, die zu Dekarbonatisierung,

Vertonung und Bleichung der Gesteine führen kann. Schwefelsäureverwitterung der Karbonatbänkchen im Alaunschiefer bewirkt eine kohlenstoffreiche, erdige Masse als Rückstandsbildung (SZUROWSKI 1967).

KLOTH (2000) hat Alaunschiefer-Proben aus dem Unteren Graptolithenschiefer untersucht, die er bezüglich des "inkrustierten" und "nicht inkrustierten", tiefschwarzen Zustandes unterscheidet. Röntgendiffraktometrische Untersuchungen an einer inkrustierten Probe zeigten, daß diese keinen Pyrit enthielt; XRD-Analytik an den neugebildeten Krusten identifizierte Jarosit und Gips. Durch XRF-Analytik wird deutlich, daß eine nach makroskopischen Befunden (schwarze Farbe, ungebleicht) unverwitterte Probe kaum (1.1 %) Sulfidschwefel (Pyrit) enthält, aber mehr Sulfatschwefel. Offenbar ist auch in der von KLOTH (2000) untersuchten "frischen" Probe Pyrit überwiegend zu Sulfat oxidiert.

Geochemische Signaturen der Bleichung; Spurenelemente:

Die Bleichung der Unteren Graptolithenschiefer im Stbr. Hohenleuben wird von LEUTWEIN (1951) beschrieben und geochemische Abhängigkeiten vom C_{org}-Gehalt werden diskutiert: Die obere Zone des Vorkommens zeigt kohlenstoff-freie, helle, kieselige oder tonig-quarzige Gesteine, die tiefere Zone zeigt hohen Kohlenstoffgehalt. Schwefelkieslagen und -nester parallel zur Schieferung sind nicht selten, gut ausgebildete Pyritwürfelchen von einigen mm Kantenlänge treten auf. Molybdän-Gehalte sind wenig schwankend um ~ 170 g/t, es sind keine Anreicherungszonen vorhanden, offenbar existiert keine Abhängigkeit vom Kohlenstoffgehalt. Vanadium zeigt starke Schwankungen um einen Durchschnittswert von ~ 800 g/t, wiederum besteht keine Abhängigkeit vom Kohlenstoffgehalt. Es existiert keine Korrelation zwischen den Gehalten von V-Mo, Metallgehalt-C. Eisensulfide sind frei von V und Mo und führen wenig Ni, Co, Zn, Pb und Cu. Untersuchungen von LEUTWEIN (1951) an mehr als 20 verschiedenen Graptolithenschiefervorkommen zeigen, daß ausgeprägte Unterschiede im Metallgehalt der kohligen und oxidierten Schiefer im allgemeinen nicht bestehen. Allerdings spiegelt sich die Bleichung im Vanadiumgehalt wider: Schwarze Graptolithenschiefer zeigen eine gleichmäßige Verteilung zwischen 250 und 2500 g/t, bei oxidierten Schiefern ist ein schwaches Maximum des Vanadiumgehaltes zwischen 250 und 500 g/t zu konstatieren. Höhere Gehalte fehlen durchaus nicht, sind aber seltener. **Nickel** wird ebenfalls bei der Entkohlung abgeführt.

1.6 Aufschlüsse, Beprobung

Verwendet wurde Material verschiedener Lokalitäten aus Oberflächenaufschlüssen und Kernbohrungen (Abb. 2, Tab. 7, Anhang). Mit Schwerpunkt wurde unverkieselter Alaunschiefer untersucht. Der Verkieselungsgrad der Alaunschiefer sollte möglichst ähnlich sein, damit die durch Verwitterung geänderten Gesteinsmerkmale nicht durch primär unterschiedliche Materialeigenschaften überdeckt werden. Kieselschiefer dienten zusätzlich als Vergleichsmaterial.

Tab. 7: Untersuchte Graptolithenschieferaufschlüsse (S_1, S_3) in Ost- und Südostthüringen (Geologische Übersichtskarte: Abb. 2)

Probenlokation, Aufschluß
Bergaer Sattel:
Ronneburger Revier: Erkundungsbohrungen: O, S; Gessenbachtal: Quartäre
Bachsedimente
Stbr. Auberg (Geraer Vorsprung): gebleichter/ geröteter Kieselschiefer (S ₁)
Stbr. Hohenleuben (Weinbergbrüche): Alaun- und Kieselschiefer, teilw.
gebleicht (S ₁)
Döhlen (Bergaer Sattel): Alaunschiefer, gebleicht, gerötet (S ₂)

- Döhlen (Bergaer Sattel): Alaunschiefer, gebleicht, gerötet (S₃)

 Bahneinschnitt bei Gräfenwarth, an der Steinernen Rose: A
- Bahneinschnitt bei Gräfenwarth, an der Steinernen Rose: Alaunschiefer, teilw. stark umkrustet (S₃)
- 6 Waldfrieden (S₁)
 Schwarzburger Sattel, SE-Flanke:

1

2

- 7 Gammigbachtal bei Oberloquitz: Alaunschiefer, teilw. gebleicht (S_{1,3})
- 8 Creunitz bei Schmiedefeld: Alaunschiefer, teilw. gebleicht (S₃)
- 9 Schmiedefeld, Alaunschieferbergwerk "Morassina": Haldenmaterial (S₁)

Vom Bergaer Sattel wurden aus dem Ronneburger Revier (1) schwarzer und gebleichter Alaun- und Kieselschiefer aus Erkundungsbohrungen der WISMUT verwendet: Weißbacher Mulde (5175/87), Drosen (4521/70), Lichtenberg (3777/57), Beerwalde (7067/79), Baldenhain (4237/75) und Baldenhain S (6152/78). Weiterhin wurden schwarze, teils umkrustete Alaunschieferbruchstücke aus Rammkernsondierungen (RKS 29, 30, 68, 109, 111, 111, 112, 113, 114) und quartäre Sedimente aus dem Gessental bei Ronneburg beprobt.

Östlich von Ronneburg befindet sich am **Auberg (2)** ein ehemaliger Steinbruch auf Kieselschiefer. Hier wurde gebleichter bzw. geröteter Kieselschiefer angetroffen (S1).

Die Weinbergbrüche (S1) bei Hohenleuben (3) schließen Kiesel- und Alaunschiefer, die in den oberen Profilmetern gebleicht sind, auf.

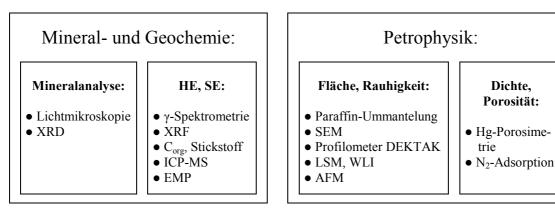
Nordwestlich von Hohenleuben ist am Nordrand der Ortschaft **Döhlen (4)** Oberer Graptolithenschiefer im Kontakt zu Diabas in einem ehemaligen Diabassteinbruch aufgeschlossen. Hier wurde entfestigter, teilweise gebleichter Alaunschiefer beprobt.

Im Bahneinschnitt bei **Gräfenwarth (5)**, am Diabasaufschluß "Steinerne Rose", steht Oberer Graptolithenschiefer an, der lokal mit mm-mächtigen roten Umkrustungen auftritt.

Unterer und Oberer Graptolithenschiefer von der SE-Flanke des Schwarzburger Sattels wurden im Gammigbachtal bei Oberloquitz (6) beprobt. Das Gestein liegt, ausgehend von Klüften, teilweise gebleicht vor.

Im Hohlweg westlich von Creunitz bei Gräfenthal (7) steht Oberer Graptolithenschiefer an. Die oberen zwei Profilmeter sind gebleicht.

Haldenmaterial des Wismut-Bergbaus in der ehemaligen Alaunschiefergrube "Morassina" in Schmiedefeld (8) wurde Anfang der 50er Jahre aufgeschüttet. Ausgelaugtes Restgestein der Alaunherstellung auf den letzten Laugenbühnen der "Morassina" lagert dort seit Mitte/ Ende des 19. Jhdts.


2 Methodik

Für die Quantifizierung und den Vergleich der Gesteinsoberflächen wurden verwitterter und unverwitterter Alaunschiefer, mit Mineralneubildungen krustierter Alaunschiefer sowie Kieselschiefer verwendet. Diese wurden aus verschiedenen Gesteinsprofilen aus dem süd- und südostthüringischen Raum (Abb. 2) beprobt.

Gesteinsprofile wurden visuell makroskopisch im Aufschluß (Profilübersicht), Einzelproben mit Lupe und Binokular untersucht. Danach wurden Proben für Dünn- (25 μ m) und Dickschliffe (> 100 μ m, insbesondere ungebleichtes Material) ausgewählt. Nach dieser optischen Probencharaktrisierung erfolgte die Auswahl für geochemische und petrophysikalische Untersuchungen.

Die Bewertung der geochemisch-mineralogischen Randbedingungen muß parallel zur Oberflächenanalyse erfolgen (Tab. 8, Abb. 1). Dadurch wird es ermöglicht, die kompositionellen Variationen des Gesteins in einen Zusammenhang mit petrophysikalischen Eigenschaften zu bringen. Nachfolgend werden diese Methoden vorgestellt und ihre Möglichkeiten und Grenzen diskutiert.

Tab. 8: Petrophysikalische und mineralogisch-chemische Methoden mit unterschiedlich hoher räumlicher Auflösung zur Erfassung von Flächenanteilen und ihrem geochemischen Bezug (Erklärung der Abkürzungen im Anhang).

2.1 Mineralogisch-geochemische Methoden

Mikroskopie

Einzelproben wurden am Binokular (Stemi SV 6 mit Fotoaufsatz MC 80 von Carl Zeiss) untersucht, Dünn- und Dickschliffe am Polarisationsmikroskop (Zeiss-Axioplan 2) mit Durch- und Auflicht. Organisches Material aus gebleichten und ungebleichten Alaunschiefern wurde nach der Behandlung mit Flußsäure (60 %) und kochender Salzsäure (zum Entfernen der Fluoride)

sowie anschließender Neutralisierung und Einbettung in Glyzeringelatinepräparaten (MERCK: Kaisers Glyzeringelatine 9242) lichtmikroskopisch untersucht.

Röntgendiffraktometrie (XRD)

Die röntgenographische Phasenanalyse beruht auf Beugung und Interferenz von elektromagnetischer Strahlung im Wellenlängenbereich um 10^{-10} m an dreidimensional-periodisch aufgebauten Kristallgittern. Die Braggsche Gleichung reduziert die Betrachtungsweise der Beugungserscheinungen auf Reflexionsgeometrie: $n\lambda = 2d \sin \theta$. Ein monochromatischer Röntgenstrahl der Wellenlänge λ wird an einer Netzebenenschar mit konstantem Abstand d unter dem Winkel θ reflektiert. Für diesen Netzebenenabstand d werden weitere Reflexionswinkel höherer Ordnung (n = 2, 3, ...) gefunden (HEIM 1990).

Röntgendiffraktometrische Untersuchungen erfolgten an Pulverproben des Gesamtgesteins sowie an korngrößenfraktionierten Tonmineralproben (vergleichsweise glykolisiert) mit dem Diffraktometer "Seifert XRD 7" (Cu-Anode, U_a = 40 kV, I_a = 40 mA, λ = 1.540598 Å, 2θ = 4-40°, Auflösung: 0.02°, Zählzeit: 1 s). Die Körner < 2 μ m wurden im Atterberg-Zylinder separiert (STOKES-Gesetz: GOBRECHT 1990). Als Probenträger wurde Silizium verwendet (Kalibrierung am Si-Peak bei 3.134 Å).

Für die Unterscheidung zwischen Kaolinit- und Chlorit-Interferenzen wurde das Probenmaterial für auf 550°C aufgeheizt. Bei dieser Temperatur wird Kaolinit (vs. Chlorit) zerstört (MOORE & REYNOLDS 1997).

γ-Strahlen-Spektrometrie

Zur Quantifizierung des Uran-, Thorium- und Kalium-Gehaltes von Gesteinsvolumina (räumliche Auflösung $\sim 1~dm^3$) wurde ein Spektrometer vom Typ GR-320 (Exploranium Radiation Detection Systems) mit Sensor GPX-21 (NaJ-Kristall) verwendet. Eine interne Cesium-Quelle dient als Referenz für die spektrale Auflösung (Cesium-137: 662 keV). Als Meßzeit wurden 45 s verwendet. Aus dem Energiespektrum wurden mit geräteinterner Software die Uran-, Thorium- und Kalium-Gehalte berechnet. Durch Wiederholungsmessungen konnte ermittelt werden, daß die Abweichung der Reproduzierbarkeit der Meßwerte bei dieser Integrationszeit immer deutlich unter 10 % vom Meßwert lag. Für Beispielkonzentrationen gibt der Hersteller folgende Genauigkeit an: K=2%, $\Delta K=\pm$ 0.1 %; U=2 ppm, $\Delta K=\pm$ 0.4 ppm; Th = 8 ppm, $\Delta K=\pm$ 0.7 ppm für die Intergrationszeit von 120 s.

Röntgenfluoreszenzanalyse (RFA, XRF)

Prinzipiell wird bei der Röntgenfluoreszenzanalyse die elementspezifische, charakteristische Röntgenstrahlung analysiert, die nach Anregung mit Röntgenstrahlung die jeweiligen Elemente emittieren (GÖPEL & ZIEGLER 1994). Haupt- und Spurenelementgehalte wurden an einem se-

quentiellen Röntgenfluoreszenzspektrometer (Philips PW 2400) ermittelt. Die Hauptelementbestimmung erfolgte an an Schmelzlingen (Mischungsverhältnis: 1 Teil Probe + 10 Teile Flußmittel Spektromelt A 12: 66 % di-Lithiumtetraborat, 34 % Lithiummetaborat, Hersteller: MERCK, Aufschmelzen bei 950°C). Die Spurenelementbestimmung erfolgte an Preßlingen mit Wachs als Bindemittel (6 Teile Probe + 1 Teil Wachs: "Tablettierungsmittel für Röntgenanalyse Wachs C", Hersteller: HOECHST).

Kohlenstoff- und Stickstoff-Elementaranalyse

Die Quantifizierung von Stickstoff und organischem Kohlenstoff wurde am Max-Planck-Institut für Biogeochemie (Jena) durchgeführt.

Eingesetzt wurde der Elementaranalysator vario EL II (elementar-Analysensysteme GmbH). Arbeitsprinzip der Elementaranalyse ist die katalytische Hochtemperaturverbrennung der Probe (Ofentemperatur 1150°C) und anschließende Trennung des entstehenden Gasgemisches nach dem purge- and trap-Prinzip. Mit einem Wärmeleitfähigkeitsdetektor (WLD) erfolgt die summarische (bindungsunabhängige) Elementquantifizierung.

Die Proben wurden eingewogen (nach Testmessungen etwa 20-200 mg) und eine Doppelbestimmung für die Elementmengen durchgeführt. Die absoluten Nachweisbereiche betragen für Kohlenstoff 0.045-21.5 mg und für Stickstoff 0.009-2.0 mg. Vergleichsmessungen ergaben, daß der untersuchte Alaun- und Kieselschiefer keinen anorganischen Kohlenstoff erhält. Aus diesem Grund wurde nach Testmessungen nur noch der Gesamtkohlenstoffgehalt ermittelt. Wiederholungsmessungen zeigen, daß die Reproduzierbarkeit der Meßwerte besser als 0.01 Gew. % ist.

Massenspektrometrie mit induktiv gekoppelter Plasmaionenquelle an laserablatierten Proben (ICP-MS-LA)

Spurenelementuntersuchungen wurden an einer ICP-MS PlasmaQuad PQ3-S-Option (VG Elemental) mit induktiv gekoppelter Plasma-Ionenquelle (MONTASER 1998) und Laserablation (Nd:YAG; λ = 1064 nm) Microprobe II (Merchantek) für Feststoffproben (Dickschliffe) durchgeführt. Nach der Verdampfung des Probenmaterials durch die zugeführte Lichtenergie des Lasers wird das entstandene Feststoffaerosol im Argon-Gasstrom über eine etwa 3 m lange Schlauchleitung in das ICP-MS gefördert. In der ICP-Fackel (teilweise ionisiertes Gas in einem HF-Feld, Argon-Plasma, T~7000 K) kommt es zu einer erneuten Verdampfung, Atomisierung und Ionisierung des ablatierten Materials. Die dann ins Quadropolmassenspektrometer gelangenden Ionen werden ihrem Masse/Ladungs-Verhältnis entsprechend diskriminiert und über die Gerätesoftware ausgewertet.

Die Nachweisgrenze liegt im sub-ppm-Bereich. Feststoffuntersuchungen mit der Laserablation (JARVIS & WILLIAMS 1993, FRYER et al. 1995) benötigen neben dem äußeren Standard (Kalibrierung des Gerätes) einen inneren Standard im Feststoff, um die Ablationseigenschaften des

Feststoffgemisches, resultierend aus Oberflächenreflexion, Absorption, thermischer Leitfähigkeit, Transparenz und Siedepunkt zu normieren.

Auf Dickschliffen wurden Probentraversen ablatiert. Die Laser-Energie wurde im mJ-Bereich variiert, um annähernd gleichgroße Ablationskrater (Durchmesser: 30-50 $\mu m)$ zu erhalten. Eine höhere räumliche Auflösung (geringere Kratergrößen) ist limitiert einerseits durch gute Ablationsfähigkeit des Alaunschiefers (relativ geringe Energie verursacht hohe Ablationsmenge), andererseits durch die Nachweisgrenze der zu untersuchenden Spurenelemente (Freisetzungsmenge pro Ablationspunkt). Als Ablationsfrequenz auf einer solchen Traverse wurden 20 Hz gewählt, der Vorschub betrug $\sim 35~\mu m/s$. Das bedeutet, daß die Ablationskrater nicht berührend nebeneinander, sondern mit nur kleinem Versatz übereinander liegen, dadurch wird ein kontinuierliches Materialprofil analysiert. Die Profillänge betrug meist mehrere Tausend Mikrometer. Untersucht wurden die Elemente Si, Al, P, S, Ca, Mg, Fe, Ba, Zr, La, Ce, Th, U, Pm, Nd, Sm. An homogenen, glasigen Proben (Schmelzlinge) können als innerer Standard Elemente verwendet werden, deren Konzentration mit der RFA ermittelt wurde. In inhomogenen, strukturierten Proben ist ein solcher innerer Standard nicht vorhanden. Nur wenn ein Element mit konstanter Menge innerhalb der inhomogenen Probe erkannt wird, und die Konzentration dieses Elements bekannt ist, existiert damit ein innerer Standard.

Ohne den ablationsnormierenden inneren Standard sind insbesondere zwei Probenstrukturen nur begrenzt erfaßbar:

- Materialwechsel (Lamination, Konkretionen)
- **Farb-, Helligkeitswechsel** bei sonst chemisch ähnlicher Probenmatrix.

Diese Materialkontraste beeinflussen die Analyse weniger stark, wenn deren Ausdehnung kleiner ist als der Durchmesser des Ablationskraters, weil dann eine Mittelung der Ablationseigenschaften durch die überlappende Ablation erfolgt.

Deutliche Ablationsunterschiede können mikroskopisch erkannt werden: Wenn die Probenkraterweite und das neben dem Krater befindliche, nicht verdampfte Material mengenmäßig differieren, ist von Ablationsschwankungen auszugehen.

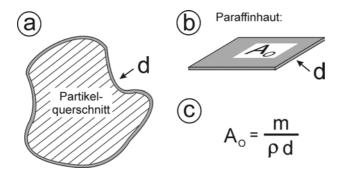
Elektronenstrahl-Mikrosondenanalyse (EMA, EPMA)

Anregung von Elektronen durch Elektronen mit hoher kinetischer Energie (mehrere keV) bewirkt Emission charakteristischer Röntgenstrahlung, die energiedispersiv (EDX) oder wellenlängendispersiv (WDX) detektiert werden kann (GÖPEL & ZIEGLER 1994). Bei EDX verwendet man einen energieselektiven Halbleiterdetektor, während bei WDX eine Wellenlängenselektion an einem Kristallgitter durchgeführt wird. Die geringere Nachweisgrenze, aber schnelle Spektren-Detektion prädestiniert die EDX für qualitative Überblicksaufnahmen des in der Probe auftretenden Elementspektrums. Die höhere Empfindlichkeit der WDX (~ 100 ppm vs. 1000 ppm

für EDX) wird zur Mineraldiagnostik (räumliche Auflösung $\sim 1~\mu m$) und Elementhäufigkeitskartierung auf Probenflächen angewendet.

Untersuchungen mit der Mikrosonde erfolgten im Geochemischen Institut der Univ. Göttingen (JEOL JXA 8900 RL). Insbesondere wurden Elementkartierungen (Al, K, Fe, Ba, Mg, Na, P, Ca, S) auf Dünnschliffpräparaten durchgeführt. Die räumliche Auflösung bei der Kartierung liegt bei etwa 3 μ m, die untersuchten Probenflächen sind ~ 0.25 mm²groß.

2.2 Methodik der Oberflächenquantifizierung, Anwendung auf Gesteinsoberflächen


"Das Volumen des Festkörpers schuf Gott, seine Oberfläche wurde vom Teufel gemacht." (Wolfgang Pauli)

Bei der Vorstellung der Methoden zur Oberflächenquantifizierung werden neben der Darstellung der jeweils angewendeten physikalischen Prinzipien ebenfalls Möglichkeiten und Grenzen für die Untersuchung von Gesteinsoberflächen diskutiert. Dies gilt insbesondere für Untersuchungsmethoden, die für die Analyse von (tonigen, schiefrigen, TOC-reichen) Gesteinsoberflächen bisher nur beschränkt eingesetzt werden, vgl. CZURDA (1998).

Geometrische Oberfläche

Die geometrische Oberfläche eines unregelmäßig geformten Körpers kann durch Paraffin-Umhüllung ermittelt werden. Die Partikeloberfläche wird aus dem Quotienten von Volumen der Paraffinhaut und Paraffindicke d bestimmt (Abb. 4).

Um beim Tauchen der Partikel die Paraffinhaut in möglichst gleicher Stärke zu erzielen, wurden alle Proben auf konstante Temperatur (7°C) gebracht. Die Kühlung bewirkt außerdem, daß ein stärkerer Paraffinüberzug durch Abschrecken des sich mit 55°C nur knapp über dem Schmelzpunkt befindlichen Paraffins erreicht wird.

- Abb. 4: Prinzip der Paraffintauchmethode:
- (a) Partikel (schraffiert) mit Paraffinhaut (grau)
- (b) Annahme: konstante Dicke d der Paraffinhaut
- (c) Berechnung der Partikeloberfläche $A_{\rm O}$ aus Paraffinmasse, -dichte (= 0.9 g/cm²) und -hautdicke

Weil der Quader (A_O * d) eine sehr kurze Seite d besitzt, haben kleine Meßfehler für d große Auswirkungen auf die Berechnung der Oberfläche A_O. Die Mächtigkeit von d wurde am

Binokular ausgemessen, die Meßgenauigkeit liegt bei \pm 5 µm (Objektmikrometer). Die Paraffinschichtdicke (für alle Proben im Bereich von 400 bis 600 µm) variiert über die Partikeloberfläche durchschnittlich um etwa 50 µm, an Partikelkanten kann durch Abtropfen die Schichtdicke im Bereich um X00 µm vergrößert sein. Kleine Partikeloberflächen besitzen deshalb einen Meßfehler für d, der mehrere Dekaprozent des Meßwertes einnehmen kann.

Variationen von d für unterschiedliche Proben werden hauptsächlich durch unterschiedliche Probenmasse (variierende Abschreckung des Paraffins durch unterschiedlich große Kühlkörper) und unterschiedliche Gesteinsporosität verursacht. Der Meßfehler aus der Probenwägung liegt bei \pm 0.5 µg, die Dichtemessung ist mit einem Fehler von \pm 0.001 g/cm³ behaftet. Die Fehler dieser beiden Meßgrößen sind wegen der hohen Beträge für Δd ohne Belang.

Natürlich begrenzte Alaun- und Kieselschieferpartikel besitzen eine annähernd quaderförmige

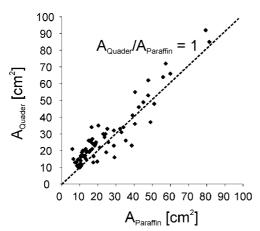


Abb. 5: Oberfläche der Gesteinspolyeder angenähert durch einen Quader (mit den ausgemessenen Kantenlängen) über der Oberfläche dieser Gesteinspolyeder, die durch Paraffinummantelung ermittelt wurde.

beiden Methoden ein arithmetischer Mittelwert

Gestalt, die durch Schicht- und Kluftflächen vorgeprägt ist. Die Oberfläche solcher ebenflächig begrenzten Gesteinskörper kann durch eine Quaderoberfläche

$$A_0 = 2ab + 2bc + 2ac$$

annähernd beschrieben werden (Abb. 5). An 74 mit sowohl mit Kantenlängenmessung als auch mit Paraffinummantelung ermittelten Partikeloberflächen unterschiedlicher Lithotypen zeigt sich für den Quotienten der Oberflächenwerte aus

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

von 0.9. Die Standardabweichung

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

liegt bei 0.3.

Die durch Paraffintränkung und durch das Quadermodell bestimmten Gesteinsoberflächen sind annähernd übereinstimmend. Allerdings tendieren die Quaderoberflächen systematisch zu etwas größeren Werten, insbesondere ist das der Fall bei kleinen Probenoberflächen (Abb. 5).

Während für gerundete Partikel, bspw. Kieskörner aus fluviatilen Ablagerungen, die Paraffintränkungsmethode zur Oberflächenbestimmung unumgänglich ist, bietet sich für schicht- und kluftflächenbegrenzte, quaderförmige Polyeder aus der Steinbruchwand ein Ausmessen des

"Quadermodells" an. Von jeweils 130 Polyedern verschiedener Lithotypen (gebleichte und ungebleichte Alaun- und Kieselschiefer) wurden die Kantenlängen ausgemessen. Mit diesen Meßwerten konnten die geometrische Oberfläche und das Polyedervolumen berechnet werden. Aus den Oberflächendaten der Gesteinspartikel unterschiedlicher Lithotypen kann die volumenbezogene geometrische Grenzfläche [m²/m³] ermittelt werden. Bei bekannter Dichte der Lithotypen ist zusätzlich die Berechnung der massenbezogenen geometrischen Grenzfläche [m²/kg] möglich.

Rasterelektronenmikroskop (REM, SEM)

Abbildungsauflösungen bis zu 2 nm werden mit dem Rasterelektronenmikroskop bei der Detektion von Sekundärelektronen erreicht. Ein fokussierter Elektronenstrahl (Primärelektronen) rastert zeilenweise die zu untersuchende Oberfläche ab, ein Detektor registriert die Sekundärelektronen, die aus der Probe austreten (Tiefe bis ca. 10 nm). Das einfallende Primärelektron kann mehrfach an Objektatomen gestreut werden, bis es schließlich eingefangen wird. Die Umhüllende für diesen Raum wird "Streubirne" genannt und begrenzt die räumliche Auflösung bei Rückstreuelektronen-Detektion auf ~ 1 μm (Streubirnen-Radius), während die Rückstreubirne keinen Einfluß auf die räumliche Auflösung der Sekundärelektronen-Information hat; hier ist die Auflösung überwiegend durch den Strahldurchmesser (~ 5-50 nm) limitiert. Der Kontrast des Bildes der Sekundärelektronen entsteht durch das Oberflächenrelief (Primärelektronen-Einfallswinkel). Die Sekundärelektronen-Herkunft beschränkt sich auf eine Tiefenherkunft von nur wenigen nm. Der Bildkontrast bei der Detektion von Rückstreuelektronen entsteht durch die Streueigenschaften der Atome (Kernladungszahl) in einer Probentiefe von 0.1-10 μm (GÖPEL & ZIEGLER 1994, HILLEBRECHT & KISKER 1992).

Rasterelektronenmikroskopische Untersuchungen wurden am Institut für Geologische Wissenschaften in Halle an einem JSM 6300 (JEOL), Rückstreuelektronenaufnahmen an der Mikrosonde im Geochemischen Institut der Univ. Göttingen (JEOL JXA 8900 RL) durchgeführt. Die Proben mit frischen Bruchflächen wurden mit Leit-C nach Göcke (Neubauer-Chemikalien) auf Stiftprobenteller (Agar Scientific) montiert und mit Gold bedampft, um eine Aufladung zu verhindern.

Profilometer (DEKTAK)

Mit einem Nadel-Profilometer DEKTAK 3030 ST, Hersteller: VEECO Instruments GmbH, wurden 58 Profile mit 100 μ m, 300 μ m, \sim 2 bzw. 3 mm Länge abgetastet, ein Übersichtsprofil war 5 bzw. 8 mm lang (Durchführung am Inst. f. Festkörperphysik, Jena). Ausführliche Prinzipund Funktionsbeschreibungen solcher Nadel-Instrumente gibt THOMAS (1999), die Anwendung eines Profilometers bzw. Tastschnittgerätes für die Oberflächencharakterisierung wird bei POON et al. (1992) beschrieben.

Mit den unterschiedlich langen Profilen sollten periodische (Welligkeit) und nichtperiodische Oberflächenformen erkannt werden. Es wurden jeweils zwei senkrecht zueinander angeordnete 3000 µm lange Profile für die Proben angefertigt, um die richtungsabhängigen Oberflächeneigenschaften zu erfassen. Aus diesen zwei Profilen wurde das rauhe Flächenrelief mit dem Rauhigkeitsfaktor F (Definition im Kap. Ergebnisse) berechnet. Verwendet wurden frische Alaunschiefer-Spaltflächen (Schieferungsflächen), um ein sauberes, unbeanspruchtes Relief zu untersuchen. Aufnahmen an Kieselschiefern erfolgten an frischen Bruchflächen. Außerdem wurden auch durch Mineralneubildungen krustierte (Kluft-) Flächen untersucht.

Das Profil wurde mit 1200 bzw. 2000 Meßpunkten aufgenommen. Bei den zweckmäßigerweise verwendeten Profillängen von 3 mm wird bei 2000 Meßpunkten eine Lateralauflösung von 1.5 µm erzielt. Dies liegt weit unter dem auflösungsbegrenzenden Durchmesser der Nadel von 12.5 µm, die die Reliefunebenheiten nachzeichnet..

Die vertikale Auflösung liegt bei 0.1 nm. Es können relativ breite, aber sehr flache Reliefanomalien erkannt werden.

Die Nadelbewegung wird in ein elektrisches Signal umgewandelt und rechnerisch ausgewertet. Für die Auswertung stand das Programm *DEKTAK-Auswertung 9/1996* vom Inst. f. Festkörperphysik zur Verfügung. Mit dieser Software wurden Welligkeits- und Rauhigkeitsparameter (Definition im Kap. Ergebnisse) der Profile berechnet.

Rauhigkeitsmikroskopie (LSM, WLI)

Mikroskopische Topographieunterschiede können durch Auswertung von gestapelten Reflexionsbildern auf zwei Wegen ermittelt werden: Weißlichtinterferometer (WLI) basieren auf Längenmessung mit dem Mirau-Interferometer (THOMAS 1999), Laser-Raster-Mikroskope (LSM) erzeugen Topographieschnitte durch konfokale Abbildung bei Vertikalverschiebung des Objektes.

Das verwendete Mireau-Objektiv mit Referenzmarke und Teilerplatte ist eine Entwicklung des Fraunhofer-Instituts für Angewandte Optik und Feinmechanik in Jena und wurde an ein Leitz-

Tab. 9: Auflösung (vertikal, horizontal) mit LSM

Objektiv	Meßfläche	vertikal	horizontal
20x / 0.5	460 μm ²	< 1000 nm	630 nm
50x / 0.8	184 μm ²	< 250 nm	400 nm
100x / 0.9	92 μm ²	< 100 nm	350 nm

Mikroskop DM RME angesetzt (GLIECH et al. 1999). Mit einem 40x-Objektiv erzielt man ~500 nm laterale und
 < 50 nm vertikale Auflösung (bei Topographie < 100 μm). Das Meßfeld beträgt 140 x 140 μm². Ebenfalls im Fraunhofer-Institut für Angewandte Optik und Feinmechanik wurde das Laser-Scanning-

Mikroskop LSM 510 mit rotem Laserlicht (v = 633 nm) verwendet. Die dem jeweiligen LSM-Objektiv entsprechende Meßfeldgröße und Auflösung ist Tab. 9 dokumentiert. Die Auswertung der Topographiedaten und die Berechnung der Rauhigkeitsparameter (Tab. 18) erfolgte mit der Software NanoScope, V. 4.42r4, Digital Instruments. Es wurden 22 Meßfelder an 12 Proben analysiert und ausgewertet.

Atomkraftmikroskopie (AFM, SFM)

Das AFM nutzt das Zweiteilchenpotential (Lennard-Jones-Potential) zwischen Oberflächenatomen und Sondenspitze: Die Abstoßungskraft nahe der Probenoberfläche ist mit r⁻¹²-Proportionalität sehr abstandssensitiv. Die durch die Abstoßungskraft verursachte Auslenkung der die Abtastnadel führenden Feder wird bspw. optisch mit einem Laserstrahl quantifiziert und kann in eine Topographie-Information umgewandelt werden (GÖPEL & ZIEGLER 1994).

Die Oberflächentopographie der gebleichten und ungebleichten Gesteinsproben wurde mit einem VERITEKT-3 (Zeiss) an Probenfeldern mit Kantenlänge von $\sim 1.5~\mu m$ und einer lateralen Auflösung von 1 nm und einer vertikalen Auflösung von 5 nm am Institut für Festkörperphysik, Univ. Jena untersucht. Die Auswertung erfolgte mit der kommerziellen Veritekt-Software.

Quecksilberporosimetrie

Das Meßprinzip beruht auf Intrusion der nichtbenetzenden Flüssigkeit Quecksilber in den Kapillarraum der zu untersuchenden Probe. Die Porenfüllung wird durch Druckerhöhung bewirkt. Daraus kann eine Kapillardruckkurve, nämlich das intrudierte Quecksilbervolumen in Abhängigkeit vom Druck aufgenommen werden. Aus der Kapillardruckkurve können mittels eines Strukturmodells (Porenraummodell) die Porenvolumenverteilung über dem Porenradius, die Porosität sowie die innere Oberfläche der Poren berechnet werden. Für zylindrische Poren wird bei bekannter Oberflächenspannung σ unter Berücksichtigung des Kontaktwinkels $\mathcal G$ des Quecksilbers mit der Probe der Porenradius in Abhängigkeit vom Druck durch die WASHBURN-Gleichung beschrieben:

$$r_p = -\frac{2 \cdot \sigma}{p} \cos \theta$$

Zusätzlich sind Aussagen zur Dichte des porösen und des mikroporösen Gesteins möglich (DIN 66133).

Die Untersuchungen an 13 Proben erfolgten am Geotechnischen Labor der ETH Zürich. Verwendet wurde die Makroporeneinheit "Pascal 140" (Evakuierung und Füllung des Dilatometers) und die Mikroporeneinheit "Porosimeter 4000" (CE-Instruments).

Die Untersuchungen wurden bis zu einem Maximaldruck von 4 kbar (400 MPa) durchgeführt. Aus dem für Quecksilbermoleküle zugänglichen Porenraum (Porendurchmesser > 2 nm, nämlich Meso- und Makroporen bis ca. 300 μm Durchmesser) wurde die Porenoberfläche durch eine modellhafte Beschreibung mit Zylinderporen berechnet. Der Fehler der Druckmessung beträgt max. 5 %, die Volumina werden bis zu Differenzen von 0.1 mm³ erfaßt. Hauptschwäche

dieser Porenraumermittlung ist das zugrundegelegte Zylinderporenmodell. Große Poren mit engem Porenhals ("Flaschenhalsporen") werden aufgrund des Eindringquerschnittes für Quecksilber als viele kleinere Poren fehlinterpretiert. Die Quecksilberporosimetrie kann daher eine Porenradienverteilung liefern, die gegenüber der realen zu weit zu den engen Poren hin verschoben ist. Die Reproduzierbarkeit der Meßwerte wird vom Gerätehersteller mit ~ 2 % vom Meßwert angegeben.

Deutlichen Einfluß auf die Porositätswerte haben Inhomogenitäten des Materials. So werden bspw. Klüfte im Gestein als Porenraum fehlinterpretiert.

Stickstoffadsorption

Die spezifische Oberfläche [m²/g] poröser Festkörper kann durch Auswertung der Adsorptionsisothermen von Gasen berechnet werden (BRUNAUER, EMMETT & TELLER 1938; sogenannte BET-Methode). Die Adsorption wird durch physisorptive Bindungskräfte verursacht, nämlich durch die relativ schwachen van-der-Waals-Kräfte zwischen Adsorbat (Gasmoleküle) und Adsorbens (Festkörper).

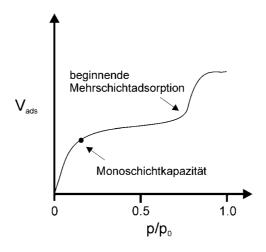


Abb. 6: Schematische Darstellung einer Adsorptionsisotherme: Mit steigendem Partialdruck des Adsorbats wird ein Wendepunkt für den Zuwachs an adsorbiertem Volumen erreicht, wenn eine monomolekulare Bedeckung der Festkörperoberfläche vorhanden ist. Ein weiterer steilerer Anstieg der Isotherme zeigt Mehrschichtadsorption an.

Die auf der evakuierten Festkörperoberfläche in Abhängigkeit vom Relativdruck p/p_0 (p = Partialdruck des Adsorbates, p_0 = Gleichgewichtsdampfdruck) adsorbierte Menge an chemisch inertem Gas wird bei konstanter Temperatur ermittelt (Abb. 6). Zur Untersuchung mesoporöser Substanzen wird routinemäßig Stickstoff eingesetzt. Allerdings wird durch den Durchmesser eines Stickstoffmoleküls von ~ 0.5 nm auch mikroporöser Porenraum bei der Adsorption erfaßt. Aus der adsorbierten Volumenmenge des Gases und dem Platzbedarf eines Gasmoleküls,

für Stickstoff ~ 0.16 nm², kann die mit einer Molekülschicht bedeckte Fläche berechnet werden (GREGG & SING 1991, IUPAC 1994, ROUQUEROL et al. 1999, DIN 66131; DIN 66134). Diese Monoschichtkapazität umfaßt alle Poren, deren Porenhalsweite größer ist als der Moleküldurchmesser des verwendeten Adsorbats.

Die N₂-BET-Adsorption (vs. Ethylenglycol- oder Methylenblau-Belegung) kann wegen des großen Moleküldurchmessers des Adsorbens nicht die Zwischenschichtflächen von quellfähigen Tonmineralen erfassen (MADSEN & KAHR 1992, CZURDA 1998). Diffraktometrische Untersuchungen zeigten, daß das hier betrachtete Material keine quellfähigen Tonminerale enthält. Somit sind mit der Stickstoffadsorption sinnvolle Aussagen auch über Flächenanteile, die durch die Tonmineralführung verursacht werden, möglich.

Am Meßgerät befinden sich zwei Adsorptionsgefäße, ein Probengefäß mit dem Untersuchungsmaterial und ein leeres Vergleichsgefäß. Nach mehrmaligem Spülen mit Stickstoff befindet sich im Areameterkreislauf nur noch Stickstoff. Die Adsorptionsgefäße werden auf die Siedetemperatur von Stickstoff (77 K) abgekühlt. Durch die monomolekulare Anlagerung von gasförmigem Stickstoff an die Probe baut sich in den beiden Adsorptionsgefäßen eine Druckdifferenz auf. Ändert sich diese Differenz nicht mehr, ist eine vollständige Anlagerung erfolgt und es läßt sich aus der Druckdifferenz sowie dem Moleküldurchmesser von Stickstoff die Fläche berechnen, an der sich Stickstoffgas angelagert hat.

Die Messungen wurden mit dem Areameter Autosorb 1 (QUANTACHROME Instruments) am Institut für Physikalische Chemie, Universität Jena, durchgeführt. Zur Auswertung wurde die Software Autosorb for Windows, V. 1.16 genutzt. Die Proben-Evakuierung erfolgte vor der Adsorptionsmessung bei einer Temperatur von 30°C. Es wurden Wiederholungsmessungen an der Probe durchgeführt, bis die Streuung zwischen Meßwerten und Mittelwert 0.2 m²/g unterschritt, wenn spezifische Oberflächen, die kleiner als 10 m²/g waren, gemessen wurden. Für größere gemessene Oberflächen wurde die Messung bis zu einer Streuung < 2 % zwischen Flächenwert und Mittelwert wiederholt. Bei der überwiegenden Mehrzahl der Proben zeigte die erste Wiederholungsmessung bereits eine geringere Differenz der Flächenwerte. Deshalb erfolgten dann keine weiteren Wiederholungsmessungen.

Insgesamt wurden 97 Messungen an 39 Proben durchgeführt. Wenn die absolute Fläche des Probenmaterials kleiner als $\sim 1~\text{m}^2$ ist, verringern sich Meßgenauigkeit des adsorbierten Volumens und damit Reproduzierbarkeit der spezifischen Oberfläche im Vergleich zu größeren Absolutflächen deutlich. Solche problematischen Flächendaten sind in der tabellarischen Übersicht der BET-Oberflächen im Anhang markiert.

Wiederholungsmessungen an einer Probe zeigen, daß der Schwankungsbereich für die BET-Oberfläche der einzelnen Proben immer kleiner ist als die Oberflächendifferenz zweier lithologisch gleicher Proben. Der Grund dafür sind offenbar Inhomogenitäten des Gesteins. Aufgrund der Abweichung der Oberflächen gleicher Lithotypen erschien es für der Vergleich von BET-Oberflächen unterschiedlicher Lithotypen sinnvoll, den Durchschnittswert für die spezifische Oberfläche eines Lithotyps auf 1 $\rm m^2/g$ Genauigkeit zu runden.

3 Ergebnisse und Diskussion

3.1 Petrographie

Beobachtungen im Unteren und Oberen Graptolithenschiefer vom Gammigtal, Schwarzburger Sattel:

Im Gammigtal ist ein durchgängiges Profil vom Lederschiefer (Ordovizium) bis zum Tentaculitenschiefer (Devon) aufgeschlossen.

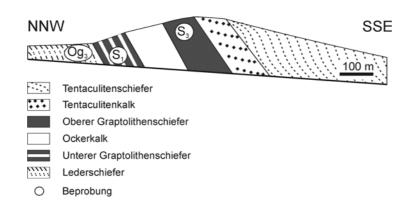


Abb. 7: Profilskizze aus dem Gammigtal (STEINBACH et al. 1970), Beprobungspunkte: Og₃: Lederschiefer, S₁: Unterer Graptolithenschiefer, S₃: Oberer Graptolithenschiefer.

Der Untere Graptolithenschiefer ist an seiner Basis (NNW-Teil des S₁-Aufschlußbereiches) dickbankig, hart und deutlich silifiziert ausgebildet. Die Zwischenlagen mit hartem, stärker verkieseltem Material erreichen nur mehrere Zentimeter bis Dezimeter Mächtigkeit. Hangende Profilpartien (SSW-Abschnitt) sind als weicher Alaunschiefer, der seidenglänzende Bruchflächen besitzt, aufgeschlossen. Hier ist kleinstückiger Zerfall des Gesteins durch Bildung natürlich begrenzter Polyeder (Abb. 8a, Probe 126) zu beobachten. Der Alaunschiefer aus dem Oberen Graptolithenschiefer ist durch äußere Merkmale nicht vom Alaunschiefer (vs. Kieselschiefer) des Unteren Graptolithenschiefers zu unterscheiden (Abb. 8b, Probe 129). Auch hier tritt kleinstückiger Zerfall des Gesteins in Polyeder auf; die Polyedergrenzflächen sind durch Kluft-, Schieferungs- und Schichtflächen vorgegeben. Bleichung greift von diesen Kluftflächen millimeter- bis zentimetermächtig ins Innere der Gesteinspolyeder vor (Abb. 8c, 8d, Probe 129). Auf den Kluftflächen treten hell- bis dunkelgelbe, teilweise traubige, glänzende, aber auch erdige Beläge auf (Abb. 8e, 8f, Probe 129).

Auf den Schichtflächen gebleichter und ungebleichter Gesteinsbruchstücke sind Graptolithen in silbrig-glänzender Mineralisierung vorhanden.

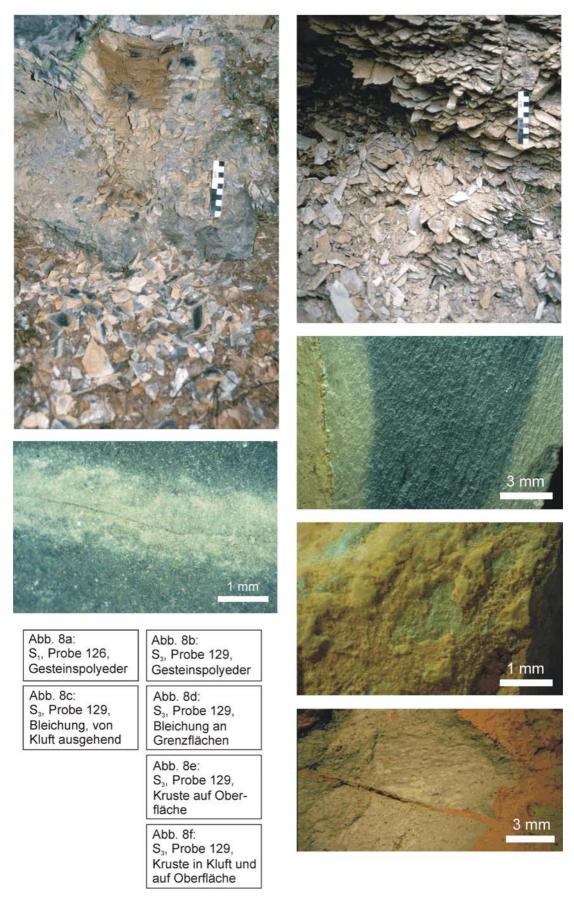


Abb. 8a-f: Aufschlüsse und Einzelproben aus dem Unteren (S1) und Oberen (S3) Graptolithenschiefer vom Gammigtal. Deutlich sichtbar ist der kleinstückige Zerfall des Gesteins und die von den Grenzflächen ausgehende kleinräumige Bleichung.

Beobachtungen im Unteren Graptolithenschiefer von Hohenleuben, Bergaer Sattel:

Die durchgreifende, großräumige Bleichung im Unteren Graptolithenschiefer von Hohenleuben über mehrere Profilmeter (Abb. 9a, 15) ist im Nordteil des Steinbruchs direkt liegend zur Verebnungsfläche des Bergaer Sattels (Abb. 9b) ausgebildet. Diese durchgreifende, vollständige Bleichung betrifft Kiesel- und Alaunschiefer gleichermaßen (Abb. 9c). Kieselschiefer treten deutlich als harte, mehrere Zentimeter mächtige Bänkchen auf, die über mehrere Meter weit durchgängig in Aufschlüssen zu verfolgen sind. Zwischenlagernd, in Schichtkörpern gleicher Mächtigkeit, wird weicher, stark abfärbender Alaunschiefer angetroffen. Diese Wechsellagerung ist mehrfach verfaltet und geschiefert. Auf den Schieferungsflächen im Alaunschiefer sind oft Spiegelharnische ausgebildet. Außerdem treten mitunter rotbräunliche Mineralneubildungen auf Harnischflächen auf. Eine Korrelation der Bleichungserscheinungen mit Faltungsstrukturen existiert nicht. Im liegenden, großräumig ungebleichten Profilabschnitt treten kleinräumige Bleichungen auf, die von natürlichen Grenzflächen im Gestein, insbesondere Kluftflächen, ausgehen.

Die räumliche Anordnung der natürlichen Grenzflächen im Gestein (Schicht-, Schieferungsund Kluftflächen) bewirkt eine polyedrische Teilung des Gesteins. Diese Gesteinspolyeder besitzen Kantenlängen überwiegend im cm-Bereich.

Die Bleichung kann zoniert auftreten (Abb. 9d, Probe 211). Etwa einen Millimeter mächtig ist dann ein nicht vollständig gebleichter Übergang zwischen dem gebleichten und dem ungebleichten Bereich ausgebildet.

Frische Bruchflächen von gebleichtem Alaunschiefer erscheinen unter dem Binokular in monotoner hellgelber Färbung. Auf der Oberfläche treten selten Glimmer auf (Kantenlänge: < 100 μm). Weitere Materialbestandteile sind nicht zu erkennen. Auf der Oberfläche können parallel angeordnete, in etwa 1 mm Abstand verlaufende Oberkanten kleiner Ausbruchstufen (Höhe deutlich kleiner als 1 mm) vorhanden sein. Senkrecht aufeinanderstehende Bruchflächen des Gesteins zeigen, daß diese Stufung durch den Ausbiß von Schieferungsflächen verursacht wird (vgl. Abb. 8d, Gammigtal, schräger Lichteinfall).

Im südlichen Bereich des Steinbruches befindet sich im oberen, gebleichten Profilabschnitt eine etwa 3 m breite und 3 m tiefe Einkerbung (Abb. 9e). Diese ist mit mm- bis cm-großen Bruchstücken gebleichter, gelblicher Tonschiefer (Laminierung undeutlich sichtbar) und pelitischem Matrixmaterial gleicher Farbe gefüllt (Probe 223, Abb. 9f). Unter dem Binokular ist auf den Bruchflächen des Matrixmaterials mit weißer Grundfarbe eine gleichmäßig verteilte Sprenkelung erkennbar, die durch oft submillimeter-große, teilweise aber auch größere, rundliche, hell- bis dunkelgelbe Flecken verursacht wird. Vereinzelt treten tiefschwarze Flecken ähnlicher Größe in der hellen Matrix auf (Abb. 11e). Selten sind im Gestein Porenräume mit bis zu 1 mm Durchmesser vorhanden. Die Porenwände sind mit dunkelgelben, traubig-glatten und glänzenden Belägen ausgekleidet.

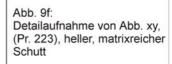

Abb. 9a: Steinbruch Hohenleuben, Graptolithenschiefer (S₁), im oberen Profilabschnitt gebleicht

Abb. 9c: Steinbruch Hohenleuben, Wechsellagerung von Alaun- und Kieselschiefer

Abb. 9e: Steinbruch Hohenleuben, umgelagerter, gebleichter Alaunschiefer-Schutt (223)

Abb. 9b: Verebnungsfläche (Tertiär) des Bergaer Sattels bei Hohenleuben, Richtung Norden

Abb. 9d: Probe 211 Alaunschiefer-Polyeder; Übergang vom gebleichten zum ungebleichten Bereich

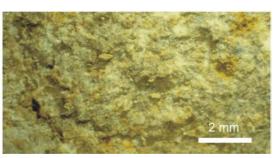


Abb. 9a-f: Aufschlüsse und Einzelproben aus dem Unteren Graptolithenschiefer (S_1) von Hohenleuben (Weinbergbrüche). Abb. 9b zeigt die tertiäre Verebnungsfläche des Bergaer Sattels bei Hohenleuben. Im gebleichten, oberen Profilabschnitt des Steinbruchs ist eine Rinnenstruktur mit gebleichtem Alaunschieferschutt aufgeschlossen (Abb. 9e).

Klüfte zeigen in den bleichen Alaunschiefern oft dunkelgelbe bzw. honigfarbene glänzende, traubige Beläge, diese wurden auch in den Aufschlüssen im Gammigtal (Abb. 8 e,f) beobachtet. In den dunklen Alaunschiefern sind derartige Kluftfüllungen selten. Mitunter sind auf Schichtflächen gelbliche, glänzende, glatte Beläge vorhanden. Diese treten nicht durchgängig, sondern fleckig als "Ausblühungen" auf. Im Durchlicht erscheinen Dünnschliffpräparate solcher Krusten opak (Abb. 10e, Pr. 211-4), im Auflicht sind höherreflektierende Bestandteile der Kruste zu erkennen, die aber mengenmäßig nicht dominieren (Abb. 10f).

Im Dünnschliff sind die gebleichten und ungebleichten Bereiche kleinräumig deutlich abzugrenzen (Abb. 10a). Die ungebleichten Alaunschiefer sind fast durchgängig undurchsichtig, lokal treten Quarz-Konkretionen mit meist elliptischem Grundriß auf, deren Längserstreckung mehrere zehner Mikrometer beträgt.

Direkt am Rand solcher Quarzeinschlüsse ist schwarzes Material aus dem ungebleichten Alaunschiefer in wolkigen bis fädigen Aggregaten sichtbar (Abb. 10c (Pr. 129), Abb. 11c (Pr. 126)). Diese Aggregate sind nur wenige Mikrometer groß und zeigen keine biomorphe Struktur.

Die Quarzeinschlüsse können auch ausgelängt bzw. gängchenförmig vorliegen. Bemerkenswert ist die Anreicherung von opakem Material im dunklen Alaunschiefer direkt benachbart zu Quarzgängen (Abb. 11a). Die Quarzgängchen verlaufen schieferungsparallel (Abb. 11b).

Innerhalb weniger Mikrometer erfolgt zum gebleichten Bereich eine deutliche Erhöhung der Lichtdurchlässigkeit (Abb. 10a, 11d). Die gebleichten Bereiche besitzen eine dichte Matrix aus Tonmineralen, vereinzelt sind auch Hellglimmer sichtbar. Innerhalb der gebleichten Bereiche treten Mineralneubildungen auf. Einerseits handelt es sich um opake, aber nur schwach lichtreflektierende, wolkige Aggregate, die mehrere hundert Mikrometer Länge erreichen können (Abb10g). Andererseits sind dunkelgelbe, bernsteinfarbige Rhomben im Dünnschliff erkennbar (Abb. 10b, 10d), deren Größe X0 µm beträgt. Mikrosondenanalysen bestätigten, daß es sich dabei um Jarositneubildungen handelt.

Krustierende Mineralneubildungen erscheinen im Durchlicht fast durchgehend opak, allerdings ist der geschichtete Aufbau an durchscheinenden, X0 μm mächtigen Lagen erkennbar (Abb. 10e, Pr. 211-4). Im Auflicht zeigt sich, daß innnerhalb der Krusten ein Internaufbau existiert, es liegen im überwiegend schwach reflektierenden Material auch höherreflektierende Abschnitte vor. Diese besitzen eine Querschnittsmächtigkeit von X0 μm (Abb. 10e, 10f). Im Randbereich sind die sonst opaken Krusten dunkelrot durchscheinend.

Im gebleichten und ungebleichten Alaunschiefer sind würfelförmige Hohlräume zu beobachten. Deren Kantenlänge ist meist kleiner als 1 mm.

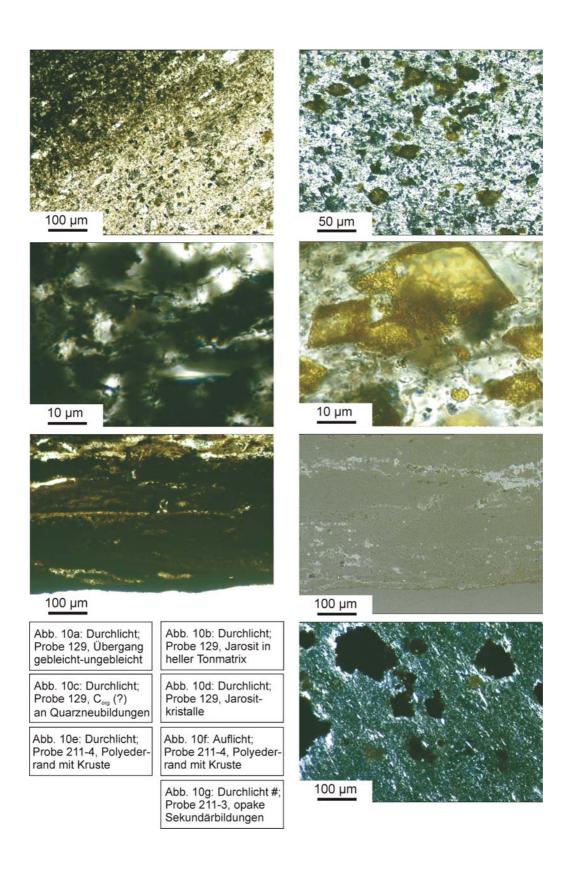


Abb. 10a-g: Dünnschliffmikroskopische Aufnahmen (# = Polarisator u. Analysator gekreuzt), Durchlicht, außer Abb. 10f. Abb. 10a-d: Alaunschiefer aus dem Oberen Graptolithenschiefer (S₃) vom Gammigtal, Abb. 10 e-f: Alaunschiefer vom Steinbruch Hohenleuben (Weinbergbrüche).

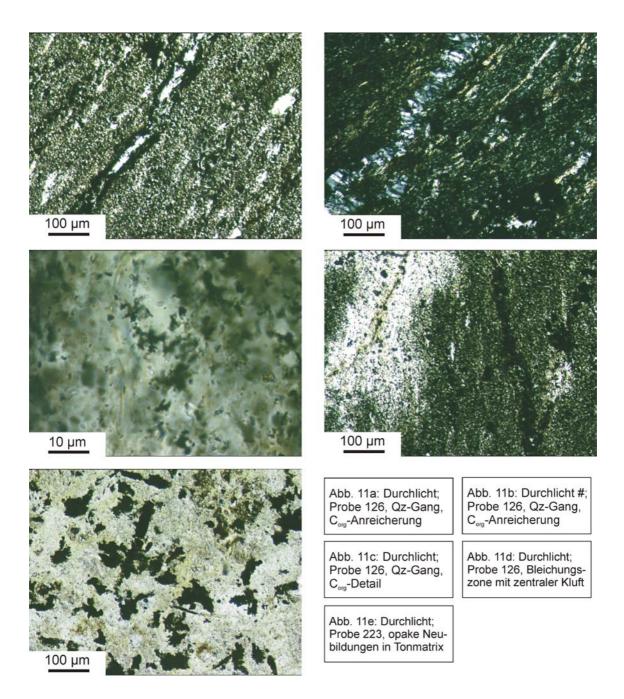


Abb. 11a-d: Dünnschliffmikroskopische Aufnahmen (Durchlicht, # = Polarisator u. Analysator gekreuzt) an teilweise verkieseltem Alaunschiefer aus dem Gammigtal (Probe 126).

Abb. 11e: Durchlichtaufnahme eines Dünnschliffpräparates der Probe 223: Gebleichter Alaunschieferschutt von Hohenleuben, Südbereich.

Beobachtungen im Oberen Graptolithenschiefer an der Steinernen Rose, Bergaer Sattel:

Vollständig von Diabas eingeschlossen befindet sich am Ostufer der Bleiloch-Talsperre in einem Eisenbahneinschnitt ein Aufschluß von mehreren Dekametern Länge im Oberen Graptolithenschiefer (SCHLEGEL & WIEFEL 1998). Es steht weicher, tiefschwarzer Alaunschiefer an, der keine Bleichung zeigt (Abb. 12a). Sehr häufig sind in dem plattigen Gestein Abdrücke von Graptolithen, die nicht nur silbrig glänzend auftreten, sondern überwiegend rostrote Färbung

(Abb. 12b) besitzen. Häufig zeigt dieser Alaunschiefer durchgängige gelbbraune bis rostbraune Beläge auf natürlichen Grenzflächen der Gesteinspolyeder. Diese Beläge sind unter dem Binokular als glänzende, traubig-nierige Überzüge erkennbar (Abb. 12c, 12d). An frischen Gesteinsbruchflächen ist sichtbar, daß der schwarze Alaunschiefer mit diesem rostbraunen Material auch im Inneren von Gesteinspolyedern imprägniert sein kann.

Beobachtungen im Kieselschiefer, Unterer Graptolithenschiefer, Auberg:

Im ehemaligen Steinbruch Auberg, östlich von Ronneburg, ist stark silifiziertes, hartes, splittrig brechendes Gestein aufgeschlossen. Hier ist keine Wechsellagerung von Kiesel- und Alaunschiefern zu beobachten, es tritt nur stark verkieseltes Gestein auf. Der Lydit besitzt makroskopisch sichtbar farblich variable Abschnitte (Abb. 12e), zusätzlich zu dunkelgrauschwarzen und weißen Bereichen sind rötliche Farbabstufungen in metermächtigen Profilabschnitten aufgeschlossen: Es treten rötliche (121-2), violette (121-1), dunkelgraue (121-4) und hellgrauweiße (121-5) Kieselschiefer auf. Mitunter sind Laminierungen des durchgängig stark kieseligen Materials durch Farbunterschiede hervorgehoben.

Unter dem Binokular ist die feinkörnige Silifizierung nicht aufzulösen, allerdings sind einzelne Lagen mit grobkörnigen Kristallen (sub-mm-mächtig) sichtbar (121-3). Die bleichen Kieselschiefer können eine deutliche rotbraune Pigmentierung besitzen. Die Pigmentierung ist besonders deutlich an Kluftflächen ausgeprägt. Hier treten bis mehrere hundert Mikrometer mächtige, pulverige Lagen rotfarbiger Beschichtung auf. Die Pigmentierung auf den Schichtflächen beruht auf homogener, disperser Verteilung der Pigmente, es existiert kein durchgehender Belag. Die violettfarbigen Kieselschiefer zeigen unter dem Binokular ebenfalls Pigmentierungen der Kluftflächen (deutlich, durchgängig, derb) und der Schichtflächen (dispers, gesprenkelt, nicht immer durchgängig). Die Farbe der Pigmente ist ein dunkleres Rot (vs. 121-2). Oft sind auch vollständig bleiche Gesteinspartien (cm- bis dm-Mächtigkeit, 121-5) den violetten Kieselschiefern zwischengeschaltet. Die hellen Kieselschiefer sind pigmentfrei und milchquarzartig durchscheinend. Trennfugen im Gestein enthalten oft weiße, weiche, talkartige Beläge.

Die dunkelviolette Pigmentierung kann auch in eine schwarze, teilweise metallisch glänzende Pigmentierung übergehen (121-4). Deutlich sichtbar ist unter dem Binokular, daß der mit Pigmenten belegte Kieselschiefer bleich, milchquarzartig durchscheinend, ist. Diese schwarze Pigmentierung wurde nicht auf Schichtflächen beobachtet, sie tritt nur als Kluftbelag auf.

Abb. 12a-d: Aufschluß in Alaunschiefer aus dem Oberen Graptolithenschiefer (S_3) an der "Steinernen Rose", Probe 225. Der ungebleichte Alaunschiefer ist örtlich rötlich-gelb umkrustet. Abb. 12e: Aufschluß im ehem. Kieselschiefersteinbruch "Auberg" mit überwiegend gebleichtem und gerötetem Lydit.

Beobachtungen im Oberen Graptolithenschiefer von Creunitz, Schwarzburger Sattel:

Am westlichen Ortsausgang von Creunitz ist in einem Hohlweg Oberer Graptolithenschiefer (etwa 2 m Profilmächtigkeit) mit Übergang zum Tentaculitenkalk aufgeschlossen. Der weiche Alaunschiefer ist im oberen Profilabschnitt vollständig gebleicht. Im liegenden Profilabschnitt herrscht kleinmaßstäbliche Bleichung vor, die von natürlichen Gesteinsgrenzflächen in die Gesteinspolyeder vorgreift. Auch hier werden Graptolithen im Gestein angetroffen. Die Ausbildung der natürlichen Grenzflächen im Gestein sowie die Bleichungserscheinungen ähneln den Beobachtungen aus dem Gammigbachtal bzw. vom Steinbruch Hohenleuben.

Beobachtungen im Unteren Graptolithenschiefer bei Ronneburg; Gessental:

In den quartären Sedimenten des Gessentals wurden in Rammkernsondierungen der WISMUT neben grauen Tonschiefern auch Alaun- und Kieselschieferbruchstücke angetroffen. Liegend zu diesen Sedimenten steht schwarzer Alaunschiefer an. Neben den Alaun- und Kieselschiefern sind in den quartären Hangschutt- und Bachsedimenten weitere Lithotypen, nämlich Kalkstein, Tonschiefer und Gangquarz vorhanden, die als Komponenten innerhalb der Bachsedimente auftreten. Zusätzlich wurden in Schürfen Pelite beobachtet, die den gröberen Schichten zwischenlagern.

Beobachtungen im Unteren Graptolithenschiefer von Schmiedefeld, Schwarzburger Sattel:

In Schmiedefeld ist in der ehemaligen Alaunschiefergrube "Morassina" Unterer Graptolithenschiefer aufgeschlossen. Im Bergwerk selbst sind an der Wechsellagerung von harten, stärker verkieselten und weichen, schwach bzw. nicht verkieselten Alaunschieferbänkehen keinerlei Bleichungserscheinungen zu beobachten. Auch an Störungszonen sind keine Hinweise auf Bleichung des Gesteins sichtbar. Allerdings treten auf den alten Abbauwänden bzw. -sohlen verschiedene Mineralneubildungen auf, die nach dem Einstellen der Bergbautätigkeit im Jahre 1860 gebildet wurden (MÜLLER 1993). Im Hangenden der Grube, an mehreren Aufschlüssen am Weg von der Grube zum Ortszentrum Schmiedefeld (Probe 251), ist obertägige Bleichung des Gesteins zu beobachten. Die Bleichung des Gesteins greift wiederum von den natürlichen Grenzflächen ins Innere der Alaunschiefer-Polyeder voran.

Das Mundloch der "Morassina"-Grube befindet sich in einem Tal namens "Schwefelloch". Hier sind mehrere Halden mit Material aus dem Unteren Graptolithenschiefer aufgeschüttet. Dieses Haldenmaterial wurde in den 1950er und 60er Jahren während der "WISMUT"-Bergbauaktivität aufgeschüttet und ist danach nicht umgelagert worden. Proben von der Haldenoberfläche (Pr. 248, 249, 250) besitzen oft eine gleichmäßige mittelgraue Färbung (trockener Zustand: Munsell-Farbe: N2-N3), erscheinen heller als ungebleichtes, untertägiges Material.

An einem neuangelegten Mundloch des Morassina-Stollens am Talausgang befinden sich Laugenbühnen aus der Zeit der letzten Alaungewinnung um 1860 (K. MÜLLER, pers. Mitteilung). Material dieser Laugenbühnen zeigt mm- bis cm-große, von mm-mächtigen Quarzgängchen umgebene, Hohlräume mit weichem Lockermaterial, das teilweise lagig auftritt. Sowohl dieses weiche Residualmaterial als auch das nicht angelöste Nachbargestein zeigen eine tiefschwarze Färbung (Pr. 252). Das Gestein liegt auf den Laugenbühnen nicht gebleicht und ohne Umkrustung von Mineralneubildungen vor.

Beobachtungen am Unteren Graptolithenschiefer von "Waldfrieden", Bergaer Sattel und dem Oberen Graptolithenschiefer von Döhlen bei Hohenleuben, Bergaer Sattel bestätigen die Beobachtungen zur Bleichung im Unteren und Oberen Graptolithenschiefer vom Bergaer und Schwarzburger Sattel.

Interpretation zur Petrographie:

Alaunschiefer und Kieselschiefer bzw. Lydite können im ungebleichten und gebleichten Zustand aufgeschlossen sein. Die Bleichung ist in zwei räumlichen Ausbildungen sichtbar, einerseits "durchgreifend", andererseits kleinräumig. Die vollständige, durchgreifende Bleichung tritt in den hangenden Profilabschnitten auf und kann, wie in Hohenleuben, Anschluß an die tertiäre Verebnungsfläche der Region besitzen. Die kleinräumige Bleichung ist an natürliche Grenzflächen im Gestein gebunden, insbesondere an Kluftflächen. Um die Klüfte sind millimetermächtige Bleichungshöfe ausgebildet. Diese können eine interne farbliche Zonierung besitzen, die grau-gelbe Farbtöne umfaßt. Dünnschliffmikroskopische Untersuchungen weisen darauf hin, daß die Bleichung im Zusammenhang mit der Abfuhr scheinbar µm-großer fadenförmiger bzw. wolkiger opaker Aggregate steht. Diese einzelnen Aggregate sind nur an den Grenzflächen zu SiO₂-Einschlüssen sichtbar, da sonst eine durchgehende "Verfilzung" der Aggregate vorliegt, die den Dünnschliff fast durchgehend opak erscheinen läßt. Dünnschliffmikroskopsich wurde kein strukturiertes organogenes Material erkannt. Zwar ist der ungebleichte Alaunschiefer deutlich schwarz gefärbt und enthält erhebliche Mengen an organischem Kohlenstoff (vgl. Interpretation zur Geochemie, org. Kohlenstoff). Jedoch fehlen artikulierte Strukturen im µm-Bereich, die als Träger des organischen Kohlenstoffs zu identifizieren sind, wie bspw. Acritarchen oder Chitinozoen.

Dünnschliffmikroskopische Untersuchungen an unverwitterten und gebleichten Schwarzpeliten zeigen Sekundärminerale. Es tritt Jarosit auf, dieser kann bernsteinfarbig-durchscheinende, rhombenförmige idiomorphe Kristalle ausbilden. Sulfidkristalle fehlen sowohl im gebleichten als auch ungebleichten Material. Mitunter sind würfelförmige Porenräume anzutreffen, aus denen möglicherweise Pyrit gelöst wurde. Opake Krusten auf dem Alaunschiefer, die in geringmächtigen Randbereichen im Dünnschliff rötlich durchscheinen, bestehen offenbar aus Hämatit.

Allerdings kann auch Jarosit in Aggregaten am Aufbau der oberflächlichen Krusten beteiligt sein.

Eine solche mächtige Silifizierung der Unteren Graptolithenschiefer wie am Auberg ist in der Literatur nicht beschrieben (SCHLEGEL 1995). Bemerkenswert ist die über mehrere Meter aushaltende ähnliche Färbung des Gesteins. Der Kieselschiefer liegt weitgehend gebleicht vor und ist an einigen Profilabschnitten durchgreifend mit Hämatit (?) gefärbt. Die talkartigen, weichen Massen auf Grenzflächen im bleichen Kieselschiefer sind möglicherweise unverkieselte, jetzt gebleichte Alaunschieferlaminae. Schwächerverkieselte Profilabschnitte mit Alaunschiefer-Lagen wurden nicht gefunden. SCHIEBER et al. (2000) verweisen auf die diagenetische Bildung von Quarz als Hauptursache für Quarzkörner in pelitischem Material. Allerdings wurden keine kieseligen Fossilien beobachtet, die als Ausgangsmaterial für die Verkieselungen in Frage kommen (HESSE 1990). Offenbar sind durch die Diagenese fossile Kieselorganismen abgebaut worden.

In Alaunschiefer, der von der stratiformen Verkieselung nicht betroffen ist, sind Graptolithen in silbrig glänzender (Gümbelit oder kohlige Substanz, SCHLEGEL 1974) und rostgelber Erhaltung vorhanden.

3.2 Geochemie der Verwitterung

Die petrographisch nach ihrem Verwitterungszustand unterschiedenen Proben wurden geochemisch charakterisiert.

Kohlenstoff-, Stickstoffgehalt

Beobachtungen:

Kohlenstoff und Stickstoff-Elementanalysen zeigen, daß die ungebleichten Lithotypen generell relativ viel organischen Kohlenstoff enthalten, nämlich zwischen ~ 6 und 23 Gew. % (Proben 207-2, 208, 209-3, 211-6/b, 212, 224-2, 225-b2, 229, 230; Anhang). Demgegenüber beträgt der Kohlenstoff-Gehalt der gebleichten Proben etwa 1 Gew. % (121-1-5, 129c, 133, 211-3, 224-1, 228, 231). Nicht vollständig gebleichte Proben (213, 211-4a/b) zeigen 1-2 Gew. % Kohlenstoff. Schwarzer Graptolithenschiefer enthält oft auch mehr Stickstoff (0.2-0.5 Gew. %, Proben 207-2, 208, 209-3, 211-6b, 212, 229) als bleicher Graptolithenschiefer. Diese führen oft, aber nicht immer, weniger als 0.2 Gew. % Stickstoff.

Der Verlust an organischem Kohlenstoff und Stickstoff durch Bleichung geht aus Tab. 10 hervor: Kohlenstoff- und Stickstoffgehalt nehmen ausgehend vom schwarzen Polyederzentrum nach außen hin zu den polyederbegrenzenden Kluftflächen ab.

Tab. 10: Kohlenstoff- und Stickstoffgehalt eines randlich gebleichten Alaunschieferpolyeders aus dem Stbr. Hohenleuben (Nordbereich), Probe 211-2a-d (Abb. 13)

Farbzone	C [Gew. %]	N [Gew. %]
a) hellgrau b) braungrau c) dunkelbraungrau d) schwarz	1,35 1,55 2,42 8,08	0,16 0,16 0,18 0,23

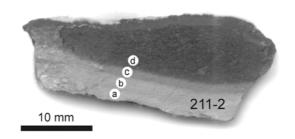


Abb. 13: Probe 211-2, zonierte Bleichung (a-d): Alaunschiefer aus dem Unteren Graptolithenschiefer, Hohenleuben.

Interpretation:

Bleichende Gesteinsverwitterung der Alaunschiefer ist mit einem drastischen Abbau von organischem Kohlenstoff verbunden. Hellgraue bis weiße Bleichung des Gesteins entspricht Kohlenstoffgehalten von ~ 1 Gew. %. Ungebleichte Proben enthalten generell deutlich mehr als 1 Gew. % Kohlenstoff, graue Proben (Übergang verwittert-unverwittert) führen zwischen ca. 1-2 Gew. % Kohlenstoff.

PEUCKER-EHRENBRINK & HANNIGAN (2000) haben ebenfalls frische und verwitterte Schwarzschiefer (Ober-Ordovizium, Utica Shale Magnafacies, Québec) untersucht und festgestellt, daß

farbveränderte, hellere Schwarzpelite einen deutlichen Verlust an C_{org} aufweisen, nämlich 44-96 % des ursprünglichen Gehalts.

LITTKE (1993) verweist darauf, daß der Bleichungsverwitterung die Eisensulfidverwitterung vorangeht. Die Anwesenheit von Pyrit ist deshalb ein Indiz dafür, daß Bleichungsverwitterung noch nicht eingetreten ist.

Ähnlich verhält sich der Stickstoffgehalt der Proben, möglicherweise tritt Stickstoff assoziiert mit dem organischen Kohlenstoff auf. Es ist aber auch denkbar, daß der Stickstoffgehalt den mikrobiellen Befall des Gesteins widerspiegelt.

Hauptelementgehalte

Beobachtungen:

Vergleiche zwischen gebleichten und ungebleichten Alaunschiefern betreffs ihrer Hauptelemente aus RFA-Analysen sind zweckmäßigerweise in Normierung ohne LOI zu betrachten, um durch C_{org} -Verlust bei Bleichung keine Anreicherungen der Hauptelemente vorzutäuschen (Anhang: Hauptelemente mit und ohne LOI).

Röntgenfluoreszenz-Analysen der Hauptelemente zeigen mit dem SiO₂-Gehalt den Verkieselungsgrad der Proben an. Die gebleichten Kieselschiefer vom Auberg führen mehr als 95 Gew. % SiO₂. Alaunschiefer (S₁ und S₃) besitzen im frischen Zustand, abhängig von C_{org}-Führung und Verkieselungsgrad, 60-80 Gew. % SiO₂.

Aluminium wird durch den Bleichungsprozeß im Verhältnis zu Silizium mengenmäßig nicht beeinflusst. Laserablationstraversen mit der ICP-MS zeigten, daß das Al/Si-Verhältnis auf einer Profillänge von 3 mm (Übergang ungebleicht-grau-weiß, Probe 129, Profil 3, Gammigbachtal, S3) kaum variiert (Abb. 20).

 TiO_2 ist in frischem Alaunschiefer mit $0.1 \sim 0.5$ Gew. %, in gebleichten und umkrusteten Proben mit bis zu 1 Gew. % enthalten. Eine "Rinnenfüllung" aus verwitterten Alaunschieferbruchstücken im Stbr. Hohenleuben (Pr. 223) führt 5.4 Gew. % TiO_2 .

Durchschnittlich enthält Alaunschiefer in den untersuchten Lokalitäten etwa 1 Gew. % **Fe₂O₃**. Gebleichte Proben können weniger, aber auch wesentlich mehr Eisen aufweisen. Letzteres ist für umkrustete Graptolithenschiefer typisch (1-5, mitunter bis 20 Gew. %: 211-4, 225).

MnO-Gehalte sind größer als 0.1 Gew. % für karbonathaltige Proben (137, 187). Dies bezeugen auch die **CaO**-Mengen (> 10 Gew. %). Alle anderen Alaun- und Kieselschiefer besitzen meist um 0.01 Gew. % MnO bzw. < 0.5 Gew. % CaO.

Erhöhte **Phosphor**werte ($> 0.1 \sim 0.4$ Gew. %) treten kaum auf. Deutliche Änderungen des Phosphorgehaltes im Gesamtgestein durch Bleichung sind nicht erkennbar.

Stärkere Variationen zeigt der Gehalt an **Schwefel** aus Sulfiden und denjenigen Sulfaten, die bis 950°C zersetzt werden (Schmelzlingherstellung für RFA). Vor allem krustierte Proben können einen hohen Schwefelgehalt, zwischen 1000 und 10000 ppm, aufweisen. Unverwitterte Alaun-

schiefer führen teils bis zu mehrere Tausend ppm Schwefel, teils aber auch erheblich weniger. Thermisch stabilere Sulfate treten nur untergeordnet auf, der Anteil liegt meist deutlich unter 1000 ppm.

Interpretation:

LEUTWEIN (1951) diskriminiert Alaun- von Kieselschiefern bei SiO₂ = 80 Gew. %, SZUROW-SKI (1967) bei 85 % und nennt Durchtrümerung mit Quarz als Kieselschiefercharakterisierung. Aluminium wird bei der Bleichung nicht mobilisiert, das Al/Si-Verhältnis ändert sich bei

Tab. 11: Vergleichende Darstellung des Chemismus der Unteren Graptolithenschiefer in Ostthüringen. SZUROWSKI (1967) analysierte 56 untertägige Schlitzproben, LEUTWEIN (1951) 25 Einzelproben. Die Analysen erfolgten naßchemisch, Angaben in [%].

	Szurowski (1967)	Leutwein (1951)
SiO ₂	67,7	86,8
Al ₂ O ₃	4,9	2,7
Fe_2O_3	5,3	2,0
S_{ges}	3,3	0,2
C _{ges}	9,3	4,6
CaO	2,1	0,2
MgO	0,9	0,9
Mo	0,02	0,01
Cr	0,02	0,01
Cr	0,02	0,01

Bleichung eines Alaunschiefers nicht. LITTKE (1993) findet bei der Untersuchung des Posidonienschiefers ebenfalls keine bzw. nur eine sehr schwache Veränderung in der Menge an Quarz und Tonmineralen durch Bleichungsverwitterung. Mobilisierung bei der Bleichung erfährt im hier untersuchten Alaunschiefer hingegen Titan. Deutlich kommt dies in der hohen TiO₂-Führung einer Sedimentprobe zum Ausdruck, die aus einer Rinnenfüllung nicht bekannten Alters mit Bruchstücken aus der Bleichungszone Stbr. Hohenleuben (Südbereich) stammt. Der Anreicherungsfaktor (ungebleicht gegenüber gebleicht: "ausgelaugt") liegt bei etwa 15.

Eisen und Schwefel können durch Bleichungsvorgänge mobilisiert werden. Allerdings sind

Pyritkristalle oft auch im ungebleichten Alaunschiefer weggelöst (vgl. petrographische Beobachtungen). Im Posidonienschiefer hat LITTKE (1993) die Umwandlung von Pyritkristallen zu Eisenoxid/-hydroxid auch im ungebleichten Schwarzschiefer in Oberflächenaufschlüssen beobachtet. Sulfate treten als sekundäre Bildungen, wie bspw. der mikroskopisch und mikrosondenanalytisch nachgewiesene Jarosit, auf.

Eisenreiche Mineralneubildungen verursachen rötliche Umkrustungen des Gesteins. Diese Krusten bedingen einen hohen Fe-Gehalt im Gesamtgestein. Mitunter treten hohe Eisen- und sulfidische Schwefelgehalte in den Krusten vergesellschaftet auf.

Geringe **Phosphor**mengen in den Proben, unabhängig vom Bleichungszustand, deuten darauf hin, daß Phosphoritkonkretionen in den Proben enthalten sind. Ausführlicher wird die räumliche Verteilung dieser Konkretionen im Kapitel zur ortsaufgelösten Geochemie diskutiert. Makroskopisch sichtbare Konkretionen wurden nicht beprobt.

Spurenelementgehalte

Beobachtungen aus Gesamtgesteinsanalysen:

In Abb. 14 ist der V-Gehalt von Graptolithenschiefern über dem C_{org}-Inhalt dargestellt. Kohlenstoffarme (gebleichte), aber auch ungebleichte Schiefer enthalten einerseits relativ wenig Vanadium. Allerdings können bei gebleichten und ungebleichten Lithotypen auch sehr hohe V-Gehalte erreicht werden. Ähnlich verhalten sich Ba, Cr, Zn, Cu, Ni, Ce, Mo, Y und U in RFA-Gesamtgesteinsanalysen: Ungebleichte Proben enthalten einerseits höhere Spurenelement-Konzentrationen als die zugehörigen gebleichten Gesteinsabschnitte (Hohenleuben, Südbereich: 224-2, 224-1), andererseits können die gebleichten Proben auch spurenelementreicher als die ungebleichten (Hohenleuben, Nordbereich: 211-6, 211-3,4) sein. Proben mit krustierenden Mineralneubildungen zeigen die höchsten Spurenelementgehalte (225; 128, 211-4a).

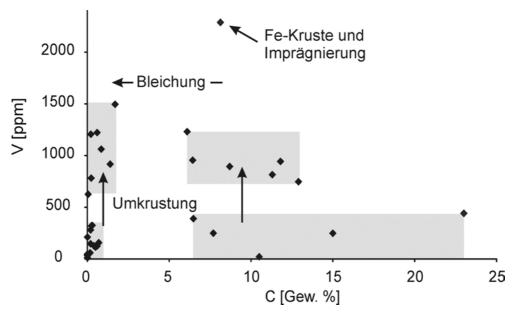


Abb. 14: Vanadiumgehalt [ppm] im Graptolithenschiefer aufgetragen über dem Kohlenstoffgehalt [Gew. %]

Aus der Grube Morassina, Schmiedefeld, wurde untertägig im Alaunschiefer (Unterer Graptolithenschiefer) schwarzes Material beprobt, das plastisch verformbar ist. Es handelt sich bei diesem mehrere Zentimeter mächtigen Horizont nicht um festen Alaunschiefer oder Kieselschiefer. Dieses Material ist vollständig aufschlämmbar. Der Lösungsrückstand einer Aufschlämmung dieser Probe (255) mit destilliertem Wasser wurde auf seinen Spurenelementinhalt mit Hilfe der ICP-MS untersucht. Sinnvoll sind nur qualitative Angaben über die Spurenelementführung, da das Lösungsverhalten der verschiedenen Elemente bei der Aufschlämmung nicht bekannt ist. In der Lösung wurden die Elemente Ni, Cu, Zn und besonders deutlich Ba nachgewiesen.

Interpretation:

Die Spurenelemente V, Ba, Cr, Zn, Cu, Ni, Ce, Mo, Y und U im Alaunschiefer sind bei Bleichungsprozessen mobilisierbar. Deshalb können gebleichte und ungebleichte Lithotypen relativ

arm an Spurenelementen sein. Bei Ausbildung von Fe-reichen Krusten können Spurenelemente zurückbehalten werden, ein Beispiel hierfür ist stark verkrusteter Alaunschiefer vom Aufschluß "Steinerne Rose" (Probe 225).

Die Adsorption von Spurenmetallen wie bspw. Cu, Zn, Pb und Cd an teilweise sulfathaltige Eisenoxide, die durch saure Grubenwässer entstehen, wird von WEBSTER et al. (1998) diskutiert: Insbesondere sulfatreiche Eisenkrusten zeigen starke Adsorptionseigenschaften. In dem rötlichen, eisenreichen Probenmaterial von der Steinernen Rose ist der Schwefelgehalt (> X000 ppm) im Vergleich zu ungebleichtem Alaunschiefer (X00 ppm) erhöht. Die spurenelementreichen Krustierungen enthalten neben reichlich Eisen auch Schwefel.

Vanadium wird auch im Kupferschiefer bei Oxidation nicht abgeführt. BECHTEL et al. (2001) diskutieren, daß Vanadium (Vanadyl-Porphyrine) aus dem Gestein nicht abgeführt, sondern in Hämatit und Tonmineralen angereichert wird. Dies steht in guter Übereinstimmung mit den hier vorgestellten Beobachtungen über Spurenelement-Akkumulation in krustierten Alaunschiefern. PEACOR et al. (2000) zeigen, daß Vanadium einerseits im organischen Material eines Schwarzpelits, andererseits in größerer Menge in authigenen Illiten eingebaut ist. Das bedeutet, daß bei der Abfuhr von organischem Material Vanadium teilweise mobilisiert wird, der Vanadium-Anteil im Illit aber von der Bleichung unbeeinflußt bleiben kann.

Das aufschlämmbare schwarze Material aus der Grube "Morassina" (Pr. 255) – SZUROWSKI (1967) diskutiert derartiges Material als Rückstand gelöster Karbonatbänkchen – verdeutlicht, daß Cu, Zn, Ni und insbesondere Ba in wäßriger Lösung daraus mobilisiert werden könnnen.

BECHTEL et al. (2001) fanden im Kupferschiefer von SW-Polens erhöhte Co-, Ni- und Mo-Gehalte bei erhöhter Schwefelführung, einerseits in Pyrit, andererseits in weiteren Sulfiden. Mobilität bzw. Abfuhr von Ni wird mit der Abfuhr von Ni-Porphyrinen bei der Oxidation von organischem Kohlenstoff in Zusammenhang gebracht, vgl. HAMMER et al. (1990). Ebenso wie im Alaunschiefer (SZUROWSKI et al. 1991) stellen BECHTEL et al. (2001) für den Kupferschiefer Uranmobilisierung (Uranyl-Komplexe) im oxidierenden Milieu und Uran-Repräzipitation an der Grenze zum reduzierenden Milieu fest.

Beobachtungen aus γ-Strahlen-Spektrometrie:

Die im Alaunschieferbruch Hohenleuben durchgeführten γ -spektrometrischen Messungen geben den Gehalt von ³⁹⁻⁴¹K, ²³²Th und ²³⁸U in Profilen im ungebleichten und gebleichten Graptolithenschiefer an (Abb. 15, 16; Anhang).

In dem kieselschieferreichen Litho-Profil aus dem Basisbereich des Steinbruches (Abb. 16) variiert der U-Gehalt kaum um den durchschnittlichen Gehalt von 15 ppm. Zwei sich von den ungebleichten bis in die gebleichten Faziesbereiche erstreckende Profile (Abb. 15) zeigen gleiche Tendenz, nämlich eine deutliche Zunahme des Urangehaltes von dem unverwitterten Graptolithenschiefer im basalen Teil (~ 30 ppm) zur gebleichten Verwitterungsdecke (~ 60 ppm). Kalium und Thorium zeigen keine Varianz (Anhang).

Interpretation:

Die γ-spektrometrischen Daten aus dem Stbr. Hohenleuben zeigen, daß die makroskopischvisuelle Unterteilung der Graptolithenschiefer in einen gebleichten und ungebleichten Lithotyp sich auch im Urangehalt widerspiegelt. Aus den einzelnen Profilen geht hervor, daß das frische, unverwitterte Gestein durchschnittlich etwa 15-30 ppm Uran enthält. In der gebleichten Fazies des Graptolithenschiefers steigt der Urangehalt deutlich an.

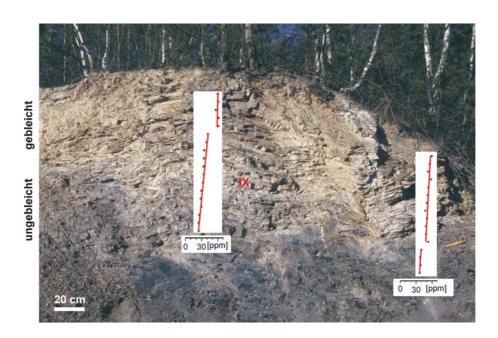


Abb. 15: Steinbruch Hohenleuben, Nordbereich. Wechsellagerung von Alaun- und Kieselschiefern aus dem Unteren Graptolithenschiefer. Darstellung der Konzentration an Uran [ppm] aus gammaspektrometrischen Messungen an zwei Profilen über den großräumigen Bleichungsbereich im Hangenden der ungebleichten Alaunschiefer.

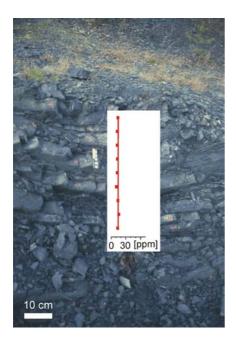


Abb. 16: Steinbruch Hohenleuben, Nordbereich. Wechsellagerung von Alaun- und Kieselschiefern aus dem Unteren Graptolithenschiefer, deutlich sichtbar sind die cm-mächtigen verkieselten Bänke. Dargestellt ist die räumliche Verteilung der Konzentration von Uran [ppm] aus gammaspektrometrischen Messungen.

Dieser Anstieg widerspiegelt den Mobilisierungsprozeß unter oxidierenden bzw. den Anreicherungsprozeß unter reduzierenden Bedingungen (SZUROWSKI et al. 1991). Die hier sichtbare Anreicherungszone für Uran ist demnach der Grenzbereich zwischen der Uran-Mobilisierungszone (oberer, hier erodierter Teil der Verwitterungsdecke) und dem unverwitterten Ausgangsgestein mit der ursprünglichen U-Konzentration (reduzierende Bedingungen).

Ortsaufgelöste Geochemie

Elementhäufigkeiten können eindimensional entlang von Laser-Ablationsprofilen mit der ICP-MS mit einer Ortsauflösung von \sim 30-50 μ m detektiert werden, aufgrund der hohen Nachweisempfindlichkeit (ICP-MS: sub-ppm vs. Mikrosonde: \sim 1000 ppm) ermöglicht dies insbesondere Aussagen zur räumlichen Verteilung von Spurenelementen. Flächige Elementkartierungen sind überwiegend für Haupt- und Nebenelemente mit der Mikrosonde möglich (Nachweisgrenze: 100 ppm, räumliche Auflösung \sim 3 μ m).

Räumliche Verteilung von Haupt- und Nebenelementen:

In Tab. 12 werden die Beobachtungen aus Flächenscans mit der Mikrosonde zusammengefaßt. In Abb. 17 sind als Beispiel die Element-Flächenscans des foliationsparallel präparierten Dünnschliffs (Probe 224-1p) eines gebleichten Alaunschiefers, Hohenleuben, Steinbruch-Südbereich dargestellt, Abb. 18 zeigt die Flächenscans eines ungebleichten Alaunschiefers (224-2, Hohenleuben), Präparation senkrecht zur Foliation. Die Probe 129c zeigt gebleichten Alaunschiefer (Oberer Graptolithenschiefer, Gammigbachtal), der eine Fe-reiche Kruste besitzt (Abb. 19), zusätzlich sind Phosphor und untergeordnet Schwefel an den Neubildungen beteiligt. Die weiteren in Tab. 12 ausgewerteten Elementkartierungen sind dem Anhang zu entnehmen. Die Meßfelder besitzen eine Größe von 500 * 500 µm².

Beobachtungen:

Generell zeigen Aluminium, Kalium und die in geringeren Konzentrationen auftretenden Elemente Natrium und Magnesium übereinstimmende Häufigkeitsmuster. Bei Proben, die senkrecht zur Foliation (Schichtung, Schieferung) präpariert sind, ist die subparallele Anordnung der Häufigkeitsmuster dieser Elemente sichtbar.

Phosphor und Eisen treten ebenfalls gemeinsam auf, aber in anderem Verteilungsmuster als die erste räumlich zusammengehörige Elementgruppe (I). Zusätzlich wurde insbesondere in Alaunschiefer aus dem Oberen Graptolithenschiefer das gemeinsame räumliche Auftreten von Kalzium und Phosphor bobachtet. Kalzium und Eisen kommen jedoch nicht am gleichen Ort vor, auch wenn beide Phosphor-Affinität zeigen. Im ungebleichten Alaunschiefer von Hohenleuben (Südbereich, Probe 224-2s) war das Verteilungsmuster von Eisen nicht wie in den anderen gleichlaufend zum Vorkommen von Phosphor, darüberhinaus auch nicht zu Schwefel. In allen

Bildern wurden BSE-Minima (schwarz, keine Intensität) beobachtet, deren Ausdehnung unterhalb oder an der unteren Grenze der räumlichen Auflösung des Detektors liegt (räumliche Ausdehnung: ein Bildpunkt).

Eine eisenreiche Verkrustung auf gebleichtem Alaunschiefer (Probe 129c) geht konform mit Schwefel-, untergeordnet auch mit Phosphoranreicherung. Diese Anreicherungen sind auch im Rückstreuelektronenbild sichtbar.

Tab. 12: Beobachtungen aus Mikrosonden-Element-Flächenkartierungen, vgl. Abb. 17-19 u. Anh. Bedeutung der verwendeten Abkürzungen in der Tabelle: AS1 = Alaunschiefer aus S1, AS3 = Alaunschiefer aus S3, p = schieferungs-/ schichtparalleler Dünnschliff, s = Dünnschliff senkrecht zur Schichtung/ Schieferung, + = hohe Intensität auf Rückstreuelektronenbild (BSE): hell; - = kein Signal auf Rückstreuelektronenbild (BSE): schwarz, (Element): geringe Konzentration dieses Elements detektiert.

Probe	Charakte- risierung	gemeinsam auftretende Elemente (I) (Silikate)	gemeinsam auftretende Elemente (II) (Phosphate, Sulfate)	Besonderheiten	BSE
224-1p	AS1, bleich, p	Al, K, (Na, Mg)	P, Fe	kaum/ nicht S	Fe, P: + ? < 3 μm: -
224-1s	AS1, bleich, s	Al, K, (Na, Mg)	P, Fe	kaum/ nicht S, Al, K: subparallele Strukturen	Fe, P: + ? < 3 μm: -
224-2s	AS1, schwarz, s	wie vor	weniger P	Fe nicht mit P, Fe nicht mit S	(S): - ? < 3 μm: -
225-р	AS3, schwarz, p	Al, K, (Na, Mg)	Ca, P und Fe, P	kaum S	Fe, P: + ? < 3 μm: -
225-s	AS3, schwarz, s	Al, K, (Na, Mg)	Ca, P und Fe, P	alle Elemente: subparallele Strukturen	Fe, P: + ? < 3 μm: -
230-1	AS1, schwarz, s	Al, K	P, Fe	Ca, subparallel	Fe, P: + Ca: - ? < 3 μm: -
129c	AS3, bleich, Kruste	Al	P, Fe, S	Fe-S-P-Kruste	Fe, P, S: +

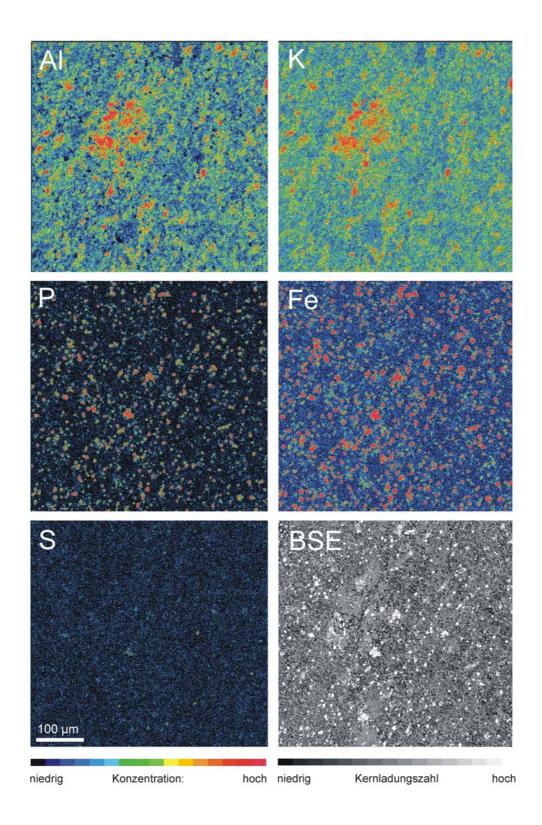


Abb. 17: Elementhäufigkeits-Kartierungen (Al, K, P, Fe, S) und Rückstreuelektronen-Detektion an gebleichtem Alaunschiefer aus Hohenleuben, foliationsparallele Dünnschliff-Präparation (Pr. 224-1)

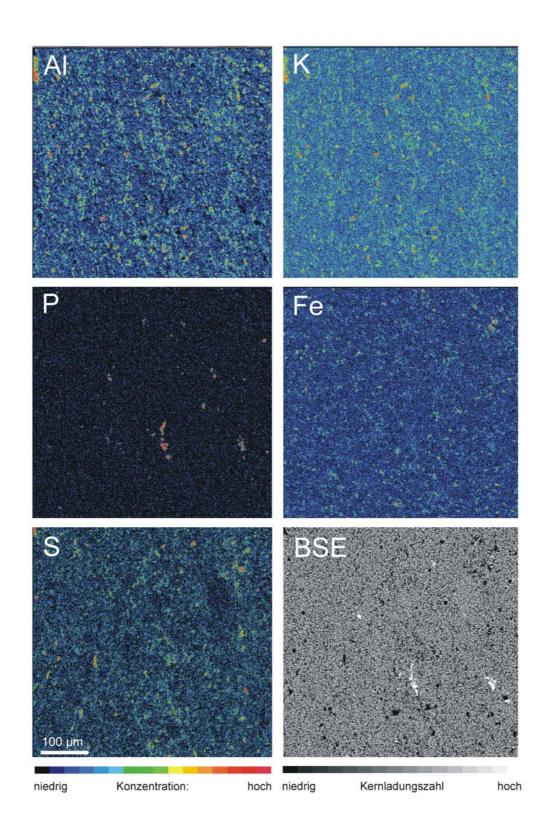


Abb. 18: Elementhäufigkeits-Kartierungen (Al, K, P, Fe, S) und Rückstreuelektronen-Detektion an ungebleichtem Alaunschiefer aus Hohenleuben, Dünnschliff-Präparation senkrecht zur Foliation (Pr. 224-2)

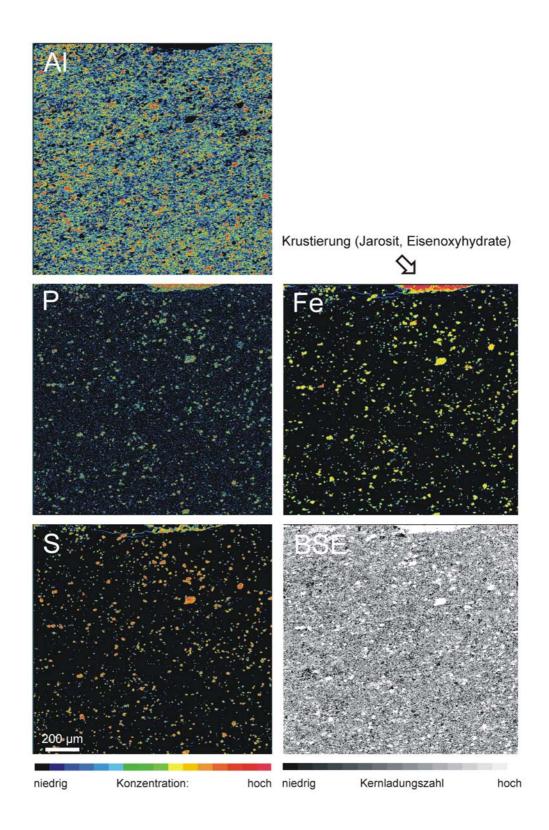


Abb. 19: Elementhäufigkeits-Kartierungen (Al, P, Fe, S) und Rückstreuelektronen-Detektion an gebleichtem und krustiertem Alaunschiefer (S_3) aus aus dem Gammigtal, Dünnschliff-Präparation senkrecht zur Foliation (Pr. 129c)

Interpretation:

Alaunschiefer besteht hauptsächlich aus K-, Al-, Si-reichen, mikrometergroßen Mineralen, die im Gestein eine Foliation ausbilden – unabhängig vom Bleichungszustand des Alaunschiefers. Dabei handelt es sich nach mikroskopischen Untersuchungen um Illit.

Das BSE-Bild weist darauf hin, daß häufig entweder sehr leichtes Material oder Porenraum im Alaunschiefer vorhanden ist, dessen Ausdehung kleiner ist als die räumliche Auflösung des Detektors, nämlich $\sim 3~\mu m$. Das belegt, daß organischer Kohlenstoff nicht in größeren Aggregaten im Gestein vorliegen kann.

Phosphor und Eisen treten gemeinsam auf, scheinen aber durch die Bleichung nicht deutlich beeinflußt. Phosphor kann auch gemeinsam mit Kalzium auftreten, möglicherweise als Apatit. Bemerkenswert ist der hier generell sichtbar geringe Gehalt an Schwefel, auch tritt Schwefel nicht gemeinsam mit Eisen auf, außer bei einer Verkrustung an der Gesteinsoberfläche (Probe 129c). Offenbar ist die Eisensulfidführung in diesen Proben schwach bzw. gar nicht ausgeprägt, die letztgenannte Fe-S-Korrelation (Pr. 129c) ist nach dünnschliffmikroskopischen Untersuchungen durch Jarosit-Neubildungen verursacht. Auch LITTKE (1993) hat beobachtet, daß in ungebleichtem Schwarzschiefer Eisensulfid abgebaut und zu Eisenoxiden/-hydroxiden umgewandelt sein kann. Dies erklärt auch, warum die Eisen-Schwefel-Korrelation in den hier untersuchten Proben so gering sein kann bzw. fehlt.

Räumliche Verteilung von Spurenelementen:

Beobachtungen: Ablations-Eigenschaften von Alaunschiefer

In Probe 129 (S3, Gammigtal, Übergang ungebleicht – gebleicht, Abbn. 20, 21) wurden Haupt-

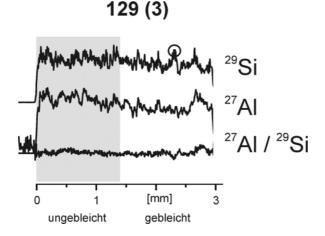


Abb. 20: Häufigkeit von Al und Si im ungebleichten und gebleichten Alaunschiefer (Probe 129). Al/ Si-Verhältnis für Überprüfung des halbquantitativen internen Standards Si.

und Spurenelemente detektiert. In Ermangelung eines inneren Standards wurden mit Hauptelement-Untersuchungen (Si, Al) die Ablationseigenschaften im Alaunschiefer überprüft. Die durchschnittlich detektierte Menge an Si und Al nimmt im Vergleich zum ungebleichten Probenabschnitt im gebleichten Probenbereich ab (Abb. 20). Trotzdem sind beide in gleichen Mengenverhältnissen über die gesamte Detektionslänge anzutreffen, das Verhältnis Al/Si bleibt konstant.

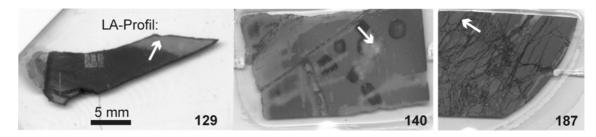


Abb. 21: Anschliffe der Proben 129 (Alaunschiefer $[S_3]$, teilweise gebleicht), 140 (Kieselschiefer $[S_1]$, Bleichung ausgehend von Klüften), 187 (verfaltete Karbonatgängehen in Alaunschiefer $[S_1]$). Die Pfeile visualisieren Lage und Länge der Laserablations-Profile für Analysen mit der ICP-MS.

Interpretation: Ablationseigenschaften von Alaunschiefer

Die Ablationseigenschaften des Alaunschiefers sind vom Bleichungszustand deutlich abhängig. Im gebleichten Bereich der Probe 129 sind geringere Mengen von Al und Si detektiert worden. Das konstante Al/Si-Verhältnis zeigt jedoch an – auch im Vergleich mit den XRF-Gesamtgesteinsanalysen – daß diese Mengenunterschiede nicht auf Konzentrationseigenschaften im Material, sondern auf unterschiedliche Ablationsfähigkeit, hier offenbar durch unterschiedliche Reflexionseigenschaften, zurückzuführen sind. Aus diesem Grund ist es sinnvoll, Elementverhältnisse (Element/Silizium) zu vergleichen. Damit wird Silizium als halbquantitativer innerer Standard eingeführt. Dies ist nur zulässig, wenn die untersuchten Probenbereiche Silizium in annähernd gleichmäßiger Verteilung enthalten. In der betrachteten Probe ist diese Randbedingung durch gleichmäßiges Vorkommen von Tonmineralen (vgl. mikroskopische Petrographie und Element-Kartierungen) gegeben. An Laminierungen oder Konkretionen, die frei von Si sind, versagt diese Methode. Bei der laminierten Probe 187 (Abb. 24), die Si-freie

Laminae enthält, konnte deshalb ein solcher halbquantitativer innerer Standard nicht eingeführt werden.

Kleinräumige Bleichung im Alaunschiefer (Probe 129):

Beobachtungen:

Ein teilweise gebleichter Alaunschiefer aus dem Oberen Graptolithenschiefer (Gammigbachtal) zeigt in einem Laserablationsprofil folgendes Elementverteilungsmuster:

Aluminium ist unabhängig vom Bleichungszustand in gleicher Menge detektiert worden, ebenso Schwefel und Barium. Für Phosphor und Cer ist durch die lokalen Häufigkeitsschwankungen kein deutlicher Trend durch die Bleichung sichtbar. Im ungebleichten Alaunschiefer sind deutlich mehr Kalzium, Eisen, Uran, Thorium und möglicherweise Lanthan enthalten als im unmittelbar benachbarten gebleichten Alaunschiefer. Die Häufigkeitsverteilungsmuster zeigen deutliche, aber kleinräumige Konzentrationsmaxima (etwa Ortsauflösung, peak-Form: nadelig) der Elemente U, Th, Ce, La.

Interpretation:

La, Ce, Th, U sind in Bereichen, deren Ausdehung weniger als bzw. um 50 µm beträgt, angereichert (~10 μm, vgl. Mikrosonden-Elementkartierung). Dies wird durch die schmalen, aber hohen Maxima in der Häufigkeitsverteilung angezeigt. Eine Maxima-Korrelation solcher kleinen Probenbereiche ist deshalb nicht möglich, weil die Elemente seriell detektiert werden. Ohne diese Maxima weist der durchschnittliche Verlauf der Häufigkeiten allerdings Ähnlichkeiten mit dem von P und Fe, nicht jedoch von Ca auf: Lanthanide, Th und U scheinen gemeinsam in eisen- und phosphatreichen Phasen aufzutreten. Besonders deutlich ist der ähnliche Verlauf der räumlichen Häufigkeitsverteilung für Uran und Phosphor, auch Cer. Diese Phasen enthalten weder Si noch Al. Kalzium zeigt keine Konformität mit der Minimum-/ Maximumverteilung von Phosphor, obwohl der gleiche Trend, nämlich Konzentrationsverringerung im gebleichten Alaunschiefer, vorliegt. Alaunschiefer enthält demnach Phosphate, die aber oft keine Ca-Phosphate sein können; dies wird durch die mikrosondenanalytischen Befunde gestützt. Das Auftreten des Cer-Phosphates Monazit (DEER et al. 1992, EVENS 1997) ist wahrscheinlich. Die Monazite könnten als Uran-Träger fungieren. Bleichung verursacht keine generelle Mobilisierung der SEE in kleinen Bleichungshöfen; die SEE-Maximaverteilung ist für gebleichte und ungebleichte Proben ähnlich. Bleichung scheint aber verantwortlich für die kleinräumige Konzentrationsverringerung von Uran, Eisen und Kalzium zu sein.

Kleinräumige Bleichung im Kieselschiefer (Probe 140):

Beobachtungen:

Das Al/ Si-Verhältnis bleibt im Übergang von ungebleichtem zu gebleichtem Kieselschiefer konstant. Phosphor erscheint im gebleichten Bereich geringfügig weniger enthalten zu sein als

im ungebleichten Kieselschiefer. Thorium und vor allem Uran sind im ungebleichten Kieselschiefer deutlich häufiger als im gebleichten. Bei Uran ist ein Übergangsbereich von ~ 1 mm Mächtigkeit zwischen den beiden Häufigkeitsniveaus zu beobachten. Ca, Fe, La, Ce zeigen keine Mengenänderungen im ungebleicht-gebleicht-Übergangsbereich.

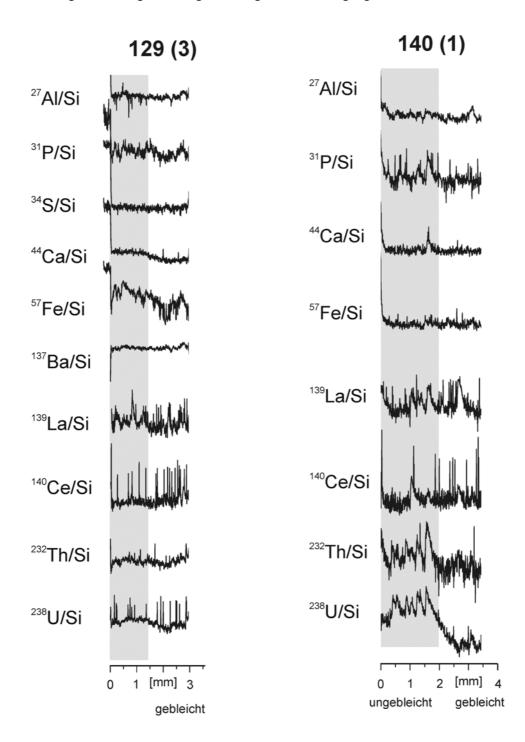


Abb. 22: ²⁹Si-normierte, logarithmierte, relative Elementhäufigkeiten aus ICP-MS-LA-Messungen.

Probe 129, Profil 3: Der Alaunschiefer besteht aus einem 1.3 mm mächtigen ungebleichten Bereich (links, graue Markierung) und einer ca. 1.5 mm mächtigen Bleichungszone rechts.

Abb. 23: ²⁹Si-normierte, logarithmierte, relative Elementhäufigkeiten aus ICP-MS-LA-Messungen.

Probe 140, Profil: Der Kieselschiefer besteht aus einem 2 mm mächtigen ungebleichten Bereich (links, graue Markierung) und einer ca. 1.5 mm mächtigen Bleichungszone rechts.

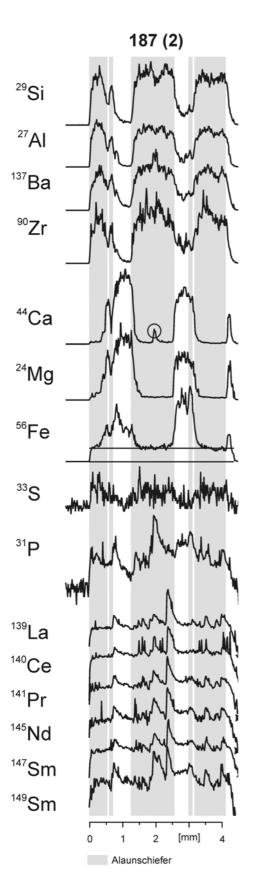


Abb. 24: nichtnormierte, relative Elementhäufigkeiten aus ICP-MS-LA-Messungen, für SEE logarithmiert. Probe 187, Profil 2: Sub-Millimeter-mächtige Karbonatgänge in Alaunschiefer

Kleinräumige Häufigkeitsmaxima treten insbesondere bei Cer und Phosphor auf. Die Kurvenformen mit Maximum-Minimum-Verteilung (Profilabschnitte von mehreren hundert Mikrometern) ähneln sich deutlich für Uran, Thorium, Cer, Lanthan und Phosphor. Kalzium variiert kaum in der Häufigkeit; ein Ca-Maximum geht einher mit Maximalwerten von P, aber auch U, Th, La, Ce.

Interpretation:

Die Affinität von Lanthan, Cer, Thorium, Uran zu Phosphor ist im Kieselschiefer ebenso verwirklicht wie im Alaunschiefer (vgl. Interpretation Probe 129), ein Indiz für phosphatische Bindung der genannten Elemente. Im Kieselschiefer ist wiederum Uran sensitiv für den Bleichungsvorgang; der Bleichungs-Übergangsbereich ist für Uran etwa 1 mm mächtig. Kalzium ist vom Bleichungsvorgang unbeeinflußt; es scheint lokal angereichert (konkretionär?) phosphatisch gebundenes Ca vorzuliegen, allerdings enthält dieses Phosphat wiederum La, Ce, Th, U.

Lamination:

Beobachtungen:

Probe 187 (Profil 2) ist mikroskopisch sichtbar laminiert, hier treten sub-mm-mächtige helle, verformte, karbonatische Gängchen auf (Abb. 24). Elementhäufigkeiten ohne Normierung mit innerem Standard zeigen übereinstimmende Häufigkeitsmaxima für Si, Al, Ba, Zr, S und teilweise auch P im dunklen Alaunschiefer und Ca, Mg, Fe in

hellen Karbonatlagen. Fe ist nicht auf die Karbonatlagen beschränkt. Im Alaunschiefer wird Fe immer noch deutlich über dem Hintergrundniveau detektiert.

Lanthanide (La, Ce, Pr, Nd, Sm) zeigen geringe und wenig schwankende Häufigkeiten in den Ca-dominierten Laminae. In Si-reichen Laminae wurden die Lanthanide mit höherer Konzentration detektiert als in den Karbonatlaminae, wobei oft P- und Lanthaniden-Maxima übereinstimmen. Als Ausnahme liegt eine Korrelation von einem Häufigkeitsmaximum von Ca, Ba, P und Lanthaniden vor, hier tritt ein Si-Minimum auf.

Interpretation:

Karbonatgängchen im Alaunschiefer sind Ca-, Mg- und Fe-betont, es treten neben Kalzium-karbonat auch Magnesium- und Eisenkarbonat auf. Allerdings ist das Fe-Vorkommen nicht auf die Karbonate beschränkt. Das wird am erhöhten Niveau der Fe-Häufigkeit im Alaunschiefer im Vergleich zur Hintergrunddetektion von Fe sichtbar. Fe tritt demnach im Alaunschiefer zusammen mit S, P, Si, Al, Ba und Zr auf. Die Affinität von Ba und Ca zu Phosphor wird an einem Ca-Maximum im Alaunschiefer deutlich. Möglicherweise liegt Ba phosphatisch gebunden vor. Die SEE zeigen ähnliche Häufigkeitsmaxima wie Phosphor. SEE-Einbau in Karbonaten ist gleichmäßig gering, im Alaunschiefer liegen kleinräumige Bereiche (Ø ~ X00 μm) mit SEE-Anreicherung vor, möglicherweise auch wieder mit Phosphor-Bezug.

Mineralneubildungen, Minerallösung

Beobachtungen:

Alaunschiefergesamtgesteinsproben (228-231, Anhang) zeigen röntgendiffraktometrisch Illit und Quarz. Im Oberen Graptolithenschiefer (228, 229) sind bei Gesamtgesteinsproben die peak-Höhenverhältnisse im Diffraktogramm zugunsten des Illits verschoben. Kieselschiefer (230, 231) zeigt in der Gesamtgesteinsanalyse kaum bzw. keinen Illit. Weitere Minerale wurden im Gesamtgestein röntgendiffraktometrisch nicht nachgewiesen. Der Mineralinhalt ist für gebleichte und ungebleichte Probengruppen gleich.

Vergleichend wurde die glykolisierte Tonkornfraktion ($< 2 \,\mu$ m) gebleichter und ungebleichter Alaunschiefer von Hohenleuben röntgendiffraktometrisch untersucht (Abb. 25). Probengruppe 230/231 stammt aus dem nördlichen, Probengruppe 224 aus dem südlichen Steinbruchbereich. Der Mineralinhalt dieser Probengruppen unterscheidet sich qualitativ nicht (Tab. 13). Außerdem sind keine Veränderungen in der Mineralführung durch die Bleichung des Gesteins röntgendiffraktometrisch zu beobachten. In allen Proben wurden wiederum Quarz und Illit (Muskovit) gefunden. Die Probe 223 aus dem oberen Profilabschnitt im südlichen Steinbruchbereich (umgelagerte gebleichte, plastisch verformbare Alaunschieferbruchstücke mit viel Matrixmaterial, Abb. 9e, f) enthält keinen Quarz und kaum Illit. Hier dominiert Kaolinit; Chlorit wurde durch Aufheizen der Probe auf 550°C ausgeschlossen. Die Reflexe bei $2\theta = 6.7^{\circ}$ bzw. 9.4°

sind ein Hinweis auf das Illit/ Montmorillonit-Wechsellagerungsmineral Rectorit, vgl. HEIM 1990, MOORE & REYNOLDS 1997, JASMUND & LAGALY 1993.

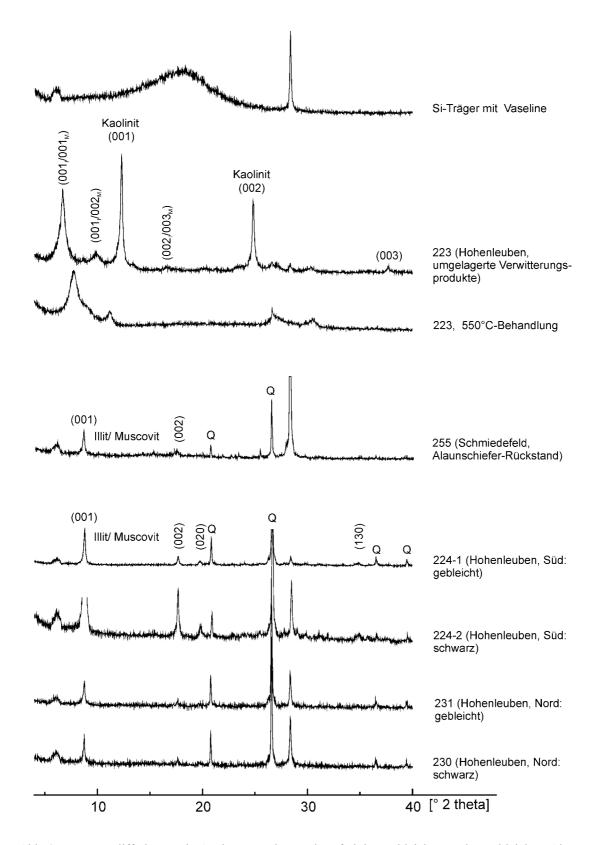


Abb. 25: Röntgendiffraktometrie-Analysen an der Tonkornfraktion gebleichter und ungebleichter Alaunschiefer von Hohenleuben und Schmiedefeld. Für Probe 223 ist zur Kaolinit-Identifizierung ein zusätzliches Spektrum nach thermischer Behandlung aufgenommen worden. Eine Leermessung des Trägermaterials Silizium ist zum Vergleich dargestellt.

Tab. 13: XRD an Schwebfraktion (Atterberg) < 2 μm, glykolisiert.

	Quarz	Illit/Musc.	Kaolinit	Rectorit
Hohenleuben N unverw. (211-2)	X	X		
Hohenleuben N verw. (211-1)	X	X		
Hohenleuben S unverw. (224-2)	X	X		
Hohenleuben S verw. (224-1)	X	X		
Hohenleuben S Verwschutt. (223)		(x)	X	X

Mikrosondenanalytisch (Tab. 14) wurde Jarosit (wassserhaltiges kalium-, schwefel- und eisenreiches Mineral) nachgewiesen (Probe 129b, Alaunschiefer (S₃), Gammigbachtal). Die auf dem Alaunschiefer aufsitzenden bräunlichen Krusten enthalten überwiegend Eisen, können aber nach den Elementkartierungen mit der Mikrosonde (Abb. 19) auch Schwefel einbauen.

Tab. 14: Ergebnisse der Mikrosondenanalytik an der randlich gebleichten Probe 129, Alaunschiefer (S₃). Linke Spalte: gelbbraunes Mineralkorn, rechte Spalte: dunkelbraune Kruste, aufsitzend auf gebleichtem Alaunschiefer

	Gew. [%]	Gew. [%]
SiO ₂	0	1.24
Na ₂ O	0.02	0
Ca0	0.09	0.88
K_2O	8.55	0.02
MnO	0.01	0
Al_2O_3	0.08	1.48
MgO	0.01	0.05
TiO_2	0.03	0.02
SO_2	28.36	0.28
FeO	40.75	69.86
P_2O_5	0.25	3.41
Bao	0.02	0.03
H ₂ 0	~ 20	~ 20
Σ^{2}	78.16	77.27

Interpretation:

Kieselschiefer führt im Vergleich zum Alaunschiefer kaum Illit, Alaunschiefer aus dem Oberen Graptolithenschiefer enthält mehr Illit als Alaunschiefer aus dem Unteren Graptolithenschiefer. Der Bleichungsprozeß bewirkt keine Veränderung der gesteinsbildenden Minerale im Alaunschiefer.

Die Elementgehalte von Mineralneubildungen, die im Mikroskopbild als gelbbraune, durchscheinende Rhomben mit mehreren hundert Mikrometern Kantenlänge sichtbar sind, deuten auf Jarosit hin (RÖSLER 1984). Sie treten in gebleichten und/ oder umkrusteten Proben im Oberen Graptolithenschiefer

des Gammigbachtals auf. Gelb-bräunliche Krusten enthalten nach Mikrosondenbefunden überwiegend Eisen, offenbar Eisenoxid-Hydroxid (Goethit). Untersuchungen an Opalinus-Ton von MAZUREK et al. (1996) zeigten dort einen erheblichen Zuwachs an Goethit und Eisen-Hydroxiden auf 5-10 Gew. % im verwitterten Gestein, während das unverwitterte Gestein weniger als 0.5 Gew. % enthielt. Dementsprechend sank der Gehalt an Siderit und Pyrit. DE PUTTER et al. (2000) finden in einem Verwitterungsprofil (tertiäre Glaukonitsande und Kalk) vom Hangenden zum Liegenden jeweils dominierend Jarosit, Eisenoxide, Al-reiche Sulfate und

Hydroxide, Gips und Mn-Oxide. Diese vertikale Zonierung wird begründet durch die Abnahme des Säuregehalts der durchsickernden Fluide.

Der variierende Gehalt an Sulfiden im ungebleichten Alaunschiefer spricht für oberflächennahen Sulfidabbau schon **vor** der Bleichung des Gesteins. Dies geht auch aus den Beobachtungen zur Lösung von würfelförmigen Mineralen aus dem ungebleichten Alaunschiefer hervor, vgl. petrographische Beobachtungen. Ein weiteres Indiz dafür sind Fe- und S-reiche Überzüge auch an ungebleichtem Alaunschiefer, bspw. an der Pr. 225.

Die Probe 223 von Hohenleuben ("Rinnenfüllung") zeigt eine vollständig andere mineralogische Zusammensetzung als die benachbarten gebleichten Alaunschiefer. Quarz und Illit treten hier kaum gesteinsbildend auf. Es dominieren Kaolinit und möglicherweise Illit/Smectit-Wechsellagerungsminerale. Hohe Fe- und Ti-Gehalte deuten auf Eisentitanoxid hin, schwefelführende Minerale fehlen hier.

SINGH & RAJAMANI (2001) beobachten eine starke Übereinstimmung von REE und TiO₂ in verwitterten Sedimenten und vermuten eine REE-Affinität zu Titanit bzw. seinen Verwitterungsprodukten. Fe-Oxid-Hydroxid-Krustierungen um Klasten scheinen ebenfalls als REE-Träger zu fungieren.

3.3 Quantifizierung der Gesteinsoberfläche

Bei Festkörpern wird zwischen äußerer und innerer Oberfläche unterschieden. Die in Abb. 26 rot hervorgehobene Fläche zeigt die innere Oberfläche, die schwarzen Partikelgrenzen markieren die äußere Oberfläche. Bei stark zerklüftetem Material mit schlauchartig ins Partikelinnere hineinziehenden Porenräumen definiert man als zur inneren Oberfläche zugehörig die Poreninnenflächen derjenigen Poren, die tiefer und länger als ihr Durchmesser sind (GREGG & SING 1991).

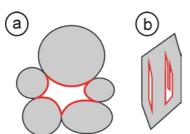


Abb. 26: Die rot markierten inneren Oberflächen können durch intergranularen (a) und intragranularen (b) Porenraum verursacht sein. Letzterer wird überwiegend durch Lösungserscheinungen im Korn verursacht, das Intergranularvolumen kann durch Mineralneubildungen teilweise oder vollständig eingenommen werden.

Für die Quantifizierung von Gesteinsoberflächen, nämlich von für Fluide zugänglichen Diskontinuitäten wie Schicht-, Schieferungs- und Kluftflächen bis zu intrakristallinen Porenräumen, sind Methoden mit sich überlappend ergänzender Ortsauflösung notwendig. Abb. 27 stellt das hier verwendete Methodenkonzept zur Oberflächenquantifizierung vor.

Oberfläche:	geometrische:	äußere:	innere:
	Schichtflächen Schieferungsflächen Kluftflächen	Relief der Mineralaggregate	Äußere Mineraloberfläche, Mineral-Intraporen
Gesteinsbestandteil:			
Analyse:	Paraffin-Ummantelung Polyeder-Geometrie	REM-VisualisierungRauhigkeit (optisch, mechanisch)	 Hg-Porosimetrie (Intrusion) N₂-Adsorption (BET)
Räumliche Auflösung (mit Überlappung) der Methoden:		kroskopische uhigkeiten 10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁶	Hg-Intrusion N ₂ -Adsorption I I I 3 10 ⁻⁷ 10 ⁻⁸ 10 ⁻⁹

Abb. 27: Methodenkonzept für die Oberflächenquantifizierung: gesteinsbildende Strukturen und ihre Analyse

Charakteristikum zur Klassifizierung von Poren ist neben ihrer Form (prolat, oblat, sphärisch, zylindrisch, kastenförmig) der Durchmesser. Porenräume von Sedimentgesteinen liegen in ihrem Durchmesser nahe der Korngröße der abgelagerten Partikel. Bei schlecht sortierten Sedimenten werden kleinere intergranulare Porenvolumina angetroffen (FÜCHTBAUER 1988). Sub-µm-große intragranulare Porenräume, insbesondere von Tonmineralen, lassen sich mit der bei GREGG & SING (1991) beschriebenen Klassifikation charakterisieren, siehe Tab. 15. Derart definierte Mikro- und Mesoporen besitzen einen kleineren Durchmesser als 50 nm. Diese Einteilung beruht auf unterschiedlichen Adsorptionseffekten, die sich in typischen Formen der Adsorptionsisothermen (GREGG & SING 1991, DIN 66134) äußern. Beispielsweise ist Hysteresis bei der Ad- und Desorption auf die Kapillarkondensation des Adsorbats in Mesoporen zurückzuführen. Makroporen sind vergleichsweise so groß, daß der bei der Adsorption gemessene Druck kaum vom Anfangsdruck abweicht.

Tab. 15: Klassifikation von sub-μm-großen Poren nach ihrem Durchmesser (GREGG & SING 1991) mit mineralogischen Beispielen (CZURDA 1998)

Durchmesser:	geologisches Äquivalent:				
Mikroporen 0.02 – 2 nm (20 Å)	intrakristalline Poren: Tonmineral-Zwischenschichten				
Mesoporen 2 – 50 nm	interkristalline Poren: Tonmineralschichtpaket-Zwischenräume				
Makroporen > 50 nm (500 Å)	Inter-/Intraaggregatporen: Mineralaggregat-Zwischenräume				

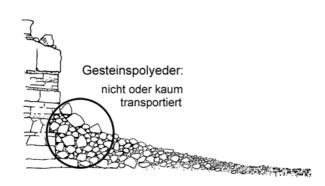
Die Ergebnisse der Oberflächenanalyse für den makroskopischen, lichtmikroskopischen und Submikrometer-Auflösungsbereich werden für eine skalenübergreifende Quantifizierung zusammengeführt (Kapitel: Hochskalierung der Oberflächendaten).

Geometrische Gesteinsoberfläche

m-mm-Auflösung: Aufschlußaufnahme, Partikelgeometrie, Gesteinsdichte

Beobachtungen:

Untersuchungen zur makroskopischen Erfassung von Gesteins- und Partikeloberflächen wurden insbesondere an Material aus dem Unteren Graptolithenschiefer (S_1) von Hohenleuben durchgeführt. In diesem Steinbruch sind mehrere Profile, die die Wechsellagerung von mm-cmmächtigen Lyditbänkchen mit mm-cm-mächtigen Alaunschiefern aufschließen, zugänglich. Natürliche Grenzflächen im Gestein sind Schichtflächen (Wechsellagerung: Lydit und unverkieselter Alaunschiefer), Schieferungsflächen und Kluftflächen. Die Grenzflächenabstände in Alaun- und Kieselschiefer im Bergaer Sattel überstreichen zwei Größenordnungen (Tab. 16).


Tab. 16: Natürliche Grenzflächen im Gestein: Größenordnung der Flächenabstände

Flächentyp:	Flächenabstand:		
Schichtflächen	mm-cm		
Schieferungsflächen	μm-mm		
Kluftflächen	cm-m		

Diese Grenzflächen im Gestein sind bevorzugter Ort für die Ausbildung von Sekundärmineral-Krusten (vgl. Petrographie). Der Abstand der Grenzflächen untereinander gibt die Größe der Gesteinspolyeder vor, die durch natürlichen Gesteinszerfall entstehen können (Abb. 28, nach WALTHER 1905).

Häufigkeitsanalysen an 130 Proben je Lithotyp (Alaunschiefer, Kieselschiefer, jeweils

ungebleicht und gebleicht) zeigen, daß der natürliche Gesteinszerfall an Schicht- und Kluftflächen lithologiegesteuert abläuft. In Abb. 29 ist für die vier genannten Lithotypen die Anzahl der Gesteinspolyeder über die Größe der Polyederoberfläche aufgetragen (Klassenbreite 25 cm²). Die Oberflächengröße wurde durch Ausmessen der Kantenlänge der Gesteinspolyeder

Abb. 28:

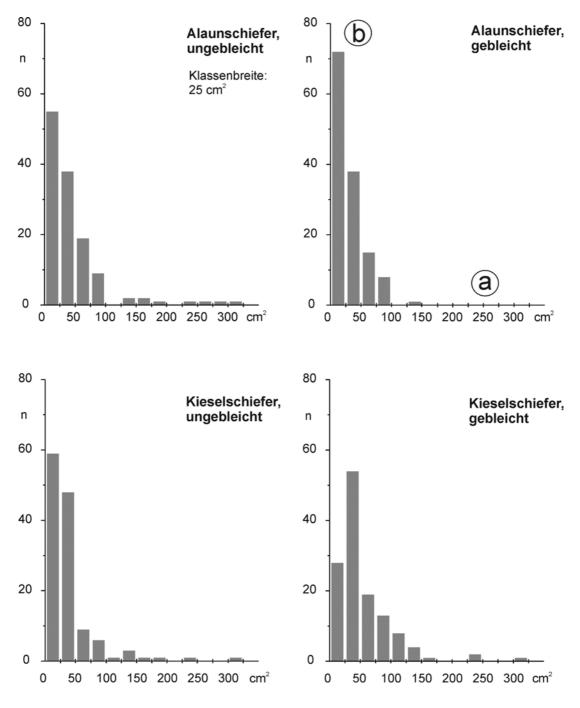
Entfestigung, Lockerung des Gesteinsverbandes bewirkt Gesteinspolyeder charakteristischer Größe, die unbeeinflußt von Transportvorgängen direkt vor dem Anstehenden lagern (Markierung) und von natürlichen Flächen (Schicht-, Schieferungs-, Kluftflächen) begrenzt sind. Abtransport der Gesteinspolyeder verursacht Zerkleinerung und damit Schaffung neuer Grenzflächen. (nach WALTHER 1905)

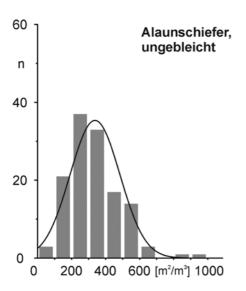
ermittelt, die Validierung dieser Methode über den Vergleich mit Paraffin-Ummantelung ist im Kapitel zur Methodik erläutert.

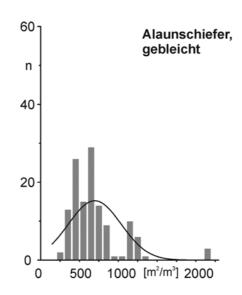
Alaunschieferpolyeder sind, unabhängig von ihrem Verwitterungszustand, meist kleiner als 25 cm². Verwitterte Alaunschiefer besitzen überwiegend kleine Partikeloberflächen, es treten keine Polyeder mit Oberflächen > 150 cm² auf. Größere Polyeder, mit Oberflächen bis 325 cm², bestehen nur aus ungebleichtem Alaunschiefer.

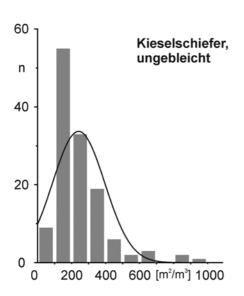
Kieselschieferpolyeder können ebenfalls Oberflächengrößen bis 325 cm² erreichen, die großen Oberflächen treten allerdings unabhängig vom Verwitterungszustand auf. Eine Zunahme der Anzahl der Polyeder, deren Oberfläche kleiner als 25 cm² ist, kann bei den verwitterten Kieselschiefern nicht festgestellt werden.

Die Grenzflächenhäufigkeit (Polyederoberfläche/ Polyedervolumen) für den jeweiligen Lithotyp ist in Abb. 30 dargestellt. Der Mittelwert der Oberflächendichte für jeweils 130 Gesteinspolyeder und die zugehörige Standardabweichung geben an, welche Grenzflächengröße in einem Kubikmeter des jeweiligen Gesteinstyps vorhanden ist (Tab. 17).




Abb. 29: Histogramme der Oberflächengröße für jeweils 130 Partikel der Lithotypen Alaunschiefer und Kieselschiefer (ungebleicht und gebleicht) aus dem Stbr. Hohenleuben. Die Klassenbreite beträgt 25 cm².


Ein Kubikmeter gebleichter Alaunschiefer besitzt einen größeren mittleren Grenzflächenbetrag als im gleichen Volumen des unverwitterten Alaunschiefers vorhanden ist, nämlich $\sim 700~\text{m}^2/\text{m}^3$ vs. $\sim 350~\text{m}^2/\text{m}^3$. Die Streuung der einzelnen Grenzflächenbeträge für die Polyeder um diesen Mittelwerte ist relativ groß: $\pm 350~\text{m}^2/\text{m}^3$ bzw. $\pm 150~\text{m}^2/\text{m}^3$.


Der Grenzflächenbetrag der ungebleichten und gebleichten Kieselschiefer ist in ihrer Streuung überlappend. Die Grenzflächengröße der ungebleichten Kieselschiefer beträgt $\sim 250 \pm 150 \text{ m}^2/\text{m}^3$, die der gebleichten Kieselschiefer $\sim 300 \pm 100 \text{ m}^2/\text{m}^3$.

Tab. 17: Unterer Graptolithenschiefer, Hohenleuben: Mittelwert und Standardabweichung der Polyederoberfläche je Kubikmeter (mittlerer Grenzflächenbetrag [m²/m³]) für jeweils 130 Proben, vgl. Abb. 30.

Alaunschiefer		Kieselschiefer		
schwarz	gebleicht	schwarz	gebleicht	
350	700	250	300	
± 150	± 350	± 150	± 100	

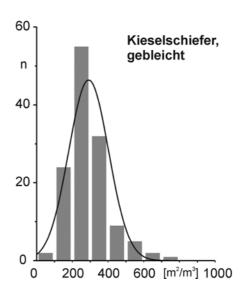


Abb. 30: Histogramme und Normalverteilungskurven der Grenzflächendichte $[m^2/m^3]$ für ungebleichte und gebleichte Alaun- und Kieselschiefer von Hohenleuben, jeweils 130 Proben. Die Klassenbreite beträgt $100 \text{ m}^2/\text{m}^3$.

Interpretation:

Alaunschiefer reagieren auf Verwitterung mit kleinstückigem Zerfall. Dies wird an der Häufigkeitszunahme der kleinsten Partikelfraktion (Oberfläche bis 25 cm²) deutlich. Gebleichter Alaunschiefer liegt – im Kontrast zur ungebleichten Fazies – nicht mehr in großen Partikelfraktionen (> 150 cm²) vor. Kieselschiefer behalten die Größenvorprägung durch Schichtungs- und Kluftflächen, hier ist durch Verwitterung keine Häufigkeitszunahme der Vorprägung kleiner Partikel vorhanden. Das gehäufte Auftreten mittelgroßer Kieselschieferpartikel (25-50 cm²) ist durch die Bankung in Abhängigkeit vom Verkieselungsgrad des Gesteins verursacht.

Der mittlere Grenzflächenbetrag [m²/m³] ist ein Abbild der Polyedergröße. Ein Gesteinstyp, dessen Volumen aus vielen Polyedern zusammengesetzt ist, besitzt in diesem Volumen eine große Grenzfläche. Aus diesem Grund ist der mittlere Grenzflächenbetrag von gebleichtem Alaunschiefer höher als der des ungebleichten Alaunschiefers. Die Unabhängigkeit der Polyedergröße der Kieselschiefer von der Bleichungsverwitterung geht deutlich aus der sich überlappenden Streubreite der einzelnen Grenzflächenwerte von Kieselschieferpolyedern hervor. Die Standardabweichung für die Größe ungebleichter Alaunschieferpolyeder sowie Kieselschiefer, unabhängig vom Verwitterungszustand, ist etwa gleichgroß. Die deutlich erhöhte Standardabweichung – und damit breitere Verteilung – der Polyedergröße nur für gebleichten Alaunschiefer bestätigen einen Einfluß der Bleichungsverwitterung allein auf unverkieselten Alaunschiefer.

Einerseits gibt das strukturelle Inventar mit dem kleinräumigen Abstand von Schieferungs- und Kluftflächen die Partikelgrenzflächen vor, andererseits wird der Zerfall des Gesteins in Polyeder für Kieselschiefer hauptsächlich durch den Verkieselungsgrad und die daraus resultierende Bankung verursacht. Bei Alaunschiefern steuert neben der deutlichen Schieferung der Verwitterungsgrad die Partikelgröße. Entfestigung unverkieselter Gesteine verursacht eine Erhöhung der Inanspruchnahme von Diskontinuitätsflächen im Gestein für Polyedergrenzflächen. Hierfür sind Schieferungsflächen im deutlich geschieferten Alaunschiefer prädestiniert. Bleichungserscheinungen bewirken im verkieselten Gestein keine signifikante Entfestigung mit Erhöhung der Grenzflächendichte.

Äußere Gesteinsoberfläche

mm-µm-Auflösung: Binokular, Lichtmikroskopie mit WLI & LSM,

REM-Visualisierung

Rauhigkeit einer Festkörperoberfläche ist die geometrische Abweichung von einer idealen glatten Oberflächenform. Diese Abweichung [Länge] wird als arithmetischer Mittelwert (R_a) oder als Standardabweichung Rq (auch rms-Rauhigkeit) aller Meßpunkte vom Mittenniveau angegeben. Die Summe der Beträge maximaler positiver und negativer Abweichung heiß Rauhtiefe R_t. Eine rauhe Fläche besitzt eine um den Rauhigkeitsfaktor F größere Gesamtfläche als die glatte Fläche gleicher Kantenlänge (Tab. 18). Die Rauhigkeit einer Oberfläche ist durch nichtperiodische Oberflächenabweichungen verursacht, im Gegensatz zu den periodischen Oberflächenabweichungen, die die Oberflächenwelligkeit verursachen (THOMAS 1999, DIN EN ISO 4287).

Tab. 18: Übersicht über Rauhigkeitsparameter und ihre Berechnungsvorschrift

Rauhigkeitsparameter:

Rauhtiefe:
$$Rt = z_{Max} - z_{Min}$$

Bezugsniveau:
$$\bar{z} = \frac{1}{n} \sum_{i=1}^{n} z_i$$

Mittenrauheit:
$$Ra = \frac{1}{n} \sum_{i=1}^{n} |z_i - \overline{z}|$$

rms-Rauhigkeit:
$$Rq = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (z_i - \overline{z})^2}$$

Rauhigkeitsfaktor:
$$F = A_{rauh} / A_{Me\beta feld}$$

Beobachtungen: Rauhigkeitsmessungen mit dem Profilometer DEKTAK

Die Rauhigkeit Rq beträgt für 3 mm lange Profile auf neu freigelegten Schieferungsflächen (parallel zur Schichtung, kontrollierbar durch Verkieselung), an denen Alaunschiefer leicht spaltbar ist, etwa 4-8 μm, unabhängig vom Bleichungszustand des Alaunschiefers (rms-Rauhigkeit Rq über TOC-Gehalt, Abb. 31). Diese Unabhängigkeit zeigen insbesondere die Rauhigkeitsmessungen an einer Bleichungsfront (Probe 211-2, Tab. 19, schwarz: richtungs-

geänderte Doppelmessung). Bei Profillängen von 100 μ m bzw. 300 μ m sind geringere Rauhigkeiten vorhanden ($\sim 1~\mu$ m). Richtungsabhängige Rauhigkeitsunterschiede sind nicht ausgeprägt. Allerdings sind richtungsabhängige Welligkeiten zu beobachten, hier können in einer Richtung mitunter deutlich erhöhte Beträge auftreten (Übersicht im Anhang). Kieselschieferbruchflächen sind mitunter stark reliefiert. Hier können vergleichsweise hohe Welligkeiten auftreten, die Rauhigkeiten ähneln denen der Alaunschiefer.

An Gesteinsoberflächen mit Mineralneubildungen (Krustierungen) wurden deutlich erhöhte Rauhigkeiten gemessen. An rötlich umkrustetem Alaunschiefer (225) wurden Rauhigkeiten von 10 bzw. 13.4 µm ermittelt. Niedrigere Rauhigkeiten (~3 µm) zeigen Proben, die auf ihrer

Tab. 19: Rauhigkeit Rq von Alaunschiefer (Probe 211-2): Übergang vom verwitterten zum unverwitterten Bereich

Probenabschnitt:	Rauhigkeit [µm]			
schwarz	4.9; 8.2			
grau	5.7			
weißgrau	5.4			

Oberfläche Spiegelharnische besitzen.

Profile der Meßlänge a bzw. b ($a \perp b$) wurden wiederholt parallel und senkrecht zueinander abgetastet. Daraus wurden durchschnittliche Polygonzuglängen a_P und b_P berechnet, die die wahre Weglänge über das Probenrelief angeben. Aus diesen senkrecht aufeinander stehenden, durchschnittlichen Polygonzuglängen läßt sich ein durchschnittlicher Betrag für die Größe der

rauhen Probenoberfläche berechnen. Der Quotient

$$F = \frac{a_P \ b_P}{a \ b}$$

spiegelt dabei den Rauhigkeitsfaktor F wider, der ausdrückt, um wieviel größer die rauhe Probenoberfläche im Vergleich zur Meßfeldfläche ist.

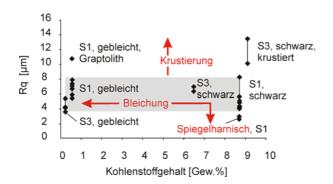


Abb. 31: Rauhigkeit (Rq) in Anhängigkeit vom Verwitterungszustand (TOC-Gehalt) der Proben, aufgenommen auf 3000 μ m langen Profilen. Pfeile markieren die Entwicklung der Rauhigkeit, ausgehend von unverwittertem, schwarzen Alaunschiefer.

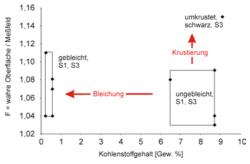
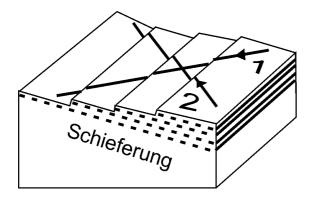


Abb. 32: Rauhigkeitsfaktor F (= wahre Oberfläche/Meßfeldfläche) für Alaunschiefer in Abhängigkeit vom Verwitterungszustand; Profillänge: 3000 μm. Lithotypspezifische Daten sind zusammengefaßt (Rechteck).

Für unterschiedlich stark verwitterte Proben ist der Rauhigkeitsfaktor F in Abb. 32 dargestellt. Bemerkenswert ist die breite Streuung der Rauhigkeitsfaktoren zwischen 1.03 und 1.15. Mineralkrusten besitzen hohe Rauhigkeitsfaktoren, ein Spiegelharnisch zeigt einen kleinen Betrag für den Rauhigkeitsfaktor. Der Mittelwert mit Standardabweichung des Rauhigkeitsfaktors für ungebleichten Alaunschiefer beträgt 1.07 ± 0.04 , für gebleichten Alaunschiefer 1.06 ± 0.02 .

Ein Verzeichnis über die Rauhigkeitsdaten der Einzelproben bzw. Probengruppen befindet sich im Anhang.

Interpretation:


Betrag und Variabilität der Rauhigkeit für gebleichte und ungebleichte Alaunschiefer ähneln sich; es sind keine Rauhigkeitsunterschiede zwischen verwittertem und unverwittertem Gestein zu bemerken. Demnach bewirkt der Bleichungsprozeß keine strukturellen Änderungen des Gesteins, bspw. an Porengröße und Porenverteilung, die mehr als ca. $\sim 12~\mu m$ Lateral- und $\sim 1.5~\mu m$ Vertikalauflösung besitzen. Der Rauhigkeitsfaktor F ist für gebleichte und ungebleichte Gesteinsoberflächen ebenfalls ähnlich groß, Bleichung bewirkt keine Glättung oder Zerklüftung der Gesteinsoberfläche in dem genannten Auflösungsmaßstab. Die eng benachbarten Rauhigkeitsfaktoren und die sich überlappende Streuung der beiden Meßwertpopulationen zeigen deutlich, daß Bleichungsverwitterung keinen Einfluß auf die Größe des Rauhigkeitsfaktors hat.

Die deutliche Erhöhung der Rauhigkeit bei Profillängen im mm-Bereich weist auf die Ausbißlineare von Schieferungsflächen auf dem Meßfeld hin, die auch für erhöhte Welligkeiten verantwortlich sein können. Diese Interpretation wird durch mikroskopische Beobachtungen gestützt. Der Abstand der Schieferungsflächen liegt im X00 µm-Bereich. Deshalb sind bei Profillängen in dieser Größenordnung noch keine Welligkeit bzw. kein deutlicher Rauhigkeitseinfluß zu erwarten.

Die richtungsabhängigen Welligkeiten sind mit Vorzugsrichtungen durch Schieferung auf der Probenfläche zu erklären. Auch zwei zueinander senkrecht angeordnete Profile können Welligkeiten aufweisen, nämlich dann, wenn kein Profil parallel zum Schieferungslinear ausgerichtet ist (Abb. 33).

Krustierende Mineralneubildungen bewirken eine deutliche Erhöhung der Oberflächenrauhigkeit. Die Mineralneubildungen können einerseits eisenreiche Neubildungen sein, andererseits kann es sich um Gümbelit-Fossilisierung von Graptolithen (SCHLEGEL 1995) handeln. Die erhöhte Rauhigkeit krustierter Oberflächen widerspiegelt sich in einer erhöhten Gesteinsoberfläche: Während die Probenoberfläche sonst etwa die 1.06-1.07fache Fläche des Meßfeldes

besitzt, bewirkt die Krustierung eine Flächenerhöhung auf das 1.15fache. Die vergleichsweise glatte Oberfläche von Spiegelharnischen wird durch niedrige Rauhigkeitswerte dokumentiert.

Abb. 33:

Periodische Oberflächenformen führen zur Welligkeit des mit dem Profilometer aufgenommenen Oberflächenprofils. Rauhigkeitsanalysen erfolgen deshalb an Profilen, deren Welligkeiten gefiltert wurden. Die Welligkeit fehlt, wenn das Profil parallel zum Schieferungsausbiß aufgenommen worden ist. Senkrecht zur Schieferung ist die Wellenlänge am kürzesten. Für die senkrecht zueinander aufgenommenen Profile 1 und 2 werden annähernd gleichgroße Welligkeiten beobachtet.

Beobachtungen: optische Rauhigkeitsanalyse

Mit dem Weißlichtinterferometer (WLI) und dem Laser-Scanning-Mikroskop (LSM) wurden Alaunschiefer-Flächen optisch bzgl. ihrer Rauhigkeitsparameter (Rq, F) untersucht. Es handelt sich um vergleichende Analysen an gebleichten und ungebleichten Proben (Abb. 34). Probe 211-2b/c zeigt den ~ 3 mm breiten Übergangsbereich zwischen vollständig gebleichtem (211-2a) und ungebleichtem (211-2d, Abb. 13, Tab. 10) Alaunschiefer an einem Gesteinspolyeder-Randbereich.

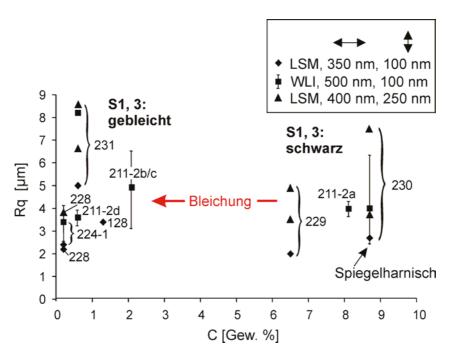


Abb. 34: Lichtmikroskopisch (LSM, WLI) ermittelte Rauhigkeit Rq in Abhängigkeit vom org. Kohlenstoffgehalt (Verwitterungszustand) der Alaunschiefer. Laterale und vertikale Auflösung für LSM und WLI sowie Spannweite der WLI-Wiederholungsmessungen gelten auch für Abb. 35 (Rauhigkeitsfaktor).

Die Rauhigkeit Rq liegt für die untersuchten Alaunschiefer im Bereich von etwa 2-9 μ m. Von dieser Schwankungsbreite sind sowohl die ungebleichten als auch die gebleichten Proben betroffen. Die erhöhten Rauhigkeiten im vertikalen Auflösungsbereich von 250 nm liegen in dem hier größeren Meßfeld (~ 34000 μ m²) begründet; hier ist der Einfluß von Schieferungslinearen auf die Rauhigkeit gegeben. Bei den kleineren Meßfeldern (LSM: ~ 9000 μ m², WLI: ~ 20000 μ m²; Kantenlänge: ~ 100-150 μ m) werden geringere Rauhigkeiten beobachtet (meist < 5 μ m).

Der Rauhigkeitsfaktor F (wahre Oberfläche/Meßfeldfläche) wird in Abb. 35 über dem Verwitterungsgrad der Alaunschiefer dargestellt. Die Probenoberflächen sind durch ihr Relief im unverwitterten Zustand 2-5fach so groß wie das Meßfeld.

Die gebleichten Proben erreichen etwa 3.5-6fache Flächenbeträge, ein gebleichter Alaunschiefer den 9.7fachen Betrag. Die Probe aus dem Verwitterungsübergang (211-2b/c) besitzt den Rauhigkeitsfaktor F = 4.

Der Mittelwert des Rauhigkeitsfaktors beträgt für die ungebleichten Alaunschiefer 3.9 ± 0.7 , für die gebleichten Alaunschiefer dagegen 5.6 ± 2.0 .

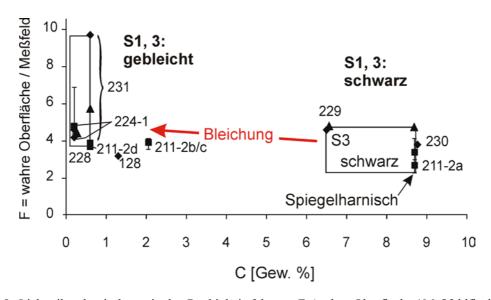


Abb. 35: Lichtmikroskopisch ermittelte Rauhigkeitsfaktoren F (wahre Oberfläche / Meßfeldfläche), abhängig vom Verwitterungszustand (C_{org} -Gehalt) von Alaunschiefer. Die Zusammenfassung der Meßpunkte für ungebleichte und gebleichte Alaunschiefer deutet eine leichte Erhöhung des Rauhigkeitsfaktors durch Bleichungsverwitterung an.

Interpretation:

Bei kleineren Meßfeldern (Kantenlänge < 150 μ m) ist die Rauhigkeit deutlich geringer als bei größeren Meßfeldern (Kantenlänge 184 μ m). Möglicherweise sind Schieferungslineare verschiedener Schieferungsgenerationen, mit unterschiedlichen Abständen dieser Lineare (vgl. Rauhigkeitsuntersuchungen mit DEKTAK, weitständigere Schieferung), für diese Rauhigkeitscluster (DEKTAK: mehrere hundert μ m, optische Rauhigkeit: \sim 100-200 μ m) verantwortlich.

Diese rauhen Strukturen treten unabhängig vom Bleichungszustand der Alaunschiefer auf, ein Bleichungseinfluß auf die Rauhigkeit ist nicht sichtbar. Diese Interpretation wird durch rasterelektronenmikroskopische Untersuchungen (Abb. 37) gestützt. Abb. 37 a zeigt engständige Schieferungslineare mit Abständen von < 10 μm in Alaunschiefer aus dem Oberen Graptolithenschiefer. Diese engständige Schieferung kann mit dem Profilometer nicht aufgelöst werden.

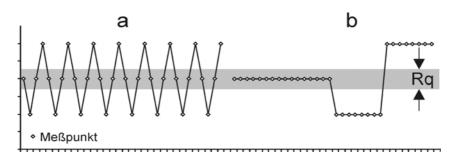


Abb. 36: Oberfläche (a) und (b) mit gleicher Rauhigkeit Rq (graues Band) und unterschiedlich großem Oberflächenbetrag (Rauhigkeitsfaktor F: Summe der Linienlänge zwischen den Meßpunkten): Oberfläche (a) besitzt einen deutlich höheren Oberflächenbetrag als Oberfläche (b) auf gleichlangem Meßprofil mit gleichgroßer Meßpunktdichte und gleicher Rauhigkeit Rq.

Ungebleichte Alaunschiefer besitzen ähnlich große Rauhigkeitsfaktoren wie die gebleichten Alaunschiefer. Mitunter zeigen die gebleichten Alaunschiefer jedoch eine größere rauhe Fläche als die ungebleichten Alaunschiefer, auch ist bei den gebleichten Proben die Schwankungsbreite für F höher. Es deutet sich aus diesen Ergebnissen an, daß gebleichte Alaunschiefer im Vergleich zu ungebleichten Alaunschiefern zwar ähnliche Rauhigkeiten Rq aufweisen, jedoch eine größere Oberfläche besitzen. Schematisch zeigt dies Abb. 36: Zwei Oberflächen gleicher Rauhigkeit Rq besitzen unterschiedlich große Oberflächen, im Schnittbild als Polygonzuglängen veranschaulicht. Diese Ergebnisse zur gleichen Oberflächenrauhigkeit der unterschiedlich hoch porösen gebleichten und ungebleichten Alaunschiefer widersprechen den allgemeinen Schlußfolgerungen von REBELLO et al. (1996), daß die Oberflächenrauhigkeit eines Gesteins immer linear von der Porosität abhängig ist. Dies würde bedeuten, daß eine hohe Porosität nur durch große Poren verursacht werden kann. Vielmehr kann der Zuwachs an kleinen Morphologie-Strukturen einen drastischen Einfluß auf Porenvolumina haben, auch dies geht aus Abb. 36 hervor.

Die mineralogisch eintönige, überwiegend illitische Zusammensetzung der Alaunschiefer verhindert eine breitere Streuung der Rauhigkeitsdaten. Ähnliche Ergebnisse diskutieren HODSON et al. (1997) für Feldspat, nämlich das Auftreten von Stufen mit Kantenlängen im µm-Bereich. Eine Probe mit Spiegelharnisch demonstriert, daß die Harnisch-Rillung eine vergleichsweise geringe Rauhigkeit erzeugt. Die Spiegelharnischoberfläche besitzt auch einen geringen

Rauhigkeitsfaktor. Schwache Reliefierung der Oberfläche ist für den relativ kleinen Flächenbetrag der rauhen Oberfläche verantwortlich.

Beobachtungen am REM:

Die Sekundärelektronenbilder am Rasterelektronenmikroskop erlauben eine Auflösung im X0 nm-Bereich (GÖPEL & ZIEGLER 1994), Morphologiedetails von mehreren X00 nm Größe sind dann erkennbar. Abb. 37 (a-f) zeigt in repräsentativen Aufnahmen ungebleichten und gebleichten Alaunschiefer aus Hohenleuben und vom Gammigtal. Gebleichter Alaunschiefer scheint ein unruhigeres, aufgelockertes Relief der Tonmineralpakete zu besitzen (Abb. 37 f) als ungebleichter Alaunschiefer (Abb. 37 b, c, d). Strukturiertes organisches Material, welches für die Schwarzfärbung des Alaunschiefers verantwortlich ist, ist nicht erkennbar (Abb. 37 d).

Auch aufgeschlämmter Alaunschiefer (Tonminerale und org. Kohlenstoff, Abb. 40 g, h) läßt keine Partikel aus organischem Kohlenstoff erkennen. Abb. 37 a und e zeigen im Alaunschiefer rundliche Poren mit einem Durchmesser von $\sim 5~\mu m$, in denen kugelige Mineral-Aggregate auftreten können.

Kieselschiefer (Abb. 38 a-f) besitzen unebene Bruchflächen (Abb. 38 a, c). Auf diesen Flächen treten etwa 5 μm große Quarzkristalle auf. Mitunter sind Quarzgänge im Kieselschiefer vorhanden, die variabel in ihrer Mächtigkeit sein können. Gebleichte Kieselschiefer zeigen stellenweise Gruben auf den Oberflächen von Quarz. Der Durchmesser dieser Buchten ist deutlich kleiner als 1 μm.

Die Abbildungen 40 a-f demonstrieren die Änderung der Alaunschieferoberfläche durch Minerallösung bzw. Neubildung. In Abb. 40 a, b sind Hohlräume sichtbar, deren Zwischenwände von Tonmineralen gebildet werden. Diese Tonminerale unterscheiden sich nicht von dem umgebenden Matrixmaterial. Eisenreiche Krusten (Abb. 40 d, e, f) und Überzüge von Sekundärmineralen (Jarosit, Abb 40 c) zeigen Reliefunterschiede von mehreren Mikrometern. Insbesondere die eisenreichen Krusten auf Alaunschiefer (Pr. 225, Abb. 40 f) besitzen ein poröses Gefüge.

Lichtmikroskopische Beobachtungen an organischem Material:

Mit Flußsäure wurden die silikatischen Anteile aus ungebleichtem Alaunschiefer gelöst. Die Schwebfracht des derart präparierten Materials wurde mikroskopisch untersucht. Es treten überwiegend opake, nichtreflektierende, organische Bestandteile auf (Abb. 39, a). Diese besitzen keine erkennbaren Strukturen und zeigen oft bis X0 μm große Aggregierungen von sub-μm-großen Partikeln (Abb. 39, b). Sehr selten wurden kleine Sphäromorphe (< 20 μm) gefunden. Weiteres strukturiertes organisches Material fehlt. Nur vereinzelt sind mikrometergroße, höherreflektierende Minerale sichtbar.

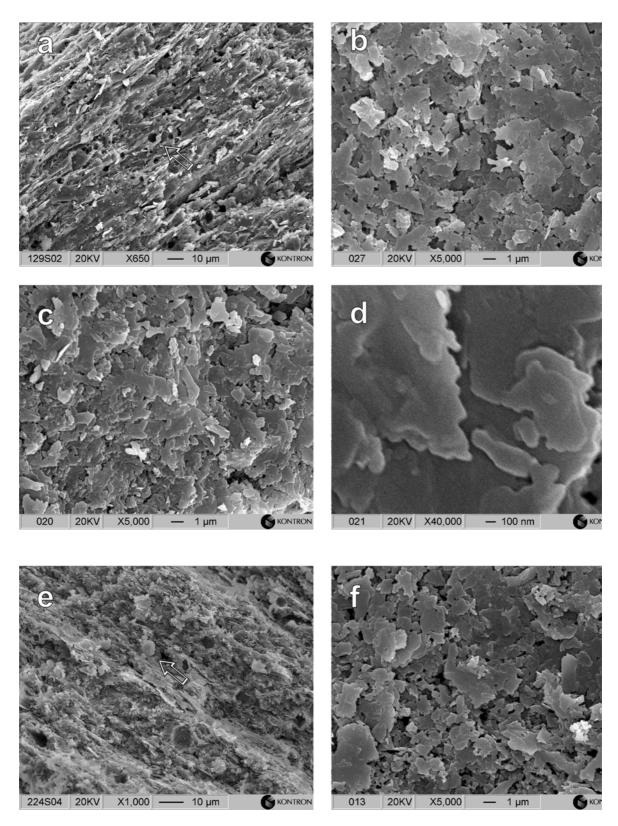


Abb. 37: REM-Aufnahmen von Alaunschiefer: ungebleicht (a-d) und gebleicht (e, f):

- a) Pr. 129: deutliche engständige Schieferung und Lösungshohlräume ehemaliger Pyritframboide (Pfeil)
- b) und c) Pr. 230: subparallele Lagerung der Schichtsilikate
- d) Detail aus Pr. 230: sub-µm-große Zerlappung der Schichtsilikate, organische Partikel nicht sichtbar e) Pr. 224: Pyritframboide teilweise erhalten (Pfeil) f) Pr 231: lockere Struktur der Schichtsilikate, vs. b), c)

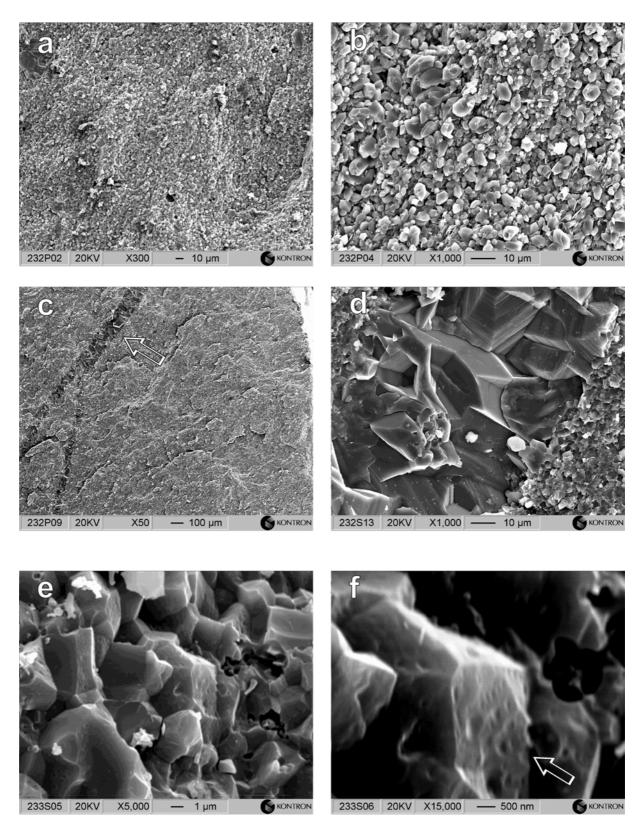
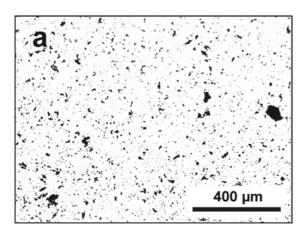



Abb. 38: Kieselschiefer aus Hohenleuben: Pr. 232: ungebleicht (a-d) und Pr. 233: gebleicht (e,f):

Übersicht (a) und Details (b) der verkieselten Lithotypen, Tonminerale sind kaum sichtbar. In (c) ist ein Quarzgang (Detail: d) abgebildet, der von älteren Quarzneubildungen umgeben ist. Die gebleichten Kieselschiefer (e, Detail: f) zeigen im neugebildeten Quarz Ätzgruben (Pfeil).

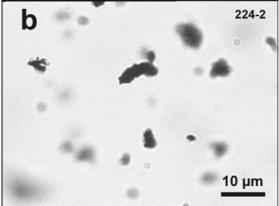


Abb. 39: Organisches Material aus dem Flußsäure-Lösungsrückstand einer ungebleichten Alaunschieferprobe (224-2, Hohenleuben). Das linke Bild (a) zeigt eine Übersichtsaufnahme zur Größenverteilung der Aggregate, rechts (b) sind solche wahrscheinlich präparationsbedingten Zusammenballungen im Detail dargestellt.

Interpretation:

Die REM-Aufnahmen legen die Interpretation nahe, daß die Bleichung der Alaunschiefer mit einer Gefügeauflockerung einhergeht. Ungebleichte Alaunschiefer zeigen eine subparallele Lagerung der Tonmineralstapel. Dieses "unruhigere" Relief gebleichter Alaunschiefer (Abb. 37 b) könnte verantwortlich für mitunter höhere Rauhigkeitsfaktoren sein. Die Bilder belegen außerdem die ähnlichen Rauhigkeiten für unterschiedlich stark verwitterten Alaunschiefer: Die Alaunschiefer zeigen unabhängig vom Verwitterungszustand gleiche Reliefhöhen (Tonmineralstapelanordnung).

Partikel aus organischem Material, die für die Schwarzfärbung der ungebleichten Alaunschiefer verantwortlich sind (vgl. Untersuchungen zum TOC-Gehalt), sind nicht als einzelne Strukturen im REM erkennbar (Abb. 37 d, O'BRIEN & SLATT 1990). Diese Beobachtungen sprechen dafür, daß organisches Material als dünner Überzug auf den Tonmineralen vorliegen kann. Diese Überzüge können die "Glättung" des Reliefs zwischen den subparallel lagernden Tonmineral-Stapeln verursachen, die in Abb. 37 c, d vs. Abb. 37 f sichtbar sind. Lichtmikroskopische Untersuchungen an organischem Material, das als Lösungsrückstand nach der Flußsäurebehandlung vorliegt, zeigen, daß außer sehr selten vorkommenden Sphäromorphen, möglicherweise Bakterien oder Einzelzellen, keine fossilen Formen vorliegen. Die nichtaggregierten Partikel, deren Größe unter einem Mikrometer liegt, könnten als dünner Überzug auf den Tonmineralen des Alaunschiefers vorhanden gewesen sein. Nach der Flußsäurebehandlung liegt dieser Überzug "zerbrochen" in Form der kleinen Partikel vor.

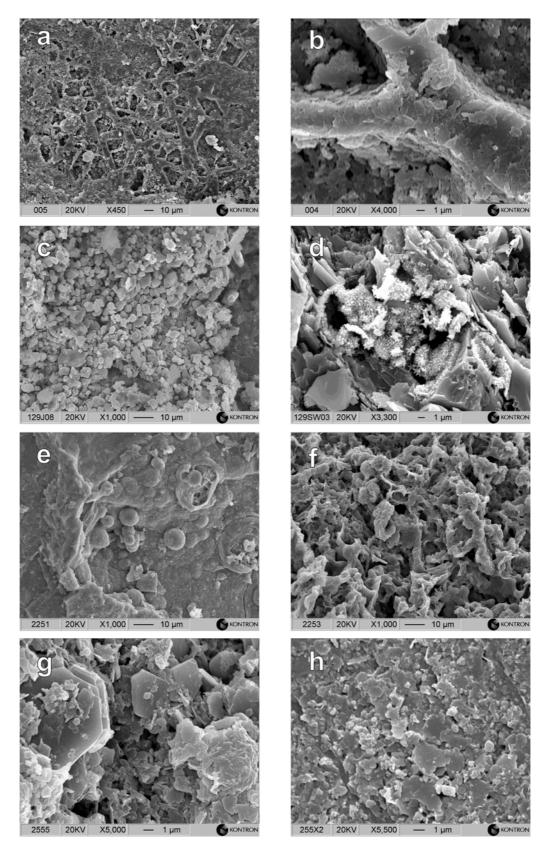


Abb. 40:

- a), b): Pr. 231: Lösungshohlräume von Pyritkristallen in der Tonmineralmatrix
- c) Pr. 129: Jarositneubildungen;
- d) Pr. 129 und e), f) Pr. 225: eisenreiche Mineralkrusten auf Alaunschiefer; g), h): Pr. 255: aufgeschlämmtes Residualmaterial (Gemenge aus Tonmineralen und org. Kohlenstoff)

Kugelförmige Porenräume im verwitterten und unverwitterten Alaunschiefer sind offenbar ehemals von Pyritframboiden eingenommen worden. Abb. 37 e (Pfeil) zeigt im gebleichten Alaunschiefer eine solche Pyrit-Struktur. Pyritframboide sind typische Sekundärminerale in Schwarzschiefern (O'BRIEN & SLATT 1990). LITTKE (1993) beobachtet im Posidonienschiefer sowohl Pyritframboide (Durchmesser 10-20 μm) als auch Pyrit-Einzelkristalle (< 5 μm). Pyrit wird nach den vorliegenden REM-Untersuchungen nicht vollständig bei der Bleichung abgebaut.

Die Oberfläche von Kieselschiefern ist dominiert durch idiomorphe Quarzkristalle, deren Korngröße kleiner als 10 µm ist. Erhöhtes Relief kann durch Gangstrukturen verursacht werden. Das unebene Relief von Quarzkristallen im verwitterten Kieselschiefer deutet auf Ätzgruben im Quarz hin, die bei der Bleichung auftreten können (WHITE & BRANTLEY 1995, HOCHELLA & BANFIELD 1995). Derartige Rauhigkeitsunterschiede sind jedoch mit dem Profilometer bzw. lichtoptisch nicht erfaßbar, da im Gesteinsverband die Rauhigkeit des Mineralverbandes dominiert.

Mineralneubildungen sowie -lösungen können zur Änderung des Oberflächenreliefs von natürlichen Alaunschieferoberflächen beitragen. Insbesondere die Umkrustung der Gesteinsoberfläche ändert die Reliefeigenschaften der Gesteinsoberfläche deutlich. REM-Aufnahmen belegen, daß ein erheblicher Zuwachs an sub-µm-großem Porenraum (Abb. 38 f) erfolgen kann.

Innere Gesteinsoberfläche

μm-nm-Auflösung: Hg-Invasion, N₂-Adsorption, AFM-Visualisierung

Mit der Quecksilber-Intrusions-Methode wurde die innere Oberfläche derjenigen Poren untersucht, deren Porenhalsdurchmesser ~ 3 nm bis ~ 5 µm beträgt. Die Stickstoff-Adsorption gestattet ebenfalls die Untersuchung der inneren Oberfläche im mesoporösen Bereich (2 < d \leq 50 nm), zusätzlich werden auch innere Oberflächen von Mikroporen erfaßt. Durch den Überlappungsbereich der Methoden bei der Untersuchung der Mesoporen wird die Interpretation der Meßwerte gefestigt.

Beobachtungen:

Abb. 41 zeigt den quecksilberporosimetrisch bestimmten häufigsten Porenhalsradius – ohne Berücksichtigung der Mikroporen – in Abhängigkeit von der Probenporosität. Ungebleichte Alaunschiefer aus dem Unteren und Oberen Graptolithenschiefer besitzen Porositäten von meist weniger als 10 Vol. % und sind überwiegend mesoporös. Gebleichte Alaunschiefer zeigen höhere Porositäten (15-25 %), wobei Proben aus dem Unteren Graptolithenschiefer die höchsten Porositäten erreichen. Poren in gebleichten Alaunschiefern sind makroporös und können Durchmesser bis ~ 230 nm erreichen.

Abb. 41: Durch Quecksilber-Intrusion ermittelter Porenradius über der Porosität. Schwarze Symbole und Beschriftung stehen für ungebleichte Proben, graue Markierungen für gebleichtes Material, die orange Darstellung symbolisiert gelblich-rötliche Mineralneubildungen und -krustierungen. Die Pfeile markieren den Trend der Entwicklung der dargestellten Parameter bei Bleichung.

Gebleichte Alaunschiefer mit Jarositneubildungen zeigen ähnliche Porendaten wie die gebleichten Alaunschiefer ohne Mineralneubildungen. Mineralkrusten auf ungebleichten Alaunschiefern

(225) besitzen größere Porenradien als das ungebleichte Alaunschiefermaterial selbst, dies geht auch aus der REM-Abb. 40 d-f hervor. Kieselschiefer (232, 233) besitzen eine geringere Porosität als Alaunschiefer. Allerdings ist auch hier der Trend zur Porositätszunahme bei der Bleichung vorhanden; wiederum erhöht sich bei der Bleichung auch der Porenradius.

Die Mittelwerte und Standardabweichungen der BET- und Hg-Intrusions-Oberflächen der Alaunschiefer aus dem Unteren und Oberen Graptolithenschiefer von Hohenleuben, Creunitz und aus dem Gammigtal sind in Tab. 20 angegeben. Ungebleichte Alaunschiefer weisen BET-Oberflächen auf, die im Mittelwert 10-13 m²/g betragen, nur der Obere Graptolithenschiefer aus dem Gammigtal zeigt eine kleinere BET-Oberfläche. Die gebleichten Alaunschiefer besitzen vergleichsweise dazu geringere BET-Oberflächen. Diese BET-Oberflächen ähneln den quecksilberporosimetrisch bestimmten inneren Oberflächen des gebleichten Alaunschiefers; beide sind etwa 2-7 m²/g groß.

	ammern	() angegebe		1 Graptolitne	nschiefer.	Die Anzahl	der Me
		Hohenleub	en, Untere	r Graptolither	nschiefer:		
	ungeb	leicht:			geble	eicht:	
BET-Fläche	$[m^2/g]$	Hg-Fläch	$ne [m^2/g]$	BET-Fläch	ne $[m^2/g]$	Hg-Fläch	ne [m²/g]
BET-Fläche 11.4 ± 5.6	(11)	7.8	(1)	6.7 ± 1.1	(11)	6	(1)
		Gammigta	al, Unterer	Graptolithens	schiefer:		
ungebleicht:			gebleicht:				
ungebleicht: BET-Fläche [m^2/g] Hg-Fläche [m^2/g] 13.8 ± 0.5 (4)			BET-Fläch	$ne [m^2/g]$	Hg-Fläch	ne [m²/g]	
13.8 ± 0.5	(4)	-	-	2.1 ± 0.1	(2)	-	-
				Graptolithens			
ungebleicht:			gebleicht:				
BET-Fläche [m ² /g] Hg-Fläche [m ² / d . 4.9 ± 0.2 (2) 11.1? (1		$ne [m^2/g]$	BET-Fläch	ne $[m^2/g]$	Hg-Fläche [m ² /g]		
4.9 ± 0.2	(2)	11.1 ?	(1)	3.2 ± 0.3	(6)	4.5 ?	(1)
		Creunitz	z, Oberer C	Graptolithense	hiefer:		
ungebleicht:			gebleicht:				
BET-Fläche [m ² /g] Hg-Fläche [m ² /g] 10.2 ± 0.2 (2) 6.5 (1)			BET-Fläche [m²/g] Hg-Fläche [m²/g			ne [m²/g]	
10.2 ± 0.2	(2)	6.5	(1)	3.9± 0	(2)	4.2	(1)

Die Flächendaten für den ungebleichten Oberen Graptolithenschiefer vom Gammigtal sind kritisch zu bewerten, weil die Meßergebnisse den sinnvollen Erwartungswerten widersprechen (höhere räumliche Auflösung von Stickstoff-Adsorption vs. Hg-Intrusion).

Die differierende Größe der inneren Gesteinsoberfläche aus Stickstoffadsorptions- und Quecksilberporosimetrie-Daten geht aus Abb. 42 hervor. Die Differenzen der jeweils mit beiden Methoden ermittelten Flächendaten deuten auf mikroporöse Flächenanteile hin, die durch Quecksilberintrusion nicht erfaßt werden können.

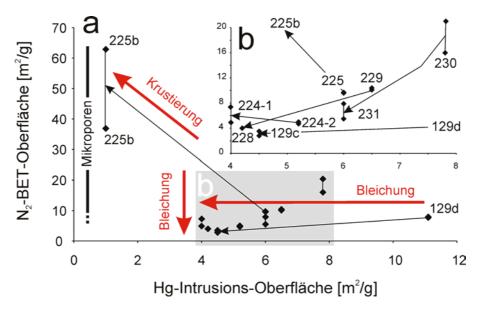


Abb. 42: Stickstoff-BET-Oberfläche in Abhängigkeit von der Quecksilber-Intrusionsoberfläche, (b): vergrößerter Auschnitt aus (a). Schwarze Pfeile verdeutlichen die Entwicklung der Probenpaare von ungebleicht zu gebleicht. Rote Pfeile geben den Interpretationsansatz an, ebenso die Markierung "Mikroporen", die die durch mikroporöse Anteile verursachte Flächendifferenz anzeigt.

Die ungebleichten Alaunschiefer (Diagrammausschnitt (b): rechts oben) zeigen (außer 224-2) eine Flächendifferenz von 4-8 m²/g. Für gebleichte Alaunschiefer treten kaum Differenzen bei der Flächenquantifizierung mit beiden Methoden auf. Die eisenhaltigen Krusten auf Alaunschiefer (225) besitzen sehr große BET-Flächen, nämlich ca. 40-60 m²/g. Diese Flächen sind quecksilberporosimetrisch nicht erfaßbar.

Aus der Bleichung von Alaunschiefer resultiert eine deutliche Dichteverringerung des Gesteins (Abb. 43). Diese Dichteverkleinerung bei der Bleichung ist für Alaunschiefer aus dem Unteren Graptolithenschiefer höher (~ 0.35 g/cm³) als für Alaunschiefer aus dem Oberen Graptolithenschiefer (~ 0.15 g/cm³).

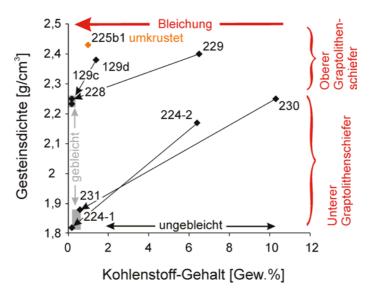


Abb. 43: Gesteinsdichte von Alaunschiefern aus dem Unteren und Oberen Graptolithenschiefer in Abhängigkeit vom Kohlenstoffgehalt.

Mit der Methode der Quecksilberintrusion können Raumdichte des Gesteins und Dichte des mikroporösen Gesteins (d.h.: Gestein ohne Berücksichtigung der Meso- und Makroporen) verglichen werden. Diese durch Porosität verursachte Dichtedifferenz der untersuchten Lithotypen geht aus Abb. 44 hervor. Gebleichte Alaunschiefer enthalten viel meso-/ makroporösen Porenraum; allerdings kaum Bestandteile mit deutlich niedrigerer Dichte als Illit (hier Angabe des Dichtemittelwertes, \pm 0.15 g/cm³) oder Quarz.

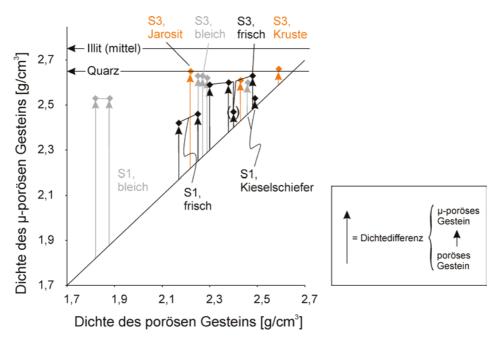


Abb. 44: Dichte des Gesteins ohne Porenraum größer als Mesoporengröße (= Dichte der ausschließlich mikroporösen Gesteinsbestandteile) in Abhängigkeit von der Raumdichte des porösen Gesteins. Vertikale Pfeile markieren den Betrag der Dichtedifferenz. Zum Vergleich sind der Mittelwert der Dichte von Illit und die Dichte von α-Quarz angegeben.

Ungebleichte Alaunschiefer aus dem Unteren Graptolithenschiefer zeigen einen höheren derartigen Dichtekontrast als gebleichte Alaunschiefer. Diese Dichtedifferenz ist jeweils für gebleichtes und ungebleichtes Material aus dem Oberen Graptolithenschiefer geringer.

In ungebleichtem Alaunschiefer ist mikroporöses Material geringer Dichte notwendig, um die in Abb. 44 verdeutlichten Dichtedifferenzen zwischen gebleichtem und ungebleichtem Alaunschiefer zu erklären. Allerdings könnten zusätzlich zu diesem Material geringer Dichte weitere Stoffe mit höherer Dichte bei der Bleichung mobilisiert werden, da aus Abb. 43 hervorgeht, daß eine erhebliche Dichteverringerung durch die Bleichung auftritt. Nachfolgend wird deshalb eine Dichtebilanzrechnung für den Unteren Graptolithenschiefer vorgestellt.

Berechnung der Dichte des Materials, welches bei der Bleichung abgeführt wird (Beispiel: Alaunschiefer (S_1) aus Hohenleuben):

Die Dichte des ungebleichten Alaunschiefers (S_1) beträgt 2.21 ± 0.04 g/cm³, die Dichte des gebleichten Alaunschiefers 1.85 ± 0.03 g/cm³. Daraus resultiert eine Dichtedifferenz von 0.36 ± 0.07 g/cm³.

Bezogen auf ein Einheitsvolumen von 1 cm^3 werden bei einer Porositätserhöhung von $18 \pm 2 \text{ Vol.}$ % durch die Bleichung $0.18 \pm 0.02 \text{ cm}^3$ Material aus dem Alaunschiefer abgeführt, die Massenabfuhr (aus Dichtedifferenz) liegt bei 0.36 ± 0.07 g. Daraus läßt sich die Dichte des Stoffes berechnen, der bei der Bleichung entfernt wird: $2.0 \pm 0.6 \text{ g/cm}^3$.

Mit einem 10 ml-Pyknometer wurde die Dichte der schwarzen, in Flußsäure nicht löslichen Bestandteile einer ungebleichten Alaunschieferprobe ermittelt. Als Pyknometerflüssigkeit wurde destilliertes Wasser verwendet. Die Probendichte betrug 1.76 ± 0.01 g/cm³, die Berechnung ist im Anhang angegeben.

Interpretation:

Quecksilberporosimetrisch kann einerseits die Porenradienverteilung, andererseits die innere Gesteinsoberfläche ermittelt werden, die durch Meso- und Makroporen verursacht wird. Die Stickstoff-Adsorption (BET) liefert ebenfalls Aussagen zur Größe der inneren Gesteinsoberfläche, jedoch werden mit dieser Methode auch Flächen in Mikroporen erfaßt, deren Durchmesser kleiner als 2 nm ist. Das Stickstoffmolekül besitzt einen Durchmesser d = 0.45 nm, der die Analyse engerer Porenräume limitiert.

Durchschnittswerte für BET-Oberflächendaten von Tonmineralen gibt ROWELL (1997) an: Während kaum oder nicht quellfähige Tonminerale wie Kaolinit, Illit oder Chlorit eine relativ kleine spezifische Oberfläche von etwa 10-20 m²/g aufweisen, besitzen quellfähige Tonminerale (Smektit, Vermikulit) vergleichsweise große spezifische Oberflächen, nämlich ca. 400-900 m²/g.

Röntgendiffraktometrisch konnten in den hier untersuchten Proben keine quellfähigen 3-Schicht-Tonminerale nachgewiesen werden. Die vorgestellten BET-Adsorptions-Oberflächen werden einerseits durch Quarz und Illit bzw. Muskovit, andererseits durch organisches Material verursacht. Andere Minerale, bspw. Sulfide und Phosphate sind nur untergeordnet am Aufbau der Gesteine beteiligt.

Die Bleichung von Alaunschiefern bewirkt einerseits eine Vergrößerung des Porendurchmessers und der Porosität, andererseits eine Verringerung der inneren Gesteinsoberfläche. Die Bleichung verursacht demnach bei konstantem Gesteinsvolumen eine Abfuhr von Gesteinsbestandteilen mit großer innerer Oberfläche. Dies gilt sowohl für Alaunschiefer aus dem Unteren wie auch aus dem Oberen Graptolithenschiefer. Allerdings ist dieser Effekt im durchschnittlich Corgärmeren Oberen Graptolithenschiefer schwächer ausgeprägt. Dies deutet auf den Einfluß des ursprünglichen Gehaltes an organischem Kohlenstoff auf die Materialabfuhr hin, was auch durch die TOC-Analysen für den Unteren und Oberen Graptolithenschiefer bestätigt wird: Im Unteren Graptolithenschiefer ist durchschnittlich deutlich mehr organisches Material vorhanden als im Oberen Graptolithenschiefer.

Der variable Mengenanteil von organischem Kohlenstoff ist für den Schwankungsbereich der Größe der inneren Oberfläche der Lithotypen verantwortlich. Meso- und Mikroporositäten des organischen Materials sind die Ursache für die gemessenen Flächendifferenzen zwischen ungebleichten und gebleichten Alaunschiefern. Die Bleichung geht insbesondere mit einem Abbau von Mikroporen und damit einer erheblichen Verkleinerung der inneren Oberfläche einher, zusätzlich zu dem Abbau von mesoporösen Gesteinsanteilen. Nach der Bleichung des Alaunschiefers liegt ein von Meso- und (Stickstoff-) Mikroporen fast vollständig befreites Gestein vor. Die innere Oberfläche des gebleichten Gesteins ist überwiegend durch die äußere Oberfläche des gesteinsbildenden Illits verursacht. HAUS (1993) gibt für illitischen Ton eine äußere Oberfläche von 12.6 m²/g und für die innere Oberfläche der Kristalle eines Illitgemenges – ermittelt mit H₂O-Adsorbat – 22.3 m²/g an. Mit der hier angewandten Stickstoff-Adsorption wurde jedoch die innere Oberfläche von Illit nicht erfaßt. Die für die gebleichten Alaunschiefer ermittelten Flächenwerte verdeutlichen, daß keine weiteren Materialien mit größerer innerer Oberfläche im gebleichten Alaunschiefer vorliegen. Die innere Oberfläche der hier untersuchten Gesteine ist möglicherweise durch die Kompaktion und Schieferung des Gesteins geringer als die innere Oberfläche des von HAUS (1993) betrachteten Illitgemenges.

Die geringporösen Kieselschiefer reagieren auf Bleichungsverwitterung ebenfalls mit einer Erhöhung des häufigsten Porenradius, allerdings steigt die Porosität nicht so deutlich wie im unverkieselten Alaunschiefer. Die Verkieselung bewirkt eine vergleichsweise geringe Porosität der ungebleichten und gebleichten Kieselschiefer. Die dichte Anordnung der neugebildeten Quarzkristalle (Abb. 38) unterstützt diese Vermutung.

Mineralneubildungen im gebleichten Alaunschiefer, bspw. Jarosit, beeinflussen die Oberflächen-Entwicklung nicht. Diese Sekundärminerale besitzen demnach keine deutlich kleinere oder größere Oberfläche als die Tonmineralmatrix des Alaunschiefers.

Rötliche, eisenhaltige Mineralkrusten auf Alaunschiefer bzw. massiv von diesem Material imprägnierte Alaunschiefer verursachen eine geringe Porositätserhöhung: Die Mineralkrusten sind poröser als ungebleichter Alaunschiefer. Quecksilberporosimetrisch ist eine Erhöhung des häufigsten Porenradius nachgewiesen. Dies scheint jedoch nur ein lokales Maximum der Porenradienverteilung zu sein, da mit der Stickstoffadsorption deutlich höhere innere Oberflächenbeträge ermittelt wurden als durch Quecksilber-Intrusion, wofür mikroporöse Anteile verantwortlich sein dürften. STRAUß (1992) berichtet für Goethit über die Bandbreite der gemessenen BET-Oberfläche von 18 bis 132 m²/g, auch Hämatit zeigt ähnlich große Schwankungen für den Betrag seiner inneren Oberfläche (CORNELL & SCHWERTMANN 1996). MAURICE et al. (1998) fanden für Goethit mit geringen Beimengungen von Hämatit eine BET-Oberfläche von 58 m²/g. Eisenreiche Krustierungen mit wechselnden Goethit- und Hämatit-Anteilen können demnach die innere Oberfläche des Gesteins um ein Vielfaches vergrößern.

Ungebleichter Alaunschiefer aus dem Oberen Graptolithenschiefer besitzt eine deutlich höhere Dichte als ungebleichter Alaunschiefer aus dem Unteren Graptolithenschiefer. Der unterschiedliche Gehalt an organischem Kohlenstoff, der im Vergleich zum Illit eine deutlich niedrigere Dichte besitzt, spiegelt sich in der niedrigeren Gesamtdichte des C_{org}-reicheren Unteren Graptolithenschiefers wider. Die Bleichung des Alaunschiefers verursacht eine deutliche Dichteverringerung des Gesteins.

Wägungen am nichtlöslichen Rückstand eines Flußsäureaufschlusses an ungebleichtem Alaunschiefer – allerdings ohne den schnell absinkenden Bodensatz, nur Schwebfracht – erbrachten für das mikroskopisch identifizierte organische Material die Dichte $\rho = 1.76 \pm 0.01$ g/cm³. Das ist deutlich höher als der von LITTKE (1993) für organisches Material aus dem Posidonienschiefer angegebende Dichtewert von 1.2 g/cm³. Mikroskopisch wurden nur sehr untergeordnet in dem Schwebrückstand Sulfide erkannt. Es ist davon auszugehen, daß die Abtrennung des Schwebrückstandes vom schnell abgesaigerten Material auch eine Abtrennung der schweren Sulfide bewirkte. Demnach ist der relativ hohe Dichtewert nur untergeordnet von der Beimengung von Sulfiden erhöht, vielmehr ist davon auszugehen, daß das organische Material im silurischen Alaunschiefer eine deutlich höhere Dichte besitzt als das organische Material aus dem Posidonienschiefer. Dies ist auch deshalb wahrscheinlich, weil der Posidonienschiefer, den LITTKE (1993) untersucht und für dessen organisches Material die genannte Dichte angegeben hat, eine schwächere Katagenese erfahren hat als der hier untersuchte Alaunschiefer. Während der Posidonienschiefer bei thermischen Experimenten in der Regel Öl generiert, können heute aus dem organischen Material des Alaunschiefers bei thermischer Beanspruchung neben dem Methanfragment CH₃ nur noch untergeordnet Bitumenfragmente mit höherer Massenzahl abgespalten werden (CHR. SCHMIDT, pers. Mitteilung). Der Alaunschiefer ist demnach so tief versenkt gewesen, daß er den Ölbildungsbereich ("Ölfenster") fast vollständig durchlaufen hat. Nach TISSOT & WELTE (1984) sind dann Versenkungstemperaturen bis 200°C erreicht worden.

Diese Überlegungen werden auch durch die Vitrinit-Reflektivität von R_m (oil) = 2.2 % an Griffelschiefer aus dem Schwarzburger Sattel bestätigt (HEUSE et al. 1994). Der stratigraphisch zum Graptolithenschiefer und Lederschiefer liegende Griffelschiefer hat mit einer solchen Vitrinitreflexion den Grenzbereich von der Katagenese zur Metagenese überschritten.

Die Dichtebilanzierung, die auf den Porositätsunterschieden durch die Bleichung fußt, fordert, daß bei der Bleichung Material mit $\rho = 2.0 \pm 0.6$ g/cm³ abgeführt wird. Der gemessene Dichtewert ist um ca. 0.2 g/cm³ kleiner, diese Abweichung liegt jedoch innerhalb des Fehlerbereiches der Bilanzierung.

Die Dichtedifferenz deutet an, daß zusätzlich zur Abfuhr von organischem Material Gesteinsbestandteile mit hoher Dichte mobilisiert werden könnten. Diese Hypothese wird durch geochemische Befunde gestützt, die aussagen, daß auch Eisen und Schwefel bei der Bleichung mobilisiert werden können – möglicherweise als im Gestein auftretendes Eisensulfid. Pyrit und Markasit besitzen eine Dichte von etwa 5 g/cm³. Wahrscheinlich werden mikrokristalline Sulfide gemeinsam mit dem organischen Material abgebaut, mikroskopische Hinweise darauf liegen jedoch nicht vor.

AFM-Untersuchungen an Alaunschiefer-Präparaten:

Die Interpretationen zur Porosimetrie und zu geochemischen Untersuchungen deuten darauf hin,

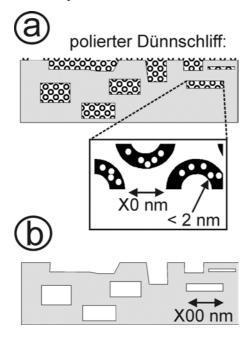


Abb. 45: Schematische Darstellung zur AFM-Abtastung der Poren von Alaunschiefer auf einem polierten Dünnschliffpräparat. Im ungebleichten Zustand (a) befindet sich mikro- und mesoporöses Material im Alaunschiefer, nach der Bleichung (b) liegen Makroporen vor.

daß bei der Bleichung von Alaunschiefer mikro- und mesoporöses organisches Material abgeführt wird. Zurück bleibt makroporöser Porenraum, der vor der Bleichung von organischem Material eingenommen wurde. Schematisch ist diese Situation in Abb. 45 dargestellt. Diese Interpretation sollte mikroskopisch überprüft werden. Weil natürliche Gesteinsoberflächen durch ihre Oberflächenrauhigkeit ein zu unruhiges Relief für AFM-Untersuchungen besitzen, wurden polierte Dünnschliff-Präparate eingesetzt. Die Präparation erfolgte ohne Schleifpulver mit diamantbesetzten Scheiben. Es ist davon auszugehen, daß an der Schliff-Oberfläche die Poren angeschnitten vorliegen (Abb. 45 a, b). Diese Porenanschnitte sollten mit dem AFM visualisiert werden.

Abb. 46 zeigt räumlich aneinandergesetzte AFM-Profile (a, b), helligkeitscodierte Reliefkarten der Probenoberfläche (c, d) sowie Histogramme und Summen-

darstellung der Oberflächenanteile (e, f). Verwendet wurde Alaunschiefer aus dem Unteren Graptolithenschiefer vom Gammigtal. An einem Gesteinspolyeder wurden die mm-mächtige Bleichungszone und der ungebleichte Polyederkern analysiert. Auf der linken Seite von Abb. 46 (a, c, e) sind die Untersuchungen am ungebleichten Alaunschiefer, auf der rechten Seite von Abb. 46 (b, d, f) die am gebleichten Alaunschiefer dargestellt. Weitere AFM-Oberflächenanalysen sind im Anhang dokumentiert

Beobachtungen:

Der ungebleichte Alaunschiefer besitzt auf dem polierten Dünnschliff ein Relief, das maximal etwa 30 nm Höhenunterschied besitzt. Gebleichter Alauschiefer zeigt dagegen bis zu 140 nm Reliefunterschied. Unter Vernachlässigung der Anteile einer Reliefkante (Abb. 46 d: rechter Rand bzw. Abb. 46 b: linker Rand), nämlich der Tief-Relief-Anteile (Abb. 46 f) unter -40 nm, beträgt das annähernd normalverteilte Relief des gebleichten Alaunschiefers ca. 80 nm.

Abb. 46 a ist vergleichsweise zu Abb. 46 b etwa fünffach überhöht und zeigt, daß im Kontrast zu Abb. 46 b eine großräumige Reliefierung mit Strukturen um X00 nm Größe fehlt. Auch die Abbn. 46 c, d veranschaulichen diese Beobachtung.

Alaunschiefer, Unterer Graptolithenschiefer, Gammigtal (Probe 126)

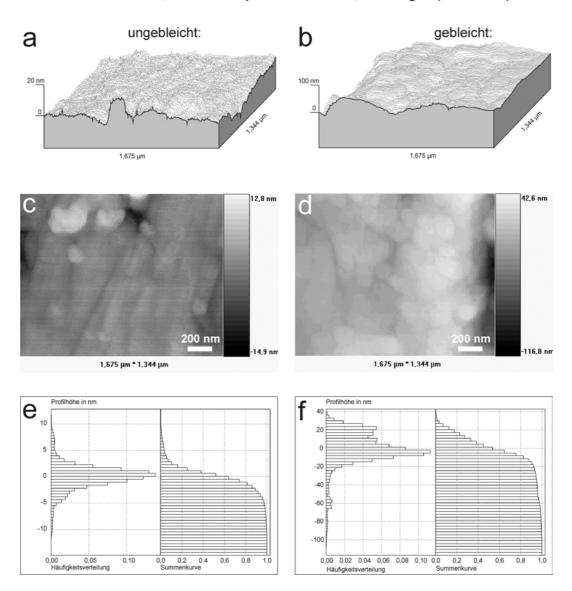


Abb. 46: Untersuchungen der Oberfläche von Alaunschiefer mit dem AFM. Auf der linken Seite (a, c, e) sind die Beobachtungen am ungebleichten, auf der rechten Seite (b, d, f) die Untersuchungen am gebleichten Alaunschiefer dargestellt. Analysiert wurde ein poliertes Dünnschliff-Präparat eines randlich gebleichten Alaunschieferpolyeders aus dem Unteren Graptolithenschiefer vom Gammigtal. Die räumliche Oberflächendarstellung des ungebleichten Alaunschiefers (a) ist im Vergleich zur Reliefdarstellung des gebleichten Alaunschiefers (b) etwa 5fach überhöht abgebildet.

Interpretationen:

Die Untersuchungen mit dem AFM stützen die Interpretationen aus den Porositätsanalysen: Der ungebleichte Alaunschiefer zeigt im polierten Dünnschliffpräparat eine ausgeglichenere Oberfläche als der gebleichte Alaunschiefer. Während bei ungebleichtem Alaunschiefer die Unebenheiten ein Relief mit maximal 30 nm Höhenunterschied verursachen, also mesoporöse Strukturen zeigen, ist im gebleichten Alaunschiefer die Reliefierung deutlich höher.

Die AFM-Untersuchungen an polierten Alaunschiefer-Präparaten sind ein Indiz für die Richtigkeit der interpretierten Porengrößen bei unterschiedlichen Verwitterungsgraden und den sich daraus ergebenden Konsequenzen für die innere Gesteinsoberfläche.

3.4 Zeitliche Aspekte der Bleichung von Alaunschiefer

Der Bleichung von Alaunschiefern geht der (teilweise) Abbau von Eisensulfiden voraus (Abb. 37). Die hier vorliegenden Beobachtungen bestätigen die von LITTKE (1993) diskutierte Reihenfolge von Verwitterungserscheinungen in Schwarzpeliten: Gleichzeitig mit der Sulfidverwitterung treten eine Krustierung der Oberfläche von Gesteinspolyedern, bspw. an Kluftflächen, und der Ersatz von Sulfiden durch Sulfat (insbesondere Jarosit) und Eisen(III)-Verbindungen auf.

Einerseits wird die durchgreifende Bleichung und Rötung des Gesteins bei permokarboner Exposition und tiefreichender Ausbildung von Verwitterungstaschen an Zonen hoher Fluidwegsamkeit im Zusammenhang mit der Bildung von Uranlagerstätten im Ostthüringer Raum diskutiert, bspw. von Szurowski et al. (1991). Andererseits sind solche Vorgänge auch während der Exposition und flächigen Abtragung der erzgebirgisch streichenden Sattelstrukturen im Tertiär möglich (Wiefel 1965). Fengler (1997) beschreibt tertiäre Abtragung und Ablagerungen auf dem Ronneburger Horst. Diese Schlußfolgerungen zur Exposition der Gesteine implizieren immer langanhaltende ("postvariscische", Szurowski et al. (1991); "unterpermische", Fengler (1997); "mesozoisch-tertiäre") hypergene Prozesse. Die Zeitspanne, die sowohl für kleinräumige als auch durchgreifende Bleichung der Graptolithenschiefer benötigt wird, ist unbekannt und wird auch in der Literatur nicht diskutiert.

Beobachtungen:

Haldenmaterial der Grube "Morassina", Schmiedefeld, wurde durch WISMUT-Abbau ca. 1950 im Tal am "Schwefelloch" aufgeschüttet (Probe 213). Der dunkelgraue Alaunschiefer enthält etwa 0.5 Gew. % Kohlenstoff und ca. 1 Gew. % TiO₂.

Innerhalb der Grubenräume der "Morassina" sind keine Bleichungserscheinungen zu beobachten. Tiefreichende Bleichungszonen, wie sie von FENGLER (1997) für den Geraer Vorsprung beschrieben werden, fehlen hier. Übertägig aufgeschlossener, direkt im Hangenden des Abbauraumes anstehender Alaunschiefer ist kleinräumig, ausgehend von Gesteinspolyeder-Grenzflächen, gebleicht.

Dünnschliff-Untersuchungen an quartären sandig-kiesigen Bachschotter-Ablagerungen (J. GE-LETNEKY, pers. Mitt.) aus dem Gessental bei Ronneburg zeigen keinen schwarzen, ungebleichten Alaun- oder Kieselschiefer (Proben 117, 118). Die pelitischen Gesteinsbruchstücke sind hel-

le, graue Tonschiefer. Rammkernsondierungen im Gessental erbohrten jedoch im Liegenden der quartären Talsedimente Alaunschiefer, die überwiegend schwarz, ungebleicht und C_{org}-reich sind (Proben 207, 208, 209).

Im Steinbruch Hohenleuben sind im gebleichten Alaunschiefer rinnenförmige, mehrere Meter breite und tiefe Sedimentkörper mit hellgelb-bleichem Alaunschieferschutt aufgeschlossen. Das matrixreiche Material (Probe 223) besteht überwiegend aus Kaolinit. Sowohl der rinnenförmige Sedimentkörper als auch der gebleichte Profilbereich befinden sich direkt unter der tertiären Verebnungsfläche des Bergaer Sattels.

Interpretation:

Neben der grauen Farbe des Haldenmaterials deuten der geringe Kohlenstoff- und der erhöhte Titangehalt auf Verwitterung des Gesteins hin (vgl. Elementaranalyse zu den den S₃-Proben aus Creunitz, Pr. 228, 229). Unter gemäßigtem Klima ist demnach Bleichung von Alaunschiefer innerhalb mehrerer Jahrzehnte möglich. Das steht im Kontrast zu den Schlußfolgerungen von LITTKE (1993), Bleichung mit drastischem Abbau an organischem Kohlenstoff sei auf warme Klimate beschränkt. Außerdem belegen die Oberflächenaufschlüsse mit kleinräumigen Bleichungserscheinungen im Tal "Schwefelloch", daß nach der pleistozänen (UNGER 1995) Talbildung eine Bleichung des Alaunschiefers stattgefunden hat. Die kleinräumige Bleichung sollte, wenn es sich dabei um die Wurzelzone der tiefgründigen Verwitterung aus dem Mesozoikum und Tertiär bzw. Unterperm handelt, nicht auf Oberflächenaufschlüsse beschränkt und auch wenige Meter tiefer im weitläufigen Grubengebäude anzutreffen sein. Weil dies nicht der Fall ist, ist von jüngerer und kürzerer Bleichung unter gemäßigtem Klima auszugehen, die seit der Anlage des Tals "Schwefelloch" wirken könnte.

Die petrographischen Untersuchungen an quartärem Sedimentmaterial aus dem Gessental bei Ronneburg und dem liegend dazu auftretendem Alaunschiefer untermauern ebenfalls die Möglichkeit einer quartären Bleichung von Alaunschiefer: Während die unter den quartären Sedimenten anstehenden Alaunschiefer ungebleicht sind, treten im Bachsediment keine ungebleichten Alaunschiefer auf. Offenbar standen zwar im gessentalnahen Liefergebiet für das Hangschutt- und Bachsedimentmaterial überwiegend nur gebleichte Alaunschiefer an. Die Bleichung war aber nicht derart tiefreichend (vs. mesozoisch-tertiäre bzw. permische Bleichung), daß der Alaunschiefer, der liegend zur quartären Talfüllung auftritt, hätte durchgreifend gebleicht werden können. Möglicherweise hat auch syn- oder postsedimentäre Bleichung der Komponenten stattgefunden.

In Hohenleuben spricht das Vorhandensein von rinnenförmigen Sedimentkörpern mit umgelagerten verwitterten, kaolinitreichen Alaunschieferbruchstücken im oberen Profilabschnitt der gebleichten Alaunschiefer für eine paläooberflächennahe Position der gebleichten Gesteine. Diese Position der gebleichten Alaunschiefer direkt liegend zur tertiären Verebnungsfläche des Bergaer Sattels ist ein Indiz für tertiärzeitliche Bleichungs-, Abtragungs- und Umlagerungsvorgänge in Hohenleuben.

Während kleinräumige Bleichung im Randbereich von Gesteinspolyedern mit deutlicher Abfuhr

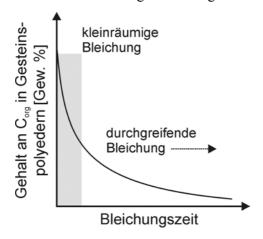


Abb. 47: Schematische Darstellung der Intensität der Bleichungsverwitterung an Gesteinspolyedern: Anfänglich findet relativ schnell, ausgehend von natürlichen Grenzflächen im Gestein, eine kleinräumige Bleichung statt. Durchgreifende Bleichung des gesamten Gesteinsprofils wird langanhaltender, bspw. mesozoisch-tertiärer Verwitterung zugeordnet.

an organischem Kohlenstoff durchaus im Quartär vorkommen kann, ist die durchgreifende Bleichungsverwitterung im Zusammenhang mit tiefreichender Verwitterung unter einer tertiären Verebnungsfläche zu sehen, Abb. 47 illustriert den zeitlichen Ablauf schematisch.

Offenbar kann – ausgehend von natürlichen Grenzflächen im Gestein – relativ rasch eine quartärzeitliche, nur millimetermächtige Bleichungsverwitterung im Gestein wirken. Durchgreifende Bleichungsverwitterung läuft dagegen im Quartär viel langsamer ab als die kleinräumige Bleichung. Aus diesem Grund ist in den Alaunschieferaufschlüssen der Bleichungssaum an Alaunschieferpolyedern immer ungefähr gleich mächtig.

Im Unteren Graptolithenschiefer sind variable Verwitterungsgeschwindigkeiten wegen variierender Fluidwegsamkeiten aufgrund der mengenmäßig wechselnden Lydit-Anteile zu erwarten. Dies zeigt sich auch in der hier vorgestellten Tendenz zur Ausbildung größerer Gesteinspolyeder im Alaunschiefer im Kontrast zur bevorzugten Kleinklüftigkeit der auf mechanische Beanspruchung spröder reagierenden Kieselschieferlagen.

3.5 Hochskalierung der Oberflächendaten

Die skalenabhängigen Daten der Oberflächenquantifizierung werden unter Berücksichtigung ihrer Variabilität in ein Gesamtkonzept integriert (Tab. 21, Abb. 49). Im Vergleich der Oberflächendaten von unverwitterten und verwitterten Alaunschiefern wird die potentiell reaktive Oberfläche für Bleichungsverwitterung quantifizierbar. Dabei ist zwischen der maximalen reaktiven Oberfläche und der "leicht zugänglichen" reaktiven Oberfläche im Gestein zu unterscheiden. Daß diese Unterscheidung gerechtfertigt ist, zeigt das Vorhandensein der kleinräumigen Bleichung. Ausgehend von natürlichen Grenzflächen im Gestein, den Polyederoberflächen, beginnt in einem – diese Grenzflächen umhüllendem – Gesteinsvolumen der Bleichungsprozeß. Auffallend ist, daß diese kleinräumigen Bleichungssäume überwiegend geringmächtiger

als ein Zentimeter ausgebildet sind, oft wurden Mächtigkeiten von ~ 2 mm gefunden. Diese Beobachtung wurde für die Hochskalierung der reaktiven Oberfläche verwendet.

Berechnungen der Häufigkeit natürlicher Grenzflächen im Alaunschiefer führen zu einer geometrischen Grenzflächengröße von $350 \pm 150 \text{ m}^2/\text{m}^3$ im Alaunschiefer (Unterer Graptolithenschiefer). Das mittlere potentielle Volumen für kleinräumige (2 mm mächtige) Bleichung beträgt $0.7 \pm 0.3 \text{ m}^3/\text{m}^3$. Bezogen auf die Dichte des ungebleichten Alaunschiefers aus dem Unteren Graptolithenschiefer (2210 \pm 40 kg/m³, vgl. Abb. 43) stehen damit $1550 \pm 700 \text{ kg}$ in einem Kubikmeter Alaunschiefer für kleinräumige Bleichung zur Verfügung.

Tab. 21: Skalenabhängige Oberflächendaten für ungebleichten und gebleichten Alaunschiefer (Unterer Graptolithenschiefer). Für quecksilberporosimetrische Quantifizierungen liegen keine Wiederholungsmessungen vor.

	ä u ß e	ere Oberfläc	innere Oberfläche:		
Alaunschiefer:	geometrische Grenzflächen [m²/m³]	Rauhigkeits-faktor (mech.)	Rauhigkeits-faktor (opt.)	Makro- und Mesoporen [m²/g]	Meso- und Mikroporen [m²/g]
in situ ungebleicht	350 ± 150	* 1.07 ± 0.04	* 3.9 ± 0.7	7.8	11.4 ± 5.6
in situ gebleicht	700 ± 350	* 1.06 ± 0.02	* 5.6 ± 2.0	6	6.7 ± 1.1

Der Rauhigkeitsfaktor gibt an, um welchen Faktor eine Vergrößerung der Grenzfläche bei einer rauhen Oberfläche erfolgt. Während im Mikrometer-Auflösungsbereich die Grenzfläche kaum durch Rauhigkeit vergrößert ist, ist die Grenzfläche des unverwitterten Alaunschiefers im sub-Mikrometerbereich (X00 nm Auflösung) etwa vervierfacht. Der Rauhigkeitsfaktor, der keinen Einfluß auf den Betrag der massen- oder volumenbezogenen potentiell reaktiven Oberfläche besitzt, spiegelt die Größe der leicht zugänglichen Grenzfläche wider. Höhere Rauhigkeiten entsprechen einem höheren möglichen Fluidaustausch im Grenzbereich von Gestein und Fluid.

Die Differenz der spezifischen meso- und mikroporösen (N_2 -BET) Oberfläche zwischen gebleichtem und ungebleichtem Alaunschiefer beträgt im Unteren Graptolithenschiefer 4700 ± 6700 (!) m^2 /kg. Dieser Mittelwert mit großer Standardabweichung wird durch die Heterogenität in der C_{org} -Führung des Gesteins verursacht (Abb. 48). Beispielsweise besitzt die Probe 211-6 (Teilprobe von 230) 11.85 ± 0.02 Gew. % organischen Kohlenstoff; die spezifische Oberfläche beträgt 19500 ± 100 m^2 /kg. Die Oberflächendifferenz zwischen ungebleichtem und gebleichtem Material beträgt für diese Probe 12800 ± 1100 m^2 /kg. Die Oberflächendifferenz – bezogen auf das Gesteinsvolumen, das kleinräumige Bleichungssäume umfaßt – gibt einen Hinweis auf die Größe der reaktiven Gesteinsoberfläche bei Bleichungsverwitterung. Der Mittelwert der erwähnten Oberflächendifferenz führt zu einer reaktiven Oberfläche von

 $\sim 7 \pm 14 \text{ km}^2/\text{m}^3$ des ungebleichten Alaunschiefers. Für die C_{org} -reiche Probe (211-6) steht jedoch eine reaktive Oberfläche von $20 \pm 11 \text{ km}^2/\text{m}^3$ in dem für kleinräumige Bleichung

N₂-BET

y = $(1.1\pm0.2) \times + (4.3\pm0.1)$ y = $(0.3\pm0.1) \times + (4.5\pm0.6)$ C_{org} [Gew.%]

Abb. 48: Zusammenhang zwischen im Alaunschiefer enthaltener Menge an organischem Material und der inneren Gesteinsoberfläche.

möglichen Volumen zur Verfügung.

Der Mittelwert für die reaktive Oberfläche schließt mit seiner Fehlerangabe diesen Maximalwert der reaktiven Oberfläche für den Unteren Graptolithenschiefer mit ein. Bei dem Hochskalieren der potentiell reaktiven Gesteinsoberfläche ist insbesondere der Gehalt an organischem Material zu berücksichtigen. Die meso- und vor allem mikroporöse innere Oberfläche der Alaunschiefer nimmt linear mit der C_{org}-Führung des Gesteins zu (Abb. 48). Aus diesem linearen Zusammenhang kann die mittlere innere Oberfläche für einen bekannten mittleren C_{org}-Gehalt eines Gesteinsvolumens berechnet werden.

Das Zusammenspiel der Oberflächendaten und die Interpretation hinsichtlich der Größe reaktiver Oberflächenanteile für die Bleichung von Alaunschiefer sind in Abb. 49 dargestellt.

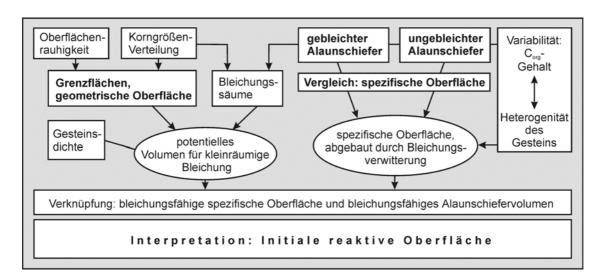


Abb. 49: Konzept zur Quantifizierung von potentiell reaktiven Anteilen der Gesteinsoberfläche des ungebleichten Alaunschiefers

Die Hochskalierung der potentiell reaktiven Oberfläche für Bleichungsverwitterung basiert einerseits auf der Abschätzung des von der Verwitterung betroffenen Gesteinsvolumens, insbesondere unter Berücksichtigung der natürlichen Grenzflächen im Gestein. Andererseits wird die

Größe der potentiell für Bleichungsverwitterung zur Verfügung stehenden inneren Oberfläche auf das durch äußere Oberflächen charakterisierte Gesteinsvolumen übertragen.

3.6 Anwendung der Oberflächenquantifizierung:

Quartäre Sedimente mit paläozoischem Hinterland

Im Gessental, westlich des ehemaligen WISMUT-Urantagebaus "Lichtenberg" und der dazugehörigen Haldenanlagen, lagern quartäre Bachsedimente auf paläozoischen Gesteinen (J. GELETNEKY, pers. Mitt.). Im östlichen Talbereich wurden unmittelbar liegend zu diesen Sedimenten dunkle Alaunschiefer erbohrt (Proben 205-209).

Beobachtungen:

Die sandigen Kiese der Bachsedimente (Probenserie 117) enthalten als Komponenten vorwiegend Quarzkörner (Mono- und Polyquarz), helle Tonschiefer und Lydite. Letztere führen keine opaken Bestandteile wie bspw. organisches Material (Abb. 50).

Bachschotter (Gessental): 117/5 117/4 Fraktion: 0.25 - 0.5 mm Fraktion: 0.5 - 1.0 mm n = 100 Körner IIII ≣ III 11X/X Probennummer Mono-/ Polyquarz "Auelehm" (Gessental): Lydit (hell) 118/4 118/5 Tonschiefer (hell) Fraktion: 0.25 - 0.5 mm Fraktion: 0.5 - 1.0 mm opake, eisenhaltige Partikel und Krusten Holzfragmente Magmatite, Glimmerschiefer, Siltschiefer, Quarzit

Abb. 50: Lithologische Zusammensetzung von Sandkörnern aus Bach- und Aue-Sedimenten des Gessentals nach mikroskopischem Befund an Streupräparaten. Quantifiziert wurden jeweils 100 Körner der Fraktionen $0.25-0.5\,$ mm und $0.5-1.0\,$ mm.

Oft treten durchgängig gerötete, offenbar Fe(III)-haltige Lithoklasten auf. Die eisenreichen Mineralneubildungen durchziehen solche Gesteinsbruchstücke vollständig. Außerdem sind häu-

fig eckige, ebenfalls rötliche, scherbenförmige Bruchstücke von Eisenkrusten (wahrscheinlich Hämatit, Goethit) als Komponenten vorhanden. Diese sind entweder strukturlos und durchgängig rotbraun pigmentiert oder besitzen eine lagige Anordnung rotbrauner Säume. Hölzerne Pflanzenreste sind in der Sandfraktion der Bachsedimente nicht vorhanden. Mengenmäßig untergeordnet treten Gesteinsbruchstücke von Quarzit, Glimmerschiefer, Siltschiefer und Magmatiten auf.

Petrographische Untersuchungen der Auensedimente (Probenserie 118) zeigten, daß in dem überwiegend pelitischen Sediment ebenfalls Quarz, graue Tonschiefer und Lydite häufig als sand- bis kieskorngroße Komponenten vorliegen. Zusätzlich kommen pflanzliche Fragmente vor. Die eisenhaltigen Krusten und Lithoklasten sind ebenfalls nicht selten. Wiederum sind auch in geringerer Häufigkeit Gesteinsbruchstücke von Quarzit, Glimmerschiefer, Siltschiefer und Magmatiten vorhanden.

An den sandig-kiesigen Komponenten der Bachschotter (Pr. 117) wurde die äußere Oberfläche aus Korngrößenanalysen berechnet (Anhang). Für Komponenten mit einem Korndurchmesser > 63 µm wurde die äußere Oberfläche mit 2300-4700 m²/m³ abgeschätzt. Diese Bandbreite ergibt sich aus der Klassenbreite der Siebkornfraktionen. Die berechnete äußere Oberfläche der sandig-kiesigen Komponenten ist deutlich größer als die geometrische Oberfläche der Alaunschieferpolyeder. Verantwortlich dafür ist der Feinkornanteil der Bachsedimente.

Um die innere Oberfläche unterschiedlicher Gesteinsbruchstücke abzuschätzen, wurde an lithologisch unterschiedlichen Proben die Stickstoff-BET-Oberfläche ermittelt. Vergleichsweise wurde die BET-Oberfläche von Lederschiefer (1-2 m²/g), devonischem Tonschiefer aus Mennsdorf (6 m²/g) und von einem Rotliegend-Sandstein (Bebertal, Flechtinger Höhenzug: 2 m²/g) quantifiziert. Ein Rotliegend-Vulkanit zeigte eine relativ große innere Oberfläche von 13 m²/g. Röntgendiffraktometrische Untersuchungen an der Kornfraktion < 2 µm aus dem Matrixmaterial belegen, daß Illit/ Muskovit sowie Kaolinit vorliegen. Quellfähige Tonminerale treten nicht auf. Die Diffraktogramme der glykolisierten und nichtglykolisierten Proben sind dem Anhang zu entnehmen.

Interpretation:

Weder die sandig-kiesigen Bachsedimente, noch die überwiegend pelitischen, untergeordnet sandig-kiesigen "Auelehme" führen in ihrem Komponentenspektrum opake Gesteinsbruchstücke, die auf ungebleichtes Material aus dem Graptolithenschiefer hindeuten könnten. Zwar kommen Lydite und Tonschiefer sehr häufig als Komponenten vor, diese sind jedoch gänzlich frei von opaken, möglicherweise C_{org}-reichen Bestandteilen. Da liegend zur quartären Talfüllung und in unmittelbarer Umgebung des Gessentals schwarze Graptolithenschiefer nicht fehlen, ist zu schlußfolgern, daß in den quartären Ablagerungen des Gessentals nur Alaun- und Kieselschiefer in *gebleichter* Form vorhanden sind.

Im Gegensatz zu dem ungebleichten WISMUT-Haldenmaterial (Alaun- und Kieselschiefer) sind in den quartären Ablagerungen im Gessental offenbar keine C_{org}-reichen Gesteinsbruchstücke vorhanden. Die in den Sedimenten auftretenden Komponenten können deshalb auch nur vergleichsweise kleine BET-Oberflächen besitzen. Weil helle Tonschiefer und Lydite dominieren, sind diejenigen Stickstoff-BET-Oberflächen zu erwarten, die für gebleichte Alaun- und Kieselschiefer diskutiert wurden. Sie sind deutlich kleiner als 10 m²/g. Stichprobenartige Untersuchungen an verschiedenen Lithologien diverser Vorkommen, nämlich an Lederschiefer, devonischem Tonschiefer und Rotliegend-Sandstein, bestätigen die geringe Schwankungsbreite der zu erwartenden BET-Oberfläche derartiger Lithotypen.

WHITE & PETERSON (1990) haben BET-Untersuchungen an silikatischen Partikeln vorgenommen. Sie vergleichen die BET-Oberfläche mit der geometrischen Partikel-Oberfläche von Silikaten. Für Partikeldurchmesser von ca. 100 nm bis 100 µm ergibt sich ein annähernd linearer Zusammenhang zwischen Partikelgröße und BET-Oberfläche, hier ist der Einfluß der inneren Oberfläche auf die BET-Oberfläche vernachlässigbar. Wenn ein polymineralisches Gemenge vorliegt, ist die innere Oberfläche die Summe der durch den Porenraum zugänglichen äußeren Mineralkornoberflächen (WHITE 1995). Für Alaunschiefer ist die innere Oberfläche nur dann deutlich erhöht, wenn darin organisches Material vorhanden ist. Wenn bleiche, Corg-freie Lithotypen betrachtet werden, ist die innere Oberfläche der unterschiedlichen Tonschiefer annähernd gleich groß. Allerdings spielt der Verwitterungsgrad der Silikate eine erhebliche Rolle für die innere Oberfläche der Gesteine. WHITE & PETERSON (1990) haben festgestellt, daß bei unverwitterten Silikaten die BET-Oberfläche siebenfach größer ist als die geometrische Oberfläche. Für verwitterte Silikate ist der Rauhigkeitsfaktor höher und kann etwa 200 erreichen, allerdings stark variierend für unterschiedliche Minerale. GAUTIER et al. (2001) zeigten jedoch, daß die Zunahme der BET-Oberfläche durch die Lösungserscheinungen keinen Zuwachs an reaktiver Oberfläche für diese Lösungsvorgänge, sondern nur eine Vergrößerung der unreaktiven Wände von Ätzgruben dokumentiert. Wenn in polymineralischen Gemengen stark verwitterte Silikate vorliegen, kann sich die innere Oberfläche dieses Lithotyps erhöhen. Das könnte beispielsweise in dem untersuchten Rotliegend-Vulkanit der Fall sein, dessen innere Oberfläche 13 m²/g beträgt. Zusätzlich kann der Anteil von Eisenkrusten die innere Oberfläche deutlich beeinflussen, dies haben die Untersuchungen an krustierten Alaunschiefern gezeigt. Der Anteil von eisenreichen Krusten und Kutinierungen (COSTON et al. 1995) kann deshalb eine Abschätzung der Größe der inneren Oberfläche des Sediments im Gessental zulassen.

Die innere Oberfläche der Gesteinspartikel hängt in dem betrachteten Sediment von der Intensität der Bleichung C_{org}-führender Lithotypen, vom Verwitterungsgrad der Silikate und der Menge an Eisenkrusten ab. Um den Einfluß bisher im Gessental-Sediment nicht beobachteter ungebleichter Alaun- und Kieselschiefer, weiterer Gesteinsbruchstücke und die Menge an Hämatit- bzw. Goethitkrusten zu klären, ist eine umfassende Untersuchung der lithologischen Zu-

sammensetzung der Talsedimente erforderlich. Aus der sich daraus ergebenden Mengenverteilung der Lithotypen und den zugehörigen äußeren und inneren Oberflächen ist eine Abschätzung der für Adsorption und Desorption zur Verfügung stehenden Flächen möglich.

Das Tonmineralspektrum des Matrixmaterials belegt, daß das Kationenaustauschvermögen wegen der fehlenden quellfähigen Tominerale gering ist (JASMUND & LAGALY 1993). Kationenaustauschreaktionen werden im quartären Sedimentkörper des Gessentals keine dominierende Rolle einnehmen.

4 Schlußfolgerungen und Zusammenfassung

Petrographische Charakteristika:

Im Unteren Graptolithenschiefer Südthüringens werden Alaunschiefer- und Kieselschieferpolyeder und im Oberen Graptolithenschiefer Alaunschieferpolyeder angetroffen, deren geometrische Form durch natürliche Grenzflächen im Gestein verursacht ist. Kluft-, Schieferungs- und Schichtflächen zerschneiden das Gestein derart, daß Polyeder mit Kantenlängen im cm-Bereich ausgebildet werden.

Ausgehend von diesen natürlichen Grenzflächen liegt das Gestein kleinräumig gebleicht vor, es sind millimetermächtige Bleichungszonen vorhanden. Andererseits können Alaun- und Kieselschiefer auch durchgreifend gebleicht in metermächtigen Verwitterungsprofilen aufgeschlossen sein. Mineralneubildungen auf den natürlichen Grenzflächen im Gestein und klein- und großräumige Bleichungserscheinungen zeigen geochemische und petrophysikalische Veränderungen an, die im Detail vorgestellt werden.

Mobilisierbarkeit von Mineralen und Elementen bei Bleichungsverwitterung:

Die geochemischen Charakteristika des untersuchten Materials wurden zur Abgrenzung des Alaunschiefers von stark verkieselten Lithotypen verwendet. Alaunschiefer enthalten weniger SiO₂ (meist < 80 Gew. %) als die verkieselten Lithotypen (Lydit). Silizium- und Aluminium-Gehalte werden durch eine Bleichung der Alaunschiefer nicht verändert, deshalb können diese Hauptelemente als halbquantitativer innerer Standard bei Laser-Ablations-Untersuchungen eingesetzt werden. Dieser Standard ist notwendig, um Anreicherungen bzw. die Verringerung von Spurenelementgehalten mit dieser Methode detektieren zu können.

Alaun- und Kieselschiefer enthalten überwiegend Illit/ Muskovit, Quarz und organischen Kohlenstoff. Sensitiv für Bleichungsvorgänge ist der Gehalt an organischem Kohlenstoff, der in dem untersuchten ungebleichten Material 6-23 Gew. % beträgt. Beginnende Bleichung wird durch einen Kohlenstoffgehalt um 1-2 Gew. % angezeigt; helles, gebleichtes Material besitzt meist weniger als 1 Gew. % organischen Kohlenstoff. Der Stickstoffgehalt ist für ungebleichte Alaunschiefer höher (0.2-0.5 Gew. %) als für gebleichte Alaunschiefer (meist < 0.2 Gew. %). Es ist wahrscheinlich, daß Stickstoff an organischen Kohlenstoff gebunden auftritt.

In gebleichten Bereichen des Alaunschiefers kann der TiO₂-Gehalt im Vergleich zum ungebleichten Material deutlich erhöht sein, insbesondere bei Ausbildung von Gesteinsumkrustungen durch Mineralneubildungen. Diese Überzüge zeigen hohe Eisengehalte. Der Alaunschiefer direkt unter der Kruste kann "imprägniert" von solchen Mineralneubildungen vorliegen und bis 20 Gew. % Fe₂O₃ enthalten. An der Krustierung kann auch Jarosit beteiligt sein, wobei neben Überzügen in Krusten auch idiomorphe Jarositkristalle im Alaunschiefer auftreten. Sowohl im ungebleichten als auch gebleichten Alaunschiefer können hohe und niedrige

Schwefelgehalte auftreten. Framboidaler und gröberkristalliner Pyrit verwittern teilweise vor der einsetzenden Bleichung des Gesteins. Dies führt zu mikroskopisch sichtbarem, neugebildetem Porenraum.

Die Spurenelemente V, Ba, Cr, Zn, Cu, Ni, Ce, Mo, Y, U können bei Bleichung mobilisiert werden. Dies kann einerseits zu einer Verringerung ihrer Konzentration im gebleichten Alaunschiefer führen. Andererseits können diese Spurenelemente insbesondere in Fe-haltigen Gesteins-Umkrustungen angereichert werden. Im metermächtigen gebleichten Nachbarbereich der ungebleichten Graptolithenschiefer kann der Urangehalt mehr als verdoppelt sein. In kleinräumigen Bleichungshöfen an Gesteinspolyedern kann der Urangehalt verringert sein.

Im Alaunschiefer befinden sich etwa 10 µm große Phosphoritkonkretionen, die reich an Eisen sowie Ce, La, Th und U sind. Obwohl Spurenelemente, die gemeinsam mit Phosphor auftreten, bei der Bleichung mobilisierbar sind, ist keine Phosphormobilisation durch die Bleichung erkennbar. Außerdem werden ähnlich große Kalziumphosphatkonkretionen angetroffen.

Methodenkonzept der Oberflächenquantifizierung:

In einem Gesamtkonzept der skalenübergreifenden Oberflächenquantifizierung wurden die äußere und innere Oberfläche von Alaunschiefer, vergleichend für verwitterte und unverwitterte Lithotypen, quantifiziert. Die geometrische Oberfläche wurde anhand der Größe und Morphologie der Gesteinspolyeder quantifiziert. Diese Ergebnisse wurden mit der Paraffin-Tränkungsmethode validiert. Die äußere Gesteinsoberfläche besitzt Oberflächenrauhigkeiten. Nach rasterelektronenmikroskopischen Voruntersuchungen kann entschieden werden, ob eine Quantifizierung der Rauhigkeitsparameter mit mechanischen oder optischen Verfahren aufgrund der unterschiedlich großen räumlichen Auflösung empfehlenswert ist. Für die Quantifizierung der inneren Gesteinsoberfläche war die vergleichende Anwendung der Quecksilberporosimetrie und der BET-Adsorption sinnvoll. Neben der summarischen Oberflächengröße konnte der mikroporöse Flächenanteil der inneren Oberfläche abgeschätzt werden. Allerdings ist bedeutsam, welche Minerale im Untersuchungsmaterial auftreten, weil die innere Oberfläche von Mineralen nicht für alle Adsorbate zugänglich ist. Wenn quellfähige Tonminerale fehlen, ist der Einsatz von Stickstoff als Adsorbat gerechtfertigt.

Dieses Konzept, das die Gesteinsoberflächenquantifizierung über mehrere Größenordnungen (m bis nm) ermöglicht, wurde auf Alaunschiefer aus dem Unteren Graptolithenschiefer angewendet, darüberhinaus wurden Alaunschiefer aus dem Oberen Graptolithenschiefer und Kieselschiefer aus dem Unteren Graptolithenschiefer als Vergleichsmaterial untersucht.

Oberflächenquantifizierung an Alaunschiefer:

Die geometrische Oberfläche von Alaunschieferpolyedern ist durch natürliche Grenzflächen im Gestein verursacht. Bleichungsverwitterung von Alaunschiefer führt zu einer Verdopplung der

Größe derjenigen Grenzflächen im Gestein, die bei der Gesteinsentfestigung die Polyederoberfläche bilden können. Kieselschieferpolyeder sind in ihrer Größe nicht von der Verwitterung des Gesteins abhängig.

Die deutliche Erhöhung des Rauhigkeitsfaktors bei einer räumlichen Auflösung von X00 nm für gebleichten Alaunschiefer zeigt an, daß Porenraum im gebleichten Gestein durch Rauhigkeitsanalyse detektierbar ist. Im ungebleichten Alaunschiefer sind derart große Poren seltener. Rauhigkeitsuntersuchungen sind deshalb zur Bewertung der Porengröße ein wichtiges Hilfsmittel.

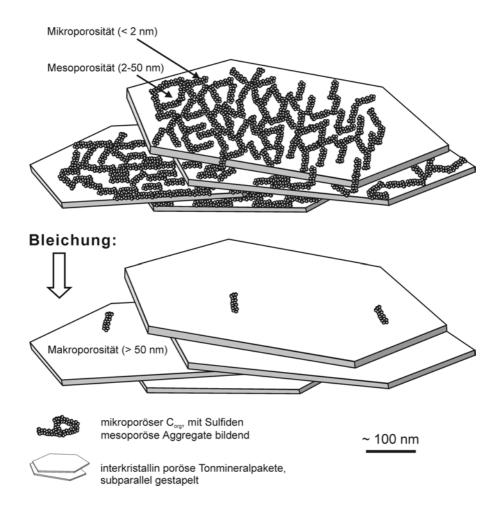


Abb. 51: Schematische Darstellung der inneren Gesteinsoberfläche und ihrer Änderung durch Bleichungsverwitterung

Bleichungsverwitterung verursacht bei Alaunschiefern eine drastische Porositätszunahme um 10-15 %: Während ungebleichter Alaunschiefer eine Porosität von etwa 5-10 % zeigt, besitzen gebleichte Alaunschiefer des Unteren Graptolithenschiefers etwa 25 % und Alaunschiefer aus dem Oberen Graptolithenschiefer ca. 15 % Porosität. Bei der Bleichungsverwitterung wird im C_{org}-reicheren Unteren Graptolithenschiefer eine höhere Porosität erzeugt. Die Porositätserhöhung geht mit einer Erniedrigung der inneren Oberfläche des Alaunschiefer einher, mikround mesoporöse Flächenanteile werden bei der Bleichungsverwitterung abgebaut (Abb. 51).

Eisenkrustierungen auf dem Alaunschiefer können die innere Oberfläche des Gesteins deutlich erhöhen. Diese innere Oberfläche ist durch Mikroporen verursacht.

Potentiell reaktive Oberfläche von Alaunschiefer:

Die Synthese der Quantifizierung von äußerer und innerer Oberfläche, der Vergleich der Flächendaten unverwitterter und verwitterter Alaunschiefer führt zu der Interpretation, daß ein quantifizierbarer Anteil der Gesteinsoberfläche von dem Material verursacht ist, das bei Bleichungsverwitterung entfernt wird.

Mit fortschreitender Verwitterung ist bis zum vollständigen Abbau des organischen Materials mit einer Verkleinerung der für Bleichungsverwitterung reaktiven Oberfläche zu rechnen.

Da die geochemisch nachgewiesene Entfernung des mikro- und mesoporösen Materials die innere Oberfläche des Alaunschiefers stark verringert, ist davon auszugehen, daß die von WHITE & PETERSON (1990) beschriebene Vergrößerung der Oberfläche von Silikaten durch Verwitterung bei der Bleichung von Alaunschiefern noch nicht stattfindet. Stattdessen wird die unverwitterte Oberfläche der Schichtsilikate durch die Bleichung erst freigelegt.

In den Bleichungsvorgang ist demnach nur die Oberfläche des organischen Materials und untergeordnet möglicherweise das von Sulfiden involviert, sonst müßte die innere Oberfläche des gebleichten Alaunschiefers höher sein. Es ist nicht bekannt, ob die Oberfläche der Schichtsilikate vollständig mit einer "Haut" des mikroporösen Materials überzogen ist. Möglicherweise bedeckt das mesoporöse Maschenwerk die Silikatoberfläche nicht vollständig. Wäre die Tonmineraloberfläche vollständig bedeckt, würde die innere Oberfläche des Alaunschiefers diejenige Oberfläche widerspiegeln, die beim Bleichungsvorgang abgebaut wurde. Sind Lücken in der Tonmineralüberdeckung vorhanden, ist die für Bleichungsverwitterung reaktive Oberfläche kleiner.

Potentiell reaktive Kieselschiefer- und Eisenkrusten-Oberflächen:

Gebleichte Kieselschiefer zeigen auf Kristallflächen authigener Quarzkörner rundliche Vertiefungen, deren Durchmesser wenige hundert Nanometer beträgt. Zusätzlich zur mengenmäßig für diesen Lithotyp untergeordnet auftretenden reaktiven Oberfläche durch organisches Material ist bei Bleichungsverwitterung von Kieselschiefern die reaktive Oberfläche der diagenetisch gebildeten Quarzkörner zu berücksichtigen. Die spezifische Oberfläche (Stickstoff-BET) der Kieselschiefer ist jedoch deutlich geringer als die der Alaunschiefer.

Der Einfluß der illitischen Tonminerale im Alaunschiefer auf die reaktive Oberfläche des Gesteins bei Bleichung ist wahrscheinlich klein. Ein Indiz dafür ist die geringe Variabilität der spezifischen Oberfläche des gebleichten Alaunschiefers. REM-Abbildungen verwitterter Alaunschiefer zeigen Gefügeauflockerungen der im ungebleichten Gestein subparallel und dicht liegenden Tonmineralpakete. Es ist möglich, daß diese glatten, ebenen, ausgeglichenen Flächen

durch dünne Beläge von organischem Kohlenstoff nachgezeichnet werden. Der Abbau von organischem Kohlenstoff legt die Oberfläche der Tonminerale frei. Lösungserscheinungen an Tonmineraloberflächen sind erst nach der Oxidation ihrer C_{org} -reichen Umhüllung zu erwarten. Die spezifische Oberfläche (Stickstoff-BET) gebleichter Alaunschiefer, die fast gänzlich aus Illit bestehen, ist stets kleiner als 8 m²/g. Eine Systematik in der Änderung der Oberflächendaten gebleichter Alaunschiefer konnte nicht festgestellt werden, da – im Gegensatz zum Abbau von C_{org} im ungebleichten Alaunschiefer – kein Marker für fortschreitende Lösungsverwitterung des gebleichten Alaunschiefers existiert.

Die Verkrustung der Schwarzpelitoberfläche mit Eisenoxiden bzw. -hydroxiden führt zu einer deutlichen Erhöhung der spezifischen Oberfläche des Gesteins. Das hier vorgestellte Konzept zur Quantifizierung der bleichungsfähigen reaktiven Oberfläche des Alaunschiefers kann zur Quantifizierung der Reaktivität solcher großen Krustenoberflächen bei der Adsorption vorgegebener Stoffe verwendet werden. Notwendig dafür ist aber ein "Vorher-Nachher"-Vergleich, ähnlich zu der hier vorgestellten Vorgehensweise beim Vergleich gebleichter und ungebleichter Schwarzpelite.

Materialabfuhr bei Bleichungsverwitterung:

Zusätzlich zu porosimetrischen Aussagen erlaubt die Quecksilberporosimetrie Angaben zur Dichte des untersuchten Materials. Berechnungen zeigen unter Berücksichtigung der Änderung der Porosität, daß Gesteinsbestandteile bei der Bleichung entfernt werden, deren Dichte ca. $2 \pm 0.6 \ \text{g/cm}^3$ beträgt. Dichtemessungen mit dem Pyknometer an mit Flußsäure extrahiertem organischem Material zeigten, daß dieses eine Dichte von ca. $1.8 \ \text{g/cm}^3$ besitzt. Eine Abführ von Sulfiden durch die Bleichungsverwitterungen ist mengenmäßig somit nur deutlich untergeordnet möglich.

Das organische Material zeigt – außer einigen wenigen Sphaeromorpha – keine biologische Strukturierung. Vielmehr liegen submikrometergroße Fragmente vor, die im Alaunschiefer wahrscheinlich häutchenartig auf den gesteinsbildenden Illiten liegen.

Die Dichteuntersuchungen lassen Abschätzungen über die Höhe des Gehalts an organischem Material im Gestein zu. Unverwitterter Alaunschiefer aus dem Unteren Graptolithenschiefer mit hohen C_{org} -Gehalten besitzt eine niedrigere Dichte als C_{org} -ärmerer Alaunschiefer aus dem Oberen Graptolithenschiefer. Der Dichtewert von Alaunschiefer kann deshalb zur Abschätzung des C_{org} -Gehaltes und damit entweder zur Einschätzung des Verwitterungszustandes oder zur stratigraphischen Einordnung verwendet werden. Das ist insbesondere bei der Untersuchung von umgelagertem Material, bspw. von Halden oder natürlichen Sedimentkörpern, von Bedeutung.

Zeitliche Aspekte der Bleichungsverwitterung:

Bleichungsverwitterung kommt einerseits als durchgreifende, metermächtige Verwitterung der Gesteinsabfolge vor, andererseits tritt kleinräumige, millimetermächtige Bleichung an natürlichen Grenzflächen von Gesteinspolyedern auf. Die Position von durchgreifenden, großräumigen Bleichungszonen direkt unter der tertiären Verebnungsfläche spricht für langanhaltende und tiefgründige mesozoisch-tertiäre Verwitterung in diesem Fall. Kleinräumige Verwitterung in pleistozänen Talaufschlüssen und die Abfuhr organischen Materials aus Haldenmaterial innerhalb weniger Jahrzehnte belegt, daß auch junge, quartärzeitliche, kurzfristige Bleichungsverwitterung möglich ist.

Der Gehalt an organischem Kohlenstoff im Grenzbereich zwischen verwittertem und unverwittertem Alaunschiefer kann nicht durch eine lineare Funktion beschrieben werden. Vielmehr geht aus TOC-Quantifizierungen über ein kleinräumiges Probenprofil (ungebleicht, teilweise gebleicht, vollständig gebleicht) hervor, daß die Menge an organischem Kohlenstoff verringert wurde, wenn erste Bleichungsanzeichen sichtbar sind. Schon eine leichte Graufärbung des Alaunschiefers bedeutet, daß mehr als die Hälfte des ursprünglichen Gehalts an organischem Kohlenstoff abgebaut ist. Wenn hier von einem Modell ausgegangen wird, das die Größe der reaktiven Oberfläche mit dem Gehalt an organischem Kohlenstoff im Gestein in Beziehung setzt, muß gefolgert werden, daß die reaktive Oberfläche im Anfangsstadium der Bleichungsverwitterung (beginnende Bleichung) schneller abgebaut wird, als im Stadium der durchgreifenden, vollständigen Bleichung des Gesteins.

Anwendung des Methodenkonzeptes der Oberflächenverwitterung:

Die Untersuchungen an Alaunschiefer aus Süd- und Ostthüringen zeigen, daß mikro- und mesoporöse, C_{org}-reiche Flächenanteile im Alaunschiefer an der Bleichungsverwitterung beteiligt sind. Dabei erfolgt der Abbau von organischem Material, das eine höhere innere Oberfläche besitzt als das verwitterte, gebleichte Gestein. Inwieweit an diesem Abbau nicht nur chemischphysikalische, sondern auch biologische Vorgänge beteiligt sind, ist ungeklärt und bedarf der weiteren Untersuchung. Für solche Untersuchungen wären Versuche sinnvoll, die die Bioverfügbarkeit von Spurenelementen und den Abbau organischer Substanz an Flußsäure-Extrakten prüfen, um dann an biosensitiven Elementen pulverisierte und natürlich strukturierte Proben hinsichtlich der möglichen biologischen Interaktion (PETSCH et al. 2001) zu testen. Zusätzlich ist der bakterielle Einfluß auf Sulfide zu prüfen (LOWER et al. 2002).

Das Methodikkonzept der Oberflächenquantifizierung kann auf Systeme mit gemischten Lithologien übertragen werden, bspw. auf Haldenmaterial oder natürliche Sedimentkörper. Petrographische Untersuchungen an der Sandfraktion von Bach- und Aue-Sedimenten aus dem Gessental zeigten, daß dort keine C_{org} -reichen Gesteinsbruchstücke vorliegen. Es treten häufig

Quarzkörner, helle Lydite und Tonschiefer sowie Eisenkrusten auf; die Auesedimente enthalten zusätzlich Pflanzenfragmente.

BRANTLEY & MELLOTT (2000) untersuchten gesteinsbildende Silikate bezüglich ihrer inneren Oberflächen, die meist deutlich kleiner als $1~\text{m}^2/\text{g}$ sind. Sie schlußfolgerten, daß die innere Oberfläche dieser Minerale die reaktive Oberfläche des Gesteins kaum beeinflußt. Die vorliegenden Untersuchungen der inneren Oberfläche an verschiedenen Lithotypen zeigten, daß nur C_{org} -Reichtum, Eisenverkrustungen und Kaolinisierungen höhere innere Gesteinsoberflächen, nämlich größer als $\sim 10~\text{m}^2/\text{g}$, verursachen. Im Gessental sind hohe Adsorptionskapazitäten der Sedimente nur durch das Vorkommen von Eisenkrusten wahrscheinlich, weil keine schwarzpelitischen oder -lyditischen Gesteinsbruchstücke vorkommen. Außerdem sind keine quellfähigen Tonminerale als Matrixmaterial nachgewiesen worden. Die Adsorption von Metallen an Kaolinit ist für verschiedene Metalle unterschiedlich stark konzentrationsabhängig (CZURDA & WAGNER 1991), deshalb müssen das Angebot an Kationen und die ihre jeweilige Konzentration Beachtung finden.

Die Voruntersuchungen am quartären Sedimentkörper im Gessental müssen durch ein petrographisches Modell untermauert werden. Hauptaugenmerk sollte dabei auf der Quantifizierung derjenigen Lithotypen liegen, die große innere Oberflächen besitzen und für mengenmäßig herausragende Ad- und Desorptionsvorgänge prädestiniert sind.

5 Danksagungen

Die vorliegende Arbeit entstand unter der anregenden Betreuung von Herrn Prof. Gaupp. Ihm danke ich für fachliche Diskussionen und Unterstützung während der Promotionszeit. Herrn Prof. Büchel, Herrn Prof. Heide und Frau Prof. Kothe danke ich für verschiedene thematische Anregungen und Gespräche. Herr Prof. Lützner und Herr Dr. Ellenberg gaben mir wertvolle Hinweise zur Schiefergebirgsgeologie.

Herr Dr. Schubert (TLG Weimar) ermöglichte die Einsichtnahme in Bohrprofilunterlagen der SDAG WISMUT und verhalf zu einer zügigen Kernbefahrung und Beprobung im Kernlager Niederpöllnitz. Herr Müller vom Schaubergwerk "Morassina" in Schmiedefeld gab Hinweise zum Alaunschiefer- und WISMUT-Bergbau und ermöglichte die untertägige Beprobung.

Für diese Arbeit war eine Vielzahl analytischer Verfahren notwendig. Die Mikrosondenanalysen erfolgten bei Herrn Dr. Kronz, Göttingen. REM-Aufnahmen entstanden am Inst. für Geowissenschaften in Halle, Herr Dr. Clausing unterstützte mich dabei.

Mit Herrn Dr. Heuse (TLG Weimar) erfolgten aufschlußreiche Diskussionen zu Mikrofossilien im Altpaläozoikum, er half tatkräftig bei der Flußsäurebehandlung der Proben. Der Gehalt der Gesteine an Kohlenstoff und Stickstoff wurde von Frau Hilke im Labor des MPI für Biogeochemie (Jena) bestimmt.

Mit Herrn Dr. Merten erfolgten die ICP-MS-Analysen und tiefgründige Diskussionen zum "inneren Standard" meiner inhomogenen Proben. Herrn Dr. Schöps und Herrn Ude danke ich für die RFA-Analysen, Frau Rudakoff nahm die Röntgendiffraktogramme auf. Herr Dr. Klöß verhalf zu pyknometrischen Dichtewerten des organischen Materials und zeigte vielfältige Diskussionsbereitschaft. Herr Dr. v. d. Klauw stritt sich bereitwillig im Schiefergebirge mit mir über Gefügemerkmale der dortigen Gesteine.

Herrn Prof. Wesch (Inst. f. Festkörperphysik, Univ. Jena) danke ich für die Ermöglichung der DEKTAK-Rauhigkeitsmessungen und AFM-Untersuchungen bei Frau Voigt. Rauhigkeitsmikroskopie wurde am Fraunhofer-Institut für Angewandte Optik und Feinmechanik durchgeführt, dafür danke ich Herrn Prof. Notni und Herrn Steinert. Herr Dr. Kahr (ETH Zürich) führte die Quecksilberintrusionsmessungen durch und diskutierte mit mir Porositätseigenschaften von Tonsteinen; Herr Prof. Vogelsberger und Herr Dr. Sonnefeld (Phys. Chemie, Univ. Jena) ermöglichten die BET-Analysen.

Die hervorragenden Schliffe des "problematischen Materials" fertigte Frau Bergmann an, Herr Linde hat mich im Sedimentlabor unterstützt. Bei der Probenaufbereitung halfen die Studenten Daniela Seifert und Guido Meinhold.

Christian Schmidt hat mir Geheimnisse aus der organischen Geochemie verraten. Mein "Banknachbar" Robert Schöner zeigte Geduld beim Diskutieren und Korrekturlesen.

Ich danke dem Land Thüringen für die Gewährung eines Graduiertenstipendiums für die Anfangsphase der Promotion.

Meine Eltern unterstützten mich während meiner Jenenser Studienzeit.

Ganz besonders danke ich meiner Franziska.

6 Literaturverzeichnis

- ANBEEK, C. (1992a): Surface roughness of minerals and implications for dissolution studies.- Geochim. Cosmochim. Acta **56**: 1461-1469.
- ANBEEK, C. (1992b): The dependence of dissolution rates on grain size for some fresh and weathered feldspars.- Geochim. Cosmochim. Acta **56**: 3957-3970.
- ANBEEK, C. (1993): The effect of natural weathering on dissolution rates.- Geochim. Cosmochim. Acta 57: 4963-4975.
- ANBEEK, C., VAN BREEMEN, N., MEIJER, E.L. & VAN DER PLAS, L. (1994): The dissolution of naturally weathered feldspar and quartz.- Geochim. Cosmochim. **58**: 4601-4613.
- BALAN, E., TROCELLIER, P., JUPILLE, J., FRITSCH, E., MULLER, J.-P. & CALAS, G. (2001): Surface chemistry of weathered zircons.- Chem. Geol. 181: 13-22.
- BANFIELD, J.F. & BARKER, W.W. (1994): Direct observation of reactant-product interfaces formed in natural weathering of exsolved, defective amphibole to smectite: Evidence for episodic, isovolumetric reactions involving structural inheritance.- Geochim. Cosmochim. Acta 58: 1419-1429.
- BATTEN, D. J. (1999): Palynofacies analysis.- in: JONES, T.P. & ROWE, N.P. [eds.]: Fossil Plants and Spores: modern techniques.- pp. 194-198; Geological Society, London.
- BAUER, A., SCHÄFER, T., DOHRMANN, R., HOFFMANN, H. & KIM, J.I. (2001): Smectite stability in acid salt solutions and the fate of Eu, Th, and U in solution.- Clay Min. 36: 93-103.
- BECHTEL, A., GRATZER, R., PÜTTMANN, W. & OSZCZEPALSKI, S. (2002): Geochemical characteristics across the oxic/anoxic interface (*Rote Fäule* front) within the Kupferschiefer of the Lubin-Sieroszowice mining district (SW Poland).- Chem. Geol., **185**: 9-31.
- BECKER, U., MUNZ, A.W., LENNIE, A.R., THORNTON, G. & VAUGHAN, D.J. (1997): The atomic and electronic structure of the (001) surface of monoclinic pyrrhotite (Fe₇S₈) as studied using STM, LEED and quantum mechanical calculations.- Surface Science **389**: 66-87.
- BECKER, U., ROSSO, K.M. & HOCHELLA JR., F. (2001): The proximity effect on semiconducting mineral surface reactivity and surface complexation theory.- Geochim. Cosmochim. Acta 65/16: 2641-2649.
- BLUM, A.E., YUND, R.A. & LASAGA, A.C. (1990): The effect of dislocation density on the dissolution rate of quartz.- Geochim. Cosmochim. Acta **54**: 283-297.
- BOSBACH, D., HALL, C. & PUTNIS, A. (1998): Mineral precipitation and dissolution in aqueous solution: in-site microscopic observations on barite (001) with atomic force microscopy.- Chem. Geol. **151**: 143-160.
- BOILY, J.F. & FEIN, J.B. (1996): Experimental study of cadmium-citrate co-adsorption onto α -Al₂O₃.-Geochim. Cosmochim. Acta **60**: 2929-2938.
- BRADY, P.V. & WALTHER, J.V. (1989): Controls on silicate dissolution rates in neutral and basic pH solutions at 25°C.- Geochim. Cosmochim. Acta 53: 2823-2830.
- BRANTLEY, S.L. & MELLOTT, N.P. (2000): Surface area and porosity of primary silicate minerals.- Amer. Mineral. **85**: 1767-1783.
- Brunauer, S., Emmet, P.H. & Teller, E. (1938): Adsorption of gases in multimolecular layers.- J. Amer. Chem. Soc. **60**: 309-319.

- BURCH, T.E., NAGY, K.L. & LASAGA, A.C. (1993): Free energy dependance of albite dissolution kinetics at 80°C and pH 8.8.- Chem. Geol. 105: 137-162.
- COLLINS, M.J., BISHOP, A.N. & FARRIMOND, P. (1995): Sorption by mineral surfaces: Rebirth of the classical condensation pathway for kerogen formation?- Geochim. Cosmochim. Acta **59/11**: 2387-2391.
- COPPIN, F., BERGER, G., BAUER, A., CASTET, S. & LOUBET, M. (2002): Sorption of lanthanides on smectite and kaolinite.- Chem. Geol. 182: 57-68.
- CORNELL, R. M. & SCHWERTMANN, U. (1996): The Iron Oxides. 573 S.; Weinheim, VCH.
- COSTON, J.A., FULLER, C.C. & DAVIS, J.A. (1995): Pb²⁺ and Zn²⁺ adsorption by aluminum- and iron-bearing surface coating on an aquifer sand.- Geochim. Cosmochim. Acta **59**: 3535-3547.
- CRAW, D. (2000): Water-rock interaction and acid neutralization in a large schist debris dam, Otago, New Zealand.- Chem. Geol. **171**: 17-32.
- CZURDA, K. (1998): Spezifische Oberfläche und Mikroporosität.- in: HILTMANN, W. & STRIBRNY, B. [Hrsg.] (1998): Tonmineralogie und Bodenphysik.- Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten 5: 297 S.; Springer, Berlin.
- CZURDA, K.A. & WAGNER, J.-F. (1991): Cation transport and retardation processes in view of the toxic waste deposition problem in clay rocks and clay liner encapsulation.- Engineer. Geol. **30**: 103-113.
- DAHMKE, A. (1988): Lösungskinetik von feldspat-reichen Gesteinen und deren Bezug zu Verwitterung und Porenwasser-Chemie natürlicher Sander-Sedimente.- Berichte-Reports, Geol-Paläont. Inst. Univ. Kiel **20**: 168 S.
- DAHMKE, A., MATTHESS, G., PETERSEN, A. & SCHENK, D. (1988): Gleichgewichts- und Ungleichgewichtsbeziehungen zwischen Porenlösungen und festen Substanzen der Verwitterungszone quartärer Sedimente.- Berichte-Reports, Geol-Paläont. Inst. Univ. Kiel 25: 51 S.
- DAHMS, E. & FRITZ, L. (1998): Wassergehalt.- in: HILTMANN, W. & STRIBRNY, B. [Hrsg.] (1998): Tonmineralogie und Bodenphysik.- Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten 5: 297 S.; Springer, Berlin.
- DELVIGNE, J.E. (1998): Atlas of Micromorphology of Mineral Alteration and Weathering.- Canad. Mineral., Spec. Publ. **3**: 495 pp.; Ottawa.
- DIN 66134 (1996): Bestimmung der Porengrößenverteilung und der spezifischen Oberfläche mesoporöser Festsoffe durch Stickstoffsorption.- 14 S.; Beuth, Berlin.
- DIN 66131 (1993): Bestimmung der spezifischen Oberfläche von Feststoffen durch Gasadsorption nach Brunauer, Emmet und Teller (BET).- 5 S.; Beuth, Berlin.
- DIN 66133 (1993): Bestimmung der Porenvolumenverteilung und der spezifischen Oberfläche von Feststoffen durch Quecksilberintrusion.- 3 S.; Beuth, Berlin.
- DIN EN ISO 4287 (1998): Oberflächenbeschaffenheit: Tastschnittverfahren.- 12 S.; Beuth, Berlin.
- DOVE, P.M. & PLATT, F.M. (1996): Compatible real-time rates of mineral dissolution by Atomic Force Microscopy (AFM).- Chem. Geol. 127: 331-338.
- EDWARDS, K.J. & RUTENBERG, A.D. (2001): Microbial response to surface microtopography: the role of metabolism in localized mineral dissolution.- Chem. Geol. **180**: 19-32.
- EMMET, P.H., BRUNAUER, S. & LOVE, K.S. (1938): The measurement of surface areas of soils and soil colloids by the use of low temperature van der waals adsorption isotherms.- Soil sience **45**: 57-65.

- EVANGELOU, V.P. (1995): Pyrite oxidation and its control.- 293 pp.; CRC Press, Boca Raton.
- FALK, F. & WIEFEL, H. (1995): Ordovizium. in: SEIDEL, G. [Hrsg.]: Geologie von Thüringen: 91-111; Schweizerbart, Stuttgart.
- FARQUHAR, M.L., VAUFHAN, D.J., HUGHES, C.R., CHARNOCK, J.M. & ENGLAND, K.E.R. (1997): Experimental studies of the interaction of aqueous metal cations with mineral substrates: Lead, cadmium, and copper with perthitic feldspar, Muscovite, and biotite.- Geochim. Cosmochim. Acta 61: 3051-3064.
- FENGLER, H.-J. (1997): unveröff. Beitragssammlung zum Exkursionsführer "Geologie, Bergbau und Sanierung des Ostthüringer Uranerzbergbaureviers" zur Exkursion B6 der 149. Jahrestagung DGG.
- FRYER, B.J., JACKSON, S.E. & LONGERICH, H.P. (1995): The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM-ICP-MS) in the earth sciences.- Canad. Mineral. 33: 303-312.
- FÜCHTBAUER, H. [Hrsg.] (1988): Sedimente und Sedimentgesteine. 1141 S.; Schweizerbart, Stuttgart.
- GAUTIER, J.-M., OELKERS, E.H. & SCHOTT, J. (2001): Are quartz dissolution rates proportional to B.E.T. surface areas?.- Geochim. Cosmochim. Acta 65 (7): 1059-1070.
- GEHLKEN, P.-L. (1995): Infrarotspektroskopie.- in: HILTMANN, W. & STRIBRNY, B. [Hrsg.] (1998): Tonmineralogie und Bodenphysik.- Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten 5: 297 S.; Springer, Berlin.
- GLIECH, S., DUPARRÉ, A., RECKNAGEL, R.-J. & NOTNI, G. (1999): Wide-scale surface characterisation by combination of scanning force microscopy, white light interferometry and light scattering.- SPIE 3739: 355-362.
- GLYNN, P.D., REARDON, E.J., PLUMMER, L.N. & BUSENBERG, E. (1990): Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems.- Geochim. Cosmochim. Acta **54**: 267-282.
- GREGG, S.J. & SING, K.S.W. (1991): Adsorption, Surface Area and Porosity.- 303 pp.; Academic Press, London.
- GRIM, R.E. (1968): Clay Mineralogy. 596 pp.; McGraw-Hill, London.
- GOBRECHT, H. (1990): Mechanik, Akustik, Wärme.- BERGMANN, SCHÄFER: Lehrbuch der Experimentalphysik, Bd. 1, 902 S.; de Gruyter, Berlin.
- GÖPEL, W. & ZIEGLER, C. (1994): Struktur der Materie: Grundlagen, Mikroskopie und Spektroskopie.-668 S.; Teubner, Leipzig.
- HAMMER, J., JUNGE, F., RÖSLER, S., NIESE, S., GLEISBERG, B. & STIEL, G. (1990): Element and isotope geochemical investigations of the Kupferschiefer in the vicinity of "Rote Fäule", indicating opper mineralization (Sangerhausen basin, G.D.R).- Chem. Geol. **85**: 345-350.
- HARPER, M.P., DAVISON, W., ZAHANG, H. & TYCH, W. (1998): Kinetics of metal exchange between solids and solutions in sediments and soils interpreted from DGT measured fluxes.- Geochim. Cosmochim. Acta 62: 2757-2770.
- HAUS, R. (1993): Mikrogefügeänderungen toniger Böden nach Kohlenwasserstoffkontamination und Tensideinsatz Porenverteilung, Durchlässigkeit und Sorption.- Schr. Angew. Geol. Karlsruhe **25**: XV+193 S.; Karlsruhe.
- HELGESON, H.C., MUPHY, W.M. & AAGAARD, P. (1984): Thermodynamic and kinetic contraints on reaction rates among minerals and aqueous solutions. II. Rate constants, effective surface area, and the hydrolysis of feldspar.- Geochim. Cosmochim. Acta 48: 2405-2432.

- HELLMANN, R., EGGLESTON, C.M., HOCHELLA JR., M.F. & CRERAR, D.A. (1990): The formation of leached layers on hydrothermal conditions.- Geochim. Cosmochim. Acta **54**: 1267-1281.
- HEIM, D. (1990): Tone und Tonminerale.- 157 S.; Enke, Stuttgart.
- HEIMERL, H. (1995): Kationenaustauschkapazität.- in: HILTMANN, W. & STRIBRNY, B. [Hrsg.] (1998): Tonmineralogie und Bodenphysik.- Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten 5: 297 S.; Springer, Berlin.
- HEMPEL, G. (1995): Variscische Tektonik.- in: SEIDEL, G. [Hrsg.]: Geologie von Thüringen: 166-180; Schweizerbart, Stuttgart.
- HESSE, R. (1990): Origin of Chert: Diagenesis of Biogenic Siliceous Sediments.- in McIlreath, I.A. & Morrow, D.W. [eds.]: Diagenesis.- Geoscience Canada reprint series 4: 227-253.
- HEUSE, T., ERDTMANN, B.-D. & KRAFT, P. (1994): Early Ordovicoan microfossils (acritarchs, chitinozoans) and graptolites from the Schwarzburg Anticline, Thuringia (Germany).- Veröff. Naturhist. Mus. Schleusingen 9: 41-68.
- HILLEBRECHT, F.U. & KISKER, E. (1992): Oberflächenphysik.- in RAITH, W. (Hrsg.): Festkörper.-Lehrbuch der Experimentalphysik, Band 6; de Gruyter, Berlin.
- HILTMANN, W. & STRIBRNY [Hrsg.] (1998): Tonmineralogie und Bodenphysik.- Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten 5: 297 S., Springer, Berlin.
- HOCHELLA, M.F. & BANFIELD, J.F. (1995): Chemical weathering of silicates in nature: A microscopic perspective with theoretical considerations.- Rev. Mineral. **31**: 353-407.
- HODSON, M.E., LEE, M.R. & PARSONS, I. (1997): Origins of the surface roughness of unweathered alkali feldspar grains.- Geochim. Cosmochim. Acta **61**: 3885-3896.
- HOLDREN JR, G.R. & SPEYER, P.M. (1985): Reaction rate-surface area relationships during the early stages of weathering- I. Initial observations.- Geochim. Cosmochim. Acta 49: 675-681.
- HUNDT, R. (1939): Das Mitteldeutsche Graptolithenmeer. 395 S.; Boerner, Halle.
- IUPAC (1985): Reporting Physisorption Data for Gas/Solid Systems.- Pure & Appl. Chem. 57: 603-619.
- IUPAC (1994): Recommendations for the characterization of porous solids.- Pure & Appl. Chem. **66/8**: 1739-1758.
- JAEGER, H. (1964): Der gegenwärtige Stand der stratigraphischen Erforschung des Thüringer Silurs.-Abh. Dt. Akad. Wiss., Klasse Bergbau, Hüttenwesen u. Montangeol. 2: 27-51.
- JARVIS, K.E. & WILLIAMS, J.G. (1993): Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): a rapid technique for the direct, quantitative determination of major, trace and rare-earth elements in geological samples.- Chem. Geol. 106: 251-262.
- JASMUND, K. & LAGALY, G. [Hrsg.] (1993): Tonminerale und Tone.- 490 S.; Steinkopff, Darmstadt.
- JOHNSON, A., HOCHELLA JR, F. & PARKS, G.A. (1992): Direct observation of muscovite basal-plane dissolution and secondary phase formation: An XPS, LEED, and SFM study.- in: KHARAKA & MAEST [eds.]: Water-Rock Interaction 7: 159-162.
- Jongmans, A.G., van Breemen, N., Lundström, U., van Hees, P.A.W., Finlay, R.D., Srinivasan, M., Unestam, T., Giesler, R., Melkerud, P.-A. & Olsson, M. (1997): Rock-eating fungi.-Nature **389**, 682-683.
- KAWANO, M. & TOMITA, K. (2001): Geochemical modelling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water.- Amer. Mineral. **86**: 1156-1165.

- KATO, Y., NAKAO, K. & ISOZYKI, Y. (2002): Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change.- Chem. Geol. **182/1**: 15-34.
- KLOTH, J.-U. (2000): Hydrogeochemische Untersuchungen an ausgewählten Lithoeinheiten der Ronneburger Uranerzbergbauregion. Unveröff. Diplomarbeit, Friedr.-Schiller-Univ. Jena, 74 S.
- KOHLER, E.E. & HEIMERL, H. (1995): Berechnung von Tonmineralgehalten aus kolloidchemischen und chemischen Kenngrößen.- in: HILTMANN, W. & STRIBRNY, B. [Hrsg.] (1998): Tonmineralogie und Bodenphysik.- Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten 5: 297 S.; Springer, Berlin.
- KOSSMAT, F. (1927): Gliederung des varistischen Gebirges.- Abh. Sächs. Geol. L.-A.: 1, 40 S.
- LANGE, G., SCHUSTER, D. & DIETEL, W. (1994/95): Die Uranvererzung in der Lagerstätte Ronneburg.-Veröff. Museum Gera, Naturwiss. Reihe 21/22: 25-42; Gera.
- LASAGA, A.C. (1984): Chemical kinetics of water-rock interaction.- J. Geophys. Res. 89: 4009-4025.
- LASAGA, A.C. & BLUM A.E. (1986): Surface chemistry, etch pits and mineral-water reactions.- Geochim. Cosmochim. Acta **50**: 2363-2379.
- LASAGA, A.C., SOLER, J.M., BURCH, T.E. & NAGY, K.L. (1994): Chemical weathering rate laws and global geochemical cycles.- Geochim. Cosmochim. Acta 58: 2361-2386.
- LASAGA, A.C. (1998): Kinetic Theorie in the Earth Sciences.- 811 S.; University Press, Princeton.
- LEUTWEIN, F. (1951): Geochemische Untersuchungen an den Alaun- und Kieselschiefern Thüringens. Arch. Lagerstättenf. **82**: 1-45.
- LITTKE, R. (1993): Deposition, diagenesis, and weathering of organic matter-rich sediments. Lecture notes in earth sciences, 47: 216 S.; Springer, Berlin.
- LOWER, S.K., HOCHELLA, M.F., BANFIELD, J.F., ROSSO, K.M. (2002): Nanogeoscience: From the Movement of Electrons to Lithosphere Plates.- EOS, Transactions 83/6: 53-56.
- LÜTZNER, H., FALK, F., ELLENBERG, J. & GRUMBT, E. (1980): Lithologisch-formationelle Untersuchungen im Altpaläozoikum des Thüringischen Schiefergebirges erste Ergebnisse.- unveröff. wiss. Bericht AdW DDR, Zentralinstitut f. Phys. d. Erde, 53 S., 15 Anl.; Jena.
- LÜTZNER, H., ELLENBERG, J., FALK, F. & GRUMBT, E., HAHNE, K. (1983): Lithologisch-geochemische Analyse des Altpaläozoikums im Thüringischen Schiefergebirge, Teil 1.- unveröff. wiss. Bericht AdW DDR, Zentralinstitut f. Phys. d. Erde, 227 S., 28 Anl.; Jena.
- LÜTZNER, H., ELLENBERG, J., FALK, F. & GRUMBT, E. (1984): Lithologisch-geochemische Untersuchungen im Paläozoikum des Thüringischen Schiefergebirges.- unveröff. wiss. Bericht AdW DDR, Zentralinstitut f. Phys. d. Erde, 41 S.; Jena.
- MADSEN, F.T. & KAHR, G. (1992): Wasserdampfadsorption und spezifische Oberfläche von Tonen.-Hydratation und Dehydratation von Tonmineralen: Schwerpunktthema Deutsche Ton- und Tonmineralgruppe, Beiträge zur Jahrestagung: 165-181.
- MAKOWER, B., SHAW, T., M. & ALEXANDER, L.T. (1937): The specific surface and density of soils and their colloids.- Soil Science Soc. Proceed. 101-109.
- MANGINI, M., JUNG, M. & KAUKENMANN, S. (2001): What do we learn from peaks of uranium and of manganese in deep sea sediments?.- Marine Geol. 177: 63-78.
- MAURICE, P., NAMJESNIK-DEJANOVIC, K., LOWER, S., PULLIN, M., CHIN, Y.P., AIKEN, G.R. (1998): Sorption and fractionation of natural organic matter on kaolinite and goethite.- in: AREHART, G.B. & HULSTON, J.R. [eds.]: Water-Rock-Interaction 9, 109-113.

- MAZUREK, M., ALEXANDER, W.R. & MACKENCIE, A.B. (1996): Contaminant retardation in fractured shales: Matrix diffusion and redox front entrapment.- J. Contam. Hydrol. 21: 71-84.
- MEINEL, G. (1974): Magmatismus und Metamorphose. in: HOPPE, W. & SEIDEL, G. [Hrsg.]: Geologie von Thüringen: 335-355; Haack, Gotha.
- MEINEL, G. (1995): Magmatismus und Metamorphose. in: SEIDEL, G. [Hrsg.]: Geologie von Thüringen: 180-187; Schweizerbart, Stuttgart.
- MEINEL, G. & MÄDLER, J. (1995): Bodenschätze: Erze. in: SEIDEL, G. [Hrsg.]: Geologie von Thüringen: 423-432; Schweizerbart, Stuttgart.
- MONTASER, A. [ed.] (1998): Inductively coupled plasma mass spectrometry.- 964 pp.; Wiley-VCH, New York.
- MOORE, D. & REYNOLDS JR, R. (1997): X-ray Diffraction and the Identification and Analysis of Clay Minerals.- 378 pp.; Oxford Univ. Press.
- MÜLLER, K. (1993): Das Schaubergwerk "Morassina" im Schwefelloch bei Schmiedefeld.- 40 S., Ludwigsstadt.
- NAGY, K.L., BLUM, A.E. & LASAGA, A.C. (1991): Dissolution and precipitation kinetics of kaolinite at 80°C and pH 3: The dependence on solution saturation state.- Amer. J. Sci. **291**: 649-686.
- NELSON, R.A. & HENDRICKS, S.B. (1944): Specific surface of some clay minerals, soils, and soil colloids.- Soil Sci. **56**, 285-296.
- HUGENT, M.A., BRANTLEY, S.L., PANTANO, C.G. & MAURICE, P.A. (1998): The influence of natural coatings on feldspar weathering.- Nature **395**: 588-591.
- O'BRIEN, N.R. & SLATT, R.M. (1990): Argillaceous Rock Atlas.- 141 pp., Springer, New York.
- PEACOR, D., COVENEY, R.M. & ZHAO, G. (2000): Authigenic illite and organic matter: The principal hosts of vanadium in the Mecca Qarry Shale at Velpen, Indiana. Clays Clay Min. 48: 311-316.
- PETSCH, S.T., EGLINGTON, T.I. & EDWARDS, K.J. (2001): ¹⁴C-Dead Living Biomass: Evidence for Microbial Assimilation of Ancient Organic Carbon during Shale Weathering.- Science **292**: 1127-1131.
- PEUCKER-EHRENBRINK, B. & HANNIGAN, R.E. (2000): Effects of black shale weathering on the mobility of rhenium and platinum group elements.- Geology 28: 475-478.
- PHILIPPI, E. (1910): Über die präoligocäne Landoberfläche in Thüringen.- Z. deutsch. geol. Ges. **62**: 305-404.
- POON, C.Y., SAYLES, R.S. & JONES, T.A. (1992): Surface measurement and fractal characteriastion of naturally fractured rocks.- J. Phys. D: Appl. Phys. 25: 1269-1275.
- PUTNIS, A., JUNTA, J. & HOCHELLA JR, M.F. (1995): Dissolution of barite by a chelating ligand: an atomic force microscopy study.- Geochim. Cosmochim. Acta **59**: 4623-4632.
- DE PUTTER, T., BERNARD, A., PERRUCHOT, A., NICAISE, D. & DUPIUS, C. (2000): Low-temperature acid weathering in Newhaven, Sussex, United Kingdom, and its application to theoretical modeling in radioactive waste-disposal sites.- Clays Clay Min. 48/2: 238-246.
- RANSOM, B., BENNETT, R.H., BAERWALD, R., HULBERT, M.H. & BURKETT, P.-J. (1999): In situ conditions and interactions between microbes and minerals in fine-grained marine sediments: A TEM microfabric perspective.- Amer. Mineral. **84**: 183-192.
- REBELLO, M. A., HOGERT, E.N., ALBANO, J., RAFFO, C.A. & GAGGIOLI, N.G. (1996): Correlation between roughness and porosity in rocks.- Optics & Laser Technology 28/1: 21-23.

- ROSSO, K.M., BECKER, U. & HOCHELLA JR, M.F. (1999): The interaction of pyrite $\{100\}$ surface with O_2 and H_2O : Fundamental oxidation mechanisms.- Amer. Mineral. **84**: 1549-1561.
- ROUQUEROL, J., AVNIR, D., FAIRBRIDGE, C. W., EVERETT, D. H., HAYNES, J.H., PERNICONE, N., RAM-SAY, J.D.F, SING, K.S.W., UNGER, K.K. (1994): Recommendations for the characteriasation of porous solid.- Pure & Appl. Chem. 66/8: 1739-1994.
- ROUQUEROL, F., ROUQUEROL, J. & SING, K. (1999): Adsorption by powders & porous solids.- 467 pp.; Academic Press, San Diego.
- ROWELL, D. L. (1997): Soil Science: Methods and Applications. 350 pp.; Longman, Harlow.
- RUFE, E. & HOCHELLA JR, M.F. (1999): Quantitative Assessment of Reactive Surface Area of Phlogopite During Acid Dissolution.- Science **285**: 874-876.
- RUSSE, B. (1991): Zur Geologie und Tektonik des Schiefergebirges.- Veröff. Museum Gera, Naturwiss. Reihe 18: 20-24; Gera.
- SANTELLI, C.M., WELCH, S.A., WESTRICH, H.R. & BANFIELD, J.F. (2001): The effect of Fe-oxidizing bacteria on Fe-silicate mineral dissolution.- Chem. Geol. **180**: 99-115.
- SCHACHTSCHABEL, P., BLUME, H.-P., BRÜMMER, G., HARTGE, K.-H. & SCHWERTMANN, U. (1992): Lehrbuch der Bodenkunde.- 491 S., Enke, Stuttgart.
- SCHAUER, M. (1971): Biostratigraphie und Taxionomie der Graptolithen des tieferen Silurs unter besonderer Berücksichtigung der tektonischen Deformation.- Freib. Forschungsh. C 273: 185 S.
- SCHIEBER, J., KRINSLEY, D. & RICIPUTI, L. (2000): Diagenetic origin of quartz silt in mudstones and implications for silica cycling.- Nature **406**: 981-985.
- SCHIPPERS, A. & JØRGENSEN, B.B. (2002): Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments.- Geochim. Cosmochim Acta 66/1: 85-92.
- SCHLEGEL, G. (1974): Silur.- in: HOPPE, W. & SEIDEL, G. [Hrsg.]: Geologie von Thüringen: 194-208; Haack, Gotha.
- SCHLEGEL, G. (1995): Silur.- in: SEIDEL, G. [Hrsg.]: Geologie von Thüringen: 111-121; Schweizerbart, Stuttgart.
- SCHLEGEL, G. & WIEFEL, H. (1998): Erl. Geol. Karte Thüringen, Bl. 5336 Knau u. 5436 Schleiz.- 346 S., Th. Landesanst. Geologie, Weimar.
- Schneider, W. & Wienberg, R. (1998): Berechnung des Schadstofftransports als Bewertungsinstrument.- in: Hiltmann, W. & Stribrny, B. [Hrsg.] (1998): Tonmineralogie und Bodenphysik.- Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten 5: 297 S.; Springer, Berlin.
- SCHÖNENBERG, R. & NEUGEBAUER, J. (1997): Einführung in die Geologie Europas.- 385 S.; Rombach, Freiburg.
- SCOTESE, C. (2001): Palaeomap Project.- http://www.scotese.com/
- SINGH, P. & RAJAMANI, V. (2001): REE geochemistry of recent clastic sediments from the Kaveri flood-plains, southern India: Implication to source area weathering and sedimentary processes.-Geochim. Cosmochim. Acta 65/18: 3093-3108.
- SOKOLOWSKA, Z. & SOKOLOWSKI, S. (2000): Influence of humic acid on surface fractal dimension of kaolin: Analysis of mercury porosimetry and water vapour adsorption data.- in: PACHEPSKY, Y.A., CRAWFORD, J.W. & RAWLS, W. J. [eds.]: Developments in Soil Sci. 27: 143-159.
- SONG, Y.-Q., RYE, S. & SEN, N. (2000): Determing multiple length scales in rocks.- Nature **406**: 178-181.

- SPOSITO, G. (1998): Bodenchemie. 230 S., Enke, Stuttgart.
- STEINBACH, W., SCHLEGEL, G. & BLUMENSTENGEL, H. (1970): Exkursion B: Silur/Devon des Ostthüringischen Schiefergebirges.- in: MEINEL, G., WIEFEL, H. & WUCHER, K. [Hrsg.]: Kurzreferate der Vorträge und Exkursionsführer zu der Vortrags- und Exkursionstagung "Altpaläozoikum und Vorpaläozoikum des thüringisch-vogtländischen Schiefergebirges unter Berücksichtigung des Metamorphosegrades" vom 15.-19.9.1970 in Gera: 38-58.
- STRAUß, R. (1992): Mechanismen der Phosphatbindung durch Goethit. Phosphatadsorption und -diffusion in Abhängigkeit von der Goethitkristallinität.- Bonner Bodenkundl. Abh. 5: 284 S.
- SZUROWSKI, H. (1967): Petrographische, mineralogische und geochemische Untersuchungen in den Graptolithenschiefern im Raum südlich von Ronneburg.- Unveröff. Diplomarbeit, Bergakademie Freiberg: 168 S.
- SZUROWSKI, H. (1985): Katalog der Gesteinseigenschaften (eine kurzgefaßte petrographische, mineralogische, geochemische und physiko-mechanische Charakteristik der Gesteine im Ronneburger Raum).- Unveröff. Bericht SDAG Wismut: 165 S.
- SZUROWSKI, H., RÜGER, F. & WEISE, W. (1991): Zu den Bildungsbedingungen und der Mineralisation der Uranlagerstätte.- in: Bergbau, Geologie und Mineralisation des Ronneburger Uranlagerstättenkomplexes.- Veröff. Museum Gera, Naturwiss. Reihe: 18, 25-43.
- STEINMÜLLER, A. (1974): Tertiär.- in: HOPPE, W. & SEIDEL, G. [Hrsg.]: Geologie von Thüringen. 717-742; Haack, Gotha.
- SYLVESTER, E.R., HUDSON, E.A. & ALLEN, P.G. (2000): The structure of uranium (VI) sorption complexes on silica, alumina and montmorillonite.- Geochim. Cosmochim. Acta 64/14: 2431-2438.
- TANGUAY, L.H. & FRIEDMANN, G.M. (2001): Petrophysical characteristics and facies of carbonate reservoirs: The Red River Formation (Ordovician), Williston basin.- AAPG Bulletin **85**, **3**: 491-523.
- TISSOT, B.P. & WELTE, D.H. (1984): Petroleum Formation and Occurence.- 699 pp.; Springer, Berlin.
- THOMAS, T.R. (1999): Rough Surfaces. 278 pp.; Imperial College Press, London.
- UNGER, K.P. (1995): Quartär.- in: SEIDEL, G. [Hrsg.]: Geologie von Thüringen: 392-412; Schweizerbart, Stuttgart.
- VINE, J.D. & TOURTELOT, E.B. (1970): Geochemistry of Black Shale Deposits A Summary Report.-Economic Geol. 65: 253-272.
- WALTHER, J. (1905): Vorschule der Geologie.- 118 S., Gustav Fischer, Jena.
- WAGNER, J.-F., KOHLER, E.E. & CZURDA, K. (1998): Einsatzmöglichkeiten, Aussagen und Grenzen bodenphysikalischer, physikalisch-chemischer und mineralogischer Kenngrößen und Meßmethoden zur Erkundung und Beschreibung der Geologischen Barriere.- in: HILTMANN, W. & STRIBRNY, B. [Hrsg.] (1998): Tonmineralogie und Bodenphysik.- Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten 5: 297 S.; Springer, Berlin.
- WEBSTER, J.G., SWEDLUND, P.J. & WEBSTER, K.S. (1998): Trace metal adsorption onto acid mine drainage iron oxide.- in AREHART, G.B. & HULSTON, J.R. [eds.]: Water-Rock-Interaction 9, 951-954.
- WELCH, S.A. & BANFIELD, J.F. (2002): Modification of olivine surface morphology and reactivity by microbial activity during chemical weathering.- Geochim. Cosmochim. Acta 66/2: 213-221.
- WHITE, A.F. (1995): Chemical weathering rates of silicate minerals in soils.- Rev. Min. **31**: 407-462, Washigton, DC

- WHITE, A.F. & BRANTLEY, S.L. (1995): Chemical weathering rates of silicate minerals.- Rev. Min. 31: 583 pp.
- WHITE, A.F. & PETERSON, M.L. (1990): The role of reactive-surface-area characterization in geochemical kinetic models.- Chemical Modeling in Aqueous Systems II, in: MELCHIOR, D. & BASSETT, R.L. [eds.]: ACS Symp. Series **416**: 461-475.
- WIEFEL, H. (1965): Jungtertiäre Bodenrelikte und Zersatzbildung im ostthüringisch-vogtländischen Schiefergebirge.- Ber. geol. Ges. DDR: 10/5: 611-628.
- WÜST, E. (1909): Das Alter der sächsisch-thüringischen Mittelgebirge.- Z. deutsch. Ges. Erdk. Berlin 1909: 640-641.
- ZIMMERLE, W. & STRIBRNY, B. [eds.] (1992): Organic Carbon-Rich Pelitic Sediments in the Federal Republic of Germany.- Courier Forsch.-Inst. Senckenberg 152: 142 pp.

Anhang:

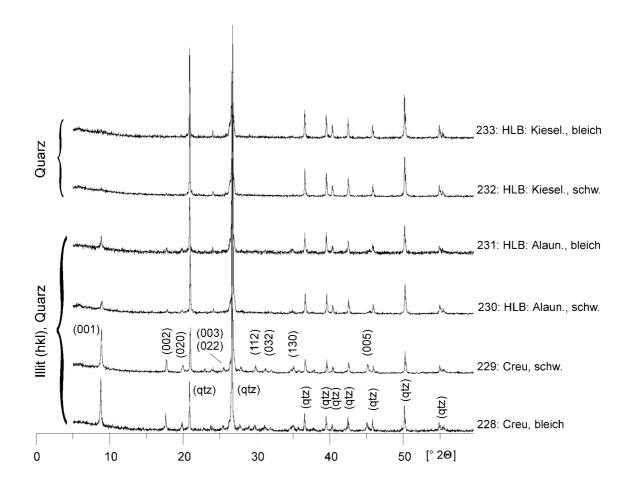
Al	Probenübersicht
A2	Mineralinhalt des Gesamtgesteins (Alaun- und Kieselschiefer) und des
	Matrixmaterials quartärer Sedimente aus dem Gessental (XRD)
A3	K-, U-, Th-Konzentrationen in Alaunschiefer (γ-Strahlen-Spektrometrie)
A4	Haupt- und Spurenelementanalyse (XRF)
A5	C-, N-, S-Elementaranalyse
A6	ICP-MS-LA-Analytik
A7	Elementkartierungen mit der Mikrosonde
A8	Geometrische Oberfläche von Gesteinspolyedern
A9	Geometrische Oberfläche von sandigem und kiesigem Material (Gessental)
A10	Äußere Oberfläche von Gesteinspolyedern mit Paraffin-Tränkungs-Methodik
A11	Rauhigkeitsanalysen (Abtastung)
A12	Rauhigkeitsmikroskopie (LSM, WLI)
A13	Oberflächenvisualisierung (AFM)
A14	Porosimetrie-Untersuchungen (Quecksilber-Intrusion, N ₂ -BET-Adsorption)
A15	Dichtemessungen an organischem Material (HF-Aufschluß-Rückstand)

Anhang A1: Probenübersicht mit Bezeichnung (Pr.-Nr.) und Erläuterungen

Proben-Nr.	Aufschluß, Bohrteufe etc.:	Probenbeschreibung:
Siehanalysen	Gessental-Sedimente (Beprobung GE	LETNEKY)
117-1	Gessental-Seulmente (Beprobung Ger	Kornfraktion > 4 mm
117-2	-	2-4
117-3	-	1-2
117-4	Bachsedimente:	0.5-1
117-5	Kiese, sandig, pelitisch	0.25-0.5
117-6		0.125-0.25
117-7		< 0.125
118-1		Kornfraktion > 4 mm
118-2		2-4
118-3		1-2
118-4	Auesedimente:	0.5-1
118-5	Pelite, sandig-kiesig	0.25-0.5
118-6	_	0.25-0.5
	_	< 0.125 < 0.125
118-7	G (1.67.2000	< 0.123
	mmungen Gessental, 6.7.2000	Dealers Limeant
119-1	RKS 29: 1.2 m	Bachsediment
119-2	RKS 29: 1.5 m	Bachsediment
119-3	RKS 29 : 1.0 m	einzelne Komponenten, ohne Verband
119-4	RKS 29 : 1.0 m	Bachsediment
119-5	RKS 30 : 4.7 m	Bachsediment
	mmungen Gessental, 12.7.2000	
120-1	RKS 68 : 2.8 m	Bachsediment
120-2	RKS 69: 4.8-5 m	Alaunschieferbruchstücke, "Zersatz"
120-3	RKS 68 : 5 m	Alaunschieferbruchstücke, "Ruschelzone"
Stbr. Auberg,	Kieselschiefer, 12.7.2000	
121-1		violett-graue Kieselschiefer
121-2		rot
121-3	Einzelproben aus Steinbruch	violett-rot
121-4		schwarz
121-5		weiß
122	Ortseingang Mennsdorf	Tonschiefer
Gammig-Tal i	in Oberloquitz bei Saalfeld, 20.7.2000	; Profil N -> S
125		Lederschiefer
126		Alaunschieferpolyeder, Bleichung randlich
126-с	Talweg, S1	bleich
126-d		schwarz
128		Alaunschiefer liegend zu 129, grau, Kruste
129		Alaunschieferpolyeder, Bleichung randlich
129c	Oberweg, Wegkehre, S3	bleich, krustiert
129d	,,,	schwarz
129e	7	bleich
	fenwarth, bei Schleiz, 21.7.2000	0.0.011
131	Nordseite Bahnhofsgelände	S2/3, Alaunschiefer, karbonatisch
	ng Niederpöllnitz, WISMUT-Erkundu	
	Mulde (5175/87)	angoner net artific activactor
132	~215 m	Rotliegend-Vulkanit
133	~217.8-218.0	bleicher Alaunschiefer, rotkrustig
134	~217	Rotliegend-Vulkanit
Drosen (4521/		Trompgond Tundint
137	~345.1-350.6	Alaunschiefer, laminiert
138	~343.1-330.0	Kieselschiefer, kleinräumige Bleichungsmuster
139	~351	Alaunschiefer, gebleichte Laminae
140	~353	wie 138
141	~358	Alaunschiefer, laminiert
142	~358.5	Alaunschiefer, laminiert
143	366.5-366.6	Diabas
144	366.7-366.8	Diabas
145	552.8-553.0	Ockerkalk
146	555.5-555.6	Alaunschiefer mit Pyrit, Bleichung
	·	

Anhang A1 (Fortsetzung):
Probenübersicht mit Bezeichnung (Pr.-Nr.) und Erläuterungen

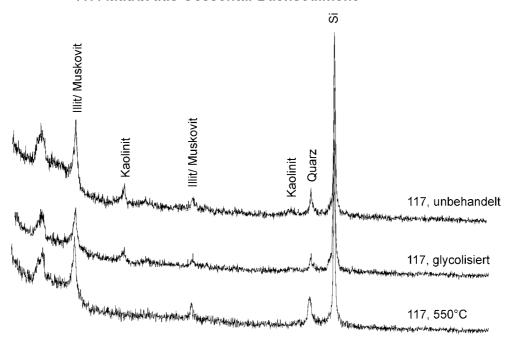
147	Proben-Nr.	Aufschluß, Bohrteufe etc.:	Probenbeschreibung:
148	147	555 4-555 5	wie 146
149			
S50			
151			
152			
153			
154			
155			
156			
156a			
Reerwalde (7067/79)			
160			wie 130, Kiuitoeiag
161			Vissalashiafan
162			
163			
164			
165			,
166			
167			
Lederschiefer, dunkel			
Diabas, hellgrau			
169			Lederschiefer, dunkel
170 ~761 Kieselschiefer, Gangquarz 171 ~790 Kieselschiefer 172 ~797 Kieselschiefer 173 ~790/797 Kieselschiefer, Gangquarz 174 ~797 Kieselschiefer, Gangquarz 175 ~825 Lederschiefer, Pyrit 176 840.8-841.0 Lederschiefer, Gangquarz 177 845.5-845.6 Lederschiefer 178 ~851 Lederschiefer 179 ~877 Lederschiefer, rote Kluftfüllung, Bleichungshöfe 180 ~878 Lederschiefer 181 ~879 Lederschiefer, rötlich 182 ~884 Lederschiefer 183 895.60-895.85 Lederschiefer 184 895.85-896.20 Lederschiefer 185 896.20-896.50 Lederschiefer 186 896.50-896.75 Lederschiefer 187 ~480 Kieselschiefer, Alaunschiefer 188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer, Pyrit		· /	D: 1 - 1 - 1
171 ~790 Kieselschiefer 172 ~797 Kieselschiefer 173 ~790/797 Kieselschiefer 174 ~797 Kieselschiefer, Gangquarz 175 ~825 Lederschiefer, Pyrit 176 840.8-841.0 Lederschiefer, Gangquarz 177 845.5-845.6 Lederschiefer 178 ~851 Lederschiefer 179 ~877 Lederschiefer, rote Kluftfüllung, Bleichungshöfe 180 ~878 Lederschiefer 181 ~879 Lederschiefer 182 ~884 Lederschiefer 183 895.60-895.85 Lederschiefer 184 895.85-896.20 Lederschiefer 185 896.20-896.50 Lederschiefer 186 896.50-896.75 Lederschiefer 187 ~480 Kieselschiefer, Alaunschiefer 188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer, Pyrit 190 493.7-493.9 Kieselschiefer, Pyrit			
172 ~797 Kieselschiefer 173 ~790/797 Kieselschiefer 174 ~797 Kieselschiefer, Gangquarz 175 ~825 Lederschiefer, Pyrit 176 840.8-841.0 Lederschiefer, Gangquarz 177 845.5-845.6 Lederschiefer 178 ~851 Lederschiefer 179 ~877 Lederschiefer, rote Kluftfüllung, Bleichungshöfe 180 ~878 Lederschiefer 181 ~879 Lederschiefer 182 ~884 Lederschiefer 183 895.60-895.85 Lederschiefer 184 895.85-896.20 Lederschiefer 185 896.20-896.50 Lederschiefer 186 896.50-896.75 Lederschiefer Baldenhain (4237/75) 187 ~480 Kieselschiefer, Quarztrümer 188 ~480 Kieselschiefer 189 ~490 Kieselschiefer, Pyrit 190 493.7-493.9 Kieselschiefer, Pyrit 192 494.9-4			
173 ~790/797 Kieselschiefer 174 ~797 Kieselschiefer, Gangquarz 175 ~825 Lederschiefer, Pyrit 176 840.8-841.0 Lederschiefer, Gangquarz 177 845.5-845.6 Lederschiefer 178 ~851 Lederschiefer 179 ~877 Lederschiefer, rote Kluftfüllung, Bleichungshöfe 180 ~878 Lederschiefer 181 ~879 Lederschiefer 182 ~884 Lederschiefer 183 895.60-895.85 Lederschiefer 184 895.85-896.20 Lederschiefer 185 896.20-896.50 Lederschiefer 186 896.50-896.75 Lederschiefer 187 ~480 Kieselschiefer, Alaunschiefer 188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer, Pyrit 190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, P			
174 ~797 Kieselschiefer, Gangquarz 175 ~825 Lederschiefer, Pyrit 176 840.8-841.0 Lederschiefer, Gangquarz 177 845.5-845.6 Lederschiefer 178 ~851 Lederschiefer 179 ~877 Lederschiefer, rote Kluftfüllung, Bleichungshöfe 180 ~878 Lederschiefer 181 ~879 Lederschiefer, rötlich 182 ~884 Lederschiefer 183 895.60-895.85 Lederschiefer 184 895.85-896.20 Lederschiefer 185 896.20-896.50 Lederschiefer 186 896.50-896.75 Lederschiefer 187 ~480 Kieselschiefer, Alaunschiefer 188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer, Pyrit 190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 <t< td=""><td></td><td></td><td></td></t<>			
175 ~825 Lederschiefer, Pyrit 176 840.8-841.0 Lederschiefer, Gangquarz 177 845.5-845.6 Lederschiefer 178 ~851 Lederschiefer 179 ~877 Lederschiefer, rote Kluftfüllung, Bleichungshöfe 180 ~878 Lederschiefer 181 ~879 Lederschiefer 182 ~884 Lederschiefer 183 895.60-895.85 Lederschiefer 184 895.85-896.20 Lederschiefer 185 896.20-896.50 Lederschiefer 186 896.50-896.75 Lederschiefer 187 ~480 Kieselschiefer, Alaunschiefer 188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer, Pyrit 190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			
176 840.8-841.0 Lederschiefer, Gangquarz 177 845.5-845.6 Lederschiefer 178 ~851 Lederschiefer 179 ~877 Lederschiefer, rote Kluftfüllung, Bleichungshöfe 180 ~878 Lederschiefer 181 ~879 Lederschiefer, rötlich 182 ~884 Lederschiefer 183 895.60-895.85 Lederschiefer 184 895.85-896.20 Lederschiefer 185 896.20-896.50 Lederschiefer 186 896.50-896.75 Lederschiefer Baldenhain (4237/75) Lederschiefer, Alaunschiefer 188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer, Pyrit 190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			
177 845.5-845.6 Lederschiefer 178 ~851 Lederschiefer 179 ~877 Lederschiefer, rote Kluftfüllung, Bleichungshöfe 180 ~878 Lederschiefer 181 ~879 Lederschiefer 182 ~884 Lederschiefer 183 895.60-895.85 Lederschiefer 184 895.85-896.20 Lederschiefer 185 896.20-896.50 Lederschiefer 186 896.50-896.75 Lederschiefer Baldenhain (4237/75) Kieselschiefer, Alaunschiefer 188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer, Pyrit 190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			
178 ~851 Lederschiefer 179 ~877 Lederschiefer, rote Kluftfüllung, Bleichungshöfe 180 ~878 Lederschiefer 181 ~879 Lederschiefer, rötlich 182 ~884 Lederschiefer 183 895.60-895.85 Lederschiefer 184 895.85-896.20 Lederschiefer 185 896.20-896.50 Lederschiefer 186 896.50-896.75 Lederschiefer Baldenhain (4237/75) Kieselschiefer, Alaunschiefer 187 ~480 Kieselschiefer, Quarztrümer 188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer, Pyrit 190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			
179 ~877 Lederschiefer, rote Kluftfüllung, Bleichungshöfe 180 ~878 Lederschiefer 181 ~879 Lederschiefer, rötlich 182 ~884 Lederschiefer 183 895.60-895.85 Lederschiefer 184 895.85-896.20 Lederschiefer 185 896.20-896.50 Lederschiefer 186 896.50-896.75 Lederschiefer Baldenhain (4237/75) Kieselschiefer, Alaunschiefer 187 ~480 Kieselschiefer, Quarztrümer 188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer, Pyrit 190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			
180 ~878 Lederschiefer 181 ~879 Lederschiefer, rötlich 182 ~884 Lederschiefer 183 895.60-895.85 Lederschiefer 184 895.85-896.20 Lederschiefer 185 896.20-896.50 Lederschiefer 186 896.50-896.75 Lederschiefer Baldenhain (4237/75) Kieselschiefer, Alaunschiefer 187 ~480 Kieselschiefer, Quarztrümer 188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer, Pyrit 190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			
181 ~879 Lederschiefer, rötlich 182 ~884 Lederschiefer 183 895.60-895.85 Lederschiefer 184 895.85-896.20 Lederschiefer 185 896.20-896.50 Lederschiefer 186 896.50-896.75 Lederschiefer Baldenhain (4237/75) 187 ~480 Kieselschiefer, Alaunschiefer 188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer, Pyrit 190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			
182 ~884 Lederschiefer 183 895.60-895.85 Lederschiefer 184 895.85-896.20 Lederschiefer 185 896.20-896.50 Lederschiefer 186 896.50-896.75 Lederschiefer Baldenhain (4237/75) 187 ~480 Kieselschiefer, Alaunschiefer 188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer 190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			
183 895.60-895.85 Lederschiefer 184 895.85-896.20 Lederschiefer 185 896.20-896.50 Lederschiefer 186 896.50-896.75 Lederschiefer Baldenhain (4237/75) 187 ~480 Kieselschiefer, Alaunschiefer 188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer 190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			
184 895.85-896.20 Lederschiefer 185 896.20-896.50 Lederschiefer 186 896.50-896.75 Lederschiefer Baldenhain (4237/75) 187 ~480 Kieselschiefer, Alaunschiefer 188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer 190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			
185 896.20-896.50 Lederschiefer 186 896.50-896.75 Lederschiefer Baldenhain (4237/75) Kieselschiefer, Alaunschiefer 187 ~480 Kieselschiefer, Quarztrümer 188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer 190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			
Baldenhain (4237/75) Lederschiefer 187 ~480 Kieselschiefer, Alaunschiefer 188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer 190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			
Baldenhain (4237/75) 187 ~480 Kieselschiefer, Alaunschiefer 188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer 190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			
187 ~480 Kieselschiefer, Alaunschiefer 188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer 190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			Lederschiefer
188 ~480 Kieselschiefer, Quarztrümer 189 ~490 Kieselschiefer 190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			
189 ~490 Kieselschiefer 190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			
190 493.7-493.9 Kieselschiefer, Pyrit 191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			
191 494.4-494.5 Kieselschiefer, Pyrit 192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			
192 494.9-495.25 Kieselschiefer, Pyrit 193 496.3-496.5 Kieselschiefer, Pyrit			
193 496.3-496.5 Kieselschiefer, Pyrit			
		494.9-495.25	Kieselschiefer, Pyrit
194 498 2-498 4 Kieselschiefer		496.3-496.5	Kieselschiefer, Pyrit
	194	498.2-498.4	Kieselschiefer
195 498.4-498.6 Kieselschiefer	195	498.4-498.6	Kieselschiefer
196 499.5-499.6 Kieselschiefer	196	499.5-499.6	Kieselschiefer
197 499 6-499 75 Kieselschiefer	197	499.6-499.75	Kieselschiefer

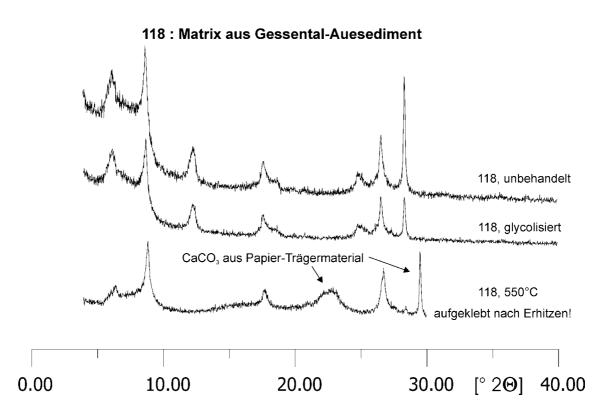

Anhang A1 (Fortsetzung):
Probenübersicht mit Bezeichnung (Pr.-Nr.) und Erläuterungen

Proben-Nr.	Aufschluß, Bohrteufe etc.:	Probenbeschreibung:	
WISMUT-Ran RKS 109	nmungen Gessental, 11.8.2000		
205-1	2.7-3 m	Bachsediment, Sand	
205-2	3-4 m	Bachsediment, Sand	
205-3	4-5 m	Alaunschieferbruchstücke,	anstehend?
205-4	~5.3 m	Alaunschieferbruchstücke,	
205-5	~5.3 m	Alaunschieferbruchstücke,	
RKS 111		Triudino in Creation de la Creation	Zev
206-1	3.1-4 m	Bachsediment, Kies	
206-2	4-5 m	Alaunschieferbruchstücke,	anstehend?
206-3	~5.6 m	Alaunschieferbruchstücke,	
	mungen Gessental, 14.8.2000	Triudino em ererer er uemotuene,	ungenena., Emieme
RKS 112	mangen Gessentan, 1 noi2000		
207-1	2-3 m	Alaunschieferbruchstücke,	weich
207-2	3.5-4 m	Alaunschieferbruchstücke	
RKS 113	1 - 1 - 1 - 1		
208	4.7 m	Alaunschieferbruchstücke,	weich
RKS 114		,	
209-1	~2.3 m	Bachsediment, Sand	
209-2	~3 m	Bachsediment, Sand, Kies	
209-3	~4.7 m	Alaunschieferbruchstücke,	anstehend? Limonit
	Burg Reichenfels, 16.11.2000	Triudino in erector de notatione,	unistenena., Emiem
210	Stbr Diabas,Og3	Lederschiefer	
	Weinbergbruch, 23.11.2000		
211-1a	The state of the s	weiß	
211-1b		gelb	
211-1c	Alaunschieferpolyeder, N-Wand	graubraun	Bleichungszone:
211-1d		braunschwrz	~ 1.5 cm
211-1e	1	schwarz	
211-2	N-Wand	schwarzes Polyederzentrur	n
211-3	N-Wand	hellviolett	
211-4	N-Wand	violett, krustiert	
211-5	N-Wand	SS-senkr. Bleichung	
211-6	N-Wand	schwarzer Kern, heller Ran	ıd
211-7	N-Wand	Alaunschiefer, stark verkie	
212	SE-Wand	Kieselschiefer, gelblicher,	
	Grube "Morassina", 24.11.2000	, ,	
213	Wismut-Halde, ca. 50 a alt	Alaunschiefer (S1)-Halden	material, grau
Gessental, 11.1			, ,
220-1a	Schurf N-Seite, westlich 220-2	Kies	
220-2a	Schurf N-Seite, östlich 220-1	Kies, matrixreich	
220-2b	Schurf N-Seite, östlich 220-1	pelitische Zwischenlage, he	ell
220-2c	Schurf N-Seite, östlich 220-1	Kies, matrixreich	
220-3	Bhrg. 1125/00	7.0-8.0m, Alaunschiefer, k	rustiert (rotbraun)
	8.2.2001, Döhlen, am Diabasbruch	,	
221	Westteil Stbr.	Alaunschiefer (S3), bleich	
222	Ostteil Stbr.	Alaunschiefer, dunkelgrau	
	08.02.2001, Hohenleuben, Weinbergl		
223	Südbereich	Rinnenfüllung, umgelagert	er, bleicher Alaunschiefer
224-1	Südbereich	Alaunschiefer, gebleicht	
224-2	Südbereich	Alaunschiefer, ungebleicht	;
	08.02.2001, Gräfenwarth, Eisenbahn		
225 (a)	Südhang	Alaunschiefer, schwarz, Gr	
225 (b) -b1	Südhang	Alaunschiefer, viel Kruste	<u>.</u>
225 (b) -b2	Südhang	Alaunschiefer, leicht umkr	ustet
. (*) **	<u> </u>		• •

Anhang A1 (Fortsetzung):
Probenübersicht mit Bezeichnung (Pr.-Nr.) und Erläuterungen

Proben-Nr.	Aufschluß, Bohrteufe etc.:	Probenbeschreibung:
	r Sattel, 08.02.2001, Gammigbachtal,	
226	Unterweg	Ockerkalk
227	Unterweg	Alaunschieferpolyeder, randlich gebleicht
Schwarzburge	r Sattel, 12.02.2001, Creunitz	
228	Aufschluß am Hohlweg	Alaunschiefer, gebleicht
229	liegend zu 228	Alaunschiefer, ungebleicht
229z1	Zone hellgrau	Alaunschiefer
229z2	Zone grau	Alaunschiefer
229z3	Zone schwarz	Alaunschiefer
Bergaer Sattel	, 05.03.2001, Hohenleuben, Weinbergl	oruch
230		Alaunschiefer, ungebleicht
231	nördlicher Steinbruchbereich	Alaunschiefer, gebleicht
232	nordinener Steinbruchbereich	Kieselschiefer, ungebleicht
233		Kieselschiefer, gebleicht
240-1		Alaunschiefer, hellbraungrau
240a-2	Alaunschiefer-Polyeder,	Alaunschiefer, braungrau
240-3	randlich gebleicht	Alaunschiefer, dunkelbraungrau
240a-4		Alaunschiefer, schwarz
Bergaer Sattel	, 1.11.2001 Waldfrieden, Steinbruch	
245-1		Pelit, hell
245-2		Pelit, schwarz
246		Kruste, rot
247		Kruste, ocker
Schwarzburge	r Sattel, Schmiedefeld, Grube "Moras	ssina"
248	erste, älteste Halde	grauschwarzer Alaunschiefer
249	dritte Halde	grauschwarzer Alaunschiefer
250	Halde zu Schurf 7	grauschwarzer Alaunschiefer
251	Oberflächenaufschluß an der Straße	Alaunschieferpolyeder, randlich gebleicht
252	Laugenbühne ~ 1860	angelaugte Alaunschieferbruchstücke
253		schwarzer, plastisch verformbarer Pelit
254	Untertageproben	"Schwarze Kreide"
255		schwarzer, plastisch verformbarer Pelit


Anhang A2:Röntgendiffraktometrie an Pulverproben: Gesamtgesteinsanalysen von Alaunschiefer aus Creunitz sowie Alaun- und Kieselschiefer von Hohenleuben



Anhang A2 (Fortsetzung):

Röntgendiffraktometrie an der Tonfraktion des Matrixmaterial der quartären Gessental-Sedimente (Bachschotter, Auesediment)

117: Matrix aus Gessental-Bachsediment

Anhang A3: γ-spektrometrische Konzentrationen von K [Gew. %], U [ppm], Th [ppm]

Profil 1: Hohenleuben, Nordwand, West-Profil									
Meßpunkt	K %	U ppm	Th ppm						
1	1,52	25,47	2,81						
2	1,02	25,24	7,46						
3	1,05	26,32	3,56						
4	0,44	30,09	4,64						
5	1,15	29,57	3,27						
6	1,27	30,44	5,04						
7	0,57	33,42	5,83						
8	1,71	34,56	5,95						
9	0,87	34,36	4,52						
10	1,20	34,77	5,43						
11	1,23	35,61	6,65						
12	1,31	39,63	5,97						
13	1,00	42,39	7,07						
14	1,50	61,54	5,21						
15	1,57	62,06	6,36						
16	1,38	56,72	4,82						
17	1,29	61,44	5,83						
18	1,03	60,49	5,32						

Profil 2: Hohenleuben, Nordwand, Ost-Profil									
Meßpunkt	K %	U ppm	Th ppm						
1	1,20	37,21	4,02						
2	1,66	38,87	5,67						
3	1,61	38,21	5,38						
4	1,52	40,54	4,14						
5	1,06	53,17	5,89						
6	1,63	49,06	4,66						
7	0,99	48,98	3,46						
8	1,09	50,70	4,32						
9	0,99	47,59	4,76						
10	1,14	50,38	5,37						
11	1,44	52,23	4,62						
12	0,99	53,25	6,67						
13	1,34	58,41	8,98						
14	1,51	52,63	5,94						
15	1,32	56,16	6,50						
16	1,38	59,98	3,99						

Kieselschie	efer, schwarz		
Meßpunkt	K %	U ppm	Th ppm
1	0,65	14,08	4,46
2	0,65	16,37	3,09
3	0,67	14,48	5,91
4	0,84	11,40	3,65
5	0,53	12,88	3,40
6	0,39	13,54	2,14
7	0,63	12,83	5,57
8	0,57	13,04	5,20
9	0,62	14,57	3,93

Anhang A4: Haupt- und Spurenelementanalysen (RFA)

Lokalität:		Gess	ental		Kiese	Ischiefe	rsteinb	ruch Au	ıberg
Erläuterung:	Alau	nschief	er, sch	warz	rotgrau	rot	dkl.rot	schw.	weiß
Probe:	207-1	207-2	208	209-3	121-1	121-2	121-3	121-4	121-5
Hauptelement	te ohne	LOI [G	ew. %]:						
SiO ₂	76,08	76,44	56,90	89,60	96,04	98,58	96,39	95,44	97,02
TiO ₂	0,56	0,66	1,47	0,27	0,07	0,03	0,07	0,03	0,03
Al ₂ O ₃	14,16	12,71	27,35	6,10	2,46	0,28	1,88	0,48	0,76
Fe₂O₃	4,68	4,19	2,29	1,09	0,67	0,97	0,22	2,78	0,06
MnO	0,04	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00
MgO	1,35	1,25	2,27	0,65	0,01	0,01	0,01	0,02	0,02
CaO	0,15	0,43	0,34	0,09	0,03	0,02	0,02	0,01	0,02
Na₂O	0,54	0,06	0,09	0,05	0,03	0,03	0,03	0,03	0,02
K₂O	2,24	2,96	7,85	1,58	0,01	0,01	0,01	0,01	0,01
P ₂ O ₅	0,10	0,37	0,11	0,24	0,11	0,01	0,14	0,02	0,05
SO₃	0,01	0,03	0,07	0,02	0,03	0,02	0,03	0,01	0,03
Hauptelement	te incl.	LOI [Ge	w. %]:	•		•			•
SiO ₂	73,13	64,10	44,63	81,48	95,07	98,43	95,59	95,18	96,66
TiO ₂	0,54	0,55	1,15	0,25	0,07	0,03	0,07	0,03	0,03
Al ₂ O ₃	13,61	10,66	21,45	5,55	2,44	0,28	1,86	0,48	0,76
Fe ₂ O ₃	4,50	3,51	1,80	0,99	0,66	0,97	0,22	2,77	0,06
MnO	0,04	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00
MgO	1,30	1,05	1,78	0,59	0,01	0,01	0,01	0,02	0,02
CaO	0,14	0,36	0,27	0,08	0,03	0,02	0,02	0,01	0,02
Na₂O	0,52	0,05	0,07	0,05	0,03	0,03	0,03	0,03	0,02
K₂O	2,15	2,48	6,16	1,44	0,01	0,01	0,01	0,01	0,01
P ₂ O ₅	0,10	0,31	0,09	0,22	0,11	0,01	0,14	0,02	0,05
SO₃	0,01	0,03	0,05	0,02	0,03	0,02	0,03	0,01	0,03
Bilanz: Haupt	elemen	te, Spu	renelen	nente, (Slühverl	ust:			•
HE [%]	96,03	83,11	77,45	90,66	98,46	99,81	97,98	98,56	97,66
SE [%]	0,21	0,64	1,04	0,91	0,20	0,03	0,26	0,05	0,09
	0,2.	0,04	.,		-, -	0,00	-,	-,	0,00
LOI	3,88	16,14	21,57	9,06	1,01	0,15	0,83	0,27	0,37
LOI Diff.				9,06					
	3,88 -0,12	16,14 0,26	21,57		1,01	0,15	0,83	0,27	0,37
Diff.	3,88 -0,12	16,14 0,26	21,57		1,01	0,15	0,83	0,27	0,37
Diff. Spurenelemei	3,88 -0,12 nte [ppi	16,14 0,26 m]:	21,57 0,21	-0,60	1,01 0,34	0,15 0,01	0,83	0,27 1,12	0,37 1,89
Diff. S <i>purenelemei</i> As	3,88 -0,12 nte [ppi	16,14 0,26 m]: 40	21,57 0,21 37	-0,60 96	1,01 0,34	0,15 0,01 8	0,83 0,94	0,27 1,12	0,37 1,89
Diff. <i>Spurenelemei</i> As Ba	3,88 -0,12 nte [ppi 12 1207	16,14 0,26 m]: 40 926	21,57 0,21 37 1148	- 0,60 96 436	1,01 0,34 53 227	0,15 0,01 8 74	0,83 0,94 72 280	0,27 1,12	0,37 1,89 25 111
Diff. Spurenelemen As Ba Pb Cl	3,88 -0,12 nte [ppi 12 1207 7	16,14 0,26 m]: 40 926 57	21,57 0,21 37 1148 97	96 436 23	1,01 0,34 53 227 4	0,15 0,01 8 74 4	0,83 0,94 72 280 6	0,27 1,12 14 81 8	0,37 1,89 25 111 3
Diff. Spurenelemen As Ba Pb Cl	3,88 -0,12 nte [ppi 12 1207 7 <10	16,14 0,26 m]: 40 926 57 108	37 1148 97 59	96 436 23 140	1,01 0,34 53 227 4 <10	0,15 0,01 8 74 4 <10	0,83 0,94 72 280 6 <10	0,27 1,12 14 81 8 <10	0,37 1,89 25 111 3 <10
Diff. Spurenelemen As Ba Pb Cl	3,88 -0,12 nte [ppi 12 1207 7 <10 60	16,14 0,26 m]: 40 926 57 108 3093	37 1148 97 59 7524	96 436 23 140 6508	1,01 0,34 53 227 4 <10 536	0,15 0,01 8 74 4 <10 <10	72 280 6 <10 783	0,27 1,12 14 81 8 <10 <10	0,37 1,89 25 111 3 <10 179
Diff. Spurenelement As Ba Pb Cl S Cr	3,88 -0,12 nte [ppn 12 1207 7 <10 60 72	16,14 0,26 m]: 40 926 57 108 3093 234	37 1148 97 59 7524 113	96 436 23 140 6508 117	1,01 0,34 53 227 4 <10 536 34	0,15 0,01 8 74 4 <10 <10	72 280 6 <10 783 62	0,27 1,12 14 81 8 <10 <10	25 111 3 <10 179
Diff. Spurenelement As Ba Pb Cl S Cr	3,88 -0,12 nte [ppi 12 1207 7 <10 60 72 125	16,14 0,26 m]: 40 926 57 108 3093 234 815	21,57 0,21 37 1148 97 59 7524 113 248	96 436 23 140 6508 117 1231	1,01 0,34 53 227 4 <10 536 34 43	0,15 0,01 8 74 4 <10 <10 69 33	72 280 6 <10 783 62 47	0,27 1,12 14 81 8 <10 <10 25 211	0,37 1,89 25 111 3 <10 179 14
Diff. Spurenelement As Ba Pb Cl S Cr V	3,88 -0,12 nte [ppn 12 1207 7 <10 60 72 125 69	16,14 0,26 m]: 40 926 57 108 3093 234 815 79	21,57 0,21 37 1148 97 59 7524 113 248 141	96 436 23 140 6508 117 1231 32	1,01 0,34 53 227 4 <10 536 34 43 6	0,15 0,01 8 74 4 <10 <10 69 33 <5	72 280 6 <10 783 62 47 <5	14 81 81 <10 <10 25 211 8	0,37 1,89 25 111 3 <10 179 14 12 <5
Diff. Spurenelement As Ba Pb Cl S Cr V Zn Cu	3,88 -0,12 nte [ppi 12 1207 7 <10 60 72 125 69 34	16,14 0,26 m]: 40 926 57 108 3093 234 815 79 157	37 1148 97 59 7524 113 248 141 160	96 436 23 140 6508 117 1231 32 80	1,01 0,34 53 227 4 <10 536 34 43 6	0,15 0,01 8 74 4 <10 <10 69 33 <5	72 280 6 <10 783 62 47 <5	14 81 8 <10 <10 25 211 8	25 111 3 <10 179 14 12 <5
Diff. Spurenelement As Ba Pb Cl S Cr V Zn Cu Co	3,88 -0,12 nte [ppi 12 1207 7 <10 60 72 125 69 34 12	16,14 0,26 m]: 40 926 57 108 3093 234 815 79 157 8	37 1148 97 59 7524 113 248 141 160 <5	96 436 23 140 6508 117 1231 32 80 5	1,01 0,34 53 227 4 <10 536 34 43 6 19 <5	0,15 0,01 8 74 4 <10 <10 69 33 <5 5	72 280 6 <10 783 62 47 <5 22 <5	0,27 1,12 14 81 8 <10 <10 25 211 8 6 <5	0,37 1,89 25 111 3 <10 179 14 12 <5 14 6
Diff. Spurenelement As Ba Pb Cl S Cr V Zn Cu Co	3,88 -0,12 nte [ppi 12 1207 7 <10 60 72 125 69 34 12 63	16,14 0,26 m]: 40 926 57 108 3093 234 815 79 157 8 75	37 1148 97 7524 113 248 141 160 <5	96 436 23 140 6508 117 1231 32 80 5	1,01 0,34 53 227 4 <10 536 34 43 6 19 <5 <5	0,15 0,01 8 74 4 <10 <10 69 33 <5 5 <5	72 280 6 <10 783 62 47 <5 22 <5 <5	0,27 1,12 14 81 8 <10 <10 25 211 8 6 <5 <5	25 1111 3 <10 179 14 12 <5 14 6 <5
Diff. Spurenelement As Ba Pb Cl S Cr V Zn Cu Co Ni Ga	3,88 -0,12 nte [ppi 12 1207 7 <10 60 72 125 69 34 12 63 15	16,14 0,26 m]: 40 926 57 108 3093 234 815 79 157 8 75 22	21,57 0,21 37 1148 97 59 7524 113 248 141 160 <5 75 53	96 436 23 140 6508 117 1231 32 80 5 35	1,01 0,34 53 227 4 <10 536 34 43 6 19 <5 <5	8 74 4 <10 69 33 <5 5 <5 <5	72 280 6 <10 783 62 47 <5 22 <5 <5 4	14 81 8 <10 <10 25 211 8 6 <5 <5	25 1111 3 <10 179 14 12 <5 14 6 <5
Diff. Spurenelement As Ba Pb Cl S Cr V Zn Cu Co Ni Ga	3,88 -0,12 nte [ppi 12 1207 7 <10 60 72 125 69 34 12 63 15 11	16,14 0,26 m]: 40 926 57 108 3093 234 815 79 157 8 75 22 12	21,57 0,21 37 1148 97 59 7524 113 248 141 160 <5 75 53 16	96 436 23 140 6508 117 1231 32 80 5 35 12 6	1,01 0,34 53 227 4 <10 536 34 43 6 19 <5 <5 4 3	8 74 4 <10 <10 69 33 <5 5 <5 <1 2	72 280 6 <10 783 62 47 <5 22 <5 <5 4	0,27 1,12 14 81 8 <10 <10 25 211 8 6 <5 <1 2	25 1111 3 <10 179 14 12 <5 14 6 <5 2
Diff. Spurenelement As Ba Pb Cl S Cr V Zn Cu Co Ni Ga Sc La	3,88 -0,12 nte [ppi 12 1207 7 <10 60 72 125 69 34 12 63 15 11 22	16,14 0,26 m]: 40 926 57 108 3093 234 815 79 157 8 75 22 12 32	21,57 0,21 37 1148 97 59 7524 113 248 141 160 <5 75 53 16 21	96 436 23 140 6508 117 1231 32 80 5 35 12 6	1,01 0,34 53 227 4 <10 536 34 43 6 19 <5 <5 4 3	0,15 0,01 8 74 4 <10 69 33 <5 5 <5 <1 2 7	72 280 6 <10 783 62 47 <5 22 <5 <5 4 3 29	0,27 1,12 14 81 8 <10 <10 25 211 8 6 <5 <1 2 10	25 1111 3 <10 179 14 12 <5 14 6 <5 2 2
Diff. Spurenelement As Ba Pb Cl S Cr V Zn Cu Co Ni Ga Sc La	3,88 -0,12 nte [ppi 12 1207 7 <10 60 72 125 69 34 12 63 15 11 22 28	16,14 0,26 m]: 40 926 57 108 3093 234 815 79 157 8 75 22 12 32 52	21,57 0,21 37 1148 97 59 7524 113 248 141 160 <5 75 53 16 21 32	96 436 23 140 6508 117 1231 32 80 5 35 12 6 22 37	1,01 0,34 53 227 4 <10 536 34 43 6 19 <5 <5 4 3 12	0,15 0,01 8 74 4 <10 <10 69 33 <5 <5 <5 <1 2 7 19	72 280 6 <10 783 62 47 <5 22 <5 <5 4 3 29	0,27 1,12 14 81 8 <10 <10 25 211 8 6 <5 <5 <1 2 10 22	25 1111 3 <10 179 14 12 <5 14 6 <5 2 2 10 24
Diff. Spurenelement As Ba Pb Cl S Cr V Zn Cu Co Ni Ga Sc La Ce Mo	3,88 -0,12 nte [ppi 12 1207 7 <10 60 72 125 69 34 12 63 15 11 22 28 4	16,14 0,26 m]: 40 926 57 108 3093 234 815 79 157 8 75 22 12 32 52 56	21,57 0,21 37 1148 97 59 7524 113 248 141 160 <5 75 53 16 21 32 23	96 436 23 140 6508 117 1231 32 80 5 35 12 6 22 37 41	1,01 0,34 53 227 4 <10 536 34 43 6 19 <5 <5 4 3 12 25 5	8 74 4 <10 <10 69 33 <5 5 <5 <1 2 7 19 5	72 280 6 <10 783 62 47 <5 22 <5 <5 4 3 29 53 2	0,27 1,12 14 81 8 <10 <10 25 211 8 6 <5 <1 2 10 22 39	25 1111 3 <10 179 14 12 <5 14 6 <5 2 2 10 24
Diff. Spurenelement As Ba Pb Cl S Cr V Zn Cu Co Ni Ga Sc La Ce	3,88 -0,12 nte [ppi 12 1207 7 <10 60 72 125 69 34 12 63 15 11 22 28 4 94	16,14 0,26 m]: 40 926 57 108 3093 234 815 79 157 8 75 22 12 32 56 98	21,57 0,21 37 1148 97 59 7524 113 248 141 160 <5 75 53 16 21 32 23 223	96 436 23 140 6508 117 1231 32 80 5 35 12 6 22 37 41 52	1,01 0,34 53 227 4 <10 536 34 43 6 19 <5 <5 4 3 12 25 5 <3	8 74 4 <10 <10 69 33 <5 5 <5 <1 2 7 19 5	72 280 6 <10 783 62 47 <5 22 <5 4 3 29 53 2	0,27 1,12 14 81 8 <10 <10 25 211 8 6 <5 <1 2 10 22 39 5	25 1111 3 <10 179 14 12 <5 14 6 <5 2 2 10 24 <1 <3
Diff. Spurenelement As Ba Pb Cl S Cr V Zn Cu Co Ni Ga Sc La Ce Mo Rb Sr	3,88 -0,12 nte [ppi 12 1207 7 <10 60 72 125 69 34 12 63 15 11 22 28 4 94 92	16,14 0,26 m]: 40 926 57 108 3093 234 815 79 157 8 75 22 12 32 56 98 155	21,57 0,21 37 1148 97 59 7524 113 248 141 160 <5 75 53 16 21 32 23 223 62	96 436 23 140 6508 117 1231 32 80 5 35 12 6 22 37 41 52 79	1,01 0,34 53 227 4 <10 536 34 43 6 19 <5 <5 4 3 12 25 5 5 3 962	0,15 0,01 8 74 4 <10 <10 69 33 <5 <5 <1 2 7 19 5 5 5	72 280 6 <10 783 62 47 <5 22 <5 4 3 29 53 2 <3	0,27 1,12 14 81 8 <10 <10 25 211 8 6 <5 <1 2 10 22 39 5 69	25 1111 3 <10 179 14 12 <5 14 6 <5 2 2 10 24 <1 <3 452
Diff. Spurenelement As Ba Pb Cl S Cr V Zn Cu Co Ni Ga Sc La Ce Mo Rb Sr	3,88 -0,12 nte [ppi 12 1207 7 <10 60 72 125 69 34 12 63 15 11 22 28 4 94 92 21	16,14 0,26 m]: 40 926 57 108 3093 234 815 79 157 8 75 22 12 32 52 56 98 155 62	21,57 0,21 37 1148 97 59 7524 113 248 141 160 <5 75 53 16 21 32 23 223 62 38	96 436 23 140 6508 117 1231 32 80 5 35 12 6 22 37 41 52 79 66	1,01 0,34 53 227 4 <10 536 34 43 6 19 <5 <5 4 3 12 25 5 <3 962 11	8 74 4 <10 <10 69 33 <5 <5 <5 <1 2 7 19 5 5 5	72 280 6 <10 783 62 47 <5 22 <5 4 3 29 53 2 <3 1214	0,27 1,12 14 81 8 <10 <10 25 211 8 6 <5 <1 2 10 22 39 5 69 4	25 1111 3 <10 179 14 12 <5 14 6 <5 2 2 10 24 <1 <3 452 5
Diff. Spurenelement As Ba Pb Cl S Cr V Zn Cu Co Ni Ga Sc La Ce Mo Rb Sr Y Th	3,88 -0,12 nte [ppi 12 1207 7 <10 60 72 125 69 34 12 63 15 11 22 28 4 94 92 21 8	16,14 0,26 m]: 40 926 57 108 3093 234 815 79 157 8 75 22 12 32 52 56 98 155 62 11	21,57 0,21 37 1148 97 59 7524 113 248 141 160 <5 75 32 21 32 23 223 62 38 17	96 436 23 140 6508 117 1231 32 80 5 35 12 6 22 37 41 52 79 66 <5	1,01 0,34 53 227 4 <10 536 34 43 6 19 <5 <5 4 3 12 25 5 <3 962 11 <5	8 74 4 <10 69 33 <5 5 <5 <1 2 7 19 5 5 5 4 2 <5	72 280 6 <10 783 62 47 <5 22 <5 4 3 29 53 2 <3 1214 10 <5	0,27 1,12 14 81 8 <10 <10 25 211 8 6 <5 <1 2 10 22 39 5 69 4 <5	25 1111 3 <10 179 14 12 <5 14 6 <5 2 2 10 24 <1 <3 452 5 <5

Anhang A4 (Fortsetzung): Haupt- und Spurenelementanalysen

Lok.:	Hoh	enleub	en, No	rdwand,	S1	HIb, E	Hohenle	euben, S	Süd: S1	W	/ISMUT-E	Sohrunge	n
Erl.:	bleich	bleicl	h, Kr.	schv	varz	KS	bleich	schw.	Schutt	Weißb.	Drosen	Drosen	Bald.
Probe:	211-3	211-4	(231)	211-6	(230)	212	224-1	224-2	223	133	137	154	187
Hauptel	emente	ohne L	OI [Ge	w. %]:									
SiO ₂	85,27	84,00	93,27	93,24	92,2	92,44	88,31	91,48	57,55	77,18	51,06	72,49	62,47
TiO ₂	0,28	0,31	0,21	0,20	0,22	0,41	0,37	0,34	5,98	0,40	0,44	0,67	0,34
Al_2O_3	6,15	6,77	3,90	3,86	4,19	5,03	6,42	5,13	18,24	13,93	10,71	13,77	6,91
Fe ₂ O ₃	5,08	5,64	0,77	0,69	0,95	0,28	1,63	0,67	11,17	2,66	5,44	4,75	2,57
MnO	0,00	0,01	0,00	0,00	0	0	0	0	0,01	0,01	0,28	0,02	0,21
MgO	0,58	0,58	0,39	0,38	0,4	0,37	0,57	0,41	3,41	1,37	9,71	2,2	9,45
CaO	0,14	0,45	0,20	0,26	0,24	0,06	0,06	0,02	0,39	0,31	16,72	0,71	14,69
Na₂O	0,04	0,03	0,04	0,04	0,05	0,07	0,03	0,04	0,04	0,19	0,19	0,12	0,32
K ₂ O	1,65	1,69	1,08	1,06	1,14	1,16	1,72	1,16	1,13	3,29	2,87	3,82	2
P_2O_5	0,15	0,20	0,05	0,05	0,07	0,03	0,08	0,03	0,34	0,08	1,59	0,23	0,49
SO₃	0,01	0,02	0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,02	0,26	0,11	0,31
Hauptel	emente	incl. LC	OI [Gew	ı. %]:									
SiO ₂	82,76	79,42	90,98	82,52	77,29	68,76	86,46	78,55	51,84	74,38	39,89	53,20	45,89
TiO ₂	0,27	0,29	0,20	0,18	0,18	0,30	0,36	0,29	5,39	0,39	0,34	0,49	0,25
Al ₂ O ₃	5,97	6,40	3,80	3,42	3,51	3,74	6,29	4,41	16,43	13,42	8,37	10,11	5,08
Fe ₂ O ₃	4,93	5,33	0,75	0,61	0,80	0,21	1,60	0,58	10,06	2,56	4,25	3,49	1,89
MnO	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,22	0,01	0,15
MgO	0,56	0,55	0,38	0,34	0,34	0,28	0,56	0,35	3,07	1,32	7,59	1,61	6,94
CaO	0,14	0,43	0,20	0,23	0,20	0,04	0,06	0,02	0,35	0,30	13,06	0,52	10,79
Na₂O	0,04	0,03	0,04	0,04	0,04	0,05	0,03	0,03	0,04	0,18	0,15	0,09	0,24
K ₂ O	1,60	1,60	1,05	0,94	0,96	0,86	1,68	1,00	1,02	3,17	2,24	2,80	1,47
P_2O_5	0,15	0,19	0,05	0,04	0,06	0,02	0,08	0,03	0,31	0,08	1,24	0,17	0,36
SO ₃	0,01	0,02	0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,02	0,20	0,08	0,23
Bilanz: I	Hauptele	emente	Snure	neleme	nte Gl	ühverlu	st [.]						
		Jiii Ciito	_		1	1	-						
HE [%]	96,43	94,27	97,46	88,31	83,39	74,28	97,12	85,26	88,52	95,83	77,55	72,58	73,28
HE [%] SE [%]	96,43 0,37	94,27 0,44	97,46 0,24	88,31 0,30	83,39 0,37	74,28 0,61	97,12 0,22	0,58	0,56	0,11	0,49	1,70	0,48
HE [%] SE [%] LOI	96,43 0,37 2,94	94,27 0,44 5,45	97,46 0,24 2,46	88,31 0,30 11,50	83,39 0,37 16,2	74,28 0,61 25,62	97,12 0,22 2,1	0,58 14,13	0,56 9,92	0,11 3,63	0,49 21,88	1,70 26,61	0,48 26,54
HE [%] SE [%] LOI Diff.	96,43 0,37 2,94 0,28	94,27 0,44 5,45 -0,14	97,46 0,24 2,46 -0,16	88,31 0,30	83,39 0,37	74,28 0,61	97,12 0,22	0,58	0,56	0,11	0,49	1,70	0,48
HE [%] SE [%] LOI Diff. Spurence	96,43 0,37 2,94 0,28	94,27 0,44 5,45 -0,14	97,46 0,24 2,46 -0,16	88,31 0,30 11,50 -0,09	83,39 0,37 16,2 0,13	74,28 0,61 25,62	97,12 0,22 2,1 0,58	0,58 14,13	0,56 9,92 1,17	0,11 3,63 0,45	0,49 21,88 0,24	1,70 26,61 -0,59	0,48 26,54 -0,24
HE [%] SE [%] LOI Diff. Spurence	96,43 0,37 2,94 0,28 elemente	94,27 0,44 5,45 -0,14 e [ppm]	97,46 0,24 2,46 -0,16	88,31 0,30 11,50 -0,09	83,39 0,37 16,2 0,13	74,28 0,61 25,62 -0,47	97,12 0,22 2,1 0,58	0,58 14,13 0,13	0,56 9,92 1,17	0,11 3,63 0,45	0,49 21,88 0,24	1,70 26,61 -0,59	0,48 26,54 -0,24
HE [%] SE [%] LOI Diff. Spurene As Ba	96,43 0,37 2,94 0,28 elemente 66 1047	94,27 0,44 5,45 -0,14 e [ppm] 77 1276	97,46 0,24 2,46 -0,16 7: 12 660	88,31 0,30 11,50 -0,09 11 567	83,39 0,37 16,2 0,13 14 537	74,28 0,61 25,62 -0,47 11 372	97,12 0,22 2,1 0,58	0,58 14,13 0,13 19 574	0,56 9,92 1,17 4 2770	0,11 3,63 0,45	0,49 21,88 0,24 25 2810	1,70 26,61 -0,59 26 1288	0,48 26,54 -0,24 5 124
HE [%] SE [%] LOI Diff. Spurence As Ba Pb	96,43 0,37 2,94 0,28 elemente 66 1047 42	94,27 0,44 5,45 -0,14 e [ppm] 77 1276 33	97,46 0,24 2,46 -0,16 : 12 660 20	88,31 0,30 11,50 -0,09 11 567 27	83,39 0,37 16,2 0,13 14 537 32	74,28 0,61 25,62 -0,47 11 372 23	97,12 0,22 2,1 0,58 19 741 28	0,58 14,13 0,13 19 574 36	0,56 9,92 1,17 4 2770 15	0,11 3,63 0,45 35 220 11	0,49 21,88 0,24 25 2810 6	1,70 26,61 -0,59 26 1288 18	0,48 26,54 -0,24 5 124 4
HE [%] SE [%] LOI Diff. Spurene As Ba Pb CI	96,43 0,37 2,94 0,28 elemente 66 1047 42 <10	94,27 0,44 5,45 -0,14 e [ppm] 77 1276 33 <10	97,46 0,24 2,46 -0,16 : 12 660 20 <10	88,31 0,30 11,50 -0,09 11 567 27 <10	83,39 0,37 16,2 0,13 14 537 32 <10	74,28 0,61 25,62 -0,47 11 372 23 273	97,12 0,22 2,1 0,58 19 741 28 <10	0,58 14,13 0,13 19 574 36 163	0,56 9,92 1,17 4 2770 15 14	0,11 3,63 0,45 35 220 11 64	0,49 21,88 0,24 25 2810 6 554	1,70 26,61 -0,59 26 1288 18 402	0,48 26,54 -0,24 5 124 4 1452
HE [%] SE [%] LOI Diff. Spurene As Ba Pb CI S	96,43 0,37 2,94 0,28 elemente 66 1047 42 <10 52	94,27 0,44 5,45 -0,14 e [ppm] 77 1276 33 <10 152	97,46 0,24 2,46 -0,16 : : 12 660 20 <10 37	88,31 0,30 11,50 -0,09 11 567 27 <10 1034	83,39 0,37 16,2 0,13 14 537 32 <10 1518	74,28 0,61 25,62 -0,47 11 372 23 273 4435	97,12 0,22 2,1 0,58 19 741 28 <10	0,58 14,13 0,13 19 574 36 163 3437	0,56 9,92 1,17 4 2770 15 14 <10	35 220 11 64 22	0,49 21,88 0,24 25 2810 6 554 593	1,70 26,61 -0,59 26 1288 18 402 12377	0,48 26,54 -0,24 5 124 4 1452 1840
HE [%] SE [%] LOI Diff. Spurene As Ba Pb CI S Cr	96,43 0,37 2,94 0,28 elemente 66 1047 42 <10 52 144	94,27 0,44 5,45 -0,14 e [ppm] 77 1276 33 <10 152 122	97,46 0,24 2,46 -0,16 : 12 660 20 <10 37 56	88,31 0,30 11,50 -0,09 11 567 27 <10 1034 40	83,39 0,37 16,2 0,13 14 537 32 <10 1518 51	74,28 0,61 25,62 -0,47 11 372 23 273 4435 33	97,12 0,22 2,1 0,58 19 741 28 <10 <10	0,58 14,13 0,13 19 574 36 163 3437 129	0,56 9,92 1,17 4 2770 15 14 <10 817	3,63 0,45 35 220 11 64 22 38	21,88 0,24 25 2810 6 554 593 92	1,70 26,61 -0,59 26 1288 18 402 12377 84	0,48 26,54 -0,24 5 124 4 1452 1840 45
HE [%] SE [%] LOI Diff. Spurene As Ba Pb CI S Cr	96,43 0,37 2,94 0,28 66 1047 42 <10 52 144 1222	94,27 0,44 5,45 -0,14 = [ppm] 77 1276 33 <10 152 122 1496	97,46 0,24 2,46 -0,16 : 12 660 20 <10 37 56 1062	88,31 0,30 11,50 -0,09 11 567 27 <10 1034 40 894	83,39 0,37 16,2 0,13 14 537 32 <10 1518 51	74,28 0,61 25,62 -0,47 11 372 23 273 4435 33 441	97,12 0,22 2,1 0,58 19 741 28 <10 <10 48 782	0,58 14,13 0,13 19 574 36 163 3437 129 955	0,56 9,92 1,17 4 2770 15 14 <10 817 625	35 220 11 64 22 38 59	25 2810 6 554 593 92 249	1,70 26,61 -0,59 26 1288 18 402 12377 84 1155	0,48 26,54 -0,24 5 124 4 1452 1840 45 747
HE [%] SE [%] LOI Diff. Spurence As Ba Pb CI S Cr V Zn	96,43 0,37 2,94 0,28 66 1047 42 <10 52 144 1222 35	94,27 0,44 5,45 -0,14 e [ppm] 77 1276 33 <10 152 122 1496 53	97,46 0,24 2,46 -0,16 : 12 660 20 <10 37 56 1062 15	88,31 0,30 11,50 -0,09 11 567 27 <10 1034 40 894 23	83,39 0,37 16,2 0,13 14 537 32 <10 1518 51 943 27	74,28 0,61 25,62 -0,47 11 372 23 273 4435 33 441 <5	97,12 0,22 2,1 0,58 19 741 28 <10 <10 48 782 11	0,58 14,13 0,13 19 574 36 163 3437 129 955	0,56 9,92 1,17 4 2770 15 14 <10 817 625 214	35 220 11 64 22 38 59	25 2810 6 554 593 92 249 79	1,70 26,61 -0,59 26 1288 18 402 12377 84 1155 213	0,48 26,54 -0,24 5 124 4 1452 1840 45 747 66
HE [%] SE [%] LOI Diff. Spurence As Ba Pb CI S Cr V Zn Cu	96,43 0,37 2,94 0,28 elemente 66 1047 42 <10 52 144 1222 35 357	94,27 0,44 5,45 -0,14 e [ppm] 77 1276 33 <10 152 122 1496 53 520	97,46 0,24 2,46 -0,16 1: 12 660 20 <10 37 56 1062 15 169	88,31 0,30 11,50 -0,09 11 567 27 <10 1034 40 894 23 112	83,39 0,37 16,2 0,13 14 537 32 <10 1518 51 943 27 166	74,28 0,61 25,62 -0,47 11 372 23 273 4435 33 441 <5	97,12 0,22 2,1 0,58 19 741 28 <10 <10 48 782 11 56	0,58 14,13 0,13 19 574 36 163 3437 129 955 10	0,56 9,92 1,17 4 2770 15 14 <10 817 625 214	35 220 11 64 22 38 59 38 23	25 2810 6 554 593 92 249 79	1,70 26,61 -0,59 26 1288 18 402 12377 84 1155 213 544	0,48 26,54 -0,24 5 124 4 1452 1840 45 747 66 61
HE [%] SE [%] LOI Diff. Spurene As Ba Pb CI S Cr V Zn Cu Co	96,43 0,37 2,94 0,28 elemente 66 1047 42 <10 52 144 1222 35 357 7	94,27 0,44 5,45 -0,14 e [ppm] 77 1276 33 <10 152 122 1496 53 520 25	97,46 0,24 2,46 -0,16 : 12 660 20 <10 37 56 1062 15 169 <5	88,31 0,30 11,50 -0,09 11 567 27 <10 1034 40 894 23 112 5	83,39 0,37 16,2 0,13 14 537 32 <10 1518 51 943 27 166 6	74,28 0,61 25,62 -0,47 11 372 23 273 4435 33 441 <5 9 5	97,12 0,22 2,1 0,58 19 741 28 <10 <10 48 782 11 56 <5	0,58 14,13 0,13 19 574 36 163 3437 129 955 10 10 5	0,56 9,92 1,17 4 2770 15 14 <10 817 625 214 69	3,63 0,45 35 220 11 64 22 38 59 38 23 8	25 2810 6 554 593 92 249 79 9	1,70 26,61 -0,59 26 1288 18 402 12377 84 1155 213 544 13	0,48 26,54 -0,24 5 124 4 1452 1840 45 747 66 61 61
HE [%] SE [%] LOI Diff. Spurene As Ba Pb CI S Cr V Zn Cu Co Ni	96,43 0,37 2,94 0,28 elemente 66 1047 42 <10 52 144 1222 35 357 7 132	94,27 0,44 5,45 -0,14 e [ppm] 77 1276 33 <10 152 122 1496 53 520 25 123	97,46 0,24 2,46 -0,16 : 12 660 20 <10 37 56 1062 15 169 <5 32	88,31 0,30 11,50 -0,09 11 567 27 <10 1034 40 894 23 112 5 72	83,39 0,37 16,2 0,13 14 537 32 <10 1518 51 943 27 166 6 83	74,28 0,61 25,62 -0,47 11 372 23 273 4435 33 441 <5 9 5 100	97,12 0,22 2,1 0,58 19 741 28 <10 <10 48 782 11 56 <5 36	0,58 14,13 0,13 19 574 36 163 3437 129 955 10 10 5	0,56 9,92 1,17 4 2770 15 14 <10 817 625 214 69 10 519	3,63 0,45 35 220 11 64 22 38 59 38 23 8 68	21,88 0,24 25 2810 6 554 593 92 249 79 9 14	1,70 26,61 -0,59 26 1288 18 402 12377 84 1155 213 544 13 249	0,48 26,54 -0,24 5 124 4 1452 1840 45 747 66 61 6 103
HE [%] SE [%] LOI Diff. Spurene As Ba Pb CI S Cr V Zn Cu Co Ni Ga	96,43 0,37 2,94 0,28 elemente 66 1047 42 <10 52 144 1222 35 357 7 132 13	94,27 0,44 5,45 -0,14 e [ppm] 77 1276 33 <10 152 122 1496 53 520 25 123 13	97,46 0,24 2,46 -0,16 : 12 660 20 <10 37 56 1062 15 169 <5 32 10	88,31 0,30 11,50 -0,09 11 567 27 <10 1034 40 894 23 112 5 72 8	83,39 0,37 16,2 0,13 14 537 32 <10 1518 51 943 27 166 6 83 9	74,28 0,61 25,62 -0,47 11 372 23 273 4435 33 441 <5 9 5 100 15	97,12 0,22 2,1 0,58 19 741 28 <10 <10 48 782 11 56 <5 36 18	0,58 14,13 0,13 19 574 36 163 3437 129 955 10 10 5 57 11	0,56 9,92 1,17 4 2770 15 14 <10 817 625 214 69 10 519	3,63 0,45 35 220 11 64 22 38 59 38 23 8 68 17	25 2810 6 554 593 92 249 79 9 14 62	1,70 26,61 -0,59 26 1288 18 402 12377 84 1155 213 544 13 249 22	0,48 26,54 -0,24 5 124 4 1452 1840 45 747 66 61 6 103 13
HE [%] SE [%] LOI Diff. Spurence As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc	96,43 0,37 2,94 0,28 elemente 66 1047 42 <10 52 144 1222 35 357 7 132 13 8	94,27 0,44 5,45 -0,14 e [ppm] 77 1276 33 <10 152 122 1496 53 520 25 123 13 7	97,46 0,24 2,46 -0,16 : 12 660 20 <10 37 56 1062 15 169 <5 32 10 5	88,31 0,30 11,50 -0,09 11 567 27 <10 1034 40 894 23 112 5 72 8 4	83,39 0,37 16,2 0,13 14 537 32 <10 1518 51 943 27 166 6 83 9 6	74,28 0,61 25,62 -0,47 11 372 23 273 4435 33 441 <5 9 5 100 15 6	97,12 0,22 2,1 0,58 19 741 28 <10 <10 48 782 11 56 <5 36 18 9	0,58 14,13 0,13 19 574 36 163 3437 129 955 10 10 5 57 11 7	0,56 9,92 1,17 4 2770 15 14 <10 817 625 214 69 10 519 30 36	3,63 0,45 35 220 11 64 22 38 59 38 23 8 68 17	25 2810 6 554 593 92 249 79 9 14 62 12	26,61 -0,59 26,61 1288 18 402 12377 84 1155 213 544 13 249 22 12	5 124 4 1452 1840 45 747 66 61 6 103 13 8
HE [%] SE [%] LOI Diff. Spurene As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc La	96,43 0,37 2,94 0,28 elemente 66 1047 42 <10 52 144 1222 35 357 7 132 13 8 44	94,27 0,44 5,45 -0,14 e [ppm] 77 1276 33 <10 152 122 1496 53 520 25 123 13 7 22	97,46 0,24 2,46 -0,16 : 12 660 20 <10 37 56 1062 15 169 <5 32 10 5 19	88,31 0,30 11,50 -0,09 11 567 27 <10 1034 40 894 23 112 5 72 8 4 14	83,39 0,37 16,2 0,13 14 537 32 <10 1518 51 943 27 166 6 83 9 6 18	74,28 0,61 25,62 -0,47 11 372 23 273 4435 33 441 <5 9 5 100 15 6 17	97,12 0,22 2,1 0,58 19 741 28 <10 <10 48 782 11 56 <5 36 18 9 21	0,58 14,13 0,13 19 574 36 163 3437 129 955 10 10 5 57 11 7 24	0,56 9,92 1,17 4 2770 15 14 <10 817 625 214 69 10 519 30 36 <5	35 220 11 64 22 38 59 38 23 8 68 17 9	25 2810 6 554 593 92 249 79 9 14 62 12 10	26,61 -0,59 26,61 -0,59 26 1288 18 402 12377 84 1155 213 544 13 249 22 12 33	5 124 4 1452 1840 45 747 66 61 6 103 13 8 16
HE [%] SE [%] LOI Diff. Spurene As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc La Ce	96,43 0,37 2,94 0,28 66 1047 42 <10 52 144 1222 35 357 7 132 13 8 44 63	94,27 0,44 5,45 -0,14 2 [ppm] 77 1276 33 <10 152 122 1496 53 520 25 123 13 7 22 16	97,46 0,24 2,46 -0,16 : 12 660 20 <10 37 56 1062 15 169 <5 32 10 5 19 26	88,31 0,30 11,50 -0,09 11 567 27 <10 1034 40 894 23 112 5 72 8 4 14 20	83,39 0,37 16,2 0,13 14 537 32 <10 1518 51 943 27 166 6 83 9 6 18 29	74,28 0,61 25,62 -0,47 11 372 23 273 4435 33 441 <5 9 5 100 15 6 17 37	97,12 0,22 2,1 0,58 19 741 28 <10 <10 48 782 11 56 <5 36 18 9 21 32	0,58 14,13 0,13 19 574 36 163 3437 129 955 10 10 5 57 11 7 24 42	0,56 9,92 1,17 4 2770 15 14 <10 817 625 214 69 10 519 30 36 <5 <5	35 220 11 64 22 38 59 38 23 8 68 17 9 19	25 2810 6 554 593 92 249 79 9 14 62 12 12 10 <5	1,70 26,61 -0,59 26 1288 18 402 12377 84 1155 213 544 13 249 22 12 33 44	5 124 4 1452 1840 45 747 66 61 6 103 13 8 16 36
HE [%] SE [%] LOI Diff. Spurene As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc La Ce Mo	96,43 0,37 2,94 0,28 66 1047 42 <10 52 144 1222 35 357 7 132 13 8 44 63 24	94,27 0,44 5,45 -0,14 e [ppm] 77 1276 33 <10 152 122 1496 53 520 25 123 13 7 22 16 62	97,46 0,24 2,46 -0,16 : 12 660 20 <10 37 56 1062 15 169 <5 32 10 5 19 26 12	88,31 0,30 11,50 -0,09 11 567 27 <10 1034 40 894 23 112 5 72 8 4 14 20 13	83,39 0,37 16,2 0,13 14 537 32 <10 1518 51 943 27 166 6 83 9 6 18 29 18	74,28 0,61 25,62 -0,47 11 372 23 273 4435 33 441 <5 9 5 100 15 6 17 37 66	97,12 0,22 2,1 0,58 19 741 28 <10 <10 48 782 11 56 <5 36 18 9 21 32 42	0,58 14,13 0,13 19 574 36 163 3437 129 955 10 10 5 57 11 7 24 42 75	0,56 9,92 1,17 4 2770 15 14 <10 817 625 214 69 10 519 30 36 <5 5	35 220 11 64 22 38 59 38 23 8 68 17 9 19 39	25 2810 6 554 593 92 249 79 9 14 62 12 10 <5 6	26 1,70 26,61 -0,59 26 1288 18 402 12377 84 1155 213 544 13 249 22 12 33 44 84	5 124 4 1452 1840 45 747 66 61 6 103 13 8 16 36 6
HE [%] SE [%] LOI Diff. Spurene As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc La Ce Mo Rb	96,43 0,37 2,94 0,28 66 1047 42 <10 52 144 1222 35 357 7 132 13 8 44 63 24 62	94,27 0,44 5,45 -0,14 e [ppm] 77 1276 33 <10 152 122 1496 53 520 25 123 13 7 22 16 62 63	97,46 0,24 2,46 -0,16 : 12 660 20 <10 37 56 1062 15 169 <5 32 10 5 19 26 12 44	88,31 0,30 11,50 -0,09 11 567 27 <10 1034 40 894 23 112 5 72 8 4 14 20 13 38	83,39 0,37 16,2 0,13 14 537 32 <10 1518 51 943 27 166 6 83 9 6 18 29 18 40	74,28 0,61 25,62 -0,47 11 372 23 273 4435 33 441 <5 9 5 100 15 6 17 37 66 44	97,12 0,22 2,1 0,58 19 741 28 <10 <10 48 782 11 56 <5 36 18 9 21 32 42 62	0,58 14,13 0,13 19 574 36 163 3437 129 955 10 10 5 57 11 7 24 42 75 48	0,56 9,92 1,17 4 2770 15 14 <10 817 625 214 69 10 519 30 36 <5 5 18	35 220 11 64 22 38 59 38 23 8 68 17 9 19 39 4	0,49 21,88 0,24 25 2810 6 554 593 92 249 79 9 14 62 12 10 <5 6 90	26 1,70 26,61 -0,59 26 1288 18 402 12377 84 1155 213 544 13 249 22 12 33 44 84	5 124 4 1452 1840 45 747 66 61 6 103 13 8 16 36 6 63
HE [%] SE [%] LOI Diff. Spurence As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc La Ce Mo Rb Sr	96,43 0,37 2,94 0,28 66 1047 42 <10 52 144 1222 35 357 7 132 13 8 44 63 24 62 8	94,27 0,44 5,45 -0,14 e [ppm] 77 1276 33 <10 152 122 1496 53 520 25 123 13 7 22 16 62 63 30	97,46 0,24 2,46 -0,16 : 12 660 20 <10 37 56 1062 15 169 <5 32 10 5 19 26 12 44 28	88,31 0,30 11,50 -0,09 11 567 27 <10 1034 40 894 23 112 5 72 8 4 14 20 13 38 26	83,39 0,37 16,2 0,13 14 537 32 <10 1518 51 943 27 166 6 83 9 6 18 29 18 40 40	74,28 0,61 25,62 -0,47 11 372 23 273 4435 33 441 <5 9 5 100 15 6 17 37 66 44 6	97,12 0,22 2,1 0,58 19 741 28 <10 <10 48 782 11 56 <5 36 18 9 21 32 42 62 18	0,58 14,13 0,13 19 574 36 163 3437 129 955 10 10 5 57 11 7 24 42 75 48 3	0,56 9,92 1,17 4 2770 15 14 <10 817 625 214 69 10 519 30 36 <5 5 18	35 220 11 64 22 38 59 38 23 8 68 17 9 19 39 4 160 110	0,49 21,88 0,24 25 2810 6 554 593 92 249 79 9 14 62 12 10 <5 6 90 130	26 1,70 26,61 -0,59 26 1288 18 402 12377 84 1155 213 544 13 249 22 12 33 44 84 107	5 124 4 1452 1840 45 747 66 61 6 103 13 8 16 36 6 6 63 68
HE [%] SE [%] LOI Diff. Spurene As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc La Ce Mo Rb Sr Y	96,43 0,37 2,94 0,28 elemente 66 1047 42 <10 52 144 1222 35 357 7 132 13 8 44 63 24 62 8 236	94,27 0,44 5,45 -0,14 e [ppm] 77 1276 33 <10 152 122 1496 53 520 25 123 13 7 22 16 62 63 30 117	97,46 0,24 2,46 -0,16 : 12 660 20 <10 37 56 1062 15 169 <5 32 10 5 19 26 12 44 28 102	88,31 0,30 11,50 -0,09 11 567 27 <10 1034 40 894 23 112 5 72 8 4 14 20 13 38 26 62	83,39 0,37 16,2 0,13 14 537 32 <10 1518 51 943 27 166 6 83 9 6 18 29 18 40 40 76	74,28 0,61 25,62 -0,47 11 372 23 273 4435 33 441 <5 9 5 100 15 6 17 37 66 44 6 86	97,12 0,22 2,1 0,58 19 741 28 <10 <10 48 782 11 56 <5 36 18 9 21 32 42 62 18 97	0,58 14,13 0,13 19 574 36 163 3437 129 955 10 10 5 57 11 7 24 42 75 48 3 91	0,56 9,92 1,17 4 2770 15 14 <10 817 625 214 69 10 519 30 36 <5 <5 5 18 34 36	35 220 11 64 22 38 59 38 23 8 68 17 9 19 39 4 160 110 27	0,49 21,88 0,24 25 2810 6 554 593 92 249 79 9 14 62 12 10 <5 6 90 130 45	1,70 26,61 -0,59 26 1288 18 402 12377 84 1155 213 544 13 249 22 12 33 44 84 107 12 83	0,48 26,54 -0,24 5 124 4 1452 1840 45 747 66 61 6 103 13 8 16 36 6 63 68 67
HE [%] SE [%] LOI Diff. Spurence As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc La Ce Mo Rb Sr Y Th	96,43 0,37 2,94 0,28 elemente 66 1047 42 <10 52 144 1222 35 357 7 132 13 8 44 63 24 62 8 236 5	94,27 0,44 5,45 -0,14 e [ppm] 77 1276 33 <10 152 122 1496 53 520 25 123 13 7 22 16 62 63 30 117 5	97,46 0,24 2,46 -0,16 : 12 660 20 <10 37 56 1062 15 169 <5 32 10 5 19 26 12 44 28 102 <5	88,31 0,30 11,50 -0,09 11 567 27 <10 1034 40 894 23 112 5 72 8 4 14 20 13 38 26 62 <5	83,39 0,37 16,2 0,13 14 537 32 <10 1518 51 943 27 166 6 83 9 6 18 29 18 40 40 76 <5	74,28 0,61 25,62 -0,47 11 372 23 273 4435 33 441 <5 9 5 100 15 6 17 37 66 44 6 86 <5	97,12 0,22 2,1 0,58 19 741 28 <10 <10 48 782 11 56 <5 36 18 9 21 32 42 62 18 97 6	0,58 14,13 0,13 19 574 36 163 3437 129 955 10 10 5 57 11 7 24 42 75 48 3 91 <5	0,56 9,92 1,17 4 2770 15 14 <10 817 625 214 69 10 519 30 36 <5 5 18 34 36 <5	3,63 0,45 220 11 64 22 38 59 38 23 8 68 17 9 19 39 4 160 110 27 <5	0,49 21,88 0,24 25 2810 6 554 593 92 249 79 9 14 62 12 10 <5 6 90 130 45 5	1,70 26,61 -0,59 26 1288 18 402 12377 84 1155 213 544 13 249 22 12 33 44 84 107 12 83 8	5 124 4 1452 1840 45 747 66 61 6 103 13 8 16 36 6 6 63 68 67 <5
HE [%] SE [%] LOI Diff. Spurence As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc La Ce Mo Rb Sr Y Th	96,43 0,37 2,94 0,28 elemente 66 1047 42 <10 52 144 1222 35 357 7 132 13 8 44 63 24 62 8 236 5 36	94,27 0,44 5,45 -0,14 e [ppm] 77 1276 33 <10 152 122 1496 53 520 25 123 13 7 22 16 62 63 30 117 5 61	97,46 0,24 2,46 -0,16 : 12 660 20 <10 37 56 1062 15 169 <5 32 10 5 19 26 12 44 28 102 <5 32	88,31 0,30 11,50 -0,09 11 567 27 <10 1034 40 894 23 112 5 72 8 4 14 20 13 38 26 62 <5 15	83,39 0,37 16,2 0,13 14 537 32 <10 1518 51 943 27 166 6 83 9 6 18 29 18 40 40 76 <5 28	74,28 0,61 25,62 -0,47 11 372 23 273 4435 33 441 <5 9 5 100 15 6 17 37 66 44 6 86 <5 26	97,12 0,22 2,1 0,58 19 741 28 <10 <10 48 782 11 56 <5 36 18 9 21 32 42 62 18 97 6	0,58 14,13 0,13 19 574 36 163 3437 129 955 10 10 5 57 11 7 24 42 75 48 3 91 <55 19	0,56 9,92 1,17 4 2770 15 14 <10 817 625 214 69 10 519 30 36 <5 5 18 34 36 <5 16	3,63 0,45 35 220 11 64 22 38 59 38 23 8 68 17 9 19 39 4 160 110 27 <5 8	0,49 21,88 0,24 25 2810 6 554 593 92 249 79 9 14 62 12 10 <5 6 90 130 45 5 18	26,61 -0,59 26,61 -0,59 26 1288 18 402 12377 84 1155 213 544 13 249 22 12 33 44 84 107 12 83 8	5 124 4 1452 1840 45 747 66 61 6 103 13 8 16 36 6 6 63 68 67 <5 20
HE [%] SE [%] LOI Diff. Spurence As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc La Ce Mo Rb Sr Y Th	96,43 0,37 2,94 0,28 elemente 66 1047 42 <10 52 144 1222 35 357 7 132 13 8 44 63 24 62 8 236 5	94,27 0,44 5,45 -0,14 e [ppm] 77 1276 33 <10 152 122 1496 53 520 25 123 13 7 22 16 62 63 30 117 5	97,46 0,24 2,46 -0,16 : 12 660 20 <10 37 56 1062 15 169 <5 32 10 5 19 26 12 44 28 102 <5	88,31 0,30 11,50 -0,09 11 567 27 <10 1034 40 894 23 112 5 72 8 4 14 20 13 38 26 62 <5	83,39 0,37 16,2 0,13 14 537 32 <10 1518 51 943 27 166 6 83 9 6 18 29 18 40 40 76 <5	74,28 0,61 25,62 -0,47 11 372 23 273 4435 33 441 <5 9 5 100 15 6 17 37 66 44 6 86 <5	97,12 0,22 2,1 0,58 19 741 28 <10 <10 48 782 11 56 <5 36 18 9 21 32 42 62 18 97 6	0,58 14,13 0,13 19 574 36 163 3437 129 955 10 10 5 57 11 7 24 42 75 48 3 91 <5	0,56 9,92 1,17 4 2770 15 14 <10 817 625 214 69 10 519 30 36 <5 5 18 34 36 <5	3,63 0,45 220 11 64 22 38 59 38 23 8 68 17 9 19 39 4 160 110 27 <5	0,49 21,88 0,24 25 2810 6 554 593 92 249 79 9 14 62 12 10 <5 6 90 130 45 5	1,70 26,61 -0,59 26 1288 18 402 12377 84 1155 213 544 13 249 22 12 33 44 84 107 12 83 8	5 124 4 1452 1840 45 747 66 61 6 103 13 8 16 36 6 6 63 68 67 <5

Anhang A4 (Fortsetzung): Haupt- und Spurenelementanalysen

Lokation:	Gamr	nigtal	Creun	itz, S3	St. Ros	e, S3	Schmf.	Gräf.	Hlb.	Mdf.
Erläuterung:	S2	S3, bl.	bleich	schw.	schw, Kr.	viel Kr.	S1	S2/3	Og3	
Probe:	226	129c	228	229	225-b2	225-b1	213	131	210	122
Hauptelemen	te ohne	LOI [G	ew. %]:			ı		ı		
SiO ₂	14,86	72,11	75,02	75,98	73,07		73,36	39,91	63,34	68,6
TiO ₂	0,17	0,65	0,71	0,68	0.7		1,04	1,26	0,94	0,96
Al ₂ O ₃	3,62	17,45	17,69	16,95	14,93		19,92	25,30	19,67	18,48
Fe ₂ O ₃	1,27	3,38	0,46	0,68	2,6	27,6	0,69	22.51	8,24	5,82
MnO	0,07	0,00	0	0	0,01	2.,0	0,00	0,11	0,09	0,01
MgO	1.09	0,52	0,55	0,54	1,5		0,65	3,58	2,58	1,56
CaO	73,25	0,42	0,07	0,1	0,43		0,02	2,24	0,28	0,08
Na₂O	0,06	0,29	0,18	0,18	0,55		0,10	0,73	1,15	0,64
K₂O	0,81	3,88	3,8	3,59	4,67		3,12	3,63	3,47	3,16
P ₂ O ₅	0,08	0,16	0,03	0,13	0,29	4,7	0,03	0,11	0,21	0,1
SO ₃	0,1	0,07	0,01	0,01	0,01	7,1	0,01	0,01	0,03	0,03
Hauptelemen				0,01	0,01		0,01	0,01	0,00	0,00
SiO ₂	9,22	68,49		67,92	64,05		69,35	36,84	60,95	65,69
TiO ₂		0,62	72,19	0,61	0,61	=	0,98	1,16		
	0,11	16,57	0,68	-		g			0,90	0,92
Al ₂ O ₃ Fe ₂ O ₃	2,25	<u> </u>	17,02	15,15	13,09	rste	18,83	23,35	18,93	17,70
	0,79	3,21	0,44	0,61	2,28	hel	0,65	0.10	7,93	5,57
MnO MaO	0,04	0,00	0,00	0,00	0,01 1,31	Schmelzling nicht herstellbar	0,00	3,30	0,09	0,01 1.49
MgO	0,68	0,49	0,53	0,48	<u> </u>	i D	0,61		2,48	
CaO No O	45,47	0,40	0,07	0,09	0,38	ij	0,02	2,07	0,27	0,08
Na₂O	0,04	0,28	0,17	0,16	0,48	nelz	0,09	0,67	1,11	0,61
K₂O	0,50	3,69	3,66	3,21	4,09	chu	2,95	3,35	3,34	3,03
P ₂ O ₅	0,05	0,15	0,03	0,12	0,25	Ň	0,03	0,10	0,20	0,10
SO ₃	0,06	0,07	0,01	0,01	0,01		0,01	0,01	0,03	0,03
Bilanz: Haupt	teiemen	ite. Sou	reneien							
LIE F0/1					1		02.52	04.74	00.00	05.00
HE [%]	59,20	93,96	94,81	88,35	86,56		93,53	91,74	96,22	95,22
SE [%]	59,20 0,08	93,96 0,82	94,81 0,36	88,35 0,31	86,56 0,54	1,06	0,30	0,48	0,21	0,15
SE [%] LOI	59,20 0,08 37,93	93,96 0,82 5,02	94,81 0,36 3,77	88,35 0,31 10,61	86,56 0,54 12,35		0,30 5,47	0,48 7,70	0,21 3,78	0,15 4,24
SE [%] LOI Diff.	59,20 0,08 37,93 4,54	93,96 0,82 5,02 0,25	94,81 0,36	88,35 0,31	86,56 0,54	1,06	0,30	0,48	0,21	0,15
SE [%] LOI Diff. Spureneleme	59,20 0,08 37,93 4,54 nte [pp	93,96 0,82 5,02 0,25 m]:	94,81 0,36 3,77 1,12	88,35 0,31 10,61 0,85	86,56 0,54 12,35 0,70	1,06 10,32	0,30 5,47 0,76	0,48 7,70 0,13	0,21 3,78 -0,21	0,15 4,24 0,41
SE [%] LOI Diff. Spureneleme As	59,20 0,08 37,93 4,54 nte [pp	93,96 0,82 5,02 0,25 m]:	94,81 0,36 3,77 1,12	88,35 0,31 10,61 0,85	86,56 0,54 12,35 0,70	1,06 10,32	0,30 5,47 0,76	0,48 7,70 0,13	0,21 3,78 -0,21	0,15 4,24 0,41
SE [%] LOI Diff. Spureneleme As Ba	59,20 0,08 37,93 4,54 Inte [pp: bld 289	93,96 0,82 5,02 0,25 m]: 32 1741	94,81 0,36 3,77 1,12 7 1499	88,35 0,31 10,61 0,85 42 1267	86,56 0,54 12,35 0,70 20 1702	1,06 10,32 244 386	0,30 5,47 0,76 7 818	0,48 7,70 0,13 39 3126	0,21 3,78 -0,21 8 1041	0,15 4,24 0,41 5 450
SE [%] LOI Diff. Spureneleme As Ba Pb	59,20 0,08 37,93 4,54 nte [pp bld 289 4	93,96 0,82 5,02 0,25 m]: 32 1741 38	94,81 0,36 3,77 1,12 7 1499 23	88,35 0,31 10,61 0,85 42 1267 17	86,56 0,54 12,35 0,70 20 1702 28	1,06 10,32 244 386 89	0,30 5,47 0,76 7 818 38	0,48 7,70 0,13 39 3126 4	0,21 3,78 -0,21 8 1041 13	0,15 4,24 0,41 5 450 5
SE [%] LOI Diff. Spureneleme As Ba Pb	59,20 0,08 37,93 4,54 nte [pp bld 289 4 bld	93,96 0,82 5,02 0,25 m]: 32 1741 38 383	94,81 0,36 3,77 1,12 7 1499 23 30	88,35 0,31 10,61 0,85 42 1267 17	86,56 0,54 12,35 0,70 20 1702 28 <10	1,06 10,32 244 386 89 54	0,30 5,47 0,76 7 818 38 <10	39 3126 4 77	0,21 3,78 -0,21 8 1041 13 <10	0,15 4,24 0,41 5 450 5 <10
SE [%] LOI Diff. Spureneleme As Ba Pb CI	59,20 0,08 37,93 4,54 nte [pp bld 289 4 bld <10	93,96 0,82 5,02 0,25 m]: 32 1741 38 383 4971	94,81 0,36 3,77 1,12 7 1499 23 30 183	88,35 0,31 10,61 0,85 42 1267 17 18 780	86,56 0,54 12,35 0,70 20 1702 28 <10 249	1,06 10,32 244 386 89 54 1277	0,30 5,47 0,76 7 818 38 <10 1418	39 3126 4 77 <10	0,21 3,78 -0,21 8 1041 13 <10	0,15 4,24 0,41 5 450 5 <10 <10
SE [%] LOI Diff. Spureneleme As Ba Pb CI S Cr	59,20 0,08 37,93 4,54 nte [pp bld 289 4 bld <10 21	93,96 0,82 5,02 0,25 m]: 32 1741 38 383 4971 79	94,81 0,36 3,77 1,12 7 1499 23 30 183 103	88,35 0,31 10,61 0,85 42 1267 17 18 780 59	86,56 0,54 12,35 0,70 20 1702 28 <10 249 131	1,06 10,32 244 386 89 54 1277 360	7 818 38 <10 1418 72	39 3126 4 77 <10 198	8 1041 13 <10 <10 98	5 450 5 <10 112
SE [%] LOI Diff. Spureneleme As Ba Pb CI S Cr	59,20 0,08 37,93 4,54 nte [pp bld 289 4 bld <10 21	93,96 0,82 5,02 0,25 m]: 32 1741 38 383 4971 79 281	94,81 0,36 3,77 1,12 7 1499 23 30 183 103 1206	88,35 0,31 10,61 0,85 42 1267 17 18 780 59 390	86,56 0,54 12,35 0,70 20 1702 28 <10 249 131 2288	1,06 10,32 244 386 89 54 1277 360 5266	7 818 38 <10 1418 72 115	39 3126 4 77 <10 198 325	0,21 3,78 -0,21 8 1041 13 <10 <10 98 147	0,15 4,24 0,41 5 450 5 <10 <10 112 157
SE [%] LOI Diff. Spureneleme As Ba Pb CI S Cr V Zn	59,20 0,08 37,93 4,54 nte [pp bld 289 4 bld <10 21 21	93,96 0,82 5,02 0,25 m]: 32 1741 38 383 4971 79 281 106	94,81 0,36 3,77 1,12 7 1499 23 30 183 103 1206	88,35 0,31 10,61 0,85 42 1267 17 18 780 59 390 24	86,56 0,54 12,35 0,70 20 1702 28 <10 249 131 2288 113	1,06 10,32 244 386 89 54 1277 360 5266 1115	7 818 38 <10 1418 72 115	0,48 7,70 0,13 39 3126 4 77 <10 198 325 212	8 1041 13 <10 <10 98 147 133	0,15 4,24 0,41 5 450 5 <10 <10 112 157 62
SE [%] LOI Diff. Spureneleme As Ba Pb CI S Cr V Zn	59,20 0,08 37,93 4,54 nte [pp bld 289 4 bld <10 21 21 14	93,96 0,82 5,02 0,25 m]: 32 1741 38 383 4971 79 281 106 36	94,81 0,36 3,77 1,12 7 1499 23 30 183 103 1206 10 8	88,35 0,31 10,61 0,85 42 1267 17 18 780 59 390 24 <5	20 1702 28 <10 249 131 2288 113 163	1,06 10,32 244 386 89 54 1277 360 5266 1115 866	7 818 38 <10 1418 72 115 10	39 3126 4 77 <10 198 325 212 58	0,21 3,78 -0,21 8 1041 13 <10 <10 98 147 133 31	0,15 4,24 0,41 5 450 5 <10 <10 112 157 62 71
SE [%] LOI Diff. Spureneleme As Ba Pb CI S Cr V Zn Cu Co	59,20 0,08 37,93 4,54 nte [pp] bld 289 4 bld <10 21 21 14 19 6	93,96 0,82 5,02 0,25 m]: 32 1741 38 383 4971 79 281 106 36 <5	94,81 0,36 3,77 1,12 7 1499 23 30 183 103 1206 10 8 <5	88,35 0,31 10,61 0,85 42 1267 17 18 780 59 390 24 <5 <5	86,56 0,54 12,35 0,70 20 1702 28 <10 249 131 2288 113 163 <5	1,06 10,32 244 386 89 54 1277 360 5266 1115 866 <5	7 818 38 <10 1418 72 115 10 7 <5	0,48 7,70 0,13 39 3126 4 77 <10 198 325 212 58 27	0,21 3,78 -0,21 8 1041 13 <10 <10 98 147 133 31 12	0,15 4,24 0,41 5 450 5 <10 <10 112 157 62 71 6
SE [%] LOI Diff. Spureneleme As Ba Pb CI S Cr V Zn Cu Co Ni	59,20 0,08 37,93 4,54 nte [pp] bld 289 4 bld <10 21 21 14 19 6 <5	93,96 0,82 5,02 0,25 m]: 32 1741 38 383 4971 79 281 106 36 <55 17	94,81 0,36 3,77 1,12 7 1499 23 30 183 103 1206 10 8 <5	88,35 0,31 10,61 0,85 42 1267 17 18 780 59 390 24 <5 <5 29	86,56 0,54 12,35 0,70 20 1702 28 <10 249 131 2288 113 163 <5 72	1,06 10,32 244 386 89 54 1277 360 5266 1115 866 <5	7 818 38 <10 1418 72 115 10 7 <5	0,48 7,70 0,13 39 3126 4 77 <10 198 325 212 58 27 88	8 1041 13 <10 <10 98 147 133 31 12 46	0,15 4,24 0,41 5 450 5 <10 <10 112 157 62 71 6 45
SE [%] LOI Diff. Spureneleme As Ba Pb CI S Cr V Zn Cu Co Ni Ga	59,20 0,08 37,93 4,54 nte [ppr bld 289 4 bld <10 21 21 14 19 6 <5 3	93,96 0,82 5,02 0,25 m]: 32 1741 38 383 4971 79 281 106 36 <5 17	94,81 0,36 3,77 1,12 7 1499 23 30 183 103 1206 10 8 <5 17 24	88,35 0,31 10,61 0,85 42 1267 17 18 780 59 390 24 <5 <5 29 19	86,56 0,54 12,35 0,70 20 1702 28 <10 249 131 2288 113 163 <5 72 22	1,06 10,32 244 386 89 54 1277 360 5266 1115 866 <5 206 8	7 818 38 <10 1418 72 115 10 7 <5 19	39 3126 4 77 <10 198 325 212 58 27 88 29	8 1041 13 <10 <10 98 147 133 31 12 46 24	0,15 4,24 0,41 5 450 5 <10 <10 112 157 62 71 6 45 22
SE [%] LOI Diff. Spureneleme As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc	59,20 0,08 37,93 4,54 nte [pp] bld 289 4 bld <10 21 14 19 6 <5 3 9	93,96 0,82 5,02 0,25 m]: 32 1741 38 383 4971 79 281 106 36 <5 17 22 14	94,81 0,36 3,77 1,12 7 1499 23 30 183 103 1206 10 8 <5 17 24 11	88,35 0,31 10,61 0,85 42 1267 17 18 780 59 390 24 <5 <5 29 19 11	86,56 0,54 12,35 0,70 20 1702 28 <10 249 131 2288 113 163 <5 72 22 11	1,06 10,32 244 386 89 54 1277 360 5266 1115 866 <5 206 8	7 818 38 <10 1418 72 115 10 7 <5 19 26	39 3126 4 7,70 198 325 212 58 27 88 29 34	8 1041 13 <10 <10 98 147 133 31 12 46 24 16	0,15 4,24 0,41 5 450 5 <10 <10 112 157 62 71 6 45 22 13
SE [%] LOI Diff. Spureneleme As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc La	59,20 0,08 37,93 4,54 nte [pp] bld 289 4 bld <10 21 21 14 19 6 <5 3 9 10	93,96 0,82 5,02 0,25 m]: 32 1741 38 383 4971 79 281 106 36 <5 17 22 14 19	94,81 0,36 3,77 1,12 7 1499 23 30 183 103 1206 10 8 <5 17 24 11 28	88,35 0,31 10,61 0,85 42 1267 17 18 780 59 390 24 <5 <5 29 19 11 19	86,56 0,54 12,35 0,70 20 1702 28 <10 249 131 2288 113 163 <5 72 22 11 26	1,06 10,32 244 386 89 54 1277 360 5266 1115 866 <5 206 8	7 818 38 <10 1418 72 115 10 7 <5 19 26 12	39 3126 4 777 <10 198 325 212 58 27 88 29 34 75	8 1041 13 <10 <10 98 147 133 31 12 46 24 16 36	0,15 4,24 0,41 5 450 5 <10 <10 112 157 62 71 6 45 22 13 18
SE [%] LOI Diff. Spureneleme As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc La Ce	59,20 0,08 37,93 4,54 nte [pp] bld 289 4 bld <10 21 21 14 19 6 <5 3 9 10 21	93,96 0,82 5,02 0,25 m]: 32 1741 38 383 4971 79 281 106 36 <5 17 22 14 19 16	94,81 0,36 3,77 1,12 7 1499 23 30 183 103 1206 10 8 <5 17 24 11 28 34	88,35 0,31 10,61 0,85 42 1267 17 18 780 59 390 24 <5 <5 29 19 11 19 22	86,56 0,54 12,35 0,70 20 1702 28 <10 249 131 2288 113 163 <5 72 22 11 26 22	244 386 89 54 1277 360 5266 1115 866 <5 206 8 22 89	7 818 38 <10 1418 72 115 10 7 <5 19 26 12 15	39 3126 4 7,70 198 325 212 58 27 88 29 34 75 69	8 1041 13 <10 <10 98 147 133 31 12 46 24 16 36 68	0,15 4,24 0,41 5 450 5 <10 <10 112 157 62 71 6 45 22 13 18 36
SE [%] LOI Diff. Spureneleme As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc La Ce Mo	59,20 0,08 37,93 4,54 nte [pp] bld 289 4 bld <10 21 21 14 19 6 <5 3 9 10 21 <1	93,96 0,82 5,02 0,25 m]: 32 1741 38 383 4971 79 281 106 36 <5 17 22 14 19 16 45	94,81 0,36 3,77 1,12 7 1499 23 30 183 103 1206 10 8 <5 17 24 11 28 34	88,35 0,31 10,61 0,85 42 1267 17 18 780 59 390 24 <5 <5 29 19 11 19 22 47	86,56 0,54 12,35 0,70 20 1702 28 <10 249 131 2288 113 163 <5 72 22 11 26 22 21	244 386 89 54 1277 360 5266 1115 866 <5 206 8 22 89 138	7 818 38 <10 1418 72 115 10 7 <5 19 26 12 15 24 3	39 3126 4 777 <10 198 325 212 58 27 88 29 34 75 69	8 1041 13 <10 <10 98 147 133 31 12 46 24 16 36 68 <1	0,15 4,24 0,41 5 450 5 <10 <10 112 157 62 71 6 45 22 13 18 36 2
SE [%] LOI Diff. Spureneleme As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc La Ce Mo Rb	59,20 0,08 37,93 4,54 nte [pp] bld 289 4 bld <10 21 21 14 19 6 <5 3 9 10 21 <10 21 21 21 21 21 21 21 21 21 21	93,96 0,82 5,02 0,25 m]: 32 1741 38 383 4971 79 281 106 36 <5 17 22 14 19 16 45 147	94,81 0,36 3,77 1,12 7 1499 23 30 183 103 1206 10 8 <5 17 24 11 28 34 10 157	88,35 0,31 10,61 0,85 42 1267 17 18 780 59 390 24 <5 <5 29 19 11 19 22 47 131	86,56 0,54 12,35 0,70 20 1702 28 <10 249 131 2288 113 163 <5 72 22 11 26 22 21 135	1,06 10,32 244 386 89 54 1277 360 5266 1115 866 <5 206 8 22 89 138 107	7 818 38 <10 1418 72 115 10 7 <5 19 26 12 15 24 3 123	39 3126 4 7,70 198 325 212 58 27 88 29 34 75 69 5	8 1041 13 <10 <10 <10 98 147 133 31 12 46 24 16 36 68 <1 140	0,15 4,24 0,41 5 450 5 <10 <10 112 157 62 71 6 45 22 13 18 36 2 141
SE [%] LOI Diff. Spureneleme As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc La Ce Mo Rb Sr	59,20 0,08 37,93 4,54 nte [pp] bld 289 4 bld <10 21 14 19 6 <5 3 9 10 21 <1 20 311	93,96 0,82 5,02 0,25 m]: 32 1741 38 383 4971 79 281 106 36 <5 17 22 14 19 16 45 147 52	94,81 0,36 3,77 1,12 7 1499 23 30 183 103 1206 10 8 <5 17 24 11 28 34 10 157 39	88,35 0,31 10,61 0,85 42 1267 17 18 780 59 390 24 <5 <5 29 19 11 19 22 47 131 29	86,56 0,54 12,35 0,70 20 1702 28 <10 249 131 2288 113 163 <5 72 22 11 26 22 21 135 59	1,06 10,32 244 386 89 54 1277 360 5266 1115 866 <5 206 8 22 89 138 107 11	7 818 38 <10 1418 72 115 10 7 <5 19 26 12 15 24 3 123	39 3126 4 777 <10 198 325 212 58 27 88 29 34 75 69 5 138	8 1041 13 <10 <10 98 147 133 31 12 46 24 16 36 68 <1 140 56	0,15 4,24 0,41 5 450 5 <10 <10 112 157 62 71 6 45 22 13 18 36 2 141 133
SE [%] LOI Diff. Spureneleme As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc La Ce Mo Rb Sr Y	59,20 0,08 37,93 4,54 nte [pp] bld 289 4 bld <10 21 14 19 6 <5 3 9 10 21 <1 20 311 17	93,96 0,82 5,02 0,25 m]: 32 1741 38 383 4971 79 281 106 36 <5 17 22 14 19 16 45 147 52 32	94,81 0,36 3,77 1,12 7 1499 23 30 183 103 1206 10 8 <5 17 24 11 28 34 10 157 39 26	88,35 0,31 10,61 0,85 42 1267 17 18 780 59 390 24 <5 <5 29 19 11 19 22 47 131 29 44	86,56 0,54 12,35 0,70 20 1702 28 <10 249 131 2288 113 163 <5 72 22 11 26 22 21 135 59 71	1,06 10,32 244 386 89 54 1277 360 5266 1115 866 <5 206 8 22 89 138 107 11 105	7 818 38 <10 1418 72 115 10 7 <5 19 26 12 15 24 3 123 36 29	0,48 7,70 0,13 39 3126 4 77 <10 198 325 212 58 27 88 29 34 75 69 5 138 91 32	8 1041 13 <10 <10 98 147 133 31 12 46 24 16 36 68 <1 140 56	0,15 4,24 0,41 5 450 5 <10 <10 112 157 62 71 6 45 22 13 18 36 2 141 133 28
SE [%] LOI Diff. Spureneleme As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc La Ce Mo Rb Sr Y Th	59,20 0,08 37,93 4,54 nte [pp] bld 289 4 bld <10 21 14 19 6 <5 3 9 10 21 <1 20 311 17 <5	93,96 0,82 5,02 0,25 m]: 32 1741 38 383 4971 79 281 106 36 <5 17 22 14 19 16 45 147 52 32 12	94,81 0,36 3,77 1,12 7 1499 23 30 183 103 1206 10 8 <5 17 24 11 28 34 10 157 39 26 5	88,35 0,31 10,61 0,85 42 1267 17 18 780 59 390 24 <5 29 19 11 19 22 47 131 29 44 9	86,56 0,54 12,35 0,70 20 1702 28 <10 249 131 2288 113 163 <5 72 22 11 26 22 21 135 59 71 11	1,06 10,32 244 386 89 54 1277 360 5266 1115 866 <5 206 8 22 89 138 107 11 105 104 6	7 818 38 <10 1418 72 115 10 7 <55 19 26 12 15 24 3 123 36 29 12	39 3126 4 77 <10 198 325 212 58 27 88 29 34 75 69 5 138 91 32 17	8 1041 13 <10 <10 98 147 133 31 12 46 24 16 36 68 <1 140 56 38 15	0,15 4,24 0,41 5 450 5 <10 <10 112 157 62 71 6 45 22 13 18 36 2 141 133 28 13
SE [%] LOI Diff. Spureneleme As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc La Ce Mo Rb Sr Y Th	59,20 0,08 37,93 4,54 nte [pp] bld 289 4 bld <10 21 14 19 6 <5 3 9 10 21 <1 20 311 17 <5 5	93,96 0,82 5,02 0,25 m]: 32 1741 38 383 4971 79 281 106 36 <5 17 22 14 19 16 45 147 52 32 12	94,81 0,36 3,77 1,12 7 1499 23 30 183 103 1206 10 8 <5 17 24 11 28 34 10 157 39 26	88,35 0,31 10,61 0,85 42 1267 17 18 780 59 390 24 <5 <5 29 19 11 19 22 47 131 29 44	86,56 0,54 12,35 0,70 20 1702 28 <10 249 131 2288 113 163 <5 72 22 11 26 22 21 135 59 71 11 61	1,06 10,32 244 386 89 54 1277 360 5266 1115 866 <5 206 8 22 89 138 107 11 105 104 6 75	7 818 38 <10 1418 72 115 10 7 <5 19 26 12 15 24 3 123 36 29 12 9	39 3126 4 77 <10 198 325 212 58 27 88 29 34 75 69 5 138 91 32 17 7	8 1041 13 <10 <10 98 147 133 31 12 46 24 16 36 68 <1 140 56 38 15 8	0,15 4,24 0,41 5 450 5 <10 <10 112 157 62 71 6 45 22 13 18 36 2 141 133 28
SE [%] LOI Diff. Spureneleme As Ba Pb CI S Cr V Zn Cu Co Ni Ga Sc La Ce Mo Rb Sr Y Th	59,20 0,08 37,93 4,54 nte [pp] bld 289 4 bld <10 21 14 19 6 <5 3 9 10 21 <1 20 311 17 <5	93,96 0,82 5,02 0,25 m]: 32 1741 38 383 4971 79 281 106 36 <5 17 22 14 19 16 45 147 52 32 12	94,81 0,36 3,77 1,12 7 1499 23 30 183 103 1206 10 8 <5 17 24 11 28 34 10 157 39 26 5	88,35 0,31 10,61 0,85 42 1267 17 18 780 59 390 24 <5 29 19 11 19 22 47 131 29 44 9	86,56 0,54 12,35 0,70 20 1702 28 <10 249 131 2288 113 163 <5 72 22 11 26 22 21 135 59 71 11	1,06 10,32 244 386 89 54 1277 360 5266 1115 866 <5 206 8 22 89 138 107 11 105 104 6	7 818 38 <10 1418 72 115 10 7 <55 19 26 12 15 24 3 123 36 29 12	39 3126 4 77 <10 198 325 212 58 27 88 29 34 75 69 5 138 91 32 17	8 1041 13 <10 <10 98 147 133 31 12 46 24 16 36 68 <1 140 56 38 15	0,15 4,24 0,41 5 450 5 <10 <10 112 157 62 71 6 45 22 13 18 36 2 141 133 28 13

Anhang A5:
Kohlenstoff-, Stickstoff-, Schwefel-Elementaranalysen

Proben-Nummer	Lithologie, Herkunft	C Gew. [%]		C-Einzelwerte	[Gew. %]		N [Gew. %]		N-Einzelwerte	[Gew. %]		S [ppm]
121-1	S1-KS, Auberg	0,01	0,01	0,01			0,00	0,00	0,00			
121-2	S1-KS, Auberg	0,01	0,01	0,01			0,00	0,00	0,00			
121-3	S1-KS, Auberg	0,01	0,01	0,01			0,00	0,00	0,00			
121-4	S1-KS, Auberg	0,01	0,01	0,01			0,00	0,00	0,00			
121-5	S1-KS, Auberg	0,01	0,01	0,01			0,00	0,00	0,00			
122	Tonschiefer, Mennsdf.	0,70	0,70	0,70			0,08	0,08	0,09			
128	S3-AS-grau, Kr., Gammig	1,35	1,34	1,35			0,40	0,40	0,40			
129c	S3-AS-bleich, Jar., Gammig	0,20	0,20	0,20			0,43	0,43	0,43			
131	S2/3-AS-braun, Gräfenw.	0,26	0,26	0,27			0,10	0,11	0,10			
133	S1-AS, Kr., Weißb. Mulde	0,17	0,17	0,17			0,04	0,05	0,03			
137	S1, AS, kalkreich, Drosen	7,72	7,74	7,70			0,17	0,16	0,16			
187	S1, AS, CaCO ₃ , Baldenh.	12,89	12,89	12,89			0,18	0,17	0,18			
207-1	S1?, AS-schwarz, Gess.	0,60	0,60	0,59			0,07	0,07	0,07			
207-2	S1?, AS-schwarz, Gess.	11,21	11,62	10,96	11,05		0,43	0,41	0,44	0,44		
208	S1?, AS-schwarz, Gess.	15,22	15,71	14,35	15,62		0,49	0,50	0,47	0,51		
209-3	S1?, AS-schw., Kr., Gess.	6,14	6,13	6,15			0,27	0,27	0,27			
210	Og3, Burg Reichenfels	0,23	0,23	0,23			0,06	0,06	0,05			
211-4	S1-AS-hellvio., Kr., Hlb. N	1,25	1,65	1,66	0,85	0,85	0,14	0,16	0,17	0,11	0,11	
213	S1-AS-grau, Halde Schf.	0,50	0,50	0,50			0,15	0,15	0,15			
223	Verwitt.schutt, Hlb., S	0,48	0,05	0,05	0,05		0,01	0,01	0,01	0,01		<8
224-1	S1-AS-bleich, Hlb., S	0,24	0,24	0,24			0,15	0,15	0,15			<8
224-2	S1-AS-schw., Hlb., S	6,43	6,31	6,34	6,67		0,16	0,14	0,15	0,17		1110
225b	S3-AS-schw., Kr., St. R.	8,13	7,51	7,78	9,09		0,15	0,14	0,14	0,16		196
225b1	S3-AS-schw., Kr., St. R.	1,04	1,03	1,03	1,04		0,02	0,02	0,01	0,02		<8
226	S2-Ockerkalk, Gammig	10,53	10,58	10,53	10,54	10,48	0,04	0,03	0,04	0,04	0,04	<8
228	S3-AS-bleich, Creunitz	0,22	0,22	0,23	0,22		0,46	0,46	0,46	0,46		80,1
229	S3-AS-schwarz, Creunitz	6,48	6,50	6,45	6,49		0,40	0,43	0,39	0,39		566
230	S1-AS-schw., Hlb. N (211-2,6)	10,28	8,71	8,72	11,83	11,87	0,18	0,16	0,16	0,21	0,19	
231	S1-AS-bleich, Hlb. N (211-3)	0,57	0,57	0,57			0,12	0,12	0,12			
232	S1-KS-schwarz, Hlb. N (212)	23,01	22,97	23,05			0,34	0,32	0,36			
240a1	S1-AS-Zone: bleich, Hlb. N	1,35	1,35	1,34			0,16	0,16	0,16			261
240a2	S1-AS-Zone: braun, Hlb. N	1,55	1,55	1,55			0,16	0,16	0,16			284
240a3	S1-AS-Zone: braun, Hlb,N	2,42	2,43	2,42			0,18	0,18	0,18			343
240a4	S1-AS-Zone: schw., Hlb. N	8,09	8,06	8,11			0,23	0,23	0,24			858

C, N: Messung mit Vario EL II

S: Messung mit ICP-OES

Anhang A6: Spurenelementanalyse der Lösungsfracht von Probe 255

Run	Label	27AI	45Sc	52Cr	53Cr	54Fe	55Mn	56Fe	59Co	60Ni	62Ni	63Cu
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	Blank	2,914	0,04	-0,018	0,006	-3,69	0	7,358	0,002	-0,026		-0,006
2	Blank	2,698	-0,007	-0,015	-0,018	-3,534	-0,003	7,321	-0,002	-0,06		0,008
3	Blank	2,901	0,004	0,012	0,009	0,625	0,008	22,02	0	-0,063		
4	Blank	2,883	-0,037	0,022	0,004	-1,099	-0,005	18,25	0	-0,043	-0,057	0
	Mean of Blank	2,849	0	0	0	-1,925	0	13,74	0	-0,048	0	0
	SD of Blank	0,102	0,032	0,02	0,012	2,073	0,006	7,547	0,001	0,017	0,039	0,006
	%RSD of Blank	3,568	0	0	0	107,7	0	54,94	0	35,79	1	
											II.	
1	Cal 1	1,536	0,025	1,015	0,978	1,214	0,973	20,58	0,976	1,011	1,002	0,931
2	Cal 1	1,486	-0,003	1,029	1,058	0,078	0,947	18,97	1,007	1,06		0,976
3	Cal 1	1,463	0,072	1,029	1,027	1,621	0,96	23,5	0,996	1,049	1,007	0,962
4	Cal 1	1,563	0,089	1,045	1,029	3,62	0,967	25,73	1,008	1,07	1,204	0,965
	Mean of Cal 1	1,512	0,046	1,029	1,023	1,633	0,962	22,19	0,997	1,047	1,071	0,958
	SD of Cal 1	0,046	0,042	0,012	0,033	1,477	0,011	3,011	0,015	0,026	0,094	
	%RSD of Cal 1	3,021	92,44	1,183	3,218	90,43	1,154	13,57	1,482	2,465	8,802	2,008
		-	-			-					-	
1	Cal 2	4,911	1,023	4,913	5,024	5,658	4,801	18,61	4,847	5,2	5,255	4,906
2	Cal 2	4,918	1,013	5,021	5,171	7,758	4,955	24,45	4,836	5,165	1	4,891
3	Cal 2	5,155	1,111	4,952	5,144	8,05	4,836	22,29	4,798	5,243	· ·	4,809
4	Cal 2	5,155	1,097	4,854	5,007	6,425	4,879	24,74	4,928	5,27	5,126	
	Mean of Cal 2	5,034	1,061	4,935	5,086	6,973	4,868	22,52	4,852	5,22	5,056	
	SD of Cal 2	0,139	0,05	0,07	0,083	1,126	0,066	2,826	0,055	0,046	· ·	
	%RSD of Cal 2	2,76	4,74	1,415	1,631	16,15	1,364	12,55	1,127	0,887	3,25	
		, -	,	, -	,	-, -	,	,	,	-,	-, -	-,
1	Cal 3	9,723	2,513	9,639	10	12,96	9,62	13,72	9,532	10,23	10,21	9,799
2	Cal 3	10,13	2,569	9,563	9,765	13,28	9,713	17,75	9,474			9,708
3	Cal 3	10,38	2,67	9,97	10,29	15,95	9,87	23,69	9,876	10,64	10,2	
4	Cal 3	10,09	2,626	9,585	9,756	12,22	9,57	16,21	9,5	10,19	9,961	9,734
	Mean of Cal 3	10,08	2,594	9,689	9,952	13,6	9,694	17,84	9,596	10,33	· ·	9,756
	SD of Cal 3	0,269	0,068	0,19	0,25	1,626	0,132	4,236	0,189	0,208		0,042
	%RSD of Cal 3	2,667	2,632	1,959	2,513	11,96	1,359	23,74	1,966	2,016		
		-				-					-	
1	Cal 4	92,23	4,91	100,5	98,35	92,23	100,1	71,76	98,17	99,52	97,63	102,9
2	Cal 4	95,14	4,948	100,1	99,42	92,23	99,14	78,29	100,1	99,18		-
3	Cal 4	96,35	5,009	102,4	100	96,62	100,2	82,18	101,6	99,58	97,03	
4	Cal 4	93,16	4,9	99,81	96,4	91,63	99,48	76,19	100,3		-	
	Mean of Cal 4	94,22	4,942	100,7		93,18	99,75					
	SD of Cal 4	1,868	0,049	1,181	1,596	2,314	0,526	4,341	1,421	0,649	1,816	
	%RSD of Cal 4	1,983	0,999	1,172	1,619	2,484	0,528	5,63	1,42	0,655	1	
		-	-						-			
1	Cal 5	245,6	10,94	249,3	247,2	244,5	241,7	246,8	260	247,3	252,3	247,8
	Cal 5	263,7	11,27	250	249,4	247	253,3			-		246,4
_	Cal 5	247,8	11,1	251,7	256,5	267,6	253,8	266,5	269,8		255,8	251,3
4	Cal 5	252,1	11,34	247,9	249,2	251,1	251,6	259,8	266,1	251,6		
	Mean of Cal 5	252,3	11,16	249,7	250,6	252,5	250,1	259,2	265,3	250,3		249,4
	SD of Cal 5	8,082	0,176	1,577	4,081	10,42	5,667	8,702	4,034			
	%RSD of Cal 5	3,203	1,58	0,631	1,628	4,127	2,266	3,358	-			-
		ı							· ·			
1	Probe 255	25,03	-2,233	-0,884	-0,353	-91,91	15,29	-223,4	1,284	24,97	22,5	18,42
	Probe 255	24,97	-2,439	-0,976	-0,077	-72,93	16,25	-186,8	1,329	24,55		
	Probe 255	24,37	-2,326	-1,064	-0,254	-97,25	15,74	-201,3	1,333			
_	Probe 255	25,51	-2,095	-0,428	-0,085	-60,45	16,15	-130,5	1,339	25,81	23,99	
	Mean of 255	24,97	-2,273	-0,428	-0,192	-80,63	15,86	-185,5	1,321	25,05		
	SD of 255	0,469	0,145	0,283	0,135	17,03	0,439	39,65	0,025	0,539	•	-
	%RSD of 255	1,88	6,4	33,75	70,17	21,12	2,767		1,905			
Ь		.,00	ਹ,-ਜ	55,75	. 0, 17	,.2	_,. 01	2.,00	1,500	_, 102	5,775	.,. उ-т

Anhang A6 (Fortsetzung): Spurenelementanalyse der Lösungsfracht von Probe 255

Label	65Cu	66Zn	75As	85Rb	86Sr	88Sr	89Y	90Zr	111Cd	133Cs	135Ba
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
Blank	0,001	32,52	0,345	0,3	-0,004	-1,687	0	0	-0,001	-2,046	-0,246
Blank	0	32,33	0,333	0,303	-0,006	-1,687	0	0	-0,001	-2,045	-0,249
Blank	-0,002	32,42	0,301	0,304	0,01	-1,686	0	0	0,001	-2,045	-0,241
Blank	0,001	33,15	0,493	0,301	0	-1,685	0	0	0,001	-2,044	-0,233
Mean of Blank	0	32,6	0,368	0,302	0	-1,686	0	0	0	-2,045	-0,242
SD of Blank	0,002	0,373	0,085	0,002	0,007	0,001	0	0	0,001	0,001	0,007
%RSD of Blank	0	1,143	23,21	0,517	0	0,054	0	0	0	0,031	2,979
_											
Cal 1	0,967	1,537	1,419	1,293	0,977	-0,631	0,104	0	1,045	-0,954	0,761
Cal 1	0,999	1,532	1,3	1,29	0,947	-0,649	0,103	0	1,057	-0,954	0,728
Cal 1	0,98	1,587	1,36	1,265	0,988	-0,637	0,102	0	1,059	-0,952	0,747
Cal 1	0,984	1,598	1,27	1,257	0,978	-0,633	0,101	0	1,06	-0,943	0,75
Mean of Cal 1	0,983	1,564	1,337	1,277	0,973	-0,638	0,102	0	1,055	-0,951	0,746
SD of Cal 1	0,013	0,034	0,066	0,018	0,018	0,008	0,001	0	0,007	0,005	0,014
%RSD of Cal 1	1,334	2,174	4,922	1,414	1,822	1,264	1,355	253,2	0,677	0,552	1,844
Cal 2	5,103	5,195	4,901	5,195	4,977	3,696	1,026	0	5,143	3,167	5,064
Cal 2	5,054	5,364	4,899	5,084	5,008	3,762	1,047	0	5,19	3,1	4,975
Cal 2	5,027	5,254	4,792	5,095	5,066	3,794	1,019	0,001	5,165	3,168	4,974
Cal 2	5,074	5,19	4,917	5,088	4,985	3,735	1,027	0	5,095	3,131	5,063
Mean of Cal 2	5,065	5,251	4,878	5,116	5,009	3,747	1,03	0	5,148	3,141	5,019
SD of Cal 2	0,032	0,081	0,057	0,053	0,04	0,042	0,012	0	0,041	0,033	0,051
%RSD of Cal 2	0,634	1,546	1,174	1,034	0,804	1,114	1,15	166,8	0,787	1,037	1,026
Cal 3	10,29	9,814	9,356	9,743	10,2	9,387	2,58	0	10,15	11,02	10,51
Cal 3	10,06	9,771	9,625	9,804	10,28	9,457	2,58	0,001	10,25	11,24	10,63
Cal 3	10,29	9,886	9,904	9,916	10,22	9,398	2,572	0,001	10,34	11,12	10,47
Cal 3	10,17	9,936	9,57	9,828	10,32	9,562	2,558	0,001	10,19	11,36	10,51
Mean of Cal 3	10,2	9,852	9,614	9,823	10,26	9,451	2,572	0,001	10,23	11,18	10,53
SD of Cal 3	0,113	0,074	0,226	0,072	0,059	0,08	0,01	0	0,085	0,147	0,07
%RSD of Cal 3	1,111	0,749	2,349	0,731	0,574	0,845	0,401	35,22	0,83	1,316	0,668
Cal 4	99,46	98,78	99,24	99,87	83,16	107,7	5,02	0,002	98,41	106,8	99,91
Cal 4	96,05	98,41	100,4	98,13	84,21	105,3	4,911	0,002	98,96	106,5	99,72
Cal 4	98,57	99,37	99,83	99,35	90,04	110,5	4,954	0,002	101,3	109,1	100,5
Cal 4	95,17	99,01	99,09	99,17	85,84	110,2		0,002	101,2	108,8	99,69
Mean of Cal 4	97,31	98,89	99,64	99,13	85,81	108,5	4,958	0,002	99,97	107,8	99,95
SD of Cal 4	2,032	0,403	0,608	-	3,026		0,045	0	- '	1,353	0,371
%RSD of Cal 4	2,088	0,408	0,61	0,735	3,526	2,243	0,917	15,51	1,502	1,255	0,371
Cal 5	253,7	252,1	249,6	253	258	246,6	7,044	0,007	240,4	245,6	279,3
Cal 5	245,2	244,9	249,4	247,6	255,8	246,8	7,14	0,007	247,9	251,7	283,5
Cal 5	255	249,7	247,5	250,1	254,6		6,668	0,006	242,8	244,8	278,4
Cal 5	250,3	255	254,1	250,8	254,2	245,1	7,705	0,007	244	245,4	278
Mean of Cal 5	251,1	250,4	250,2	250,4	255,7	246,7	7,139	0,007	243,8	246,9	279,8
SD of Cal 5	4,364	4,309	2,809	2,211	1,727	1,23	0,428	0	3,128	3,243	2,506
%RSD of Cal 5	1,738	1,721	1,123	0,883	0,675	0,499	6	3,306	1,283	1,313	0,896
Probe 255	19,45	75,21	4,351	4,55	13,5	-2,556	0,057	0,03	0,582	-19,98	120,3
Probe 255	20,44	78,32	6,444	4,565	13,22	-2,441	0,061	0,026	0,552	-19,99	122,5
Probe 255	20,14	76,48	4,789	4,441	13,33	-	0,056	0,023	0,581	-20,01	120,9
Probe 255	20,21	78,4	4,943	4,458	13,36		0,057	0,029	0,551	-20	121,5
Mean of 255	20,06	77,1	5,131	4,504	13,35	-2,553	0,058	0,027	0,567	-19,99	121,3
SD of 255	0,426	1,543	0,91	0,063	0,116		0,002	0,003		0,011	0,944
%RSD of 255	2,125	2,002	17,73	1,402	0,871	3,167	3,518	12,44	3,084	0,056	0,778

Anhang A6 (Fortsetzung): Spurenelementanalyse der Lösungsfracht von Probe 255

Blank	Run	Label	137Ba	139La	140Ce	141Pr	145Nd	146Nd	147Sm	149Sm	151Eu	153Eu	159Tb
2 Blank			ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
3 Blank	1	Blank	0,356	0	0	0	0,001	0	0	0	0	0	0
A Blank 0.384 0 0 0 0.001 0 0 0 0 0 0 0 0 0	2	Blank	0,358	0	0	0	-0,001	0,001	0	0	0	0	0
Mean of Blank 0.36 0 0 0 0 0 0 0 0 0	3	Blank	0,361	0	0	0	0,001	-0,001	0	0	0	0	0
SD of Blank	4	Blank	0,364	0	0	0	-0,001	0	0	0	0	0,001	0
Serso of Blank 1,035 0 0 0 0 0 0 0 0 0		Mean of Blank	0,36	0	0	0	0	0	0	0	0	0	0
1 Cal 1		SD of Blank	0,004	0	0	0	0,001	0	0	0	0	0	0
2 Cal 1		%RSD of Blank	1,035	0	0	0	0	0	0	0	0	0	0
2 Cal 1													
3 Cal 1	1	Cal 1	1,191	0,109	0,105	0,105	0,104	0,103	0,098	0,101	0,104	0,105	0,104
4 Cal 1	2	Cal 1	1,182	0,108	0,104	0,104	0,108	0,109	0,111	0,099	0,106	0,103	0,103
Mean of Cal 1	3	Cal 1	1,182	0,112	0,108	0,106	0,107	0,103	0,102	0,099	0,101	0,1	0,101
SD of Cal 1	4	Cal 1	1,209	0,109	0,105	0,106	0,103	0,098	0,102	0,101	0,102	0,1	0,1
*** *** *** *** *** *** *** *		Mean of Cal 1	1,191	0,11	0,105	0,105	0,106	0,103	0,103	0,1	0,103	0,102	0,102
1 Cal 2		SD of Cal 1	0,013	0,002	0,002	0,001	0,002	0,004	0,005	0,001	0,002	0,002	0,002
Cal 2		%RSD of Cal 1	1,074	1,541	1,772	0,748	2,001	4,162	5,136	1,129	2,085	2,387	1,741
Cal 2	-												
Cal 2	1	Cal 2	4,798	1,05	1,026	1,017	1,017	1,016	1,02	1,009	0,983	0,992	1,004
Cal 2	2	Cal 2	4,801	1,041	1,016	1,016	1,038	0,996	0,988	1,004	0,987	0,993	0,993
Cal 2	3	Cal 2	4,827	1,06	1,018	1,017	1,023	1,006	0,982	0,974	0,994	0,992	1
SD of Cal 2	4	Cal 2	4,841	1,047	1,026	1,007	1,014	0,985	0,981	0,997	0,993	1,006	0,994
NRSD of Cal 2		Mean of Cal 2	4,817	1,049	1,021	1,014	1,023	1,001	0,993	0,996	0,989	0,996	0,998
1 Cal 3 9,469 2,615 2,549 2,534 2,523 2,497 2,505 2,478 2,475 2,509 2,501 2 Cal 3 9,69 2,655 2,602 2,564 2,564 2,564 2,544 2,515 2,515 2,504 2,537 2,514 3 Cal 3 9,639 2,655 2,562 2,555 2,526 2,526 2,499 2,493 2,491 2,515 2,515 4 Cal 3 9,537 2,646 2,562 2,555 2,526 2,526 2,499 2,493 2,491 2,515 2,515 4 Cal 3 9,537 2,646 2,562 2,552 2,551 2,531 2,481 2,479 2,492 2,506 2,488 Mean of Cal 3 9,584 2,642 2,573 2,551 2,531 2,525 2,5 2,492 2,492 2,517 2,504 SD of Cal 3 0,1 0,018 0,023 0,012 0,023 0,02 0,014 0,017 0,012 0,014 0,013 %RSD of Cal 3 1,04 0,685 0,897 0,486 0,923 0,782 0,578 0,693 0,498 0,564 0,513 1 Cal 4 100 4,941 4,765 4,742 4,752 4,714 4,688 4,714 4,688 4,64 4,674 2 Cal 4 98,6 4,894 4,76 4,744 4,731 4,736 4,749 4,71 4,694 4,682 4,725 3 Cal 4 99,98 4,932 4,791 4,717 4,67 4,709 4,74 4,699 4,703 4,695 4,705 Mean of Cal 4 100 4,927 4,809 4,761 4,751 4,747 4,697 4,699 4,703 4,694 4,689 4,701 SD of Cal 4 1,231 0,02 0,023 0,018 0,038 0,018 0,027 0,009 0,018 0,041 0,021 %RSD of Cal 4 1,231 0,415 0,481 0,385 0,813 0,375 0,583 0,184 0,376 0,879 0,448 1 Cal 5 227,6 10,03 10,08 10,08 10,09 10,07 10,07 10,13 10,17 10,15 10,19 10,18 2 Cal 5 230 10,06 10,16 10,21 10,2 10,26 10,17 10,22 10,19 10,28 3 Cal 5 225,3 9,921 10,06 10 10,06 10,15 10,15 10,15 10,16 10,15 10,16 4 Cal 5 227,9 9,998 10,099 0,067 0,067 0,079 0,029 0,043 0,045 0,066 %RSD of Cal 5 1,008 0,624 0,492 0,908 0,664 0,559 0,777 0,286 0,425 0,442 0,594 1 Probe 255 110,1 0,103 0,02 0,001 0,001 0,001 0,000 0,002 0,002 0,000		SD of Cal 2	0,021	0,008	0,005	0,005	0,011	0,013	0,018	0,015	0,005	0,007	0,005
Cal 3		%RSD of Cal 2	0,428	0,754	0,498	0,507	1,044	1,316	1,832	1,538	0,544	0,669	0,533
Cal 3					•		•						
Cal 3	1	Cal 3	9,469	2,615	2,549	2,534	2,523	2,497	2,505	2,478	2,475	2,509	2,501
3 Cal 3	2	Cal 3	· ·	-			2,564						2,514
4 Cal 3	3	Cal 3	9,639	2,65	2,578	2,555	2,526	2,526					2,515
SD of Cal 3	4	Cal 3				2,55			2,481	2,479			
SD of Cal 3		Mean of Cal 3	9,584	2,642	2,573	2,551	2,531	2,525	2,5	2,492	2,492	2,517	2,504
1 Cal 4 100 4,941 4,765 4,742 4,752 4,714 4,688 4,714 4,688 4,64 4,674 2 Cal 4 98,6 4,894 4,76 4,744 4,731 4,736 4,749 4,71 4,694 4,682 4,725 3 Cal 4 99,98 4,932 4,791 4,717 4,67 4,709 4,7 4,696 4,662 4,74 4,73 4 Cal 4 101,6 4,927 4,809 4,761 4,751 4,747 4,697 4,699 4,703 4,695 4,705 Mean of Cal 4 100 4,924 4,782 4,741 4,726 4,726 4,708 4,705 4,687 4,69 4,69 4,701 SD of Cal 4 1,231 0,02 0,023 0,018 0,038 0,018 0,027 0,009 0,018 0,041 0,021 %RSD of Cal 4 1,23 0,415 0,481 0,385 0,813 0,375 0,583 0,184 0,376 0,879 0,448 1 Cal 5 227,6 10,03 10,08 10,08 10,09 10,07 10,07 10,13 10,13 10,11 10,06 2 Cal 5 230 10,06 10,16 10,21 10,2 10,2 10,26 10,17 10,12 10,14 10,12 10,18 4 Cal 5 225,2 9,977 10,05 10,16 10,17 10,11 10,13 10,17 10,15 10,19 10,18 4 Cal 5 225,3 9,921 10,06 10 10,06 10,15 10,12 10,12 10,14 10,12 10,15 Mean of Cal 5 227 9,998 10,09 10,12 10,13 10,13 10,15 10,16 10,15 10,15 SD of Cal 5 2,289 0,062 0,05 0,092 0,067 0,057 0,079 0,029 0,043 0,045 0,06 %RSD of Cal 5 1,008 0,624 0,492 0,908 0,664 0,559 0,777 0,286 0,425 0,442 0,594 1 Probe 255 110,1 0,103 0,02 0,002 0,001 0,004 0,002 0,002 0,002 0,005 0,008 0,008 4 Probe 255 110,6 0,099 0,022 0,001 0 0,004 0,005 0,002 0,002 0,005 0,006 Mean of 255 110,3 0,099 0,020 0,001 0,001 0,001 0,006 0 0 0,007 0,0001 0,00			0,1	0,018	0,023	0,012	0,023	0,02	0,014	0,017	0,012	0,014	0,013
2 Cal 4 98,6 4,894 4,76 4,744 4,731 4,736 4,749 4,71 4,694 4,682 4,725 3 Cal 4 99,98 4,932 4,791 4,717 4,67 4,709 4,7 4,696 4,662 4,74 4,7 4 Cal 4 101,6 4,927 4,809 4,761 4,751 4,747 4,697 4,699 4,703 4,695 4,705 Mean of Cal 4 100 4,924 4,782 4,741 4,726 4,726 4,708 4,705 4,687 4,699 4,701 SD of Cal 4 1,231 0,02 0,023 0,018 0,038 0,018 0,027 0,009 0,018 0,041 0,021 %RSD of Cal 4 1,23 0,415 0,481 0,385 0,813 0,375 0,583 0,184 0,376 0,879 0,448 1 Cal 5 227,6 10,03 10,08 10,08 10,09 10,07 10,07 10,13 10,13 10,11<		%RSD of Cal 3	1,04	0,685	0,897	0,486	0,923	0,782	0,578	0,693	0,498	0,564	0,513
2 Cal 4 98,6 4,894 4,76 4,744 4,731 4,736 4,749 4,71 4,694 4,682 4,725 3 Cal 4 99,98 4,932 4,791 4,717 4,67 4,709 4,7 4,696 4,662 4,74 4,7 4 Cal 4 101,6 4,927 4,809 4,761 4,751 4,747 4,697 4,699 4,703 4,695 4,705 Mean of Cal 4 100 4,924 4,782 4,741 4,726 4,726 4,708 4,705 4,687 4,699 4,701 SD of Cal 4 1,231 0,02 0,023 0,018 0,038 0,018 0,027 0,009 0,018 0,041 0,021 %RSD of Cal 4 1,23 0,415 0,481 0,385 0,813 0,375 0,583 0,184 0,376 0,879 0,448 1 Cal 5 227,6 10,03 10,08 10,08 10,09 10,07 10,07 10,13 10,13 10,11<													
2 Cal 4 98,6 4,894 4,76 4,744 4,731 4,736 4,749 4,71 4,694 4,682 4,725 3 Cal 4 99,98 4,932 4,791 4,717 4,67 4,709 4,7 4,696 4,662 4,74 4,7 4 Cal 4 101,6 4,927 4,809 4,761 4,751 4,747 4,697 4,699 4,703 4,695 4,705 Mean of Cal 4 100 4,924 4,782 4,741 4,726 4,726 4,708 4,705 4,687 4,699 4,701 SD of Cal 4 1,231 0,02 0,023 0,018 0,038 0,018 0,027 0,009 0,018 0,041 0,021 %RSD of Cal 4 1,23 0,415 0,481 0,385 0,813 0,375 0,583 0,184 0,376 0,879 0,448 1 Cal 5 227,6 10,03 10,08 10,08 10,09 10,07 10,07 10,13 10,13 10,11<	1	Cal 4	100	4,941	4,765	4,742	4,752	4,714	4,688	4,714	4,688	4,64	4,674
Cal 4 99,98 4,932 4,791 4,717 4,67 4,709 4,7 4,696 4,662 4,74 4,77 4 Cal 4 101,6 4,927 4,809 4,761 4,751 4,747 4,697 4,699 4,703 4,695 4,705 4,687 4,695 4,705 Mean of Cal 4 100 4,924 4,782 4,741 4,726 4,726 4,726 4,708 4,705 4,687 4,69 4,701 SD of Cal 4 1,231 0,02 0,023 0,018 0,038 0,018 0,027 0,009 0,018 0,041 0,021 %RSD of Cal 4 1,23 0,415 0,481 0,385 0,813 0,375 0,583 0,184 0,376 0,879 0,448 1 Cal 5 227,6 10,03 10,08 10,08 10,09 10,07 10,07 10,13 10,13 10,11 10,06 2 Cal 5 230 10,06 10,16 10,21 10,2 10,2 10,26 10,17 10,22 10,19 10,2 3 Cal 5 225,2 9,977 10,05 10,16 10,17 10,11 10,13 10,17 10,15 10,19 10,18 4 Cal 5 225,3 9,921 10,06 10 10,06 10,15 10,12 10,12 10,14 10,12 10,15 Mean of Cal 5 227 9,998 10,09 10,12 10,13 10,13 10,15 10,16 10,15 Mean of Cal 5 2,289 0,062 0,05 0,092 0,067 0,057 0,079 0,029 0,043 0,045 0,06 %RSD of Cal 5 1,008 0,624 0,492 0,908 0,664 0,559 0,777 0,286 0,425 0,442 0,594 1 Probe 255 110,6 0,099 0,022 0,001 0 0,004 0,002 0,002 0,002 0,000 0,008 -0,004 4 Probe 255 110,6 0,099 0,022 0,001 0 0,004 0,005 0,002 0,002 0,000 0,000 0,000 Mean of 255 110,3 0,099 0,02 0,001 0 0,001 0,006 0 0 0,000 0,000 0,001 0,001 SD of 255 0,788 0,003 0,001 0,001 0,001 0,000 0,002 0,002 0,000 0,000 0,001 0,00	2	Cal 4	98,6	4,894	4,76		4,731	4,736		4,71	4,694	4,682	4,725
Mean of Cal 4 100 4,924 4,782 4,741 4,726 4,726 4,708 4,705 4,687 4,69 4,701	3	Cal 4	99,98	4,932	4,791	4,717	4,67	4,709	4,7	4,696	4,662	4,74	4,7
SD of Cal 4	4	Cal 4	101,6	4,927	4,809	4,761	4,751	4,747	4,697	4,699	4,703	4,695	4,705
SD of Cal 4		Mean of Cal 4	100	4,924	4,782		4,726	4,726	4,708	4,705	4,687	4,69	
NRSD of Cal 4 1,23 0,415 0,481 0,385 0,813 0,375 0,583 0,184 0,376 0,879 0,448		SD of Cal 4	+			0,018		1	0,027	0,009		1	ł
2 Cal 5			1,23	0,415	0,481	0,385	0,813	0,375		0,184	0,376	0,879	
2 Cal 5													
2 Cal 5	1	Cal 5	227,6	10,03	10,08	10,08	10,09	10,07	10,07	10,13	10,13	10,11	10,06
3 Cal 5													
4 Cal 5 225,3 9,921 10,06 10 10,06 10,15 10,12 10,12 10,14 10,12 10,15 Mean of Cal 5 227 9,998 10,09 10,12 10,13 10,15 10,15 10,16 10,15 10,15 SD of Cal 5 2,289 0,062 0,05 0,092 0,067 0,057 0,079 0,029 0,043 0,045 0,06 %RSD of Cal 5 1,008 0,624 0,492 0,908 0,664 0,559 0,777 0,286 0,425 0,442 0,594 1 Probe 255 110,1 0,103 0,02 0,002 0,011 0,004 0,002 0,002 -0,004 2 Probe 255 111,2 0,096 0,02 0,001 -0,016 0,002 0,007 0,001 0 -0,008 -0,004 3 Probe 255 109,4 0,098 0,018 0,002 0,003 0,001 0,007 0 0,002 -0,005 -0,004 4 Probe 255 <td></td> <td>10,19</td> <td>ł</td>												10,19	ł
Mean of Cal 5 227 9,998 10,09 10,12 10,13 10,15 10,15 10,16 10,15 10,15 SD of Cal 5 2,289 0,062 0,05 0,092 0,067 0,057 0,079 0,029 0,043 0,045 0,06 WRSD of Cal 5 1,008 0,624 0,492 0,908 0,664 0,559 0,777 0,286 0,425 0,442 0,594 1	4	Cal 5	225,3						10,12	10,12	10,14	10,12	
SD of Cal 5 2,289 0,062 0,05 0,092 0,067 0,057 0,079 0,029 0,043 0,045 0,066 %RSD of Cal 5 1,008 0,624 0,492 0,908 0,664 0,559 0,777 0,286 0,425 0,442 0,594 1		Mean of Cal 5				10,12	10,13				10,16		
1 Probe 255 110,1 0,103 0,02 0,002 0,001 0,004 0,002 0,002 0,002 -0,002 -0,002 -0,008 -0,008 -0,004 2 Probe 255 111,2 0,096 0,02 0,001 -0,016 0,002 0,007 0,001 0 -0,008 -0,003 3 Probe 255 109,4 0,098 0,018 0,002 0,003 0,001 0,007 0 0,002 -0,005 -0,004 4 Probe 255 110,6 0,099 0,022 0,001 0 -0,004 0,005 -0,002 0 -0,008 -0,006 Mean of 255 110,3 0,099 0,02 0,001 0 0 0,001 0,006 0 0 -0,007 -0,004 SD of 255 0,788 0,003 0,001 0,001 0,001 0,001 0,003 0,002 0,002 0,002 0,002 0,001 0,001			2,289	0,062		0,092	0,067			0,029	0,043		
2 Probe 255 111,2 0,096 0,02 0,001 -0,016 0,002 0,007 0,001 0 -0,008 -0,003 3 Probe 255 109,4 0,098 0,018 0,002 0,003 0,001 0,007 0 0,002 -0,004 -0,004 4 Probe 255 110,6 0,099 0,022 0,001 0 -0,004 0,005 -0,002 0 -0,008 -0,006 Mean of 255 110,3 0,099 0,02 0,001 0 0,001 0,006 0 -0,007 -0,004 SD of 255 0,788 0,003 0,001 0,001 0,001 0,003 0,002 0,002 0,001 0,001		%RSD of Cal 5	1,008	0,624	0,492	0,908	0,664	0,559	0,777	0,286	0,425	0,442	0,594
2 Probe 255 111,2 0,096 0,02 0,001 -0,016 0,002 0,007 0,001 0 -0,008 -0,003 3 Probe 255 109,4 0,098 0,018 0,002 0,003 0,001 0,007 0 0,002 -0,004 -0,004 4 Probe 255 110,6 0,099 0,022 0,001 0 -0,004 0,005 -0,002 0 -0,008 -0,006 Mean of 255 110,3 0,099 0,02 0,001 0 0,001 0,006 0 -0,007 -0,004 SD of 255 0,788 0,003 0,001 0,001 0,001 0,003 0,002 0,002 0,001 0,001	-												
2 Probe 255 111,2 0,096 0,02 0,001 -0,016 0,002 0,007 0,001 0 -0,008 -0,003 3 Probe 255 109,4 0,098 0,018 0,002 0,003 0,001 0,007 0 0,002 -0,004 -0,004 4 Probe 255 110,6 0,099 0,022 0,001 0 -0,004 0,005 -0,002 0 -0,008 -0,006 Mean of 255 110,3 0,099 0,02 0,001 0 0,001 0,006 0 -0,007 -0,004 SD of 255 0,788 0,003 0,001 0,001 0,001 0,003 0,002 0,002 0,001 0,001	1	Probe 255	110,1	0,103	0,02	0,002	0,011	0,004	0,002	0,002	-0,002	-0,008	-0,004
3 Probe 255 109,4 0,098 0,018 0,002 0,003 0,001 0,007 0 0,002 -0,005 -0,004 4 Probe 255 110,6 0,099 0,022 0,001 0 -0,004 0,005 -0,002 0 -0,008 -0,006 Mean of 255 110,3 0,099 0,02 0,001 0 0,001 0,006 0 0 -0,007 -0,004 SD of 255 0,788 0,003 0,001 0,001 0,001 0,002 0,002 0,002 0,001 0,001				-			-			-			·
4 Probe 255 110,6 0,099 0,022 0,001 0 -0,004 0,005 -0,002 0 -0,008 -0,006 Mean of 255 110,3 0,099 0,02 0,001 0 0,001 0,006 0 0 -0,007 -0,004 SD of 255 0,788 0,003 0,001 0,001 0,001 0,003 0,002 0,002 0,002 0,001 0,001											0,002		
Mean of 255 110,3 0,099 0,02 0,001 0 0,001 0,006 0 -0,007 -0,004 SD of 255 0,788 0,003 0,001 0,001 0,001 0,001 0,002 0,002 0,002 0,002 0,001 0,001			110,6	0,099	0,022			1		-0,002		-0,008	ł
SD of 255 0,788 0,003 0,001 0,001 0,011 0,003 0,002 0,002 0,002 0,001 0,001		Mean of 255	110,3	0,099	0,02	0,001	0	0,001	0,006	0	0	-0,007	-0,004
							0,011		0,002	0,002	0,002		0,001
				3,147						564,8		19,79	28,89

Anhang A6 (Fortsetzung): Spurenelementanalyse der Lösungsfracht von Probe 255

Run	Label	160Gd	161Dy	163Dy	165Ho	166Er	167Er	169Tm	171Yb	172Yb	175Lu	178Hf
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	Blank	0	0	0	0	0	0	0	0,001	0	0	0
2	Blank	0	0	0	0	0	0	0	0	0	0	0
3	Blank	0	0	0	0	0	0	0	0	0	0	_
4	Blank	0	0	0	0	0	0	0	0	0	0	0
	Mean of Blank	0	0	0	0	0	0	0	0	0	0	0
	SD of Blank	0	0	0	0	0	0	0	0	0	0	0
	%RSD of Blank	0	0	0	0	0	0	0	0	0	0	0
1	Cal 1	0,099	0,1	0,099	0,105	0,099	0,098	0,101	0,105	0,103	0,1	
2	Cal 1	0,102	0,099	0,105	0,102	0,102	0,1	0,103	0,099	0,105	0,102	
3	Cal 1	0,102	0,106	0,102	0,1	0,102	0,1	0,101	0,1	0,099	0,099	0
4	Cal 1	0,106	0,106	0,098	0,099	0,1	0,102	0,1	0,104	0,099		0
	Mean of Cal 1	0,102	0,103	0,101	0,101	0,101	0,1	0,101	0,102	0,102	0,101	0
	SD of Cal 1	0,003	0,004	0,003	0,003	0,001	0,001	0,001	0,003	0,003	0,001	0
	%RSD of Cal 1	2,865	3,452	2,938	2,483	1,359	1,493	1,357	3,086	2,898	1,062	5670
								ı	ı			
	Cal 2	1,005	1,024	1,017	1,013	1,01	1,015	1,009	1,004	0,995	0,998	0,001
	Cal 2	1,017	1,004	0,99	1	0,996	0,984	0,996	1,01	1,007	1,005	·
3	Cal 2	0,989	1,004	1	0,989	1,004	1,002	0,996	1,013	1,002	0,991	0,002
4	Cal 2	1,011	0,982	0,998	0,979	0,994	0,987	0,999	1,009	1,003	0,999	0,002
	Mean of Cal 2	1,006	1,004	1,001	0,995	1,001	0,997	1	1,009	1,002	0,998	0,002
	SD of Cal 2	0,012	0,017	0,012	0,014	0,007	0,014	0,006	0,004	0,005		
	%RSD of Cal 2	1,21	1,703	1,163	1,449	0,737	1,415	0,598	0,352	0,489	0,575	14,32
-												
1	Cal 3	2,505	2,478	2,495	2,502	2,505	2,503	2,523	2,551	2,485	2,493	0,004
2	Cal 3	2,522	2,499	2,51	2,53	2,536	2,567	2,549	2,545	2,544	2,524	
3	Cal 3	2,53	2,523	2,509	2,518	2,525	2,538	2,517	2,542	2,522	2,508	0,004
4	Cal 3	2,511	2,516	2,504	2,497	2,492	2,508	2,492	2,533	2,494	2,504	·
	Mean of Cal 3	2,517	2,504	2,504	2,512	2,515	2,529	2,52	2,543	2,511	2,508	
	SD of Cal 3	0,011	0,02	0,007	0,015	0,02	0,029	0,024	0,007	0,027	0,013	
	%RSD of Cal 3	0,438	0,799	0,277	0,605	0,783	1,163	0,937	0,292	1,075	0,512	3,454
1	Cal 4	4,697	4,693	4,712	4,712	4,694	4,741	4,721	4,686	4,709	4,754	0,007
2	Cal 4	4,668	4,695	4,67	4,705	4,724	4,726	4,755	4,789	4,771	4,747	0,009
	Cal 4	4,661	4,685	4,707	4,729	4,765	4,737	4,748	4,715	4,68		0,008
4	Cal 4	4,687	4,697	4,688	4,71	4,7	4,711	4,716	4,743	4,738		
	Mean of Cal 4	4,678	4,692	4,694	4,714	4,721	4,728				,	1
	SD of Cal 4	0,017	0,005	0,019	0,01	0,032	0,013		0,044	0,039		·
	%RSD of Cal 4	0,355	0,111	0,407	0,22	0,679	0,284	0,405	0,923	0,827	1,343	8,616
									П			1
	Cal 5	10,15	10,09	10,11	10,09	10,13	10,13	10,14	10,06	10,09		
	Cal 5	10,16	10,25	10,21	10,23	10,16	10,13	10,18	10,25	10,21	· ·	·
	Cal 5	10,19	10,14	10,2	10,16	10,14	10,11	10,06	10,04	10,1		
	Cal 5	10,12	10,13	10,09	10,08	10,11	10,15	10,13	10,13	10,14		
	Mean of Cal 5	10,16	10,15	10,15	10,14	10,14	10,13	10,13	10,12	10,13	·	
	SD of Cal 5	0,031	0,067	0,061	0,071	0,024	0,015	0,049	0,095	0,053		
	%RSD of Cal 5	0,303	0,661	0,602	0,704	0,233	0,143	0,485	0,934	0,522	0,813	7,567
		_				_				_	_	1 -
	Probe 255	0,006	0,007	0,006	0,001	0,002	0,004	0,001	0,004	0,001		
	Probe 255	0,013	0,003	0,003	0,001	0,002	0,004	0,001	0,011	0,008		
	Probe 255	0,004	0,002	0,007	0,002	0,004	0,004	0,001	0,004	0,002		-,
4	Probe 255	0,004	-0,001	0,006	0,001	0	0,005	0,001	0,008	0		
<u> </u>	Mean of 255	0,007	0,003	0,006	0,001	0,002	0,004	0,001	0,007	0,003	•	
	SD of 255	0,004	0,003	0,002	0	0,002	0	0	0,003	0,003		
	%RSD of 255	60,4	106	30,54	40,68	84	9,339	15,54	51,27	118,3	143,1	457,8

Anhang A6 (Fortsetzung): Spurenelementanalyse der Lösungsfracht von Probe 255

Run	Label	179Hf	208Pb	232Th	238U
		ppb	ppb	ppb	ppb
1	Blank	0	-0,002		0,001
2	Blank	0	0,001		
	Blank	0,001	0,001		
	Blank	0	-0,001	0,158	
	Mean of Blank	0	0	0,158	0
	SD of Blank	0	0,001	0	0,001
	%RSD of Blank	0	0	0,299	0
				-,	
1	Cal 1	0	0,965	0,247	0,954
	Cal 1	0,001	0,961	0,247	0,96
	Cal 1	0	0,963		
	Cal 1	0	0,968	-	0,95
	Mean of Cal 1	0	0,964		
	SD of Cal 1	0	0,003		
	%RSD of Cal 1	126,1	0,344		0,575
	701102 01 001 1	120,1	0,011	0, 1	0,010
1	Cal 2	0,002	4,812	1,065	4,738
_	Cal 2	0,002			
	Cal 2	0,003	-	-	
	Cal 2	0,003			4,744
-	Mean of Cal 2	0,002			4,738
	SD of Cal 2	0,003			
	%RSD of Cal 2		-		
	%RSD 01 Cal 2	25,2	0,482	1,115	0,448
	Cal 2	0.006	0.006	2 507	0.570
	Cal 3	0,006	9,826		9,572
	Cal 3	0,007			
	Cal 3	0,008			9,782
4	Cal 3	0,01	9,821		
	Mean of Cal 3	0,008	9,862		
	SD of Cal 3	0,001	0,058		0,129
	%RSD of Cal 3	17,34	0,589	0,829	1,34
	Cal 4	0.015	07.06	4 266	101.0
	Cal 4	0,015	97,86		
	Cal 4	0,015	97,22		
	Cal 4	0,015	97,3		
4	Cal 4	0,014			
	Mean of Cal 4	0,015			100,1
	SD of Cal 4	0 077	0,3	0,028	
	%RSD of Cal 4	3,377	0,308	0,661	1,247
	0-15	0.00:	051	40.05	004.4
	Cal 5	0,031	251,1	10,35	261,1
_	Cal 5	0,03	251,6	10,24	260,5
	Cal 5	0,029	250,6	10,49	259,6
4	Cal 5	0,03	250,9	10,4	260,6
	Mean of Cal 5	0,03	251	10,37	260,4
	SD of Cal 5	0,001	0,386	0,102	0,643
	%RSD of Cal 5	3,058	0,154	0,981	0,247
	D . 05-			4	0.555
1	Probe 255	0,003	0,644	1,589	0,023
	Probe 255	0,008	0,64	1,592	0,023
	Probe 255	-0,002	0,685	1,594	0,012
4	Probe 255	0,003	0,681	1,589	0,011
	Mean of 255	0,003	0,662	1,591	0,017
	SD of 255	0,004	0,024	0,003	0,007
	%RSD of 255	133,4	3,612	0,168	38,79

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 129, Profil 3

t [ms]	27AI	29Si	31P	34\$	44Ca	57Fe	137Ba	139La	140Ce	232Th	238U
0	37850	2000	300	2100	3801	13206	0	0	0	0	0
385	39254	3100	1000	1900	2900	12305	0	0	0	0	0
535	36948	3200	700	1800	2900	13406	0	0	0	0	0
734	39555	2700	200	2300	2200	12305	0	0	0	0	0
874 1065	39053 38752	2600 3200	400 500	1600 1900	2200 2000	12405 13506	0	0 0	0	0 0	0 0
1215	41962	3500	200	2600	3100	13106	0	100	0	0	0
1406	40357	3100	200	1800	2700	14107	200	0	0	0	0
1555	35143	2800	300	2700	3600	11304	200	0	0	0	0
1746	43366	3300	800	2500	3200	12706	0	0	0	0	0
1894	37248	3000	400	1500	3400	12906	100	0	0	0	0
2085	41761	4101	500	2100	3500	14207	0	0	0	0	0
2235	40959	3400	200	1800	4001	12005	100	0	0	0	0
2426	40658	3200	500	2200	3000	12606	100	0	0	0	0
2575 2766	41460 40357	2800 2900	300 400	1800 2000	2400 3300	12305 11204	0 100	100 0	0	0 0	0 0
2914	40858	4101	700	2200	2700	12806	0	0	100	0	0
3140	43165	2700	400	1200	2800	13306	100	0	0	0	0
3255	41661	2300	100	2400	2900	13206	100	0	0	0	0
3446	40658	3300	300	2000	4301	11304	0	0	100	0	0
3595	38953	2900	300	2500	2700	13506	200	0	0	0	0
3786	41059	3200	300	1700	3000	12906	100	0	0	0	0
3975	41159	2200	200	1600	3300	12205	100	0	0	0	0
4124	41159	3400	300	1800	2000	12205	200	0	0	0	0
4321 4465	43165 37248	2600 3600	100 600	2000 1800	4201 3100	13707 13907	0 200	0 0	0	0	0 0
4656	43466	2900	400	1900	3600	12205	100	0	0	0	200
4805	35544	2200	500	2200	3400	12606	0	0	0	0	0
4996	42563	2500	600	1800	2600	14507	0	0	0	0	0
5144	38752	3400	300	1700	2500	13206	200	100	0	0	0
5336	41460	2700	1300	2200	2500	13807	0	0	0	0	0
5486	44469	2300	0	2000	3200	14107	0	0	0	0	0
5676	41059	3200	200	2100	3000	12405	0	0	0	0	0
5826 6016	37148 39053	2600 3000	300 400	1900 2400	1900 2700	10104 10604	0	0 0	100 0	0	0 0
6165	37549	3100	400	1900	3300	12505	0	0	0	0	0
6356	39053	3000	300	2000	3400	13006	0	0	0	0	0
6506	37449	3000	400	1800	2200	12505	0	0	0	0	0
6696	37750	3600	600	1600	1800	11104	0	0	0	0	0
6846	40557	4101	900	1100	3700	12606	0	0	100	0	0
7036	41761	2500	100	2600	2700	12405	0	0	0	0	0
7185	39655	3801	400	1700	2700	11104	0	0	0	0	0
7376	38051	2900	600	2400	1400	13606	300	0	0	300	300
7527 7716	159182 1739232	27126	200	2500	5001	22818	26324	400	4501 17611	300	7702
7716 7866	4703832	181242 420705	1600 7602	2300 2600	8402 18312	66052 157665	139982 273187	1200 2500	17611 64646	2900 2700	22418 39555
8056	7997832	548221	2700	2300	23019	210743	1017632	5801	2059200	7602	47679
8205	9864432	1297664	5401	2400	28729	366748	1926232	5501	26525	13106	68564
8396	14146632	1626464	8002	2800	34341	430799	2315632	8402	59524	12505	101258
8546	20844432	2174464	11204	2800	53299	1268280	2834832	10504	79822	21817	160092
8736	23150232	2393664	10904	3801	60327	1268280	3094432	10504	54303	26825	171625
8886	24687432	2612864	11705	4301	67258	1736280	3224232	9303	122221	26024	186510
9080	25785432	2393664	9703	2900	63139	1385280	3094432	16710	49486	27226	176787
9266 9415	24467832 23479632	2941664 3160864	8102 15408	3901 3801	67861 76806	1853280 1970280	3094432 3483832	10004 12706	46576 63039	29831 52095	198266 303898
9606	26883432	2832064	21416	4701	76002	2204280	4262632	16710	72986	55006	317489
9755	30726432	3380064	16810	4901	83845	2789280	4911632	16910	137357	59524	318614
9946	34459632	3380064	21316	4001	89681	2789280	4262632	17110	105891	55307	277978
10096	31714632	3051264	21817	3901	84751	3257280	4911632	32337	76906	49385	310335
10287	31604832	3928064	19814	4501	98237	3140280	4652032	14507	83845	51493	269111
10435	32373432	3489664	21917	4501	81633	2555280	4262632	12405	72282	44569	254344
10626	31165632	3489664	21817	3400	75801	3959280	4262632	17511	78716	54805	257805
10776	31055832	2941664	21416	3801	82035	2906280	4132832	23419	72584	46977	249663
10967	29408832	2832064	19814	4401	71478	2906280	4262632	14708	68062	49285	258315
11151 11307	31824432 34789032	3160864 3380064	27326 34141	3700 4301	88674 76002	4661280 5012280	4652032 5041432	22918 29631	112743 117380	51192 53901	277571 236847
11455	35118432	3489664	29230	3200	72483	5012280	5041432	33138	105891	48683	2589120
11646	31824432	3051264	48181	3901	86863	4778280	4652032	54403	93304	56512	268296
11796	30506832	3160864	35945	3700	70976	3959280	4652032	24321	97230	53500	219372
11987	33032232	3270464	31334	4901	85656	4778280	4781832	26124	116372	64947	288688
12136	33361632	2832064	30633	4301	76806	4544280	4652032	25623	90284	55508	217036
12335	31824432	2722464	39755	3300	90888	4076280	4522232	34642	99344	48683	322397
12475	32153832	3051264	35344	4001	87568	4193280	4911632	44569	113650	50690	270843
12666	33361632	3708864	34041	4001	88272	4544280	4911632	28128	131099	60528	291647
12816	36436032	3599264	36246	4601	85857	4076280	4911632	28027	127264	66555	309517
13008 13156	33142032 35777232	3051264 3928064	40156 28328	4301 3901	85354 88574	4778280 3374280	5301032 5041432	27827 30232	116977 145437	75197 76705	332526 356801
13347	36765432	3599264	27226	3500	93807	2789280	5430832	31034	111231	61432	396939

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 129, Profil 3

t [ms]	27AI	29Si	31P	34S	44Ca	57Fe	137Ba	139La	140Ce	232Th	238U
13536	35118432	3708864	22918	4501	87970	3959280	4911632	45171	100049	79722	1414620
13685	31934232	3818464	20915	4001	84449	3257280	4781832	42463	100049	60628	289096
13878	34349832	3380064	19013	3801	81130	3140280	4911632	34542	107201	55006	1023120
14026	32263632	3270464	22818	3200	103171	3140280	4652032	30533	104884	50790	1023120
14217	31385232	3489664	15208	3200	77912	2087280	4522232	27026	111131	51192	309824
14366 14557	29848032 29628432	3380064 3380064	17210 20815	4501 5101	74092 104682	2555280 2906280	4522232 4522232	34943 24922	79320 1019200	62938 53299	254039 260656
14706	28750032	2832064	22017	3300	65249	3257280	4262632	24721	85052	47178	243050
14897	28420632	3489664	18512	2000	66957	3842280	4522232	25322	87366	45673	240203
15047	28969632	3380064	17511	3500	70674	3608280	4132832	23219	91391	45272	244372
15237	32373432	3051264	20615	4501	64244	4076280	4262632	27927	121515	50589	254242
15387 15578	29189232 27212832	2612864 2612864	35745 30232	3801 4201	69167 79219	3608280 2906280	4522232 4132832	27526 19113	119699 79018	55206 46375	240508 219270
15726	27322632	3051264	15909	3400	69468	3023280	4132832	23019	89077	38351	220387
15957	25016832	2722464	12405	3901	62637	3140280	4003032	15208	79219	40457	194313
16067	25565832	2284064	19413	3600	63340	2789280	3613632	19313	76705	45372	221098
16257	26005032	2612864	14307	3700	70071	3257280	3873232	16510	76906	50589	237559
16407 16597	27542232 26663832	2832064 2941664	14708 19113	4101 4401	66856 80526	3023280 2906280	4132832 4392432	17411 20415	72483 81532	37950 49285	246610 241525
16760	29079432	3160864	14207	3000	69770	2906280	4392432	15408	77711	41560	233798
16937	29079432	3051264	15909	2900	108813	2204280	4392432	15508	63139	34341	194414
17087	29848032	3599264	10604	3801	75499	2555280	4262632	14207	66052	42062	209627
17278	28750032	2832064	11204	3200	71478	2204280	4003032	15308	72584	55307	215107
17467	26224632	3051264	9803	3400	71780	2438280	4003032	14808	96525	36146	193299
17616 17807	26334432 27432432	2722464 2503264	10604 11705	3200 5001	65952 62034	1736280 2321280	3873232 3873232	13206 16409	58620 69770	29330 36446	174256 192184
17956	27761832	2722464	14307	3300	58520	2555280	4262632	12706	63139	34041	164138
18149	30616632	3270464	15108	3200	81834	2906280	4652032	14808	78616	42563	233188
18297	31165632	3160864	18812	3500	67459	2789280	4781832	14507	117784	41259	235322
18488	32044032	2832064	12005	4201	64646	2438280	4911632	12105	84751	40858	244372
18637 18827	32044032 33142032	3051264 2941664	12606 16910	3300 3901	72383 74192	2438280 2789280	5041432 4781832	16109 13306	76504 80325	39856 46475	257093 267787
18977	31275432	3160864	30833	4001	60729	3959280	5041432	16510	102164	51794	254039
19167	32593032	2722464	24621	3801	80024	4544280	5171232	23519	109014	55307	250375
19317	34130232	3380064	23419	5101	75700	4427280	5041432	17310	129282	55206	290831
19508	32153832	2941664	26024	4001	72282	4778280	4781832	19113	98639	52095	244983
19657 19848	31714632	2941664 3270464	27126 26324	3000 3300	66153 73589	4895280 5714280	4911632 4911632	22217 18212	98941 86763	57214 60428	290524 279202
19997	33361632 34789032	3051264	32737	3300	69770	5363280	5171232	19613	108410	63441	279202
20187	35008632	2941664	35644	2700	67157	5597280	5171232	20415	91794	56311	271047
20337	33142032	3160864	30332	4101	61231	5480280	5041432	20915	127567	67157	299813
20528	33910632	2941664	30933	3700	69468	5714280	4911632	31334	125448	60327	267073
20678 20868	32812632 32922432	2832064 2941664	35444 31936	3801 3400	77409 64445	5714280 5480280	4911632 5171232	24221 26925	89580 84449	68966 58419	274614 250375
21016	32812632	2722464	48281	4001	69268	5012280	5041432	18011	70574	58720	228208
21207	32483232	2832064	35344	4501	63641	5363280	4781832	20415	82839	52095	259027
21397	31495032	2612864	28027	3400	67660	4310280	4652032	20615	78113	57214	257602
21547	29738232	2612864	27727	3600	70172	4895280	4652032	18712	84549	57616	241423
21738	30177432	2832064	25222	5201	70373	4076280	4522232	17411	76605	47178	235221
21887 22078	29079432 30177432	2612864 2832064	28228 22017	4001 3901	65550 68665	4193280 4661280	4522232 4652032	17811 18812	85555 88674	49385 56210	246712 264221
22226	31165632	2722464	21216	3300	76404	4544280	4781832	19613	84650	53199	279406
22419	32044032	2832064	21817	3700	65048	4310280	4781832	16109	82437	56010	281955
22567	30946032	3051264	22217	4601	73991	4193280	4911632	19613	93908	58018	270130
22758	32044032	2612864	24421	3901	69468	3725280	5041432	19513	74795	47479 64043	251087
22907 23098	32044032 31385232	2612864 3051264	49285 32337	4701 2900	70775 70172	4076280 3725280	4781832 4652032	18812 17110	92599 100452	58620	298180 288280
23247	30067632	2612864	22518	4301	79722	4661280	5041432	25723	83946	60327	305226
23437	31604832	2722464	25423	3400	62938	3608280	4522232	17310	83544	64646	271251
23587	28530432	2393664	23419	3000	64144	3959280	4522232	23419	76806	56512	269315
23778	28750032	2612864	20014	4201	66354	3725280	4522232	18212	99445	63641	276041
23971 24118	30177432 32483232	2393664 2722464	19013 27126	2400 2700	71679 85354	4310280 3257280	4652032 4781832	24120 17511	88171 102063	52597 62537	304511 329149
24267	31385232	3380064	17010	3600	70976	4310280	4911632	18111	108007	61532	346860
24458	32483232	2722464	22918	4901	70976	4076280	5171232	18913	111735	59825	333242
24608	34569432	3160864	25322	3801	77108	4193280	5301032	16409	85555	66555	312378
24798	33361632	3380064	19814	3000	68866	3959280	5560632	18512	93807	66555	297057
24949 25138	32702832 33251832	2832064 2832064	22217 23019	3100 3801	68765 73790	3842280 3725280	5171232 5041432	17010 19513	91492 80325	55307 65349	305839 287463
25136	31495032	263206 4 2612864	23019	3901	68363	3725280	5041432	19513	76002	56110	294096
25478	32483232	3270464	29631	2600	71076	4310280	4911632	21616	90586	53098	301856
25667	31275432	2722464	26324	3400	72986	3725280	4911632	18512	89479	59423	298384
25817	32702832	3380064	23720	4001	77309	4193280	5041432	16610	78515	52396	1153620
26008	32373432	3051264	35644	3200	81633 85757	3725280	5301032	20014	1019200	62537	329456 401154
26157 26348	35777232 34898832	3599264 3708864	30132 23620	3700 4501	85757 88473	4193280 4193280	5690432 5560632	18412 17911	95619 96223	60227 72081	424309
26502	34679232	3160864	30733	4801	92901	3959280	5560632	20515	169196	87366	441210

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 129, Profil 3

t [ms]	27AI	29Si	31P	348	44Ca	57Fe	137Ba	139La	140Ce	232Th	238U
26688	34789032	3380064	45171	4001	84549	3842280	5560632	21616	110022	74293	425339
26838	33581232	3489664	39555	4301	76002	3959280	5430832	20515	116977	77007	378755
27028	33471432	3599264	29631	3801	76906	3608280	5301032	20615	120809	66052	352086
27181	32153832	2941664	28428	4201	87769	3608280	4911632	25924	128273	57315	327102
27368	32373432	2941664	24120	3000	75801	3491280	4652032	30533	98337	107201	350036
27518 27708	30946032 30726432	3489664 3051264	18612 29530	4401 4201	83544 72885	3374280 3374280	4781832 4781832	34441 29330	101560 91995	58118 52597	393342 359569
27858	28420632	2941664	19914	4001	77811	3257280	4522232	24822	91190	53400	318614
28049	28091232	3051264	19413	3801	86763	2906280	4132832	23920	130695	53299	1806120
28198	27761832	2832064	23219	4601	80124	2555280	4392432	25523	87970	48482	312174
28389	27652032	2941664	19513	2500	82739	2555280	4132832	23019	91291	41861	302162
28537	28640232	2722464	18312	3500	72483	2906280	4262632	23820	73589	49486	278182
28780 28878	28091232	2941664	24020 35344	3600 3600	82739	2906280	4132832	21716	82538	46475	283179 274207
29069	26883432 27871632	2612864 2722464	27827	4601	80024 58218	2555280 3140280	4132832 4392432	41259 61131	155239 171625	55307 67358	302060
29219	28640232	2832064	27126	4401	63943	2789280	4781832	59423	131402	66153	350241
29409	31165632	2941664	26525	3000	75398	3491280	5041432	136247	183673	80727	312992
29580	33800832	3270464	24521	4301	84549	3725280	5301032	83242	229123	71478	373315
29748	33691032	3599264	24020	3700	91089	4193280	5690432	82135	216224	73288	1023120
29938	36436032	3270464	25924	3300	93304	3608280	6079832	80727	1279200	68464	363363
30088	35777232	3270464	39655	3500	88171	2906280	5560632	71579	158575	83845	424515
30279 30428	36216432	3270464 3708864	32437 22718	2800 3600	85455	3491280 3257280	5560632 5430832	64445 63441	148569	61934	374854 377010
30619	35338032 34240032	3489664	32537	2800	127769 82236	3257280	5690432	53901	149983 148872	66756 70071	401669
30767	34130232	3051264	22217	4801	97834	3374280	5560632	50991	133723	69870	360389
30958	35228232	3270464	32437	4701	80727	3140280	5560632	39254	114961	60126	327205
31109	34240032	3599264	21516	3500	75901	2789280	5301032	33940	118792	64445	305941
31299	32044032	3270464	25423	3700	59725	2906280	5171232	38552	171726	62938	292055
31448	32373432	3380064	24822	3000	77208	3608280	4911632	38251	121615	71780	340613
31639	30726432	3380064	20314	3000	61633	3374280	4911632	25623	87065	50589	313911
31788 31984	29518632	2832064 2832064	23920 23720	3000 3901	69971 64043	3491280	4781832	31334	96827 89278	50690 55106	315649 295219
32128	31385232 31275432	3160864	24922	4001	82135	3257280 3023280	5041432 4911632	23920 28128	103977	61231	373212
32319	32373432	2941664	28328	3400	75600	2672280	4781832	25222	99546	50188	310539
32468	30616632	3160864	19914	2700	73991	3023280	5171232	23620	123834	49987	347987
32659	30287232	3051264	29330	4901	74192	2789280	4911632	22818	121111	63240	381836
32807	29518632	3051264	19914	5001	70172	2321280	4911632	22418	113852	101258	1023120
32998	30946032	3708864	26424	4401	76504	3608280	4781832	21917	101358	57214	379987
33148	31275432	3160864	17711	3300	78616	2672280	4911632	61532	100553	53901	371468
33339 33489	31055832 29299032	3599264 3051264	14507 13306	4201 3700	81532 74594	2672280 2087280	4781832 4781832	23219 21817	132815 151802	64746 54705	316365 305941
33679	29189232	2941664	18111	3600	67258	2321280	4522232	18011	121010	43867	284607
33828	30946032	3270464	12906	3600	103373	1736280	4652032	17310	108611	41962	282567
34019	29848032	3051264	18512	3600	74594	1736280	4522232	18011	101660	53701	296853
34208	30397032	3160864	15909	3200	84248	2438280	4522232	13406	91291	41059	291035
34359	29628432	3051264	15909	3300	72986	2204280	4652032	18312	119195	46074	292463
34549	29518632	3270464	16910	2800	67559	2555280	4652032	19013	138064	45472	307474
34698 34889	30397032 27981432	3270464 2722464	16510 19113	3700 3300	67760 68363	2906280 2438280	4652032 4392432	17110 16710	121716 85757	44670 43466	288892 273187
35038	31275432	2832064	20615	2700	61131	1970280	4262632	16009	74695	34642	327205
35231	27212832	2612864	12906	2700	56813	2438280	4262632	17210	98740	38552	244474
35379	28640232	2722464	23519	3200	58921	2789280	4652032	13506	109619	51994	285831
35569	31385232	3160864	21516	4601	72483	3023280	5041432	20815	89781	47479	345119
35719	32483232	3160864	24721	2100	75097	3140280	5171232	18712	94512	65148	373520
35909	32153832	2941664	28929	3901	69268	2672280	4911632	19313	80727	45272	322193
36058 36249	30177432 29189232	2941664 3051264	23219 17310	4101 4201	67157 68263	3257280 2906280	4652032 4781832	19313 19413	95015 81431	48482 46676	278692 313503
36399	27981432	2722464	19814	2500	62436	2555280	4392432	15308	121313	45372	244881
36589	29299032	3160864	15108	3400	59022	2789280	4392432	14107	86662	38752	250477
36790	28201032	2941664	21516	3801	73790	2672280	4652032	15709	116876	44268	306043
36930	28640232	3160864	28128	3700	57315	2438280	4392432	16009	97733	51894	294709
37078	28859832	2612864	25523	3300	66153	3023280	4522232	18512	98740	48482	307576
37269	28091232	2941664	21716	3400	68263	2555280	4392432	17210	95116	46676	295219
37419	28201032	2941664	26725	4501	73288	3257280	4132832	15909	2449200	50790	313911
37609 37761	26224632 25785432	2722464 2393664	24822 34742	3700 2700	59524 63541	3374280 3374280	4132832 3743432	17811 15909	111634 85354	71378 56411	333037 306554
37950	23699232	2722464	23519	3801	62938	2438280	3873232	18512	70775	53400	284199
38098	25346232	2612864	20815	3901	69669	3023280	4262632	20515	82437	58319	346348
38289	27103032	2503264	19313	3200	65651	3140280	4262632	21416	139579	56512	344197
38479	26993232	3270464	17310	3901	108511	2321280	4392432	20915	95015	60327	362338
38629	29408832	2941664	22518	3801	71277	3140280	4522232	25823	136146	59323	376497
38820	29628432	3380064	18512	3000	73388	2789280	4652032	34041	102063	53701	359569
38969	27871632	3270464	18011	3901	71780	2672280	4392432	26825	103876	143214	355981
39160	27103032	3380064	25924	3600	72081 60167	2672280	4392432	25523 22418	88876	48281 54604	324034 324750
39308 39499	26773632 26444232	2941664 2612864	19413 21216	3200 3400	69167 64646	2789280 2321280	4392432 4262632	21416	78817 119699	54604 49185	294811
39649	25895232	3160864	13206	2800	63641	2204280	4003032	18011	79923	49586	303183

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 129, Profil 3

t [ms]	27AI	29Si	31P	34S	44Ca	57Fe	137Ba	139La	140Ce	232Th	238U
39840	25346232	2832064	14607	3801	79621	1502280	4262632	16009	101963	46977	316262
39997	27761832	2941664	14307	3600	70674	2087280	4652032	18412	80024	46877	420808
40180	30946032	3708864	18412	2900	76605	2204280	4911632	27226	106092	46776	376291
40328	29957832	3380064	15809	3500	74494	2321280	4781832	32036	92197	51593	367774
40519	30067632	3160864	23620	3200	63039	1502280	4781832	32236	98035	42363	304920
40669	26224632	3489664	15308	3100	68062	1970280	4132832	40457	101056	43968	309108
40860	26224632	2612864	15909	3400	66153	2087280	4003032	36246	83644	44268	256278
41009	22820832	2393664	21316	3700	54905	1385280	3743432	26124	109216	37449	241931
41201	23809032	2503264	13707	3100	51192	2087280	3743432	43767	83443	30933	227091
41348	24467832	2503264	10404	4401	65952	1502280	3873232	26925	98740	35644	263101
41599	24907032	2393664	15909	2300	71478	1385280	3743432	27727	92700	35243	271761
41689	26883432	2503264	19814	3300	59725	2204280	4262632	25423	97330	39053	248543
41880	27103032	2612864	11905	3801	55407	1385280	4392432	24321	111836	37248	242745
42032	27981432	3270464	13206	2900	60930	1268280	4522232	24621	81934	34943	304001
42220	27871632	3380064	12505	3500	62034	1853280	4392432	22117	92700	36446	263712
42368	28859832	3160864	14507	3400	70574	1385280	4392432	38251	98337	56311	267787
42560	27322632	2941664	12105	4001	70674	1970280	4392432	27226	126962	40156	283689
42749	28859832	2941664	25723	3901	68564	2204280	4392432	22117	115162	42463	314218
42899	26663832	2722464	12606	3600	67961	1385280	4392432	19714	75097	42262	306043
43090	26224632	2612864	12205	4801	58620	1502280	4132832	18512	78616	39655	286851
43239	27103032	2941664	19714	3700	71277	1736280	4262632	16510	69569	44569	276551
43430	28091232	3051264	14507	2700	61432	1736280	4522232	53299	86561	48382	343685
43579	30726432	3380064	14107	3600	70875	1970280	5430832	20314	100855	51593	322193
43770	33361632	4037664	26124	4101	78415	2321280	5430832	19313	91593	61633	355571
43920	33251832	3380064	27827	4101	83342	3374280	5560632	24020	95116	68062	404137
44110	32483232	3489664	32737	3901	74896	2789280	5171232	44670	115364	52095	335187
44260	30836232	3270464	22918	3000	68162	3257280	4911632	19613	101963	66555	353623
44450	28859832	2941664	32337	3300	75700	3023280	4652032	17811	1539200	50389	334675
44600	28420632	3270464	20815	3400	78214	3491280	4652032	17511	94512	50188	307065
44805	27871632	3160864	46175	3600	64947	3725280	4652032	19113	159384	48783	361107
44940	30287232	3708864	46275	2800	69468	3842280	5041432	19914	114154	72282	447191
45130	31275432	3928064	35043	4101	75700	4193280	4911632	18512	101459	49084	1414620
45280	31165632	3270464	39354	4701	73489	3491280	4781832	17010	83644	51593	331912
45471	29408832	3599264	52697	3901	69870	3140280	4652032	44168	147356	53600	393650
45619	29628432	3380064	30533	3901	70674	3374280	4392432	17210	88171	53801	336722
45810	28201032	3380064	45874	3000	70473	3374280	4522232	36647	110324	53801	339384
45960	27761832	3160864	53098	3500	62938	3257280	4262632	15909	78817	55708	306656
46150	27212832	3160864	30432	4201	60026	2906280	4652032	17110	76203	67660	300528
46300	28640232	3051264	22317	2700	59423	2906280	4522232	13807	86360	71880	333958
46490	27542232	2832064	34742	3000	64445	2204280	4262632	11705	79521	88674	288688
46680	26554032	2722464	28228	3801	54102	2087280	4262632	11805	106395	56913	296444
46829	25785432	3160864	20915	2100	50790	2321280	4132832	11505	76504	57114	313298
47020	26005032	2832064	25723	2900	54002	2672280	4522232	12706	105287	67157	295321
47172	25456032	2941664	23820	3400	57114	2438280	4003032	13106	147760	57817	291137
47361	24358032	2722464	23519	3901	57616	2438280	4262632	17110	70674	54403	274003
47510	26224632	3051264	27827	3100	73489	2204280	4132832	11104	72785	50890	245797
47701	26993232	3051264	24721	3300	48582	2438280	4132832	10304	115767	45974	212468
47849	26883432	3160864	25423	2200	49787	2438280	4132832	11705	60327	46676	230241
48040	25675632	2722464	18212	2700	54905	2204280	4262632	16810	61834	49185	224348
48190	26334432	2832064	18512	2600	50589	2087280	4132832	11004	66856	78515	337439
48381	25126632	3051264	27126	2500	42764	1970280	4522232	14107	122523	54102	219067
48530	28201032	2941664	20915	3801	40959	1970280	4652032	12505	67358	51693	272066
48721	30177432	2941664	27126	2100	56010	2555280	4911632	15909	76203	57214	239186
48870	29628432	2941664	22818	3400	50589	2672280	4652032	15008	86461	48984	258009
49060 49210	29957832	3160864	22718	2700	41560	2438280	4652032 4911632	14507	129282	48281 50890	219676
49401	29299032	2832064 3051264	58319	3801 3000	41661	2438280	4781832	19814 13306	71378 108914	45974	198773 254853
49612	29189232 28859832	3270464	31735 54905	3901	46877 43667	2555280 2672280	4911632	8903	62838	44670	232578
49743	29957832	3160864	46175	3100	51292	2555280	4781832	13306	83745	51392	291851
49889	29299032	2722464	29130	4101	52195	3140280	4652032	12806	145740	57415	258824
50080	28420632	3051264	28328	4101	53098	2555280	4522232	10404	72483	46977	258315
50230	29079432	3160864	26625	3500	51894	2204280	4522232	12606	65048	49787	223535
50230	27981432	2832064	24020	3600	55006	1853280	4392432	10104	89379	49686	215209
50610	27652032	2941664	25222	2800	47780	2321280	4262632	13907	65851	48382	208003
50760	27871632	2612864	34041	2100	51693	2087280	4522232	11805	74695	60628	220489
50760	27871632	2722464	24822	2800	46175	2555280	4132832	16710	84650	48984	194718
51099	26224632	2832064	21516	2900	46977	1736280	4132832	10304	63641	38853	257704
51099	25126632	2832064	22418	2400	41560	2438280	4003032	11505	69268	49285	201511
51443	25346232	2722464	20715	2400	49686	1853280	4003032	19013	84047	38351	256584
51631	25895232	3051264	18913	3000	44569	2438280	4003032	16910	61231	46275	200193
51780	25895232	2941664	25523	4601	53400	1970280	4003032	32036	62235	32838	198266
51700	23589432	2612864	19513	3500	55206	2204280	3743432	10204	91794	33138	183572
52119	23809032	2393664	16409	2800	41761	1151280	3483832	8402	59323	41159	147962
52311	21503232	2284064	26625	2200	34943	1034280	3224232	10604	54604	29631	130493
52461	20185632	2284064	11004	3000	36346	1034280	3094432	12806	94411	30132	127466
52651	21613032	2503264	11304	3000	41059	1034280	3743432	11605	84952	38251	180432
52817	23809032	2722464	17411	2800	47378	1853280	3743432	16109	117582	33740	190259

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 129, Profil 3

t [ms]	27AI	29Si	31P	34S	44Ca	57Fe	137Ba	139La	140Ce	232Th	238U
52991	24577632	2832064	19013	2600	42864	1034280	4003032	18412	121515	40156	241626
53140	25895232	3160864	14107	3000	43165	1034280	4132832	19213	118288	65349	208409
53331	26005032	2832064	16409	3000	39655	1736280	4003032	12405	93706	41560	175977
53481	24138432	2722464	8703	2600	42463	2087280	3873232	10804	90888	40156	227700
53671	24467832	2612864	25222	2800	46475	1502280	3743432	13306	89580	40959	193502
53821 54012	23369832 23040432	2941664 2284064	12906 15108	3500 3300	40658 34441	1268280 1268280	3483832 3483832	10004 8603	93908 66253	33439 29631	163531 192792
54160	20844432	2832064	18312	3400	34842	1385280	3483832	14207	61030	33640	188739
54351	25346232	3051264	14708	3000	47780	1151280	3873232	9103	73086	1269360	248543
54540	26883432	3270464	35344	3801	48783	1736280	4522232	12606	88574	35845	291341
54690	28750032	3708864	32938	4601	54905	2438280	4781832	11705	99948	47880	306043
54881	31165632	3489664	27627	2900	71378	2789280	4781832	17811	86763	52797	334982
55030 55221	28750032 30067632	3489664 3489664	22918 25623	3901 3000	57114 49887	1853280 1970280	4781832 4781832	67157 15108	59825 1149200	51292 58821	246203 245797
55370	28640232	3160864	25924	2700	49185	2087280	4522232	11004	59624	46776	224449
55561	25675632	2832064	24120	2200	45773	1970280	4132832	11805	73489	48181	234407
55711	26114832	2722464	27627	3901	39856	1736280	4262632	10704	90888	52296	246102
55901	26773632	2941664	18212	3100	51693	1853280	4392432	10204	95216	45874	290116
56051	27981432	2832064	20615	2400	39956	1853280	4652032	15809	109317	53199	276245
56241 56390	27322632 25236432	2832064 3051264	19914 22518	3100 3700	45673 38652	2204280 1502280	4262632 4132832	9803 12205	61131 89278	54504 42463	217645 229326
56581	24577632	2503264	15809	3000	45272	1385280	4132832	10704	1279200	42262	175876
56731	25126632	2393664	15308	3600	38051	1736280	4132832	9903	71076	47278	1023120
56921	23918832	2612864	11905	4601	41962	1619280	4132832	10004	69268	45272	189347
57071	25785432	2503264	18111	4001	42664	1619280	4132832	39555	173953	46475	220184
57262	26444232	2941664	14207	2000	41661	1502280	4262632	10604	101560	46576	195124
57410 57624	27212832 26554032	2941664 2941664	15308 15008	2500 3600	47077 47378	2204280 1385280	4392432 4262632	10604 13807	117985 83141	55006 54705	209728 208511
57751	27212832	3051264	15408	3600	43366	1385280	4392432	17010	82839	48783	183065
57942	25895232	3380064	16610	2300	37449	1853280	4132832	20114	126356	41360	161204
58091	25346232	2612864	16810	4201	38351	1151280	4003032	15709	124238	40056	174054
58283	24467832	2722464	9403	3200	41360	1619280	3873232	17911	67057	39354	174560
58430	25346232	2832064	18412	3700	42463	1151280	3873232	17911	64746	43466	154936
58621	24358032	2832064	12806	3200	43767	1619280	4132832	12105	118389	34141	170107
58771 58962	24358032 23699232	2722464 2612864	9603 17711	2400 2800	40056 40658	1151280 613601	3743432 3613632	19213 12105	71177 81532	37850 29831	155239 167881
59154	24358032	2832064	12105	2500	39354	1151280	3613632	10304	136449	51593	154127
59301	23479632	2503264	8102	2500	36948	537630	3743432	9803	66153	25523	147558
59492	24358032	2284064	9903	2000	31835	1736280	3613632	41560	96726	29029	143517
59640	22162032	2722464	5601	3400	29731	515848	3354032	8002	80828	22418	101258
59831	21832632	2174464	10404	2500	32136	512014	3483832	9603	66052	28128	133319
59981	23260032	2503264	16109	2300	36045	1034280	3743432	8102	92297	31435	151196
60173 60321	24028632 24907032	2284064 2722464	8302 10604	3500 2500	34341 34241	582228 1034280	4003032 4262632	23119 8202	67559 76102	34943 35845	168589 186510
60512	25895232	2503264	13807	2300	35344	1151280	4132832	10604	87366	34943	1675620
60660	25016832	2612864	13506	2800	33038	1385280	3873232	12305	119599	42463	155340
60853	23040432	2503264	13707	3000	30132	1034280	3613632	12205	99244	36948	154228
61001	24028632	3160864	10304	2900	34943	1502280	4003032	15008	101862	37248	178812
61192	24138432	3160864	12606	2300	42262	1385280	3873232	16810	105891	37950	171422
61342	24358032	2832064	11905	2400	37449	1268280	4003032	13106	79420	35945	172131
61532 61682	23479632 24028632	3051264 2832064	13907 14808	2600 2900	32637 38251	1151280 1385280	4003032 4003032	15208 21716	173345 88775	47378 42062	163025 186307
61872	23918832	2832064	11705	2200	37148	1151280	4132832	18011	113046	34642	160007
62022	23369832	2941664	13206	1700	43767	1268280	4003032	15909	92398	48281	160598
62212	23260032	2284064	13206	2800	39154	1034280	3613632	14908	86260	40758	151499
62362	22711032	2722464	13807	2700	39956	1151280	3613632	21616	117683	44670	167881
62552	22711032	2722464	15208	2700	33640	1034280	3613632	14007	64646	34441	131402
62701 62892	24028632 25456032	2832064 2503264	11605 12505	3400 3000	35243 77811	604734 1268280	4003032 4392432	18011 12906	127163 81230	37850 39454	153318 156452
63042	27212832	2612864	19613	3200	44168	1151280	4652032	12706	164643	39454	1153620
63235	26005032	2941664	14507	3600	38752	537837	4132832	11805	68062	36246	132915
63424	24577632	2393664	10804	3300	36948	1268280	4132832	7802	107805	36246	150185
63571	26114832	2722464	11705	3500	36847	1034280	4392432	9703	145134	35444	140588
63762	29738232	3051264	10904	4001	38452	1034280	4392432	10604	1409200	27827	146548
63911	27761832	2612864	13006	2800	38552	1268280	4522232	8803	160294	32838	126861
64102 64252	28091232 29518632	3599264 3051264	13206 12405	4301 2600	40257 36948	1034280 1151280	4911632 5041432	12606 12505	176787 157969	33239 34141	136247 159586
64443	29848032	3051264	9703	2400	38452	583165	4652032	17010	176281	37950	159580
64592	28859832	2832064	9303	2700	37449	488822	4392432	12405	141598	31435	166060
64782	26663832	2941664	14207	3901	33239	454001	4262632	7802	104481	30533	138064
64931	25785432	2503264	11204	3600	37449	445747	4003032	10004	156958	32838	137963
65122	23809032	2612864	7202	3200	34943	449255	3743432	12105	82337	33439	129686
65272	23479632	2832064	7602	3100	27927	396117	3743432	10004	84248	31735	137054
65462 65638	24577632 23699232	2393664 2284064	9703 12405	3801 3400	28528 27827	398378 432036	4003032 3873232	15008 8102	94109 61432	36747 28027	125247 161609
65802	23260032	2064864	7902	4101	26625	432036	4003032	7702	53299	25523	92599
65953	24028632	2064864	12105	2600	28128	456788	4132832	11204	57616	22618	123532
66142	23918832	2064864	10504	2700	31936	1034280	3873232	9003	143113	55106	105085

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 129, Profil 3

t [ms]	27AI	29Si	31P	34S	44Ca	57Fe	137Ba	139La	140Ce	232Th	238U
66292	23260032	2612864	8903	3000	25723	534620	4132832	6702	66957	30232	99546
66483	25016832	2174464	10904	2500	34241	535139	4132832	10404	74494	29631	104279
66632	25565832	2284064	9503	3000	31435	531403	4392432	14307	113348	30833	118288
66823 66971	26224632 24358032	2393664 2393664	10204 9703	3200 3801	29029 28027	452041 452453	4132832 4132832	14307 20815	139478 115062	35243 27727	101862 105690
67162	23918832	2393664	7402	3901	28629	469180	4003032	21015	96223	29831	126962
67312	24797232	2612864	8703	2600	26124	449048	3873232	29731	122826	33740	86763
67503	22820832	2284064	11505	3600	28027	408869	3873232	36647	1279200	25222	97935
67652	23589432	2393664	8102	2400	28128	464842	3873232	30132	108914	34943	91794
67843 68032	23369832 25016832	2722464 2284064	10704 9503	2700 2900	28929 31334	570779 552065	4003032 4003032	27126 27827	96324 110828	25523 33239	139074 149781
68181	24907032	2393664	7302	3500	31936	596811	4132832	22818	83745	35043	130493
68372	25895232	2503264	20314	2700	30933	512014	4652032	22818	77108	33038	106495
68523	24138432	2393664	10004	2600	28629	1151280	3873232	51192	91593	31435	115969
68713	23918832	2503264	14107 10004	4001 3200	35745 31936	1034280	3873232	17911 18913	103574	32337	118086 133723
68862 69053	24028632 26224632	2612864 2832064	15308	4101	33940	596603 536488	3873232 4132832	18011	104682 76504	38752 30833	153723
69201	26773632	3051264	13306	2700	32637	1034280	4132832	15108	77108	31936	167881
69393	26993232	2832064	22518	2700	30232	1385280	4522232	20515	75298	38452	146144
69542	26444232	2503264	12205	2400	36246	1151280	4132832	48382	1279200	30032	119699
69733 69882	25675632 23040432	2722464 2941664	10104 9103	3500 3100	34341 36146	547390 536384	4132832 3873232	13206 13406	76806 108007	72182 30633	138165 123128
70073	22491432	2832064	15709	3300	29430	508595	3743432	11705	102063	34341	99948
70223	22271832	2612864	11405	2600	25423	516367	3743432	19513	107100	34542	127971
70445	24577632	2832064	20214	1900	31134	1853280	4132832	15408	85354	46977	1284120
70562	24577632	3051264	21216	3400	35043	1619280	4262632	13807	76906	47178	187725
70753 70902	24358032 24138432	3489664 3051264	14207 15508	2600 2900	35043 40257	1502280 1385280	4003032 4003032	20314 17511	174560 73187	43065 37750	211250 168690
710902	22820832	3051264	16109	3400	37950	1268280	3873232	12405	89983	36948	179318
71247	22711032	3708864	19714	3200	34742	1151280	3873232	12005	84248	39655	142002
71433	22381632	3160864	21516	2600	38151	1619280	3743432	11004	69569	49084	164947
71583	22491432	3160864	14307	2400	34141	1268280	3873232	11905	107402	53600	229428
71773 71963	24248232 26114832	3708864 2941664	20415 20515	3000 2600	38752 39254	1268280 1385280	4392432 4132832	10704 13206	87970 1149200	58520 55608	194617 209627
72112	25675632	3599264	13907	2800	41059	1619280	4132832	12706	65450	54102	188333
72303	25126632	3051264	18712	4501	32136	1619280	4132832	23119	110526	63441	248645
72452	26114832	3051264	16309	3700	39755	1736280	4132832	13406	102668	58419	177901
72643	25126632	2941664	16209	3600	37349	1502280	4132832	15108	62838	55508	215615
72794 72983	23809032 22381632	2722464 2393664	16409 13807	2500 3100	30933 26024	2087280 1853280	3873232 3613632	19914 11405	97431 52496	56512 52697	196137 169601
73133	21064032	2064864	15408	2500	30833	1853280	3483832	11204	53400	43366	165048
73323	20075832	2064864	13707	3500	26725	1034280	3483832	13707	95216	40257	146447
73472	22381632	2174464	12405	3500	24321	1385280	3354032	10204	76102	42363	134833
73663	22491432 22052232	2064864	12005 10704	2300 1300	23620	1034280	3483832	18111	99244	34341	133925
73813 74003	23260032	2064864 1955264	10704	2400	25523 25623	552584 1151280	3613632 3613632	10804 16109	148872 82236	36045 46776	178913 148670
74153	23479632	2284064	13406	2600	27727	1151280	3873232	14507	125549	35143	153925
74343	23589432	2284064	10204	2400	25523	1034280	4003032	14407	78113	44469	162115
74492	24358032	2393664	10704	3200	34441	1034280	4003032	14607	137357	37449	182255
74683 74833	25675632 23589432	2832064 2722464	13907 10504	1700 2600	29831 29130	1385280 1034280	4132832 4003032	12606 10304	72483 72282	42764 51994	182255 199280
75023	22930632	2503264	10204	2800	33138	1502280	3743432	14107	97935	39154	164643
75173	21832632	2393664	11705	3200	38051	1151280	3613632	12806	93102	39354	199078
75365	23589432	2722464	10504	3100	32938	1034280	3873232	13406	1409200	36948	167982
75512	23918832	2832064	9103	2900	33239	1151280	3873232	10304	104481	37248	183673
75703 75853	25016832 25565832	2941664 2612864	13606 8302	2900 2900	30833 33239	1151280 1151280	4003032 4132832	12305 17811	62737 111131	32537 44770	177293 146346
76044	25675632	2612864	11104	2700	34041	1502280	4262632	8703	68966	38051	241423
76233	23589432	2722464	12405	4001	34041	513465	3873232	10504	90184	35544	125751
76383	24028632	2503264	9403	3300	29530	566514	3873232	10404	91291	33640	155744
76574 76722	23150232 22601232	2393664 2503264	7902 10404	3000 3200	33740 31735	503002 481376	3613632 3873232	8102 7802	66052 125045	40257 31735	1153620 123330
76913	23479632	2503264	14107	2100	33940	1034280	3613632	10204	75801	44168	166060
77064	23369832	2503264	10704	3300	30533	1268280	3613632	11405	87769	35043	142911
77254	21503232	2503264	19013	3400	35945	1034280	3483832	15909	103776	59524	181546
77403	23150232	2832064	14107	2300	34943	1268280	3743432	12205	112945	41761	1284120
77594 77742	22491432 22052232	2503264 2503264	12405 11304	2700 2600	30432 31936	1619280 1268280	3613632 3613632	17711 14307	99747 129181	44569 49285	140285 126962
77933	22491432	2393664	22217	3200	27126	1385280	3483832	11505	74092	49265	166363
78083	22820832	2832064	14908	2700	34842	1502280	3613632	12005	107704	43968	169196
78274	24248232	2612864	15508	4001	32437	668902	3743432	34842	2579200	45071	154936
78457	23809032	2722464	14507	2400	31936	1268280	3873232	12505	76504	71780	176990
78614 78762	23589432 26773632	2503264 2722464	18212 16009	3500 4101	34141 37048	1502280 1151280	4003032 4392432	21917 13707	175471 120708	72081 48482	166262 161508
78953	26663832	2612864	17911	2600	62034	1853280	4392432	34542	165554	42162	179521
79103	27542232	2612864	24120	3400	39755	1970280	4652032	17811	253733	49987	196948
79294	28201032	2722464	21516	3100	33038	1502280	4781832	12606	137660	55106	201613
79443	28969632	2722464	17010	2900	35344	2087280	4652032	13707	157766	65751	177496

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 129, Profil 3

t [ms]	27AI	29Si	31P	34S	44Ca	57Fe	137Ba	139La	140Ce	232Th	238U
79642	28201032	3051264	19013	3500	32938	1385280	4652032	26024	229936	46977	178812
79782	27212832	3051264	15709	4101	34241	1151280	4522232	57917	1929200	46375	144022
79973	28091232	2722464	21316	3500	32236	1970280	4392432	19013	209221	47378	146750
80123	28420632	2722464	22618	2900	35745	1619280	4781832	20415	181546	39053	220692
80314	28640232	2832064	19513	3700	37950	1619280	4652032	32637	189144	44670	1023120
80504	29408832	2941664	23720	2400	35143	1385280	4911632	22317	184484	42965	215209
80653	30836232	3599264	20615	2000	36547	2438280	5171232	43667	204148	69569	229529
80844	32153832	3818464	36647	2500	36045	1970280	5690432	24421	251393	68866	229123
81000 81184	32373432 34349832	3051264 3160864	33439 32337	3400 4001	37148 44670	2789280 3023280	5430832 5820232	49686 26525	1409200 156755	70775 85656	241525 263915
81334	35777232	2722464	34542	3000	40156	3023280	5820232	31334	131906	90284	245491
81524	34569432	3270464	27026	1700	33940	2438280	5950032	21516	207902	68966	239084
81674	34349832	2722464	38752	2900	32838	2672280	5560632	25723	83544	76705	216427
81864	33800832	2832064	29831	3100	31134	2555280	5301032	32437	93505	68062	269722
82013	31165632	3160864	21015	3600	31735	2204280	5041432	18512	82035	63340	194718
82205	31824432	2503264	24120	3801	35243	2087280	4911632	16610	97532	81431	173345
82354	29079432	2612864	27727	3200	32737	2321280	4911632	15208	66153	57315	221301
82544	29299032	2612864	21716	2400	31535	2087280	4652032	13306	60930	49686	143719
82694	29738232	2503264	20915	4101	35945	1502280	4911632	11705	66354	46475	142608
82884 83035	30946032 30397032	2393664 2393664	26124 23419	2700 3400	29831 36246	1502280 1619280	5171232 5430832	14407 13406	95518 89681	61633 54805	151196 180230
83266	33691032	2722464	19213	2500	37349	1502280	5430832	17310	129686	63441	155744
83374	32153832	2284064	22818	2400	33840	1619280	5301032	15308	149175	52597	135338
83564	30946032	2612864	19213	2300	29731	1619280	4911632	16409	157362	55708	125045
83714	29628432	2284064	18913	2700	27026	1736280	4652032	17210	210845	46475	149276
83905	29079432	2064864	19513	3600	33940	1853280	4911632	30833	175471	51292	148468
84066	30836232	2284064	19113	3801	33640	1736280	4911632	19313	263508	55206	139074
84244	30287232	2284064	40658	2900	35143	1502280	4781832	19413	256278	50991	135338
84394	29738232	2393664	17411	2300	40557	1736280	4781832	15208	220692	52396	124944
84584	28969632	2284064	17811	2900	28929	1268280	4911632	61934	224856	55106	139579
84774 84923	30177432 29079432	2174464 2284064	15008 19413	2700 3300	36747 27627	1385280 1502280	4781832	37850 14307	230545 223535	55708 44870	161508 202323
85114	27432432	2174464	13506	2900	30733	1151280	4781832 4781832	14808	1019200	45874	131301
85263	27871632	2064864	15208	3300	28729	1151280	4911632	12906	204858	48883	145639
85454	29189232	2284064	17010	2800	29731	1034280	4781832	15709	202424	50690	135136
85604	28640232	2284064	13606	4301	30032	1151280	4781832	12305	161407	40257	168690
85795	28640232	2284064	15108	4001	37549	1385280	4652032	12105	130090	38853	126760
85944	27652032	2284064	20615	2800	31034	1151280	4781832	11204	145134	48482	126962
86135	28091232	2393664	10504	3400	28228	1034280	4652032	9603	160699	45974	130493
86283	28420632	2393664	12806	4101	31735	1151280	4522232	10504	103776	39454	117380
86475	28640232	2612864	14007	3100	33740	1268280	4781832	16009	117582	46275	150994
86624	25675632	2612864	8803	2500	32938	1034280	4132832	14507	150792	38953	124440
86815 86964	24687432 24687432	2174464 2174464	13306 9903	3300 3400	33439 28929	1034280 1034280	4132832 3743432	13006 20114	111937 106898	56512 91291	192488 388512
87155	24687432	2064864	14207	2700	30032	1034280	4003032	55708	129585	128879	522898
87303	23809032	2174464	11705	3801	33740	1034280	3873232	12005	198266	152712	1414620
87494	24577632	2832064	11705	1900	27426	1034280	4003032	10804	1929200	119498	469387
87645	24028632	2174464	13606	2600	32337	1034280	4262632	18812	90788	105186	1023120
87835	25785432	3051264	11505	2900	28929	595769	4262632	22317	89278	104884	378961
87984	25236432	2503264	17911	3700	29631	476414	4392432	9603	135237	74996	304716
88175	25785432	2503264	16009	3000	36146	1034280	4392432	10804	139478	67961	270232
88323	24907032	2503264	11004	2700	31535	1034280	4003032	11304	129787	69971	299711
88514	27652032 24797232	2503264	12706 14607	3000 2900	35444	1034280	4262632 4262632	8703	128778	60227	239999
88665 88865	25016832	2503264 2284064	10904	2700	35845 27526	1034280 577023	4202032 4132832	10204 17411	109014 109014	64345 53600	295015 215818
89005	20954232	2064864	11605	2700	28128	1034280	3354032	20615	170208	45171	221301
89195	17989632	1516864	8703	2800	24421	363466	2705032	7702	132512	41360	198672
89384	14146632	1188064	6602	3100	20014	332014	2185832	5501	52195	35745	128677
89533	11182032	1297664	4201	2500	14007	232781	1666632	4201	51693	29831	163733
89725	9754632	610992	4801	1300	10704	211048	1407032	3500	36346	23820	119397
89876	7668432	504763	5101	1600	10404	164947	1017632	3901	27326	18212	75097
90065	6570432	365004	4001	2200	11905	160092	477034	3500	28228	18011	62637
90215	5033232	401874	2600	2000	8503	122321	373417	2000	19013	13606	45773
90410	4813632	257296	2000	1600	7402	91895	327205	1100	18712	12005	49084
90554	3605832 3276432	251291 178508	1800 2400	2300 2600	6301 7802	71177	329456	800 1800	17310 27126	14908 10004	47077 60930
90745 90895	3276432 2947032	157362	2700	2400	6501	125045 64244	291545 227294	1400	11505	8002	34141
91085	2727432	177496	2800	1000	4701	69971	176787	1600	10404	5901	32136
91278	2068632	126760	1600	2800	6902	102768	186307	1400	6902	5901	21917
91425	1849032	139982	1300	1800	6602	101056	142608	800	6201	5001	25122
91574	2068632	125751	1000	1100	4601	61331	133218	1300	5001	4801	21917
91765	2068632	91089	1300	2100	5901	47479	126558	400	5501	2700	14908
91915	2288232	92398	1300	2600	4001	51292	98941	500	6001	3600	44068
92105	1739232	71478	1500	2500	7602	30933	83845	800	4201	3801	12606
92255	1409832	73288	900	1700	3700	31735	86360	100	3901	3200	10104
92448	1080432	66555	1000	600 1400	4001 3700	55206 74705	86763	600	2200	2700	10504
92594 92785	1080432 1080432	80828 72282	1000 600	1400 2100	3700 3600	74795 29631	78214 63742	200 500	3300 2200	2000 2600	8002 5801
32100	1000432	12202	000	Z 100	3000	25031	03/42	500	2200	2000	J00 I

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 129, Profil 3

t [ms]	27AI	29Si	31P	34S	44Ca	57Fe	137Ba	139La	140Ce	232Th	238U
92935	512014	66253	600	2100	4101	40959	57716	300	1600	2300	8803
93125	545936	67459	700	2000	4801	22217	53901	500	1800	5301	6702
93275	436055	43366	2100	1500	3000	26124	60227	400	3200	2200	12505
93465	433478	35644	700	1300	4101	29530	56210	400	2900	1600	10204
93655	396733	36045	6301	1700	6101	38752	57516	100	1700	1200	6201
93804	374136	41761	900	1700	4201	26424	34141	400	1400	900	4601
93995	381220	42764	500	1800	4701	22317	43165	100	1400	1200	3901
94145	1190232	33439	1100 900	1400 1900	3300	53500	35945	200	1700	900	5001
94335 94485	306554 274003	32938 34542	1000	2100	4501 3400	22317 26124	42563 40959	200 200	2700 2000	600 800	5301 2000
94675	280935	29731	700	1100	3400	20314	31936	200	800	400	3901
94824	238067	19714	700	1800	3400	18812	27727	100	2800	500	1500
95018	263203	22418	1000	1600	2600	20515	37750	0	600	400	2500
95165	262286	16209	500	2300	3600	21015	19914	100	800	400	2600
95356	189245	21616	900	2300	4201	21116	21116	0	1100	700	2100
95505	211555	29731	500	2500	3100	19313	26424	0	7702	700	4401
95696	199483	16610	400	2400	3801	18212	19714	0	900	500	2100
95844 96086	189347 166060	19714 52697	700 1100	2200 2100	3300 3700	17811 13807	13606 14908	300 300	2900 500	800 300	1900 2200
96185	185497	21416	200	1700	2700	19213	13206	200	800	300	1300
96376	151398	16510	700	1800	4401	16810	12906	100	37650	400	1900
96525	120204	28128	200	1400	3500	13506	12005	100	800	100	700
96716	136045	12105	900	1700	3200	16409	13106	0	500	200	400
96905	163126	9503	900	1300	3500	15008	11805	100	500	400	1200
97054	109417	19213	400	1000	4301	19613	11004	100	100	400	1300
97245	148164	10204	300	2300	2700	16309	10004	0	200	400	1300
97395	129484	12505	700	1000	2600	18412	12806	200	700	2800	1400
97586	133218	11204	800	1200	3400	15809	9803	0	400	200	800
97735 97926	112138 112239	10704 11304	400 800	1700 1800	3300 3600	14507 51994	8102 7602	300 200	100 600	100 200	700 700
98074	123935	16109	400	1700	4201	14007	11004	0	300	100	2100
98265	97330	9003	600	1500	3100	14507	9403	0	500	200	600
98416	98237	11204	500	1100	4101	14708	8903	100	500	400	500
98608	126255	14107	700	1700	2700	16910	8903	100	300	400	800
98756	118590	28128	500	1400	2800	13306	11805	200	600	200	800
98946	120809	11605	600	1400	2800	16009	7802	0	200	100	100
99094	102768	11405	400	1800	2000	16610	6101	200	100	0	600
99294	100553	6802	500	2400	2600	16309	26825	100	100	100	3901
99436	96626	11405	800	2000 1000	3500	15508	7402	100	200	100	400
99626 99776	96022 93606	7102 7102	600 500	1300	3100 4001	16009 12806	6602 10904	100 0	200 100	100 100	1000 800
99966	83141	8703	500	2500	3200	11505	6201	0	200	0	400
100115	112542	9703	700	1200	3901	12606	12706	100	500	100	1200
100306	90486	26424	500	2100	3801	14507	5501	100	300	400	900
100456	94914	18212	400	1700	2500	15609	5101	0	0	0	1200
100646	93807	9503	400	2500	2600	13006	6301	100	100	200	2800
100796	95418	7502	300	2200	3200	15809	10504	0	200	100	500
100986	102063	32537	400	2000	3200	13406	15208	0	200	200	500
101135 101326	128273 117884	10104 11505	400 600	1800 1700	4301 2900	14507 15508	8102 11204	100 0	0 400	300 0	600 600
101320	96122	8703	300	1400	2400	14808	16109	0	400	100	500
101666	96122	8402	300	1900	2600	16009	29530	0	200	200	500
101818	102970	7402	900	2300	3400	13206	6301	200	200	0	700
102006	99747	8903	1100	1600	3100	14007	6702	0	100	200	800
102155	83141	7102	400	1600	2700	17010	5901	0	0	0	100
102346	81230	5101	500	2300	3600	13306	4801	0	200	200	100
102496	107402	5401	200	1300	3801	11204	5701	200	600	0	300
102686 102836	84751 79320	6301 6602	900 800	1700 1500	3600 3600	15709 14407	3901 3200	0 200	0 100	0 100	700 100
102030	79520 74594	4901	200	2000	2700	20415	5901	0	100	100	400
103020	70674	6702	700	2100	4201	13006	4301	100	0	0	200
103365	77711	6301	600	1500	3200	12505	4001	0	100	100	500
103556	89278	8002	700	1400	3300	14808	7402	100	100	0	300
103705	108007	6501	200	1900	2100	16409	6201	0	200	100	200
103897	134631	6802	200	1500	2500	13907	6301	200	100	200	200
104099	86863	6001	300	1600	3000	13606	6501	100	0	100	500
104236	114457	6802	700	2500	4401	60628	4401	0	500	300	700
104385	85354	17611	400	1800	2100	13606	5601 7402	300	400	5001	0
104576 104726	85354 95518	8002 11104	400 300	2300 1500	1700 3500	14407 15208	7402 6101	100 100	200 300	200 0	800 1200
104726	109921	11104	400	2100	2500	14207	6602	200	200	100	300
105066	92700	6401	300	1600	2200	13006	6201	100	300	100	800
105257	96022	11705	600	1700	3801	14607	9803	100	300	100	700
105405	97834	5701	800	1300	3000	13707	6702	100	100	100	400
105596	150590	6602	500	2000	2900	14908	5101	100	0	200	200
105746	62436	13206	300	1800	3901	13406	2800	0	300	900	100
105937	77711	7102	700	1800	3500	24521	3300	0	200	200	100

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 129, Profil 3

t [ms]	27AI	29Si	31P	34S	44Ca	57Fe	137Ba	139La	140Ce	232Th	238U
106088	64746	10704	400	1900	3500	14607	3500	100	100	0	100
106277	71177	5401	700	1400	4301	14708	2800	0	100	0	500
106425	71277	8002	300	2400	3500	13406	9203	100	200	100	300
106617	78012	5801	300	1700	2900	14407	5301	100	200	0	200
106766	64646	4101	300	2400	4601	13506	7102	0	0	0	300
106957	68564	5601	100	1300	3901	13306	2000	100	400	100	100
107106	63641	5701	200	2100	2800	15108	2000	0	100	0	200
107303	70373	4501	200	2400	4501	10404	2700	0	200	400	200
107445	73991	5601	500	1200	3700	12906	4801	0	200	300	200
107636	77711	7402	400	2000	4101	21015	6401	0	100	300	200
107787	85555	7802	400	1900	3200	14107	4301	0	100	0	300
107977	84952	6802	400	2400	3000	15308	4301	0	100	0	200
108126	78113	5601	700	1800	2500	14507	6501	0	0	100	400
108317	86058	6602	1000	1700	3000	14407	5601	100	1200	100	0
108465	85857	8603	1000	1500	4101	16009	4201	100	200	0	200
108657	115465	10104	800	2000	3500	13606	5701	100	100	100	100
108807	99143	15508	700	2200	3901	13807	3700	0	200	300	200
108997	117481	19413	600	1600	3300	12405	4401	100	300	0	600
109147	87165	6501	400	1900	2900	17511	4601	0	200	100	200
109337	78012	6401	400	1700	3300	13306	4501	100	100	100	400
109487	83544	33439	600	1900	3500	14407	2200	0	200	200	600
109677	81834	8002	400	1500	3600	13707	4101	200	0	100	200

Parameter der Laser-Ablation:

Laserenergie: 1.2 mJ Ablationsfrequenz: 20 Hz Kraterdurchmesser: 50 µm

Vorschub: 35 µm/s

Profillänge: 2830 µm (81 s), <u>davor</u> und <u>danach</u> Grundrauschen

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 140, Profil 1

t [ms]	27AI	29Si	31P	44Ca	57Fe	139La	140Ce	232Th	238U
0	29631	2400	400	2500	12405	0	0	0	0
360	31835	3300	500	3000	10504	0	0	0	0
509	30933	2700	800	2800	11805	0	0	0	0
701	32437	1800	700	2700	12105	0	0	0	0
851	27927	2600	500	3600	11705	0	0	0	0
1041	31134	3200	600	2900	11104	0	0	0	0
1191	31134	2500	300	3000	15408	0	0	0	0
1381	29430	2100	600	3000	11405	0	0	0	0
1530	29731	1600	500	2700	12305	0	0	0	0
1721	30633	3100	200	3000	12806	0	0	0	0
1880	31936	2600	100	2500	11605	0	0	0	0
2061 2211	30533 29330	2700	600 1000	2400 3300	11104 10404	100 0	0 0	0 0	0 0
2401	29330 29230	2700 2800	600	3100	10404	0	0	0	0
2550	31034	2200	200	3700	11705	0	0	0	0
2741	27927	2200	300	2800	13406	0	0	0	0
2891	31034	2700	400	2700	9903	0	0	0	0
3081	29530	1800	600	3300	13707	0	0	0	0
3231	29530	1600	300	2300	12706	0	0	0	0
3421	29330	2600	400	3400	10804	0	0	0	0
3572	28128	2700	700	2500	12505	0	0	0	0
3761	30533	2200	300	2200	12606	0	0	0	0
3950	31034	2300	400	2500	11905	0	0	0	0
4100	30132	3000	700	2700	12305	0	0	0	0
4291	30733	2100	200	3000	11104	0	0	0	0
4440	30032	1900	500	3100	11805	0	0	0	0
4631	32637	3200	500	3400	11805	0	0	0	0
4780	31034	2900	300	2500	12405	0	0	0	0
4971	29130	3400	300	2900	12906	0	0	0	0
5121	32537	2200	500	1800	12405	0	0	0	0
5311	31134	2700	300	3400	11905	0	0	0	0
5461	30432	3300	300	3100	11304	0	0	0	0
5652 5800	30933	3300	700	3100	12706	0 0	0 0	0	0 0
5991	30533 30232	2500 3000	300 200	3600 3300	13206 10304	0	0	0 0	0
6141	29731	2400	300	3801	12606	0	100	0	0
6332	28027	3500	300	2400	11805	0	0	0	0
6481	31134	3000	500	2200	14207	0	0	0	0
6672	29731	2500	100	2800	13206	0	0	0	0
6820	30432	2700	400	3300	10004	0	0	0	0
7011	30933	3400	500	2300	10604	0	0	0	0
7161	31435	3600	500	3400	11505	0	0	0	0
7352	30032	2400	200	3400	11104	0	0	0	0
7501	33539	2800	300	3300	11705	0	0	0	0
7692	31134	2800	300	2800	13106	0	0	0	0
7840	31435	2400	300	3500	12706	0	0	0	0
8031	30833	2500	500	3000	12105	0	0	0	0
8181	32437	3300	500	3000	11405	0	0	0	0
8372	29230	2700	600	2700	10804	0	0	0	0
8521	35444	3300	300	3700	13006	0	0	0	0
8712	28629	2900	400	2700	11705	0	0	0	0
8860	30933	3400	400	2800	10704	0	0	0	0
9051	29831	2700	300	2400	10604	0	0	0	0
9201	31735	2500	300	3300	11705	0	0 0	0	0
9392 9541	31134 29731	3200 2200	500 700	2100 2300	13006 11204	0 0	0	0 0	0 100
9732	30833	3500	600	3700	12305	100	200	0	0
9880	33339	3600	500	3000	12105	200	4001	100	200
10072	34642	15408	800	3000	11605	400	7202	0	600
10222	44670	25924	700	11004	13006	800	6101	500	2800
10412	71679	52396	1300	5201	15208	2000	22217	300	2800
10562	102567	63039	1400	5501	13106	3300	2189200	400	3500
10752	119195	59022	2100	6401	12906	2500	19313	1000	6201
10942	149478	90687	1900	7902	18412	4901	32337	1300	7502
11091	163834	119397	2200	10004	16610	3801	24822	1100	10204
11284	240508	204656	2500	8102	23720	4801	25823	1800	13707
11431	228920	167678	2100	12706	18612	5201	51493	1400	18712
11622	259027	202728	2500	7702	21817	6702	32136	900	13106
11772	309108	223231	2700	9403	21917	7202	20415	1900	22618
11962	311050	267888	2600	9203	24321	4001	21817	2000	19013
12111	395603	207699	2300	9803	22217	16910	45472	2100	17811
12302	396528	289198	2200	13006	22217	4701	22718	1900	19313
12452	450390	282465	2700	9803	22418	4201	27126	2200	16910
12642	425957	300222	2100	8102	30432	4101	27627	1800	18412
12792	508491	325363	1100	9603	25924	4101	27627	1900	22618
12983	524038	316671	1800	8002	25723	3300	27827	800	23319
13131	487685	297057	2300	9803	24621	3801	32637	800	21316
13322	528498	369826	2300	9403	27226	3500	23119	1100	26124

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 140, Profil 1

t [ms]	27AI	29Si	31P	44Ca	57Fe	139La	140Ce	232Th	238U
13472	526424	279712	2000	7802	26925	3000	24822	1500	26024
13662	443994	299405	1600	8002	28629	2300	33539	1500	19013
13813	539083	361415	1400	7502	27627	4001	64746	1000	25222
14002	589205	303592	1400	7402	27927	2900	32637	800	21516
14151	546248	346963	1200	8102	31234	2700	43566	1300	24922
14342	561315	403828	1300	7802	30933	4001	22818	1500	26625
14492	536799	405680	1500	6902	28428	2900	66856	1800	27627
14683	564850	410412	1300	9703	26324	3500	74795	800	30032
14832	528395	419366	900	6902	27727	19613	26625	800	45472
15022	509527	389642	1200	8102	33239	4001	22918	800	24922
15212 15361	515537 496997	407943 384506	1400 1400	7802 7802	26124 27326	2800 3000	29631 35745	800 800	20114 26725
15555	490997	445232	1100	9403	26224	3000	29430	1600	25122
15702	492030	394986	1800	9403	23920	4401	78314	700	24521
15893	551649	365209	1100	8503	29831	3000	32236	800	34141
16042	460711	486650	2100	10204	32136	4201	29230	900	25623
16233	442447	400846	1400	6902	28228	6401	24120	700	19513
16381	411544	430799	1800	8102	28729	2200	25022	1400	24521
16572	397967	413293	1800	9203	25723	2500	26124	1300	24922
16722	417822	330070	5501	6902	28328	3200	54504	1100	40156
16913	461331	381733	1500	10104	30132	2400	57917	700	25423
17062	403931	464325	4201	8102	28929	3700	26024	900	25924
17253	387793	390156	1400	11104	27326	2500	22418	700	22217
17401	393958	432757	1600	7302	26825	2600	43265	1000	23319
17592	371878	384609	1700	8703	30633	3000	28328	800	21716
17753	349524	368389	1600	9503	38752	1000	15609	300	25924
17933	363876	349524	1300	8703	29530	2300	14908	500	23720
18083 18273	308904 342558	425339 396425	1500 1400	8002 7602	32236 30032	1600 1400	38652 39454	600 700	20214 22618
18421	283077	408045	600	10004	24922	1600	45673	800	61030
18612	358544	426266	1100	6501	24221	1900	16510	800	33940
18762	335903	388512	1100	10404	26825	1600	48783	900	32036
18953	373417	375881	900	5701	21917	3300	62938	800	30733
19102	359159	428429	900	8903	24421	1500	25322	700	37750
19293	341227	447604	1300	7302	27426	1100	47980	900	36246
19441	345221	399098	400	10804	24822	1500	17711	400	33339
19633	324443	366338	900	7602	27927	1500	21316	1000	48181
19783	337951	353418	800	6802	26124	1400	69971	700	31435
19973	344709	384300	1100	8402	24221	800	87467	1100	44168
20123	307474	345529	300	9103	25924	1900	17511	3100	35143
20313	317489	396014	700	6301	22618	700	124339	1100	42563
20462	309211	448945	700	13006	25022	22518	52797	1600	74896
20654	309211 320148	444303	700 600	10304	23019	4101	35143 24621	3000	97129
20842 20992	303796	382349 380809	1100	7002 7702	26825 22117	1000 7902	49987	1700 2500	106697 109317
21183	421117	393033	500	8503	22017	900	28128	2500	135944
21332	346246	512532	900	12405	24421	1700	62235	2700	114658
21523	359569	421014	600	8803	26925	1000	76002	2600	113650
21672	273187	408251	400	8503	25823	1000	20515	2600	110425
21863	317285	365620	300	7402	25723	1900	22418	1700	100049
22013	327614	378550	500	5701	20915	1700	18111	2100	86260
22203	281547	362440	700	8903	20615	1300	43165	1700	95820
22354	272576	407017	300	7802	27126	1300	22017	900	86360
22543	303081	371570	500	9403	23620	800	20114	1900	89177
22692	344300	418749	500	7802	25423	1500	19413	1600	93002
22883	373725	464015	700	6301	24421	1100	100251	800	93304
23033	396014	417410 386663	600	6702	26024	1100	27827	1600	84952
23224 23373	366953 370544	391595	9603 500	11104 7402	24822 23319	1400 3200	19613 74293	1400 1600	91089 83544
23626	415249	449564	800	7102	25022	1300	21316	1500	68363
23712	406811	405268	300	6602	31134	500	21616	1600	64244
23903	399304	405371	400	6301	26224	1500	22117	1400	68263
24053	480549	410412	600	6501	35143	1900	29230	1900	81532
24243	405371	429151	1300	6802	26825	1200	24421	2100	88876
24393	446057	402080	700	6501	26224	1000	34943	2100	134631
24584	429460	447191	1100	7002	36647	900	26124	1300	132815
24732	431108	483237	800	7302	34441	2600	21416	1300	114860
24924	425854	425854	1000	6401	24421	1200	18712	2700	150387
25073	409794	416793	300	6902	23519	1100	49385	2200	107100
25264	442035	429872	800	6602	24922	1500	63039	3100	102567
25413	448842	354648	1200	7202	27126	800	16409	1500	102063
25604	399818	339896	300	9303	29631	2000	37950	1000	101761
25753 25943	383376 445438	350651	500 1600	10304 6501	21616 43968	1200 1700	33740 39254	1200 2700	93606 87165
25943 26093	445438 464945	373212 456375	1200	9103	43968 30132	1100	39254 27927	2800	88372
26284	472796	497618	2400	8603	30933	1500	27627	2300	88473
26434	479411	491306	900	7002	29029	1100	43667	2100	76203
-				-					

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 140, Profil 1

t [ms]	27AI	29Si	31P	44Ca	57Fe	139La	140Ce	232Th	238U
26624	490478	396014	2300	10204	25523	2100	19513	1200	68363
26813	393239	439560	1700	10504	25222	1000	16710	1200	77208
26962	440694	435746	1500	10904	27226	1700	60126	1300	69368
27153	405577	438117	1600	11204	31334	1500	14607	1300	77007
27303	405371	360389	1200	5801	23119	5201	21817	700	87165
27495 27643	389334 355776	516885 388718	1900 9503	10404 8102	24922 26525	7502 2700	114557 15909	1300 700	82940 46877
27834	367774	438014	1800	12906	24822	2100	27226	1100	82538
27982	367466	489960	1600	10104	26725	2900	29230	1200	49686
28173	393547	428841	2300	11605	32236	3100	52396	1000	56813
28326	387793	373725	1900	11204	26725	1400	24421	1000	49787
28514	489650	453072	12205	11204	27727	3801	39555	1500	53500
28663	384609	452144	2100	7002	26324	3300	17210	700	52597
28854	368287	492030	1800	12105	26725	1000	20615	900	54504
29002 29194	371160 403314	427296 434097	2200 1700	9303 8903	22718 23519	2300 2300	28428 17110	1100 800	67861 42664
29344	377215	488098	1800	6602	29931	1600	36045	1100	48382
29534	388204	417410	1100	7302	26925	1400	30633	1500	54705
29684	462776	428326	1500	8302	24922	1600	34441	1100	66454
29874	408354	505902	1300	8603	22818	2300	55809	1100	54002
30023	344197	478274	1000	7402	22918	2300	26024	1600	63039
30214	384917	489650	1400	9803	24721	2100	23720	1100	46275
30364	371365	479618	1600 500	8603	27827	2200	56913	1800	51593
30554 30704	446573 353726	391903 410000	1000	9403 11104	27627 26925	1900 1200	41761 51894	2300 1100	47980 45171
30897	344402	372596	1000	12706	25222	2100	32737	900	53500
31043	396322	446882	1400	10304	24421	3500	64445	1100	51693
31234	370955	459782	1500	13306	25924	2100	44469	1400	58520
31384	394678	491719	1300	9303	36747	3600	45472	800	70674
31574	404548	427502	1700	8803	26525	2100	37349	1200	54403
31724	491099	509631	1500	10304	28128	1500	26424	1800	48683
31914 32104	393444 385122	520720 507974	1400 1200	11204 12105	27126 24020	1900 2300	29831 68464	1200 1500	60829 54504
32253	383992	454827	1200	8402	33439	2800	29631	1100	47178
32444	384300	520409	3000	7702	26925	20715	54604	1800	55909
32593	418852	457924	1200	8102	28228	10904	49586	1000	82437
32784	389334	502070	5901	7802	26224	2500	49185	1300	42363
32934	371160	503831	1100	8803	25924	1800	65148	1900	56612
33126	405680	460401	1300	9303	25322	2500	67258	2000	77409
33273	353213	436261	1500	7102	27126	9303	31635	3400	98639
33464 33614	344300 375368	439354 446057	1600 900	10004 9903	27526 27827	2600 1000	42563 58520	4301 3400	122927 128677
33804	414631	465048	1500	7202	27627	2400	52296	3901	133521
33954	360184	453279	22418	8603	29931	1000	53199	3700	151701
34145	397967	498757	1700	10104	25924	4301	22718	4001	121817
34294	445541	442447	1200	9603	26224	2000	69368	3500	123229
34484	378242	407943	500	11905	41259	2500	70373	3400	122221
34634	429975	462983	1400	10104	26925	1400	34141	3100	114759
34825 34974	444097 437086	483651 427811	1600 1000	7702 8402	26525 25723	3000 1600	40557 70574	3400 2900	113852 85153
35165	454517	533997	1200	7402	25623	1900	74996	1900	90083
35313	383376	447604	1300	7002	25723	2500	30833	1900	84348
35504	407325	423279	1300	9603	26625	1400	101761	1700	75901
35654	396014	536073	900	8202	31034	1100	93908	1800	68966
35845	421426	433788	1500	6902	26525	1100	68866	1600	72383
35994	433684 437704	441519	900	9503	28027	2500	47980 27126	2400	68464
36185 36333	421220	433375 529951	1400 900	6201 7302	30533 26224	1700 2100	45673	1800 1800	73187 55307
36525	404754	492961	700	6101	29831	1700	58720	1700	50991
36674	486857	445335	1500	9403	24822	8503	54504	2100	57516
36865	463706	451009	900	7502	25322	700	28929	1800	61432
37014	445128	506731	600	7002	29831	400	26024	1700	54403
37205	461744	419469	1000	8603	22918	1500	27927	2100	60327
37394	519062	477034	1000	6802	29330	2000	71579	1200	55809
37544 37737	523520 521342	391492 415249	600 300	7502 10004	28328 31034	3000 4501	56110 176078	2100 1900	57716 79521
37884	507248	505902	1300	10704	32637	6301	194313	2000	112138
38075	454208	468354	1000	9803	32637	12405	268805	2500	98237
38224	531818	501553	700	9003	35444	11805	367876	2500	110929
38415	471970	498550	900	7502	29931	14808	307576	2100	104481
38565	485202	440488	1300	8903	31936	12405	355981	2600	97632
38755	440282	489236	300	8703	28027	19213	271862	2900	103171
38905	448842	458956 511010	500 500	7402 7502	33840	8503	252614	2700	104078
39095 39245	415249 366338	511910 441932	500 900	7502 7802	27727 25022	8002 10204	315649 183471	2200 2000	95317 135439
39435	460918	433169	1400	12405	26224	7502	199686	1500	86863
39584	399921	398995	900	9903	30132	9203	190056	2000	78415

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 140, Profil 1

t [ms]	27AI	29Si	31P	44Ca	57Fe	139La	140Ce	232Th	238U
39775	386766	483134	1000	8302	26024	4701	148569	2900	84449
39925	376805	476724	1200	9603	26424	20915	157362	2400	76806
40115	375162	412676	1200	7902	32838	15809	143315	1300	72282
40265	416278	408457	1500	9803	29430	6902	133925	1600	61834
40455	386766	469697	2200	8102	34041	11605	4399200	1400	55508
40604	377831	468147	1100	8102	27927	9003	98941	2000	55608
40795	370031	474863	1500	8803	34341	3901	1019200	1300	53299
40945	385225	413911	1100	7502	27927	4701	98237	1200	55508
41139	383582	415043	1100 1000	7702 8402	34943 26124	6201 7202	121313	1600 1400	56311 61532
41285 41475	360082 374854	418646 444200	1000	7202	30533	3000	91492 109014	1500	59022
41624	405371	422661	700	11304	34241	3100	66555	1500	52396
41815	350446	442035	1100	8603	30933	4501	104481	1600	42563
41967	368902	474140	700	10204	26224	2500	72182	1100	49084
42155	364902	446573	800	9203	30533	4901	131200	1300	41059
42345	318818	408869	1100	11605	26224	2000	67057	1800	53098
42494	324341	435230	1400	5901	27426	2800	60227	600	40156
42685	336620	422043	1100	9803	25924	2900	57214	900	44168
42837	337951	474760	600	7002	30032	4001	89983	900	62235
43025 43175	354648 368287	504348 449771	1400 1600	6902 7802	24521 29230	3300 72081	80024 77510	1800 1600	53400 62737
43365	347578	551338	1200	11505	31334	1200	82739	1800	79521
43515	416793	429872	2200	7902	30633	2400	51693	2400	110526
43706	428429	395089	1300	10204	27226	2600	80929	3500	147053
43854	430284	438323	1600	8803	29631	4701	71076	2900	147558
44045	374957	494720	2500	11605	27426	6201	55407	2700	148366
44195	433375	417204	2800	9703	35344	5001	58218	5301	182863
44386	477241	480445	2900	11705	29430	5601	59223	3700	154228
44537	463086	412573	2900	11505	31234	14407	50288	3500	167780
44726	445747	479515	2700	12505	28729	8002	101660	3700	149983
44874	411441	480652	3400	15508	29631	8503	87568	3700	146851
45065	422249	506834	2600	11104	26024	9403	104581	3901	151398
45215 45406	460814 414014	423073 456065	4001 2700	11104 13106	27126 29530	5501 6602	128273 56010	3000 2500	136146 124541
45555	410309	480032	2300	9703	26825	4101	50188	2400	117481
45746	410309	465048	4701	9803	28929	4701	61331	2400	112844
45894	432963	529847	1500	10504	29731	4101	83946	2500	112239
46085	471866	466907	1800	13506	28428	3901	70272	1800	151802
46235	556222	501138	1900	9503	29430	3500	35644	2400	140689
46426	547390	523001	3200	12806	28328	8302	43466	3300	142709
46575	489754	446573	3100	11304	27326	5801	49385	3200	217341
46766	439766	424103	2400	9603	30933	6802	38251	3000	147659
46914	518336	557885	1700	11304	25723	6101	43968	14507	133218
47108	529224	465565	7202	12906	31435	11304	93404 58018	2600	155138
47255 47446	461331 415455	480239 492651	1300 1600	10604 10604	24321 26424	8703 10304	55307	3200 3300	138468 147558
47595	459369	459885	2000	10504	26725	6501	100955	2500	131906
47786	442241	519787	1400	7802	23620	11304	50288	2700	118691
47976	412161	534516	1600	9803	26324	14507	106193	2000	113953
48125	450080	550922	1700	8603	27827	5501	75398	1800	107503
48316	381322	502277	1600	10104	28428	6702	41560	2400	100351
48465	390156	485306	1900	9303	27426	5001	58118	1600	102164
48656	393958	529743	1400	10204	27727	5301	41460	2100	86561
48806	380295	523520	1100	7302	26424	7302	60528	2000	90788
48996	364184	506523	1300	7302	24421	3600	43667	1100	79420
49146	345426	633334	900	9403	29530	4401	110727	1400	81029
49336 49486	358031 358851	455962 514916	1800 1100	15208 10404	26625 29330	3200 3600	41560 64345	1900 700	78415 73690
49679	338155	425133	1100	9303	26224	3000	70875	1300	71780
49826	357006	530469	700	7902	34642	2600	32737	1000	57315
50016	419881	522690	800	7702	24321	4101	33840	1100	54303
50165	380295	487891	1200	10904	31334	2500	52396	1500	65851
50356	345324	449152	1000	9503	26925	2100	35444	1400	62537
50506	393342	500517	1200	8402	32437	4301	42062	1200	54102
50697	428532	465771	1100	8402	27026	3100	56010	1500	55307
50846	354136	479308	900	8903	29631	2800	69067	1200	51091
51036	416278	445438	2600	12105	30733	2000	32938	600	62436
51185	401874	513154	900	8002	37850	2600	84851	1300	49586
51378	542405	504763	1200	10604	37549	1500	30432	700	52797
51526 51716	478998	412058	700	10204	44670 34141	2100	36948 53701	1600	52095 72885
51716 51866	440797 553727	450699 407634	900 500	7002 7302	34141 34742	1800 1300	53701 62838	1300 1800	72885 97532
52056	428738	407634 415455	800	7302 8503	34742 32236	5601	53901	4401	163733
52205	471556	424515	800	7402	34241	2300	43667	5901	248645
52396	530366	470007	900	10104	35644	2000	39755	7002	251393
52546	503106	511600	1500	12005	38552	4301	63541	6401	250579
52736	524350	536280	3000	12305	36948	5201	94310	5501	250884

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 140, Profil 1

t [ms]	27AI	29Si	31P	44Ca	57Fe	139La	140Ce	232Th	238U
52886	528395	524142	4501	12005	37248	6001	99747	15008	258009
53082	544171	533790	4301	16710	37248	8202	79420	6902	201816
53225	547806	489340	4601	17611	34842	22317	98941	9303	192589
53416	561315	490581	5601	22918	41259	14607	78012	10104	183167
53611	589830	508181	21316	24120	31134	18312	106395	10704	196948
53756	560795	501345	8503	21015	37048	22718	80627	12606	204858
53948	664189	548740	7302	27627	32838	23319	100150	14307	144224
54096 54287	546248 528291	520617 467527	10804 9103	47278 35745	32337 35845	22618 26825	156048 79118	8603 7602	136550 161811
54435	564746	515641	12005	21716	29631	28829	122927	11104	118691
54626	507663	502174	10204	23319	32637	20214	122422	9903	119800
54777	487685	481583	8803	65450	30032	18312	67258	7502	135540
54967	525802	557573	7802	27627	36847	19613	92498	7502	111433
55116	530884	508802	8603	17310	33840	18512	110929	5901	112945
55307	529432	516159	7602	19714	34842	16409	84047	7802	111937
55455	573380	496273	8202	19714	48382	15108	82839	6001	114053
55648	569635	491099	5801	22918	33239	27627	109720	7402	132915
55796 55987	525594 488926	506316 455240	8102 5001	18512 17811	39053 36246	10504 9903	48382 50188	5301 4801	125448 117179
56136	518440	468767	5101	16910	40056	13707	48582	5501	120103
56327	530988	533478	3700	19213	38251	13306	64445	4401	108611
56478	484892	531507	4001	19013	41460	36346	66253	4301	108813
56666	514501	538045	3600	15208	35745	7602	44770	3901	111634
56817	489340	458543	7102	15408	52597	11304	50589	2700	101358
57007	470110	509527	3000	12405	33740	5201	42764	4601	84449
57157	449977	526009	3801	13106	37048	6902	44770	3700	94411
57347	452969	577023	18612	10104	35945	5301	61532	3300	83544
57496	401566	497308	1900	12806	29029	5901	65550	4001	91794
57687 57837	388820 364696	443066 468147	3400 3700	15609 11204	48382 31334	6501 4901	49486 42864	3600 1900	84952 84348
58027	397247	556637	2500	11905	29631	4101	61934	3200	88473
58218	418131	471970	1900	12205	32537	5501	74594	2000	88473
58367	455549	538356	2000	10604	32537	3801	66856	1400	82437
58557	489547	483858	14407	12205	29931	7202	58620	1500	64244
58706	413190	531092	1800	19013	32637	6201	58118	1800	76203
58897	445232	444922	1500	8703	25322	3901	32437	1500	69770
59049	422043	448223	1500	9403	28528	3000	56712	1900	58018
59237	397350	461124	1200	8603	27126	4201	49887	1600	49084
59387 59577	463706 428429	445541 426369	1800 1300	12205 11304	32337 33439	2700 2800	54504 103675	1900 2100	61834 55307
59727	442035	516263	1500	10004	35243	4001	36346	1500	56612
59917	447707	527461	1800	9203	35243	2400	72885	1700	57014
60067	484582	512221	1000	11304	34141	3801	40758	1700	58620
60257	475070	480445	2000	12505	30733	4701	54905	900	62637
60407	450802	433891	1100	9903	31034	3500	57014	1800	56110
60597	452453	514397	1400	8903	30533	4801	98438	900	50790
60746	415660	506109	1400	17611	33339	1900	2449200	2000	56010
60937	426781	415352 481169	800	9403	38752	2800	30533 34441	1700	48181
61087 61277	452556 464532	424412	700 2200	8503 8102	30733 36747	2200 3000	24822	1500 1100	41360 46475
61427	365107	432036	1800	9503	30733	2300	48883	300	39354
61618	399406	399406	1300	7402	30833	2200	43165	1200	45071
61766	384403	494617	1000	9603	28328	2500	71478	1800	35845
61957	436777	499689	1200	7102	36045	2900	40758	1300	45974
62107	429151	468560	1400	8302	29130	2000	34943	1300	43265
62298	449667	468870	800	8603	29430	2300	114255	1000	54403
62447	462363	476827	1200	8002	30733	3100	55307	1200	38452
62638	506316	521342	1100	13006	29631	2500	41761	1600	37349
62786 62977	442963 397042	493375 422043	1200 1400	7402 7702	34542 32437	4001 1300	45372 43165	1800 700	37449 34441
63167	394267	432757	1700	12405	34542	2900	63541	1200	31535
63319	478584	439457	1300	9403	41059	5601	87065	800	36948
63508	414219	477757	15208	8803	29631	1800	39956	1400	34141
63657	465255	462363	1300	14207	28629	2200	44971	400	29330
63848	411750	488305	500	7102	25924	1400	30733	1100	67660
63996	340101	491306	600	8002	24221	1600	34041	400	27526
64187	350856	403828	1100	10404	25623	1900	42965	1300	25523
64337	385738	506420	1200	8402	24621	14708	39454	600	24521
64528	329865	384095	1600	7202	26024	3000	1279200	100	18712
64677 64868	335698 352188	350036 414837	1000 1300	8803 6802	25022 22718	2200 2200	68464 44569	1100 500	22317 36146
65016	341842	439972	1200	7802	23319	1600	30032	600	29029
65207	367466	416381	1600	7202	23519	1900	46877	700	25423
65357	331707	413705	1100	8002	23019	2600	61432	800	24521
65548	310232	424309	1300	8302	20815	1300	36847	900	22418
65697	333447	449564	1000	8202	27026	1900	20615	800	24822
65890	337234	419984	1100	7102	25122	1900	24721	500	26024

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 140, Profil 1

t [ms]	27AI	29Si	31P	44Ca	57Fe	139La	140Ce	232Th	238U
66036	326591	488512	1100	6902	23019	13006	71880	600	20014
66227	303081	401771	1000	7102	28528	2300	51091	1300	23219
66380	331707	529743	1000	7102	25924	4301	57616	1100	31134
66568	397556	398995	700	6902	28228	7202	94814	900	24822
66718	350241	445747	700	7902	22418	6101	34441	700	29931
66908	332935	526424	900	8903	23419	4001	61834	600	21516
67056	331605	425648	400	10204	23419	3700	41159	700	23219
67248	287667	423073	500	8302	25623	3400	120607	700	21917
67398	305533	400229	400	7202	24521	3300 3400	57014	300 600	19413 20415
67589 67741	296853 251596	382144 314320	600 600	6702 7102	31936 22418	4301	29230 23019	1100	19613
67928	324238	354853	800	7902	21817	3100	35143	500	19313
68077	265647	404857	800	7502	23519	38652	21716	1000	22317
68268	275736	366440	900	8202	23720	2500	28528	700	15909
68458	338974	360799	700	5101	24421	2500	47278	1100	16710
68607	268602	346656	800	5401	21917	2100	51091	1100	15909
68798	317898	433066	900	9003	21116	2000	80124	800	14407
68947	256991	390567	1000	7802	25623	1400	94814	300	14507
69138	243355	401977	400	7702	23620	1300	55508	700	15709
69287	268907	384403	500	6702	26024	2400	23720	200	12505
69478	285627	490685	300	9203	24922	1600	35444	600	25623
69628 69818	296546 285117	435643 483030	700 300	5901 8703	27927 23720	2300 2000	44369 74594	300 500	12505 12906
69968	269417	423176	900	6501	24822	2200	37950	600	13006
70160	256380	384198	600	7402	26925	1300	33439	500	11605
70307	251189	396631	500	8603	22818	2900	27326	500	11004
70498	237051	375983	700	7302	23620	1400	80526	700	10604
70649	243559	425339	1100	7402	26024	1400	24321	700	11304
70838	250680	376805	600	6301	26124	2500	56612	500	11204
70988	244881	320761	700	6101	20014	2100	56712	200	8903
71178	238474	409383	100	7302	24221	1600	22017	400	10904
71327	231562	443169	700	5901	27226	2100	25122	800	11605
71518	220387	371673	300	7602	34341	2000	56010	500	17511
71668	250171	461950	800	9203	29130	1400	80929	1200	11505
71859	240914	432242	700 400	7702	24721	2500	35243	600 400	9203 13206
72008 72199	287667 289810	402800 431314	300	7102 6201	29029 27226	2600 1700	97230 71880	900	10904
72347	299303	412676	700	8503	35845	1800	44770	600	12005
72538	291545	369826	800	7202	35043	800	31435	500	11204
72691	310948	341022	1000	7002	25423	3700	42262	1000	11805
72879	345017	341534	500	5601	30733	1500	34341	600	9903
73068	300222	319432	700	7002	31234	1800	79822	200	8703
73218	323829	362132	800	7102	32437	1300	38853	700	9603
73409	324238	338463	700	7302	29731	900	24822	1000	7802
73557	326386	427399	400	5801	29330	32938	23319	500	9403
73748	354751	403005	1100	6501	27226	2300	70574	1000	7002
73899	306554	409692	1000	7602	27927	2200	64746	700	7402
74089 74238	309313 297873	436261 420808	600 1400	7302 8503	30232 29731	2300 4301	89077 100452	500 300	11905 14808
74429	323215	423897	800	7002	25623	2600	1149200	800	8002
74577	376599	364286	900	7302	24221	2300	35344	1000	7602
74768	284097	321477	5101	8703	27026	2200	70674	800	8903
74919	263712	403622	800	6101	25924	2500	47178	300	7202
75109	345221	451628	600	7802	22618	45673	33339	700	9303
75260	295525	422558	500	6301	27326	6702	32236	500	6802
75449	299711	408869	1300	6802	21516	2900	59624	500	6802
75597	265342	342046	1200	5801	25122	1800	65952	400	7202
75788	251291	335391	700	7602	26525	1800	32236	600	8102
75939	228920	310641	500	7002	21316	2000	43065	500	5601
76129	253428 250782	368902	200	4501	20515	700	54705	500	7202
76279 76469	250762	341432 358851	800 900	7902 7802	23219 23920	18913 1500	26625 45773	1100 900	9103 8703
76617	289810	427193	800	6902	23219	1500	33840	1200	11905
76809	266870	430387	700	8002	23519	1800	29631	1200	11104
76959	255769	347782	500	7002	25423	1900	60729	1400	8302
77149	276857	391800	400	6802	26024	3000	1409200	900	8703
77299	299099	366440	600	5901	22117	3700	28629	600	6602
77489	255362	283383	400	8202	22217	24621	37349	900	8503
77638	254446	307985	800	7602	24421	1600	104581	300	6501
77829	261675	346451	500	7902	28428	1200	52797	1000	8102
78018	285015	392108	400	7102	26324	1100	41259	1100	19714
78168	262897	329763	300	6301	21917	1200	34842	900	7202
78359	263304	365927	200	6401	22418	1300	47378	500	7302
78508 78700	257296 255871	367261 324545	700 400	4901 7002	21716 28929	1900 2800	38652 40056	200 700	5401 7302
78848	278080	388307	700	6602	20929	2000	39655	800	7302
79039	256889	400640	900	8202	25823	2300	27026	1000	8002
				-					

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 140, Profil 1

t [ms]	27AI	29Si	31P	44Ca	57Fe	139La	140Ce	232Th	238U
79189	296342	413808	700	7202	24120	1600	1279200	400	5301
79379	245898	419881	300	9103	23720	7002	58620	600	5801
79530	260351	365004	800	6802	24822	2500	41059	800	8202
79719	264832	354238	800	8503	24922	2200	47980	600	5601
79868	264119	410926	1300	7802	23519	1500	32637	1000	8603
80059	302060	384609	1000	8202	20915	32838	84348	1200	5501
80209	283281	423691	1000	6802	21316	3100	63039	1200	8703
80400	267685	356801	1400	5601	23419	3000	63842	1400	7002
80549	252003	432551	1300	7602	25924	33740	38452	800	6602
80739	259842	436673	3600	11505	23720	2300	63139	1000	5201
80888 81079	248950 277061	315751 370955	900 1000	6001 9503	25122 21316	3300 2300	56010 31936	1000 1200	4401 5601
81229	250884	341944	800	8703	56311	2200	42463	900	6301
81420	272882	371057	1400	7402	30032	7102	36346	500	3801
81569	248543	336620	1200	9403	23119	11004	78314	900	4501
81760	237559	453485	1000	9203	22818	14207	59423	600	4401
81908	253021	313707	800	14307	22317	30432	126861	1300	4801
82100	229936	341125	800	7002	24120	30733	122523	1100	5901
82249	242745	344812	1000	8503	23519	31034	110526	1700	4001
82440	215513	358441	500	8102	23720	35644	104884	1100	3700
82589	258824	385841	900	6101	18412	37349	119195	1800	4501
82780	259129	368287	600	5301	21116	37650	101056	1300	4301
82931	250579	351983	1400	5801	22518	34141	116473	1600	5201
83119	272372	404857	500	8202	22718	32938	134530	1400	4301
83309	269824 269519	350856 409486	900	7202	21917	30432	107402	1500	4701 3200
83459 83650	241118	416175	1000 1100	6602 6301	20214 23219	31835 25322	145134 93606	2100 400	5200 5101
83799	241116	397659	900	9703	20014	54102	73891	1500	5101
83990	228818	381630	1100	5501	19714	20114	102164	1400	4101
84138	261267	380706	600	8202	16710	19413	68363	1000	5201
84329	243254	337234	800	6401	23219	20114	68263	800	6401
84479	246509	346963	500	6401	21616	15308	71981	800	4401
84670	241423	379679	500	6001	18312	19013	65450	600	5301
84819	240406	299711	600	7902	19513	14307	72182	1100	6101
85010	236949	288790	700	7002	19714	15208	63240	800	6401
85158	277673	353316	500	7202	22818	12205	47579	1100	4901
85350	271964	416896	700	9103	22618	17110	44369	700	5601
85500	262999	350241	500	6201	22317	9903	74896	700	8002
85690	297363	382144	700	5301	22518	11805	42664	1000	4501
85840	269621	407531	1400	13006	22017	8302	41661	1900	7802
86030	335391 298792	349217 375881	1200	6101	22017 19113	6602	37248	1100	7402 6702
86179 86370	289606	500724	700 800	9403 7902	63441	8402 8102	77409 65952	700 800	10004
86520	365414	437189	400	7002	20615	6101	40658	1100	10904
86710	384609	372186	500	6201	24321	5801	92800	500	7802
86860	294709	389745	700	5301	22718	4701	37048	1000	10004
87051	345324	371160	1000	7202	21416	4701	30733	1000	5901
87199	308087	328739	400	5501	24421	3200	45673	900	6301
87390	299609	316262	1000	5901	25523	4901	34642	700	5801
87540	313298	355263	900	5801	22217	4101	21216	400	5201
87730	280833	420705	900	7902	22217	3300	96827	300	4601
87880	294198	431417	700	6802	20415	2200	39956	900	6501
88073	309824	323215	500	6602	18512	6702	22317	600	6702
88260	284913	350754	1200	8102	20114	2800	26925	900	5001
88409	349319	365004	1100	7902	21116	3400	27226	200	6001
88600 88749	262897 324238	345938 345426	800 800	6602 6201	21616 30232	2000 2500	30332 20114	300 600	7702 6602
88941	249764	356391	700	7202	22317	2200	20114	500	6501
89090	274920	398481	500	6201	20515	2200	34041	600	6201
89280	247017	386355	900	8002	21416	5701	49586	900	6401
89429	263508	386868	700	6401	21716	1700	58419	300	4801
89620	261573	364389	600	6401	20314	1500	19013	1300	7102
89771	251393	372802	800	5901	20515	2000	19814	700	6201
89960	282567	332321	800	6401	20214	2600	61633	400	6201
90110	247628	424824	600	6802	19413	3500	1279200	500	6101
90300	243254	325363	1300	8503	21015	2300	37950	400	5001
90449	275940	424000	600	7402	22117	1100	38051	500	7702
90640	289096	457614	1000	7102	21216	7602	40858	400	5501
90790	298997	363978	1000	7102	19814	2000	53199	600	5701
90981	331809	322806	600	9103	27927	2200	26424	400	5301
91130	296955 330377	344914 381322	800 1000	8302 10304	27627 23119	1800 9703	32737 135641	300 1300	7702 5501
91321 91469	330377 368595	381322 335903	900	8102	22718	1200	87568	700	4301
91469	352291	320454	1200	9403	23519	2300	36446	300	5001
91810	386766	372494	4101	7102	26825	800	23720	700	18812
92001	323420	337541	600	7402	26725	1600	23419	700	5101
92150	290729	355673	700	8503	23920	3300	53199	500	5501

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 140, Profil 1

t [ms]	27AI	29Si	31P	44Ca	57Fe	139La	140Ce	232Th	238U
92343	319841	463602	900	7502	23519	2000	35544	700	4101
92489	307167	356493	500	5701	25322	1500	35644	400	3400
92680	324954	322909	400	6201	25022	2200	36446	300	4101
92830	363773	363055	700	7402	23820	1600	39454	500	6401
93021	419263	399201	600	5301	24120	1500	25823	600	6101
93170	390670	393033	500	4801	24020	1700	50389	300	5701
93361	430181	419263	800	6602	25423	1600	56712	1000	5701
93509	415660	350344	700	6101	23519	900	30833	400	6101
93700	431417	359569	600	7002	23519	1900	56913	400	5701
93890 94040	412264 413293	351676	2900 900	8002	30332	4401	37349 28328	900 1300	8703 9103
94231	429460	364286 387690	600	6501 7902	23720 24020	1500 2400	25924	500	15909
94380	446263	337746	600	8302	25523	1800	42463	1400	11605
94571	415455	357313	1100	6902	22117	1400	62938	1700	12305
94719	409383	330377	800	5901	27326	1800	63340	600	7302
94911	415043	336006	1200	6702	22818	1900	114961	1000	10304
95061	477447	402080	2800	6401	29230	1500	44971	900	8302
95251	470317	344812	800	6501	25823	1700	98438	1200	10204
95401	508181	327409	100	4301	23820	1800	113247	900	9703
95591	510253	353726	400	6802	27126	2200	98337	1200	9903
95740	510460	325057	600	5701	28027	1400	78113	700	7702
95931	575358	408869	800	5601	33740	3801	64646	800	9503
96081	606194	429975	300	8002	34842	2300	52396	1500	9603
96272	533582	330991	300	6802	31735	1300	69569	800	9903
96428	507766	421117	800	7402	27426	4601	38151	400	6802
96613	459472	344812	700	6802	27026	1400	49486	600	7902
96760	483961	396528	1100	7502	27226	2500	50389	400	7802
96951	425545	356391	600	7102	28629	1000	46275	900	7002
97101	386663	302877	900	6501	28929	1600	33840	800	8002
97291	429048	482617	500	7502	22117	1700	34141	300	9003
97443	367158	365825	300	6201	27927	800	78113	400	6802
97631 97780	363978 376189	387382 380603	800 700	8002 8402	24922 22317	2000 1600	86662 51593	8202 400	5001 7702
97971	392931	407222	500	7802	26024	700	39956	600	6001
98121	341534	412264	500	6201	23820	1100	48683	500	6501
98312	318307	347680	700	7202	24621	1400	42062	400	4801
98461	300732	356903	800	6301	23419	1500	46275	200	7402
98651	296750	372391	600	7002	22117	1200	60327	500	5301
98800	322295	411132	700	7302	19814	1000	29029	100	5001
98991	291341	346860	300	8002	27126	1600	27526	900	5101
99182	300324	355161	1400	6001	22518	900	33940	400	5301
99330	265749	351881	500	5501	21917	2500	2579200	500	5001
99521	297771	376805	800	5801	19914	1000	65450	500	3700
99670	270028	358031	600	6501	24521	1900	30432	800	5501
99862	257602	466907	700	6201	20014	800	28829	400	4701
100012	277571	352803	800	6902	23620	1900	31635	600	3901
100201	249561	348602	500	5101	23019	1100	39354	500	5801
100351	259231	368697	700	7802	22217	1700	39454	300	4501
100542	256889	395294	700	6101	23019	200	49486	400	5401
100691	289504	393239	400	6902	21316	800	20615	500	4801 5301
100882 101030	256584 255464	363773	6301 500	8803 8402	20515 21516	4401 1000	28027 7909200	600 500	4301
101030	251393	407017 360799	500	6501	18312	1300	61733	500	4701
101221	259129	373007	1000	7902	21416	800	114658	200	4501
101562	273391	385225	900	6902	21817	1300	1409200	500	5101
101714	256889	353828	200	6602	20415	800	20415	800	5901
101902	253937	380911	200	8102	19714	1000	31735	300	6101
102050	277571	362030	400	8202	23019	1500	86964	700	7802
102241	280528	293994	500	7402	23419	34141	19613	400	5401
102391	249154	345631	400	5201	21917	1300	22017	400	6301
102582	263406	373417	1000	7402	23419	1200	43867	500	4801
102731	232781	337746	500	8102	21116	600	22918	400	6101
102922	249256	335084	400	4801	24421	900	73991	600	4401
103071	267379	350856	1200	7202	19613	1600	27426	300	5401
103261	223027	335801	1500	7102	21416	1100	20915	1000	4201
103412	209931	324852	800	7202	20114	900	79118	400	3801
103602	220692	323215	600	5101	19113	1600	21516	700	3901
103751	272678	313298	400	6902	17411	1400	28428	400	9303
103942	243457	328842	700	5301	18412	1100	33339	600	5501
104090	217442	362132	800	8402	18512	1500	63943	400	6301
104283	235322	308904	800 800	5201 7102	18512 20114	1500 1700	70272	400 400	6802 4201
104471 104621	232781 227396	341739 300222	400	6001	19313	600	55809 91089	400 600	6301
104621	234001	300222 417307	1000	7102	19313	1000	101761	400	6201
104612	234001	354238	600	5901	22618	4501	7779200	300	4001
104961	250273	404548	1500	6602	22217	1300	49686	700	5101
105301	246407	395294	400	8302	20314	1000	4529200	800	4401
-	-	-		-	-				-

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 140, Profil 1

t [ms]	27AI	29Si	31P	44Ca	57Fe	139La	140Ce	232Th	238U
105492	274207	406400	400	5901	23019	2200	22518	400	4601
105642	286341	352188	400	5801	26424	2500	96928	400	4701
105832	299303	395500	600	5101	25222	1200	41661	600	5401
105982	309211	375060	400	6201	22418	1200	29029	400	6201
106172	318307	343378	200	5401	26925	2900	23519	600	6401
106321	329251	389129	400	8703	30032	1500	56210	400	6401
106512 106662	357313 449255	409177 441519	400 900	8903 7902	32537 31435	3500 2500	65148 77208	900 400	10704 6101
106854	413190	545936	800	8803	33439	3000	52396	100	5801
107002	409074	498861	900	10004	31134	2500	59524	1100	5301
107192	450802	462363	1200	8002	27727	4101	41059	300	5801
107341	371468	386766	600	7102	25122	16009	31835	300	6902
107532	357928	369723	500	7302	31435	1300	45272	400	5001
107682	369108	501345	600	6802	28328	1000	29330	400	5301
107872	334265	489340	800	9203	32838	1400	36647	700	5801
108022	378653	422661	700	5801	25623	1700	34141	700	7202
108212 108361	446779 551442	448636 537215	1000 1000	8703 10704	28428 42162	2200 15609	50690 57415	600 1000	8402 10504
108553	613496	480445	2400	11605	45171	16910	136650	2700	13506
108741	1409832	497826	2500	14908	73288	34441	219575	2100	18812
108891	1739232	549156	2300	72986	75097	58720	242745	4101	13807
109082	1958832	547598	7502	25022	117985	57415	1019200	4401	15208
109231	1629432	595352	2200	34542	107604	75901	12329200	7602	13606
109424	2178432	646610	10504	38051	102869	84047	1279200	5801	16009
109571	1190232	663666	3100	78616	65048	79420	345221	4701	12205
109762	1519632	1188064	5201	58821	67057	86662	323727	3801	14107
109912	2068632	662828	1800	71076	100049	88574	1799200	5001	12505
110103 110252	1739232 1739232	563499 487891	10804 1400	94210 98539	99948 72684	122927	345017 3489200	3400 5501	14607 9103
110232	1080432	534205	2300	96559 84147	99646	75801 102365	345631	3901	15508
110591	1080432	534309	1900	139074	113751	60126	1539200	4401	14908
110782	1409832	650166	2200	113650	94008	69167	444922	3801	20515
110932	1739232	624561	2400	106999	85052	71177	1669200	5201	18812
111124	1300032	1188064	3100	103171	78113	89882	1669200	6301	31034
111273	1958832	1078464	2400	148265	142406	56612	430181	10204	55909
111463	2068632	1297664	19613	105790	78515	49185	1279200	10104	71378
111611	1958832	1188064	2300	84348	79420	35344	241016	13506	69268
111802 111952	1739232 1958832	1407264 1516864	10304 3200	75600 68363	84147 93203	31234 47679	348397 1279200	13106 10404	88372 104380
112143	1739232	1297664	3000	102970	95203	49084	306554	9503	82940
112293	1739232	1297664	3600	59423	71478	26625	323727	11405	137963
112483	1629432	1297664	2900	71177	72383	29430	270741	10304	91190
112631	1629432	1188064	3700	52697	67358	43968	250884	9003	104380
112823	1739232	1188064	3700	88674	79018	32737	2189200	10804	85656
112972	1519632	1297664	4301	46074	82638	16009	3619200	9003	80024
113163	1519632	1407264	3200	42363	79118	24721	6089200	9103	73589
113313	1629432	1188064	2900	42864	76002	19613	222113	11905	72785
113503 113654	1519632 1190232	1078464 1297664	2700 2400	38051	63139 61432	76002	160294	7802	84147 69770
113843	1519632	1078464	2900	58520 27426	60227	24621 43466	2059200 167172	9203 6201	73991
114032	1080432	1407264	2300	30533	57214	14507	197050	5901	64144
114182	1190232	1297664	2700	29430	56512	11905	146043	5401	58620
114373	755039	1188064	3100	24721	49486	12606	227802	5801	51392
114522	713168	1078464	2400	25823	58018	11304	1409200	5401	42965
114713	608385	1078464	5401	23219	47980	10404	146447	4801	41962
114862	533893	1078464	2600	41360	48382	8302	168387	3700	41159
115053	565474	1188064	2400	21516	43667	23219	113046	4101	40758
115203 115394	596082 479722	1078464 529639	5501 1100	20615 20815	47178 32938	13606 8603	100251 95518	3700 4001	45372 31735
115543	467630	551753	1900	18712	34943	7602	99546	3801	36948
115733	420705	534412	2500	15909	34943	6101	81934	3600	27627
115882	421220	587122	1800	17411	38552	22718	169601	1900	22117
116073	422867	516159	1800	14507	35845	5001	118994	2300	23019
116224	377626	556845	2500	13506	38853	4501	2319200	1300	17511
116413	346348	493789	400	10704	30432	1539200	126962	2100	18312
116563	334163	527565	2700	13106	29731	21716	84851	1800	17511
116753	353521	504866	1300	33138	29430	7902	78113	900	19814
116902	385944	519891	1100	16009	31936	5601 4001	85153	2700	14007
117093 117243	333651 263814	432551 438117	1200 1000	10104 11905	32236 28228	4901 6902	116977 105589	1600 2400	14607 12606
117243	285525	438117	1400	13106	28228 43667	5001	93002	900	10904
117433	282363	472693	900	13206	27426	3600	1149200	1300	13907
117773	284301	407222	1600	8603	26324	2800	88071	1400	11505
117922	326182	498240	800	17511	25122	3400	116372	1300	18011
118113	302162	436983	1400	10804	24321	3500	78214	800	12706
118263	290116	400949	800	10304	26625	3300	92096	1100	11905
118453	300120	404445	700	9403	27627	2000	69870	1900	9903

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 140, Profil 1

t [ms]	27AI	29Si	31P	44Ca	57Fe	139La	140Ce	232Th	238U
118603	277978	381630	500	7202	26024	6101	45874	1000	12505
118794	274410	399715	1100	9203	24621	3901	55508	1500	13306
118983	273799	397453	1400	9103	23119	2900	59423	1600	14908
119132	293178	402491	800	9503	22217	2900	37750	1900	15208
119323 119473	326284 336722	476620 512739	1000 1400	10004 9103	24822 27426	4301 6602	45673 49686	2600 1200	17310 16409
119473	317694	469800	900	9803	25022	10404	58520	1600	20715
119813	385841	496273	1000	11905	28729	8603	129888	3801	18812
120004	347373	419057	1600	8202	24721	15508	76303	1800	16109
120152	331195	429563	1000	9903	25322	27026	141497	1700	15208
120343	292872	445850	800	8503	26625	34241	1539200	2600	11405
120494	294811	392931	800	9403	24521	45372	134430	2500	12806
120684	272474	435333	200	8302	26525	52797	159485	2300	12205
120833 121024	289810 270640	381117 378037	400 1000	9003 7102	24321 21917	49887 68162	171827 163935	2300 2100	10104 11805
121172	306350	466288	1000	7702	24321	54102	187725	2500	10604
121363	308189	438529	1300	7102	31334	64345	1799200	2100	9003
121513	305941	382863	1000	5601	30633	41761	140184	2200	9703
121704	315649	414014	1100	8302	23119	42463	208206	2400	10304
121853	297771	430902	600	8703	23720	42965	164744	1900	13006
122044	316876	398687	1000	7002	23119	35043	171422	2400	8503
122193	377010	398378	600	6501	30733	33940	186915	1100	8302
122384 122533	342456 333242	432860 417307	600 700	8503 7502	29230 27226	27827 28027	188637 121010	2200 2900	9303 10004
122724	343071	464325	600	8002	26525	22017	139680	1800	11304
122874	359159	424412	600	7902	28428	27627	105790	1400	8402
123065	332423	364799	900	10604	28128	16910	89681	1700	10404
123212	432757	432654	700	9503	28829	23219	96525	1000	10204
123404	352188	454724	1800	9403	26024	15408	60528	1000	8603
123554	386047	386355	2100	10604	32136	16009	148670	1200	8402
123744 123936	337439 320557	457820 417925	1800 1800	9403 8903	23720 24120	13506 11204	84047 106596	1600 900	10204 9203
124083	319227	369313	34441	8402	27927	11905	57516	1600	9103
124275	276959	385122	1600	9103	22518	9203	60930	1000	8202
124423	285117	346451	700	11304	26424	7702	113348	700	7002
124614	288994	393136	1300	5901	23019	7602	75700	900	10904
124764	292361	393547	600	10004	23820	8703	92398	1100	7702
124954	323625	372186	1300	6501	21716	12105	132512	700	6501
125104	277571	337951	1300	10704	23920	7602	71076	1700 900	8002
125295 125443	289198 296444	412573 353418	1300 900	8803 8102	22518 24721	6501 4501	1019200 48281	1300	8102 6201
125634	329865	363466	1300	9203	19714	6301	41059	800	10204
125784	301549	361415	1600	8302	23720	4601	62737	500	7902
125974	312072	339384	1100	7702	21116	3500	40557	1100	6001
126124	287769	301345	1100	8202	23319	4201	45171	800	7802
126314	267481	318512	1000	6101	19914	5101	85958	1200	6602
126463	254751	371365	800	9003	22217	2700	67057	900	7902
126654 126804	268907 296853	309721 315649	600 600	6902 6702	26224 23019	3801 3100	33439 39053	900 1000	7902 6902
126995	276551	398687	800	6401	25022	3600	59323	900	6702
127144	267379	381733	1200	8302	20615	2200	76806	1000	6902
127335	253632	361415	1700	6001	21316	3500	62034	1700	7102
127483	238677	343890	500	8703	23019	15408	54705	900	8803
127680	265240	373110	800	7702	21917	3600	29831	1100	9003
127824	251596	281241	600	7102	19113	2100	26725	1000	6902
128014	248645	363978	600	6201	20615	2700	34041 24822	500	9703 8302
128164 128355	244576 270640	357211 355673	400 600	6101 5201	21216 22017	3100 2300	38351	1800 600	7402
128503	289708	332116	600	6802	22918	1800	37850	700	10504
128694	308904	451731	300	8302	22317	3000	24120	2000	10404
128884	261267	328637	1100	7002	20915	2200	28528	500	9403
129034	259027	299711	600	5801	18512	1100	28128	900	9603
129225	237966	301141	800	6602	22618	1700	64043	800	8102
129374	240508	365107	700	5701	22418	1400	28128	800	7202
129565 129713	253937 258722	312276 365620	600 700	7502 7102	20314 23820	1300 700	1019200 48382	400 1600	7502 6602
129713	283995	329660	800	7102 7602	23620 24822	1600	40302 54905	1300	7002
130054	322806	306656	600	5101	24822	900	30132	400	6101
130245	289198	310028	700	6001	22017	1300	24521	400	4801
130394	327819	333754	900	7602	22818	1500	39454	900	7002
130585	342968	387485	700	7002	25122	1200	55407	900	4801
130736	319739	416793	600	7702	20915	1700	29530	700	4701
130924	328944	358236	500 500	5601	21516	1400	36547	600	4901
131074 131265	353316 321068	339589 356391	500 300	6802 6401	21316 20515	1000 1500	23720 24621	600 800	4801 6501
131414	278998	382041	400	4001	22117	1000	38752	500	4301
131605	334368	327409	900	6902	24922	1700	29731	100	5101
	23.000	50		JUU <u>L</u>	v	50		. 50	0.01

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 140, Profil 1

t [ms]	27AI	29Si	31P	44Ca	57Fe	139La	140Ce	232Th	238U
131753	275532	296036	600	7102	19714	1700	60729	400	4401
131944	264527	332321	700	6401	23019	2200	35845	200	4201
132094	258416	339691	400	6201	23019	2100	43366	700	4201
132285	301856	342354	1000	6602	20815	2100	59122	200	3901
132435	260860	303796	900	6501	21316	1500	87970	600	4301
132625	262082	320250	1000	7002	20214	16109	134530	800	5801
132773	264832	337439	500	6902	22818	2600	2319200	400	4801
132965 133115	271557 302775	357928 369005	500 500	5601 7202	23019 19013	3100 1800	3489200 45372	300 600	5101 4101
133308	252207	322500	700	5101	24822	1600	84751	700	4401
133455	222418	249459	400	20715	17811	2800	38151	300	2800
133645	228716	283077	900	5101	20715	800	54504	600	3300
133835	228716	270334	300	6001	18312	1700	30032	100	6201
133984	307167	188232	600	4101	17411	900	36547	300	2600
134175	170714	212570	200	4401	18212	1900	43366	200	1500
134324	140992	155845	600	4401	14307	3000	1539200	300	2700
134516 134665	137559 120002	171321 131906	300 300	4701 3801	16710 15008	1200 900	21015 40457	400 200	1700 3500
134855	120002	125650	600	3801	14207	900	15008	200	2100
135004	94210	139175	700	5101	15809	1400	26525	200	2100
135195	111937	83141	500	4601	14708	700	16409	300	1200
135345	86561	100049	200	4601	16209	200	15408	0	1200
135536	82538	73288	900	5101	15909	800	22818	100	1100
135692	76404	61633	500	3400	15308	100	38752	0	900
135878	70574	48482	300	2900	15609	700	11405	0	700
136024	64043	52898	200	3901	13006	600	6401	100	1100
136215	70976	56913	500	2400	14107	400	7702	200	700
136365 136556	55708 54002	35845 31835	300 300	4101 2800	11705 14107	400 200	7102 4301	100 0	1000 400
136705	55508	40858	400	3500	12606	200	4101	100	400
136895	47378	37950	800	2400	11705	300	4801	0	800
137044	49887	42463	400	2300	13707	100	2500	0	400
137235	42563	24321	300	4101	12405	200	4901	0	300
137385	48382	21917	400	2800	15308	100	36948	0	500
137576	39354	27927	600	3100	12806	0	2800	0	200
137725	43566	18712	400	2800	11304	0	2700	0	100
137916	46676	15108	300	4001	12606	100	2200	100	500
138064 138255	39655 42764	19513 11304	500 400	2600 3700	14007 12005	100 200	1800 800	0 0	300 100
138405	40959	10604	300	3200	12003	0	1600	0	0
138596	37850	16810	200	3901	12305	0	1400	0	300
138745	38853	9303	300	3500	13606	100	600	100	100
138936	38853	11104	500	3000	10304	100	600	0	0
139084	35845	8402	800	2100	13406	100	800	0	100
139275	31936	16510	200	3400	11705	100	1300	0	0
139425	33740	7502	300	2000	11905	0	800	0	0
139616 139809	35143 34642	8803 8002	600 300	3400 3000	13006 13206	300 0	600 500	0 0	0 0
139955	37349	7402	500	2400	12005	0	500	0	100
140148	35544	5101	400	2500	12005	0	800	0	0
140294	34341	6401	300	3200	11104	0	400	0	0
140485	34441	3400	400	3500	11405	0	300	0	100
140635	29831	6501	300	2800	12205	0	400	0	0
140826	32838	4401	400	2300	12405	100	200	100	100
140975	37449	4901	300	4101	12305	0	500	0	0
141166 141314	38051	4401 3700	300	5201 2800	12505 11805	0 100	200 200	0	0
141514	32838 33038	7402	500 300	2700	11405	0	300	0 0	0 0
141655	32236	3300	700	3000	13707	200	200	0	0
141846	33339	3500	500	2900	10204	0	200	0	0
141996	33740	4901	300	2700	12706	0	200	0	0
142186	30132	4601	300	3300	13506	0	100	0	0
142335	32136	3100	500	3700	12505	0	200	0	0
142526	33740	4701	200	2900	9403	100	100	100	0
142678	33740	3500	600	4501	12606	0	200	0	0
142866	29530	3400	700	2800	10404	0	100	0	100
143016 143206	31334 31234	3500 2600	300 400	3600 2900	12205 11204	0 0	0 0	0 0	100 0
143355	32236	3400	300	3100	11505	0	0	0	100
143546	33138	2300	400	2200	10604	0	200	0	0
143705	32537	2600	900	3500	10404	0	0	0	0
143886	35143	3000	200	2700	14107	0	100	0	0
144036	31835	3200	100	2100	11905	100	0	0	0
144226	31936	2200	700	4101	15709	0	0	0	100
144376	34241	3901 3500	300	2000	12806	0	100	0	0
144566 144716	33038 29430	3500 3000	200 200	3100 2800	12205 11204	0	0 0	0 0	0 0
177110	23730	3000	200	2000	11204	U	U	U	U

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 140, Profil 1

t [ms]	27AI	29Si	31P	44Ca	57Fe	139La	140Ce	232Th	238U
144906	29831	3700	300	1700	10704	0	0	0	0
145056	28128	2900	400	2200	13707	0	0	0	0
145249	32637	3901	300	2800	10404	0	0	0	0
145395	32136	2900	800	3500	10904	0	0	0	0
145586	33940	1600	700	3100	12305	0	0	0	0
145736	33840	3600	300	2200	12005	0	100	0	0
145926	31936	3000	100	3500	13406	0	0	0	0
146116	29631	2900	300	2300	11304	0	0	0	0
146265	33038	3000	400	3500	12505	0	0	0	0
146456	31835	2900	700	2600	10304	0	100	0	0
146605	34341	2400	800	3200	12205	0	0	0	0
146796	28629	2200	200	3400	11304	0	0	0	0
146947	27927	6001	600	3100	9703	0	0	0	0
147137	31835	3400	600	3500	11505	0	0	0	0
147286	34542	2800	600	2400	11304	0	0	0	0
147477	30032	1500	100	2500	11505	0	0	0	0
147625	29130	2400	200	3000	12505	100	0	0	0
147816	32637	2500	700	2600	12505	0	0	0	0
147966	31134	3100	500	2400	14507	0	100	0	0
148157	31134	3100	400	2900	10904	0	0	0	0
148312	30833	2400	700	2500	13006	0	0	0	0
148497	33940	6501	400	2400	12405	0	0	0	0
148645	33439	3100	200	1900	13006	0	0	0	0
148836	31435	3000	400	3000	11004	0	0	0	0
148986	29631	1500	500	3100	12606	0	0	0	0
149177	31535	2200	300	2700	10704	0	0	0	0
149326	29831	3600	300	1800	11004	0	0	0	0
149519	33640	2500	200	3400	10404	0	0	0	0
149666	31635	2900	100	3300	11304	0	0	0	0
149856	31535	3100	500	2500	11605	0	0	0	0
150006	32537	2500	100	2500	10904	100	0	0	0
150197	34943	3300	700	2400	11304	0	0	0	0
150346	32236	2300	0	3100	12706	0	0	0	0
150537	31535	2800	300	2700	13506	0	0	0	0
150686	35745	3300	300	3600	11505	0	0	0	0
150876	30432	2000	300	3100	10904	0	0	0	0
151026	27226	2600	300 400	3600	11405	0 0	0 0	0	0
151217	24822	3200		3500 2400	12105 12405	0	0	0 0	0
151367	32136	2600	600			0	0	0	0
151557	33038	2800	400	2400	11605	0	0	0	
151747 151896	31334 29330	2900 3400	600 200	2300 3100	10304 12005	0	0	0	0
152089	29831	3300	400	3000	11905	0	0	0	0
152236	32036	2600	400	2800	11004	0	0	0	0
152427	33840	3700	600	2900	12205	0	0	0	0
152577	32337	2100	600	2000	11905	0	0	0	0
152767	32036	2300	300	2000	10904	100	100	0	0
152921	32537	2900	300	2800	12606	0	0	0	0
153107	30332	2100	300	2200	11405	0	0	0	0
153257	31835	3100	400	2800	10504	0	0	0	0
153447	29731	4801	200	2100	11905	0	100	0	0
153597	34341	2200	900	3400	11605	0	0	0	0
153788	32337	3400	600	3500	14307	0	0	0	0
153936	33138	2700	300	2800	11204	100	0	0	0
154127	32136	1900	600	2200	12906	0	0	0	0
154277	32337	3000	400	2400	12505	0	0	0	0
154467	31435	2200	600	2700	12405	0	0	0	0
154617	31334	2500	500	3400	12205	0	0	0	0
154807	32036	2600	400	2500	13006	0	0	0	0
						•	•	•	ŭ

Parameter der Laser-Ablation:

Laserenergie: 1.2 mJ Ablationsfrequenz: 20 Hz Kraterdurchmesser: 50 µm

Vorschub: 35 µm/s

Profillänge: 4239 μm (121 s), \underline{davor} und \underline{danach} Grundrauschen;

das Profil gliedert sich in die Abschnitte: 1889 µm (54 s) ungebleichter Bereich, 1345 µm (38 s) gebleichter Bereich,

265 μ m (7.5 s) Gang und 830 μ m (23.7 s) gebleicht

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 187, Profil 2

t [ms	24Mg	27AI	29Si	31P	33S	44Ca	56Fe	90Zr	137Ba	139La	140Ce	141Pr	145Nd
0	11304	19113	2200	700	300	3200	27426	0	0	0	0	0	0
663	11805	20715	2900	400	200	3801	25423	0	0	0	0	0	0
1103	12606	21716	2500	400	200	3400	26625	0	0	0	100	0	0
1542	10304	21316	2400	200	300	2500	29330	100	100	0	0	0	0
1982 2422	10004 10804	20314 22317	1900 2000	600 300	100 200	3000 3500	23920 23519	100 0	0	0	0	0	0 0
2862	13606	21716	2300	400	300	2600	26625	100	0	0	0	0	0
3343	13807	20815	2600	400	300	2800	24721	0	0	0	0	0	0
3783	10104	22017	2800	200	200	3200	23620	0	0	0	0	0	0
4223	12005	23419	2100	600	0	3600	26024	0	100	0	0	0	0
4663	10204	20014	2700 2900	400 900	300	3200	26625 27226	0	0	0	0	100	0
5103 5543	12405 9703	21216 22317	2900	400	600 300	3000 3000	23720	0	100	0	0	0	0
5983	11304	20214	2100	600	200	3100	27226	0	0	0	0	0	0
6464	12105	23920	2000	500	400	2000	26324	0	0	0	0	0	0
6903	10804	19613	2100	300	500	2700	25924	0	100	0	0	0	0
7343	10104	21416	2300	500	400	3400	27026	100	0	0	0	0	0
7783 8223	10504 11805	18712 17711	1700 1800	500 300	100 400	2900 1900	25122 25423	100 0	0 100	0	0	0	0 0
8663	14607	20715	2000	100	300	3200	24822	0	0	0	0	0	0
9103	10304	19113	2800	600	500	2600	27226	0	0	0	0	0	0
9584	12305	20214	2600	300	300	3901	26324	0	0	0	100	0	0
10026	11304	20515	2300	300	200	3000	28829	0	0	0	0	0	0
10463	10104	21716	2500	400	100	3000	27026	0	0	0	0	0	0
10903 11343	12005 13606	19814 19513	3000 3000	500 700	300 200	3801 2800	27226 27226	100 0	0 100	0	0	0	0 0
11784	11905	19513	1900	300	200	3500	28128	100	0	0	0	0	0
12223	11705	20815	2800	900	300	3100	25723	100	0	0	0	0	0
12706	12405	21917	2800	800	100	2600	25924	0	0	0	0	0	0
13143	12305	20314	2700	300	100	3000	26224	0	0	0	0	0	0
13586 14027	10404	18612	2500	600	200 200	3100	25723	100 0	0	0	0	0	0
14464	12205 11905	19513 17911	2700 2500	1000 200	500	2600 2600	26224 24221	0	0	0	0	0	0 0
14904	12806	18712	2300	200	400	2500	28629	0	0	0	0	0	0
15346	13106	21917	3100	400	300	3200	25823	0	0	0	0	0	0
15784	11204	20715	2000	700	200	3100	24421	0	0	0	0	0	0
16265	13907	19914	2700	600	200	2400	27226	0	0	0	0	0	0
16704 17144	10804 12505	21316 22818	2600 2500	600 700	500 400	3400 2700	22918 27526	0 100	100 0	100 0	0	0	0 0
17584	13206	23820	2700	300	200	4301	26024	0	0	0	0	0	0
18027	12606	22017	2900	200	300	3901	25723	100	0	0	0	0	0
18464	11004	19413	2600	500	200	3700	25924	0	0	0	100	0	0
18904	57315	141093	36045	1700	200	15308	285219	4401	5601	1600	11004	800	500
19385 19825	274207	1080432 2727432	136146 228412	3400 7902	400 500	74393	2065244 3948144	21116	27827 48883	5401	28528	3000 21116	4101 4301
20264	373110 442035	3825432	337541	14307	1200	57817 102869	4443644	41460 71076	53098	8803 10904	46776 49385	6101	1700
20705	508388	3605832		6001	1000	78515	5236444	48382	58520	20715	65148	6902	2900
21144	1071576	4154832	382760	16810	900	76605	5434644	56813	66454	17110	103776	11505	5601
21585		4264632			1600	79118	5632844	58720	60729	25523	63340	21817	2000
22024		4923432			1000	67258	5632844	58118	73086	20214	73187	8302	2100
22507 22945		4813632 4703832			1000 1000	61834 72584	5236444 5038244	54203 56110	72383 77108	21817 20715	61934 68363	7502 6401	2200 3801
23385		5582232		5601		75801	6029244	71378	72684	19914	76605	9003	4101
23825		5692032		8402	900	97330	6128344	80225	85857	65249	156856	26224	5901
24265		5692032		8603	800	116876	6227444	109821	99646	23219	89479	12005	3901
24705		6131232		9703	900	88272	6128344	89781	85052	19613	80727	10104	3100
25188		5472432		7702	400	74594	6722944 6227444	71378	86561 99042	25523 18712	83141	16710 7902	4101
25625 26066		5362632 5252832			1500 1500	79219 85757	5831044	72584 85254	89580	19914	73288 85455	9303	4201 3000
26505		5692032			1200	76303	5831044		106395	24120	111030	11405	2500
26945		5362632		6301	1600	76605	5930144	80124	116271	26625	90486	26525	4601
27385		5582232		5001		124238	7416644	78214	94914	24621	101056	12505	4301
27826		5252832		3700	900	92297	6524744	89177	89781	25122	92197	11505	4401
28306 28745		4923432 5692032		4201 3801	900 900	168690 268092	8110344 8407644	81029 80024	114759 99848	25523 22217	94612 86763	11405 10704	3700 43466
29185		4813632		3500		345631	8605844		100754	23620	79018	12606	3300
29625		4813632		25823	500	453795	9894144	58419	93102	22418	87266	11805	4801
30069		4703832		3500	1000		10191444	60227	90284	22618	93807	12505	3600
30507		4264632		5501	300		10488744	71378	71679	22418	83342	10804	4001
30986		4484232		2700	600		11380644	49987	74996	24822	96122	10604	4201
31427		4154832		3700	900		10191444	73489	80124	25623	94612	10204	3000
31865 32307		3386232 2947032		3300 3600			12371644 13957244	49385 46475	63541 77409	22017 27727	93002 94411	12005 12606	4801 3700
32746		2398032		3300			12867144	44268	64144	20815	91593	13907	3801
33186		2507832		3100			14254544	36948	58921	24621	80124	15108	5101
33626	7714476	2068632	218356	3801	500	1459908	12272544	30432	52998	28729	101660	11805	5401
34107		2507832		3300			10786044	29130	59022	21917	131603	11304	5501
34546	6843276	2617632	216935	4101	1200	1573608	9993244	37349	65651	23419	85656	16710	4201

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 187, Profil 2

t [ms	24Mg	27AI	29Si	31P	33S	44Ca	56Fe	90Zr	137Ba	139La	140Ce	141Pr	145Nd
34986	5754276			4501	1100	1459908	11281544	51693	77108	26925	87366	13907	5001
35426	4883076	3276432		3500	900	1118808	9993244	60227	77510	26725	83041	12005	4801
35866	3902976	3496032	384403	5001	400	1005108	9993244	67861	76605	20114	92197	11304	3300
36306	3902976	3825432		3300	600	407222	10686944	55206	87568	21917	127365	11104	4301
36788	5209776	3935232		3801	700	1005108	13858144	54102	92398	25122	85455	13406	5001
37226	5754276	3715632		5401	400	1118808	14155444	73388	84650	24120	136348	18212	7702
37669 38106	5972076 5754276	2837232 2398032		16510 10304	600 1100	1346208 1459908	12272544 15542844	37750 38953	68564 69971	36647 76102	132310 191779	22217 44569	5501 14107
38546	6734376	1739232		22918	500	1687308	15443744	28328	56612	145235	359261	73388	23720
38986	7496676	1849032		16109	500	1801008	16236544	33339	44670	136953	351574	52496	20615
39426	8041176	1080432		14407	700	2028408	16434744	20415	37248	116876	275838	69770	18812
39907	7823376	2068632		43767	700	2255808	19705044	20715	43466	112239	259333	76605	19213
40347	9239076	2068632		11905	700		21488844	24020	52797	94210	262184	44870	14908
40786	7387776		112441	11104	500	2369508	22281644	25423	45673	81934	219879	43466	12706
41228 41667	9239076 7061076	1849032 1629432	95116 88071	8603 6401	700 600	2255808 1914708	19110444 19110444	24020 18712	45974 38251	63641 52597	186206 181850	34642 26725	11705 13606
42107	9565776	1190232	80828	6101	300	2369508	17029344	16409	35043	43165	169398	29130	11304
42588	8367876	531714	78817	5201	500	2255808	18714044	14307	30432	83342	192589	22017	10404
43027	9130176	459679	56712	5201	500	2483208	14353644	12606	26124	40959	161002	24822	8002
43469	9239076	481686	50890	3200	500	2369508	15245544	8803	22117	39655	161103	23519	8803
43907	12614976	383787	58720	3300	300	2710608	16236544	9703	22117	36045	192285	23219	10404
44347	10219176	322295	48482	2400	600 600	2483208	14254544	8503	18412	37549	146346	20615	7802
44829 45267	9783576 9783576	296342 274512	55809 45573	2600 2200	300	2483208 2483208	14551844 13065344	6702 5701	16710 14107	33940 39956	136751 136852	18913 20314	7202 6401
45707	9456876	177698	31835	3100	300	2596908	11380644	5801	13807	29530	129888	19213	5101
46147	9674676	190360	25523	2400	100	2483208	11281544	4301	13406	27627	114255	20114	5901
46587	8476776	192589	30132	2300	100	2369508	11578844	3600	11405	30432	154026	16109	5601
47027	9783576	179825	48883	2800	100	2710608	12569844	6301	11605	30132	153217	22618	6902
47467	9783576	219778	34441	2500	300	2824308	13263544	4101	14607	36547	141295	21216	5901
47948	10328076 8912376	172941	31234	2200	400	2710608	12867144	3400	10204	33940	144022	19814	8503
48387 48827	10001376	146245 128879	38953 33640	2400 1400	200 600	2483208 2483208	13560844 12768044	3700 2100	11805 12405	34341 32036	148973 154430	21917 19313	5701 7502
49267	8912376	137155	37750	2000	400	2483208	12668944	4601	10204	30933	145437	19714	4901
49707	9674676	136146	37048	1200	400	2596908	12470744	3100	10104	31735	143618	20615	6201
50151	10110276	167375	37148	1100	200	2483208	12074344	4701	8102	28328	120304	17411	5201
50587	9456876	150084	29130	1700	700	2596908	9596844	2500	9003	28228	114457	13206	4801
51069	8041176	125751	29831	1800	600	2483208	11578844	2200	8903	23920	115364	14107	5701
51508	8367876	169196	23319	900	300	2255808	11083344	3000	11505	20715	110123	12505	4701 4601
51949 52388	8803476 10763676	169297 330991	33640 47980	800 1500	800 400	2255808 2255808	12569844 12371644	5201 8402	15508 23620	20314 19413	108410 129888	12806 13606	4601 5301
52830	8912376	532129	92297	1500	300	2142108	14353644	15709	31334	21516	103070	12706	4901
53268	7169976	737771	129081	1700	600	2028408	11677944	54303	38251	19413	105690	12205	5101
53708	6625476	1629432	202221	1400	1000	1573608	10984244	34542	44068	20915	89681	11605	4601
54189	5645376		289504	1900	800	1232508	10092344	40357	58218	19814	84147	9503	3100
54629	4447476	3496032		2300	800	1005108 477344	8407644	72182	79018 74393	31034	107604	15709	5601
55068 55508	3358476 3140676	3386232 3825432		4901 7802	500 800	367774	10290544 6822044	67459 63139	69468	32838 30332	112239 120405	17110 17511	6001 60227
55948	3031776	3935232		10304	600	338463	7912144	70172	89882	32537	99948	15008	6802
56388		3605832		10204	400	301345	6029244	59223	82337	23019	102365	14507	29230
56869	2813976	4154832	456788	7102	400	247424	6227444	77409	92398	24621	124641	13206	4801
57315		4374432		6401	500	174256	6921144	80727	98035	33339	132310	17911	3801
57748		4813632		5101	600	162823	5831044	78012	99445	26525	154430	11104	3000
58188 58628		4703832 4923432		5001 5801	1300 1300	164947 114255	6128344 6425644		112138 103171	71076 55608	1019200 205670	23620 23620	8903 7202
59069		4703832		3600	1800	128475	5038244	73891	96827	46475	179015	21716	4901
59550		4374432		2100	1200	81029	5930144		111433	38151	131402	13406	4801
59990	1071576	4374432	517196	3200	1000	106798	4939144	79320	89681	31835	126457	11104	4301
60429		4264632		4601	600	93706	4840044		105387	29430	140083	27827	5501
60869		4374432		3801	700	83544	4740944	58921	92398	37650	1799200	14908	5701
61309		4484232		4401	900	82538	5731944		100351	93203	239491 222621	41259	10704
61749 62189		5033232 5582232		4601 9603	500	68464 58419	5930144 5533744		116372 113650	83946 87769	212874	69268 29029	10804 8002
62671		5252832			1100	68866	5236444		105891	61532		52396	10204
63109		4813632		5701	600	75499	5533744		100150	51493	167982	20114	5601
63549	484065	4484232	507041	2600	1200	77208	4641844	91089	110526	42864	154026	15909	5401
63989		4813632			1000	63541	5930144			34842	149175	19113	5001
64430		5143032		3600	800	66856	5632844			38251	132714	28929	13907
64869		4813632 5252832			1200	61432	5335544	124036		31134	117985	21616	4601
65350 65789		5143032		3700 4101	800 1200	57917 53901	4939144 5236444		117279 107402	23219 20214	112743 92599	13707 9303	2300 6401
66229		5362632		2600	900	47479	5731944		118288	21116	104078	10704	4001
66669		5472432		7702		62938	5038244		105287	22718	111634	8603	3700
67110	463396	5033232	551857	8202	300	44469	5137344	80929	98941	56110	188435	22117	8803
67550		5252832		17210	800	56913	5137344		117884	83342	238169	34041	12405
67990		5143032		11405		56010	6425644	102164		82135	220895	32737	10604
68470 68909		4703832 5362632		45874 9603	600 900	88071 69167	5335544 5731944		108108 114860	71780 65450	187117 219981	26625 27526	10204 10004
69350		5033232		20815	800	82839	5731944		117985	75398	264832	35945	24621
				0								•	

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 187, Profil 2

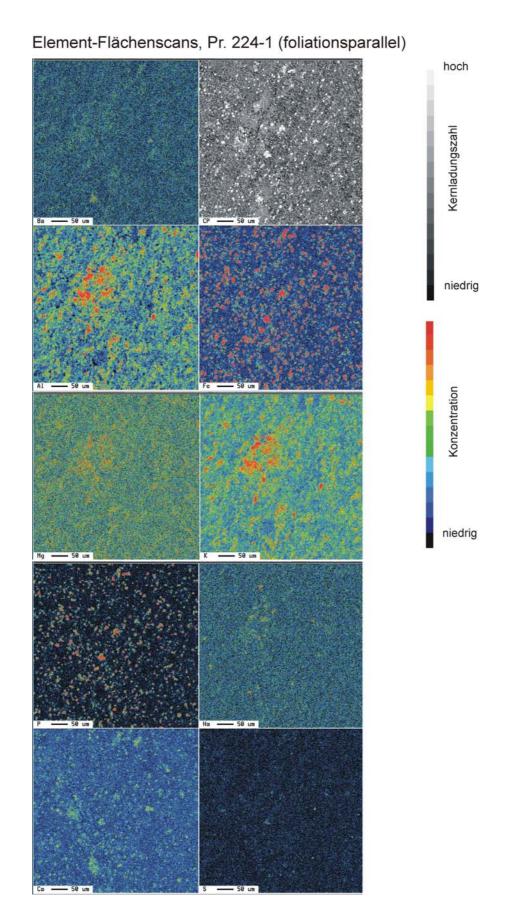
t [ms	24Mg	27AI	29Si	31P	338	44Ca	56Fe	90 7 r	137Ba	139La	140Ce	141Pr	145Nd
69790	·	4813632		79420	900	226075	5434644	84348	144931	117380	1539200	85958	33038
70230	439663	4813632		274309	200	383376	4740944	95518	147659	161811	1799200	168994	54604
70670	431211	4594032			900	562459	5236444	85153	144224	164744	1929200	147760	64545
71151	414940	4374432			1500	462879	5335544	72383	132007	164036	1409200	117481	49385
71590 72030	367364 432860	4264632 4264632		194008 174358	400 700	481169 328944	4641844 4740944	102567 82940	126558 157261	125953 120204	431520 412779	95720 81230	41460 36346
72471	478895	5033232		188840	900	227497	5632844	128879	139276	132815	385944	89882	41259
72910	511600	4923432		125448	1100	193096	5434644	99042	148366	116170	373110	66153	33339
73353	453072	4594032	437189	61030	600	154835	5038244	110727	119800	90687	281547	61030	24521
73831	466391	4484232		57616	1100	170916	5533744	103171	107100	80024	264934	87467	21516
74270		4703832		50389	600	139074	5335544	115263	99445	83342	238474	46877	21917
74710 75150	461227 466804	5143032 5143032		38752 39755	900 800	116170 96223	5236444 5831044	111534 90486	115767 100754	65450 46977	238576 1019200	42262 39254	17711 14808
75590	465461	4923432		26625	600	84248	5335544	107906	105186	73086	163834	27126	12606
76033	487788	5252832		27526	600	96726	6029244	99948	108108	73690	173750	27827	10304
76470	523001	5252832		21917	800	92498	6128344	89781	112844	51091	179825	26925	11405
76951	519165	5362632		21316	300	138266	6029244	100351	112340	58720	1539200	25423	11505
77390 77830	594519 558716	5252832 4594032		32337 16610	500 1100	87065 78314	6326544 6029244	97632 84952	111634 98941	66756 51994	203337 211859	35243 27627	10204 12205
78270	474037	4484232		16610	800	81733	5533744	78515	105488	56210	177496	23319	10704
78713	507041	5252832		14908	500	81733	6921144	85857	114557	47780	194414	22618	9103
79151	506006	4703832	630200	18412	400	77208	6227444	78817	111534	36747	166970	19613	7102
79632	470523	4374432		12305	1100	71378	5236444	66756	97632	38051	131402	19613	4801
80071	416381	4045032		9303	900	72383	4542744	69669	79018	45472	165149	20415	5501
80512 80951	415352 433788	3715632 3715632		9903 11705	800 900	62336 57917	5038244 5434644	76504 67660	85254 94512	88473 3749200	227294 5569200	36747 1019984	12305 177293
81391	464429	4374432		18312	900	72885	5731944	70775		4789200	8689200	1540384	229123
81831		4264632		12105	900	64746	6227444	99546	98639	6479200	6739200	1019984	189448
82271	464222	4154832	555598	20715	1400	99042	6524744	73288	110123	3359200	5569200	436880	139781
82752	491823	4264632		10904	800	79219	6029244	65450	93404	2709200	5959200	385225	116170
83191	486754	4703832		12606	900	71981	6326544	88473	99344	1799200	3229200	375778	125146
83631 84073	464429	4484232 4484232		10904 12305	800 900	79621 79521	5930144 7119344	74896 73690	97028 105488	1669200 1279200	2969200 1929200	226075 198165	105589 56110
84511	544794	4594032		10804	1100	78616	7020244	77108	99646	401771	2579200	160395	47378
84951	518129	4264632		7702	1200	87266	6524744	65550	93706	1019200	2059200	123431	52195
85432	562771	4374432	493996	13006	500	127971	7218444	59524	90385	250782	1019200	87869	29731
85872	1289376	4374432		11304	1000	184180	8704944	75097	91089	214803	1279200	93203	22818
86311	3685176	3715632		7602	1000	421117	10984244	67358	87467	162721	343275	66957	53600
86753 87191	5100876 4774176	3715632 3166632		7102 6501	600 900	1118808 1232508	11975244 12768044	51192 46676	78113 67358	151701 115969	351983 308598	67157 56813	15909 14307
87633	6189876	2398032		8603	500	1459908	17029344	40658	66655	103876	248543	49686	13406
88071	6407676	2068632	265240	12505	600	1573608	19407744	36948	66052	81633	234103	38652	13206
88555	6843276	1958832		13807	600	1687308	21786144	36246	55809	75801	231968	41460	14808
88992	5863176		184382	24221	400	1573608	22083444	34241	50389	66454	244372	36346	13506
89432 89872	4774176 6080976	1629432 1849032	176686 173649	22418 32036	400 500		22479844 23569944	31936 39655	39154 49887	48984 54303	140992 213382	36948 35644	10904 14908
90312	7496676	1409832		22518	500	1801008	23173544	53400	42965	51392	185091	31835	10504
90752	6298776		136348	17811	700	1914708	20795144	38051	38251	59022	184180	28228	10204
91235	6189876	702876	143214	18212	200	1801008	21389744	31635	42062	45773	193502	32136	9503
91672	6734376	681790		27426			22380744	47579	39354	41962	195529	27627	11805
92112		1190232		17811			22777144	34341 27126	39755 42463	42262	152914	35845	9603
92560 92992	6407676 7387776	1190232 1080432	97230	20815 53500	300 300		28425844 25056444	23219	29230	37650 38151	171220 181344	28027 29631	14607 10604
93432	6952176	641173		20114	400		25651044	32036	28228	37549	146346	25723	11004
93873	6734376	572860	120607	25322	300	1914708	25452844	20515	24120	33038	161710	30933	10404
94353	6625476	593268	90687		1100		22281644	17511	28027	38953	172637	30733	12806
94795	7496676	631558	90888	25222			23867244	22117	26925	41360	188131	34441	12706
95232 95672	7278876 5863176	1519632 1190232		22618 32437			22380744 26741144	39956 28428	34441 32838	48582 37650	167982 168184	35644 35644	13206 12405
96113	5754276	1739232		21216	400		21687044	54805	43366	39655	220895	69067	13807
96565		1190232		21015	200		19903244	32236	37950	37248	149680	35344	13807
97033	6625476	1190232	116574	17511	200	1801008	18317644	30533	41159	32337	148063	25623	11004
97473	7387776	1300032		20915	200		20101444	37750	42262	45071	161002	33138	9103
97913	5863176	1519632		26525	900		22182544	35745	44168	34341	179723	49084	12305
98354 98793	5754276	1519632 1958832		44971 47378	600 300		25353744 27930344	41560 35143	49486 41661	45874 44168	192995 229936	41159 63039	13606 18512
99233	5863176			65751	500		29218644	33640	42864	42162	241626	47780	20314
99714		1849032		56110	200		28524944	26925	36547	39154	204250	39053	21516
100153	5863176	1629432	157160	59725	300	1687308	27732144	23219	41560	38853	176078	38752	15909
100593	4883076	1080432		46877	200		25948344	22918	37650	42463	182458	70976	17511
101033	5645376	1080432		50991	600		25948344	29230	44770	74293	222418	54705	18212
101473 101915	5318676 5972076	1080432 1409832		27627 20915	400 500		19110444 18813144	25022 40357	40457 42062	81633 65450	264832 226380	55708 36146	16209 14107
102353	4011876	1958832		15709	700		17326644	45472	54002	55608	179318	34041	12305
102834		2507832		14407	800		14452744	50890	78415	54604	152712	36847	11705
103273	4011876	3276432	338872	14607	700	513361	12272544	58921	79118	56512	208308	24822	7802
103713	2378376	3605832	331093	10604	900	373007	10885144	62436	85757	39454	156149	23019	5201

Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 187, Profil 2

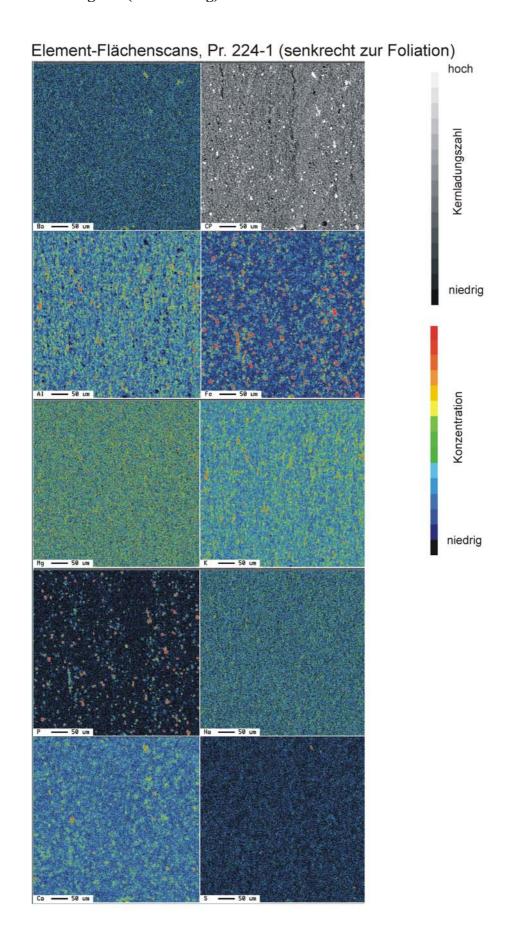
t [ms	24Mg	27AI	29Si	31P	338	44Ca	56Fe	90Zr	137Ba	139La	140Ce	141Pr	145Nd
104153	1724976	3715632	468354	9603	700	360082	9795044	57817	90284	43466	181850	30332	8402
104596	1616076		398275	7202	600	267583	8506744	62436	77510	32737	227599	23019	4701
105033	1289376	3496032		6301	600	246000	8011244	51693	67861	38351	169904	16810	6201
105515 105953	1289376 1724976	3605832 4045032		7802 4601	900 700	207800 133925	7218444 7416644	54504 80828	82638 94814	32437 36146	226481 196543	44469 13506	3700 3901
106393	642427	3935232		7102	600	131402	6524744	87769	96424	39555	1019200	23119	5901
106833	576606	4374432		13006	500	124944	6623844	90989	99445	45272	219372	20515	7502
107276	625918	4923432	510874	10604	200	118489	6425644	85354	100754	59825	204351	28629	6602
107714		4154832		10904	1600	117784	6029244	83544	91593	28629	222113	20515	3700
108154 108635	522690 511289	4374432 4374432		40457 9903	900 900	78616 82538	5731944 6921144	83443 81331	90989 97834	26224 26024	1149200 145841	13306 15809	6401 3600
109075	524661	4813632		8102	800	74293	5434644	93908	97230	31134	153318	12706	5601
109514		4703832		7602	1200	73288	5632844	103070	104078	26825	168488	13206	7702
109958		4594032		5401	600	60026	5335544	132108	100251	32337	160193	12606	4901
110394		4703832		5701	1400	57114	5533744	101963	99445	32737	208409	16610	5101
110834 111315	515952 517714	5143032 4923432		6301 6201	500 900	72081 54504	6326544 6029244	104783 97834	110627 110224	37148 72081	244474 228818	14307 36446	5201 13707
111756	457717	4484232		7902	1100	62637	5038244	95015	95619	123431	1279200	64445	18712
112194	453692	4813632		11204	700	58520	6128344	90989	105186	132512	350446	69368	20615
112634	488098	4703832		11505	800	52797	5335544	121313	105790	123027	276245	45974	17310
113074	467011	4923432		9403	1100	55508	5236444	95921	113247	112340	245390	45472	12606
113514 113954	473520 466288	4703832 5252832		10904 21616	1000 700	54805 48883	5434644 5533744	104078 87568	118489 115162	70473 62838	214194 216021	35544 32236	16910 12205
114437	490374	5252832		7202	400	47278	5533744	93203	106798	45974	154531	49084	11705
114874	416381	5033232		7902	600	51292	5137344	97632	106395	40959	137761	22418	8402
115314	405371	4813632	435127	5101	1000	32136	5137344	87769	94512	36346	188941	18412	4601
115754	408971	4484232		3300	700	33740	5137344	94210	100251	33840	154127	17010	6501
116195	407120	4923432 4703832		3700	800	36446	5533744	91995	111131	26725	128072 106193	18212	5401
116635 117117	376189	4374432		3400 3400	800 1100	30633 36747	4939144 5137344	87165 91089	98941 100452	25723 28128	159182	15008 13306	5101 4901
117555		4264632		3100	900	35344	4641844	76504	97834	28228	158676	10304	4501
117995	379577	4045032	447707	3100	1200	33239	4740944	81934	93606	28629	179926	11304	4201
118435	347168	3825432		3300	900	32637	4542744	79822	85455	22317	116070	11705	4501
118875		4484232		3700	1000	29931	4245444	79722	87668	26324	124742	13206	4301
119315 119757	410926 350241	4154832 4154832		5001 3500	1000 800	34742 30933	4641844 4146344	71679 88071	96626 82638	27226 48081	149175 188840	14107 21516	7902 5101
120236	381836	4264632		2700	600	34441	4740944	73790	87668	65851	178610	27727	9303
120675	377729	4484232		4301	300	31435	4344544	77711	83443	78314	185395	30032	8603
121115	362953	4264632		3400	1000	39755	4245444	81934	85052	59022	170309	30432	8803
121556		4154832		4401	1000	34441	4542744	71076	87769	59022	178812	20915	9903
121995 122437	349729 344709	4264632 4045032		3901 3200	800 500	30432 30533	4740944 4740944	63943 59825	71880 85857	41360 38251	137054 157564	21917 18212	6001 6401
122875	380603	4484232		12005	700	37349	5335544	79118	87970	32036	144426	13907	4301
123356	349627	4374432		3100	900	35043	5236444	68966	94008	32437	138973	15108	6702
123808		4594032		4401	1000	34441	4740944	74494	98136	42965	122523	14507	6301
124237	400949	4594032		6702	600	37248	5137344	87467	96525	115364	289810	55006	15909
124675 125116	422970 415455	4594032 4923432		13006 12005	1000 700	59524 68062	5930144 5236444	74393 78113	113449 103473	174155 125348	365620 322295	56311 52597	19814 16309
125556		4484232		13006	500	52496	5533744	74695	104581	112743	3619200	43265	18011
126037		4045032		10604	700	47479	4344544	76002	94612	123229	267277	42062	14307
126476		4154832			1000	48482	5038244	69268	93505	117683	1539200	46676	16910
126916		4264632			1100	65148	4245444	85656	88976	154835	297363	47579	15208
127356 127796	336108 408663	3825432 3935232		5901 5001	800 1000	42463 41259	4542744 4245444	68062 69067	85958 94109	88775 73690	257398 193096	42664 33038	13206 11605
128236	407017	3825432		4301	1300	65550	5137344	79722	87366	62235	1019200	44569	9403
128676	1398276	3715632	429563	3901	900	167476	6623844	72182	76203	60528	1799200	24822	9103
129157	2160576	3166632		3400	500	317898	9596844	55206	70875	56210	178913	27126	6802
129597 130037	3794076	3166632		3500	700 100	1005108 1005108	10092344	42563	63441	44770	146043	27627	6501 6201
130476	5318676 4447476	2727432 1629432		2400 2200	300	1118808	10488744 10389644	35745 29230	53901 47278	40357 33239	149882 125650	24922 19613	6802
130916	4774176	1629432		6401	400	1118808	10488744	27026	41460	32136	3879200	16510	6602
131396	6080976	1409832		2100	400	1005108	9795044	22217	31635	37349	93505	15609	3000
131836	4556376	609741		1900	500	533997	6822044	14708	26925	25122	64746	12405	4201
132276 132716	2596176	467424	92599	1000	800	361722	5236444 4344544	12305	18512	14708 14107	56210	9003	1900
133159	2051676 2487276	388512 317080	77208 47278	1100 1000	200 600	276245 202830	3452644	8803 7602	15809 12105	11107	41761 22317	7802 5301	2900 2400
133596	2051676	314014	44268	500	600	148973	3155344	5001	7402	7902	27226	4501	900
134037	414322	183065	60327	600	300	98438	2957144	5301	15208	6401	15108	4601	500
134517	1289376	193299	25623	1000	200	83141	1668844	3400	3400	3600	11905	2000	800
134957	255464	116473	19013	400	0	71277	482100	3100	5701	3200	9603	1000	600
135397 135843	198976 122826	121212 103171	12005 13707	800 400	500 100	87065 35043	483858 413087	1400 1600	2600 1400	15208 2200	8903 17711	400 800	500 300
136277	101761	71780	8803	1000	0	42864	295832	1900	900	1600	5601	1100	500
136717	106495	75499	12105	600	300	18111	247017	900	1400	800	3600	1700	400
137157	61834	43867	9503	300	300	17110	224449	800	1000	1700	3500	200	200
137639	50188	39454	5001	400	300	16510	160598	300	700	800	1800	200	100
138077	127264	38051	5601	100	500	44569	93102	300	800	500	1300	300	100

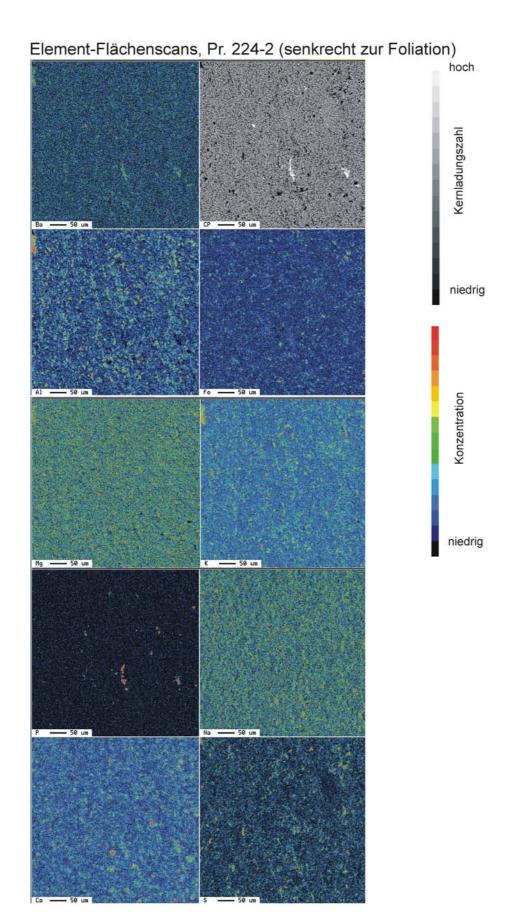
Anhang A6 (Fortsetzung): Laserablation an ICP-MS, Probe 187, Profil 2

t [ms	24Mg	27AI	29Si	31P	33S	44Ca	56Fe	90Zr	137Ba	139La	140Ce	141Pr	145Nd
138517	32236	35544	3300	300	400	9303	81230	200	200	1000	1200	100	0
138957	46475	26424	3700	800	400	10804	85153	200	300	400	900	100	200
139397	24621	29130	3700	800	200	9203	55407	300	500	300	700	0	0
139837	20815	27627	4201	700	400	6101	51493	100	200	0	500	100	0
140279	21917	27927	3300	600	400	6501	39956	200	100	100	200	200	200
140758	20615	25623	2800	600	200	5001	42062	100	100	100	200	0	0
141201	19914	23920	2600	500	500	3100	35845	0	0	0	700	100	0
141637	16009	24020	4201	800	200	4301	34642	100	0	200	300	0	0
142078	22818	26525	1700	700	100	4701	29330	100	0	0	200	0	0
142517	14708	29831	2400	200	300	4001	29430	0	0	100	400	0	0
142959	13506	21516	3500	1100	200	3200	32036	100	0	0	100	100	0
143397	15008	23119	2000	600	500	4701	27727	100	0	0	100	0	0
143878	13406	23019	2000	500	200	5201	28528	0	0	0	100	0	0
144317	15609	25623	2400	600	400	4801	26725	0	100	300	0	0	0
144760	16009	24120	2700	1000	100	4401	28027	0	0	0	0	100	0
145198	13907	21716	2800	400	100	3700	26424	0	200	0	0	0	0
145638	14407	22418	2000	700	400	5401	23920	0	0	0	0	100	0
146078	14207	24020	3400	600	500	3901	28629	0	100	0	0	0	0
146518	12606	24321	2500	500	300	4001	25322	200	0	100	0	0	0
146958	17010	23820	2500	500	300	3400	23119	200	200	0	0	0	0
147440	14808	22017	2200	400	500	3300	27426	0	100	0	200	0	0
147878	13406	25823	2800	300	300	5301	26224	0	100	0	0	0	0
148320	13907	25723	1100	400	400	4301	24321	0	0	0	0	0	0

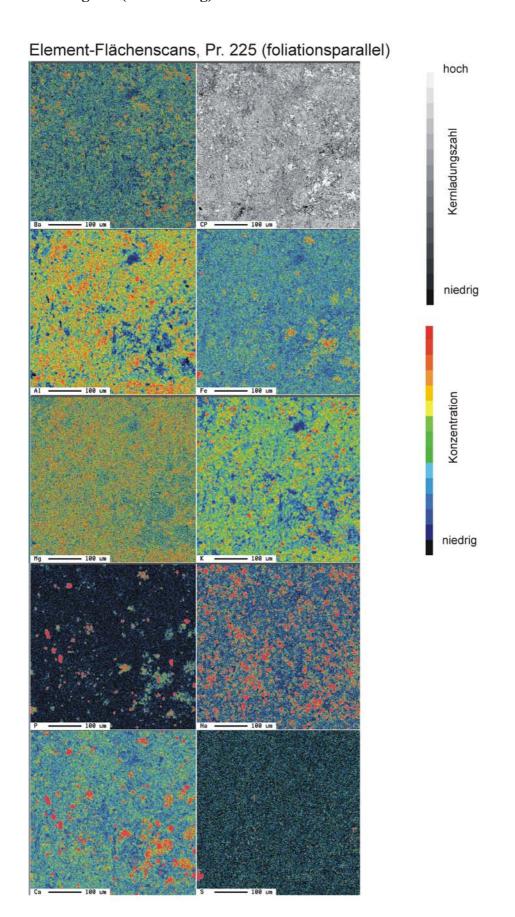

Parameter der Laser-Ablation:

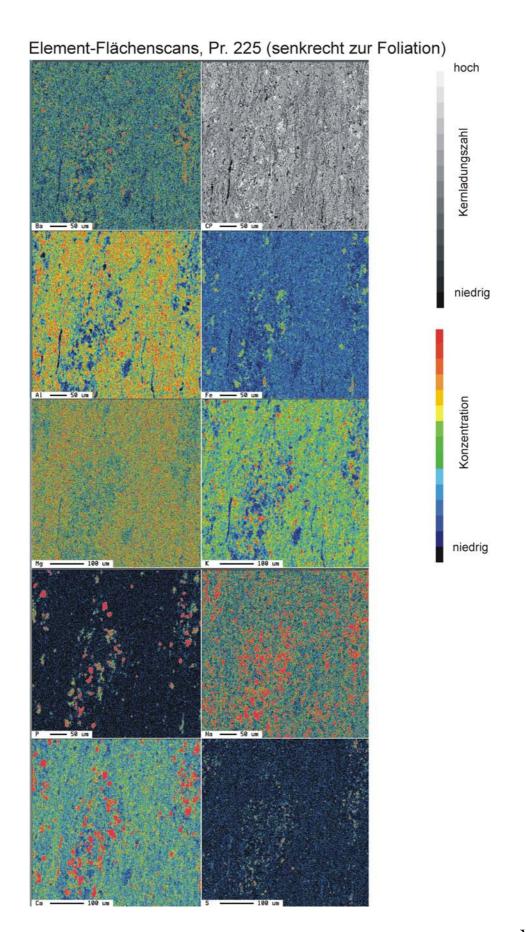
Laserenergie: 0.9 mJ Ablationsfrequenz: 20 Hz Kraterdurchmesser: 50 µm

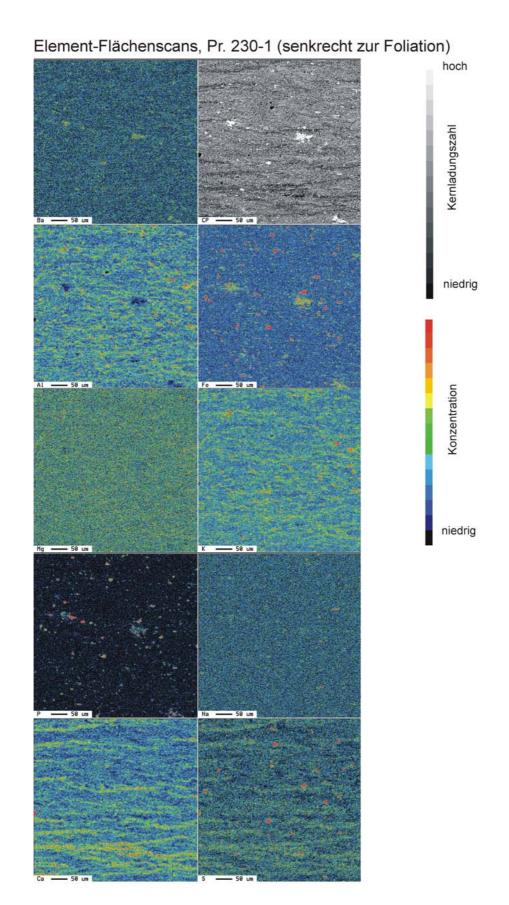

Vorschub: 35 µm/s


Profillänge: 3905 µm (112 s), <u>davor</u> und <u>danach</u> Grundrauschen

Anhang A7: Element-Flächenscans mit der Mikrosonde




Anhang A7 (Fortsetzung): Element-Flächenscans mit der Mikrosonde



Anhang A7 (Fortsetzung): Element-Flächenscans mit der Mikrosonde

Anhang A7 (Fortsetzung): Element-Flächenscans mit der Mikrosonde

Anhang A8: Geometrische Oberfläche von Gesteinspolyedern

a, b, c: Kantenlängen der annähernd quaderförmigen Polyeder [cm] V [cm³]: Volumen der Polyeder A [cm²]: Pberfläche der Quader

	Kie	eselsc	hiefe	r, schw	arz		Al	aunsc	hiefe	r, schw	arz
Nr.	а	b	С	V	Α		а	b	С	V	Α
1	4,6	1,6	0,2	1,5	17,2		11,2	10,0	2,0	224,0	308,8
2	1,8	2,6	0,2	0,9	11,1		9,5	6,0	5,7	324,9	290,7
3	3,3	1,7	0,4	2,2	15,2		6,9	5,3	2,6	95,1	136,6
4	7,9	4,5	0,4	14,2	81,0		8,1	5,0	5,8	234,9	233,0
5	6,2	5,8	0,2	7,2	76,7		4,6	4,4	1,5	30,4	67,5
6	5,9	2,5	0,4	5,9	36,2		4,0	3,5	1,7	23,8	53,5
7	3,4	2,0	0,3	2,0	16,8		9,3	4,3	3,3	132,0	169,7
8	5,5 3,6	4,1 2,5	1,6	36,1	75,8		4,6	4,3 4,1	2,5	49,5	84,1
9 10	4,3	3,4	0,5	4,5 4,4	24,1 33,9	Н	4,1 8,0	2,1	2,4 5,0	40,3 84,0	73,0 134,6
11	1,8	1,5	0,3	0,8	7,4	Н	9,3	5,4	2,7	135,6	179,8
12	4,2	2,6	0,7	7,6	31,4		9,9	5,0	5,5	272,3	262,9
13	3,6	2,8	0,4	4,0	25,3		6,5	4,5	4,5	131,6	157,5
14	2,6	1,8	0,7	0,9	11,1		4,7	3,4	2,1	33,6	66,0
15	7,8	4,0	0,3	9,4	69,5		5,6	3,7	1,9	39,4	76,8
16	9,2	6,1	0,5	28,1	127,5		8,0	2,4	2,2	42,2	84,2
17	6,4	3,5	0,8	17,9	60,6		4,0	4,0	1,2	19,2	51,2
18	4,0	3,1	0,2	2,5	27,6		5,0	2,9	3,0	43,5	76,4
19	6,0	3,2	0,5	9,6	47,6		5,6	2,8	1,8	28,2	61,6
20	4,5	1,8	0,5	4,1	22,5		6,3	2,7	0,4	6,8	41,2
21	3,5	2,3	0,3	2,4	19,6		4,9	3,5	1,7	29,2	62,9
22	6,3	4,5	0,9	25,5	76,1		3,3	2,5	4,2	34,7	65,2
23	3,7	2,4	0,3	2,7	21,4		4,4	2,1	4,9	45,3	82,2
24	3,6	2,5	0,2	1,8	20,4		4,9	3,2	1,2	18,8	50,8
25	2,7	1,3	0,2	0,7	8,6		4,2	3,6	1,7	25,7	56,8
26	2,3	2,1	0,3	1,4	12,3		4,5	2,0	2,3	20,7	47,9
27	5,0	4,4	1,0	22,0	62,8		3,5	2,9	2,5	25,4	52,3
28	3,7	3,7	0,6	8,2	36,3		3,6	3,0	1,5	16,2	41,4
29	5,2	2,3	0,3	3,6	28,4		3,7	3,5	1,4	18,1	46,1
30	2,7	2,3	0,2	1,2	14,4		6,4	3,6	2,2	50,7	90,1
31	3,6	2,6	0,6	5,6	26,2		7,0	3,0	1,7	35,7	76,0
32	3,2	2,4	0,2	1,5	17,6	_	5,3	4,4	2,2	51,3	89,3
33 34	2,2 5,1	1,8 3,0	0,4	1,6 4,6	11,1 35,5		6,3 4,8	2,6 2,8	1,7 1,3	27,8 17,5	63,0 46,6
35	4,6	2,3	0,3	2,1	23,9		7,5	2,6	3,0	58,5	99,6
36	9,9	4,2	0,2	12,5	91,6		6,5	2,1	2,2	30,0	65,1
37	5,0	2,8	0,3	5,6	34,2		5,1	3,1	2,3	36,4	69,3
38	3,6	3,5	0,8	10,1	36,6		3,4	2,6	3,4	30,1	58,5
39	4,2	3,9	0,4	6,6	39,2		3,0	2,6	4,7	36,7	68,2
40	4,2	2,5	0,3	3,2	25,0		5,1	3,2	2,2	35,9	69,2
41	7,5	3,2	0,2	4,8	52,3		4,7	2,9	1,7	23,2	53,1
42	2,9	2,2	0,7	4,5	19,9		5,5	2,1	1,7	19,6	48,9
43	6,3	2,4	0,6	9,1	40,7		4,8	1,2	1,8	10,4	33,1
44	6,7	2,6	0,6	10,5	46,0		3,2	2,0	2,0	12,8	33,6
45	4,5	3,0	1,7	23,0	52,5		4,6	2,1	2,1	20,3	47,5
46	4,3	4,2	1,0	18,1	53,1		3,9	2,8	1,3	14,2	39,3
47	4,0	3,1	0,8	9,9	36,2		2,3	2,3	2,0	10,6	29,0
48	3,8	3,8	0,4	5,8	35,0		4,3	2,5	2,0	21,5	48,7
49	4,2	3,5	0,4	5,9	35,6		4,2	1,4	1,1	6,5	24,1
50	2,9	2,1	0,2	1,2	14,2		2,4	2,4	1,1	6,3	22,1
51	2,9	1,4	1,3	5,3	19,3		2,5	1,3	1,4	4,6	17,1
52 52	4,0	2,0	1,2	9,6	30,4	H	4,6	2,6	0,7	8,4	34,0
53 54	3,8 3,4	1,9	0,4	2,9	19,0	\vdash	3,2	2,2	1,3	9,2	28,1
55	2,5	1,6 2,3	1,1	6,0 1,7	21,9 14,4	Н	2,6 4,6	2,1	1,2 1,3	6,6 12,0	22,2 35,6
56	2,5 5,9	3,2	0,3	17,0	54,1	Н	3,5	2,0	1,4	10,3	30,4
57	6,6	2,0	0,9	5,3	33,3		2,1	1,5	1,4	4,7	17,1
58	3,6	1,8	0,4	2,6	17,3		2,1	2,1	2,2	12,5	32,5
59	5,6	3,0	0,7	11,8	45,6		4,6	2,5	1,2	13,8	40,0
60	1,5	5,0	2,0	15,0	41,0	H	3,6	2,0	1,2	8,6	27,8
- 55	۰,۰	5,5	_,0	.0,0	, 0	Ш	5,5	_,∪	٠,-	0,0	٠,٠

Anhang A8 (Fortsetzung): Geometrische Oberfläche von Gesteinspolyedern

	Kie	eselsc	hiefe	r, schw	/arz		Ala	aunsc	hiefe	r, schw	/arz
Nr.	а	b	С	V	Α		а	b	С	V	Α
61	2,5	2,2	0,3	1,7	13,8		5,5	2,1	1,5	17,3	45,9
62	3,6	3,2	0,9	10,4	35,3		2,9	2,6	1,0	7,5	26,1
63	3,4	2,1	0,3	2,1	17,6		2,9	2,6	2,0	15,1	37,1
64	4,3 4.1	2,3	0,4	4,0	25,1		2,9	2,5	0,7	5,1	22,1
65 66	5,5	2,2	1,5 1,2	13,5 19,1	36,9 52,1	Н	2,7 4,3	1,9 1,6	1,7 1,5	8,7 10,3	25,9 31,5
67	4,4	3,0	0,5	6,6	33,8		4,5	2,5	2,0	22,5	50,5
68	4,8	3,0	0,3	5,8	35,0		3,6	2,2	1,2	9,5	29,8
69	7,6	1,2	1,8	16,4	49,9		2,5	1,3	1,6	5,2	18,7
70	4,6	4,4	0,3	6,1	45,9		3,9	1,6	1,3	8,1	26,8
71	4,9	2,3	0,2	2,3	25,4		1,9	1,5	2,2	6,3	20,7
72	5,3	5,1	0,2	5,4	58,2		4,2	2,0	0,6	5,0	24,2
73	3,7	3,3	0,5	6,1	31,4		3,0	2,4	1,1	7,9	26,3
74	3,6	1,7	0,1	0,6	13,3		4,3	1,6	1,1	7,6	26,7
75	4,0	2,0	1,0	8,0	28,0		4,9	1,7	1,0	8,3	29,9
76	7,9	6,4	2,4 1,8	121,3	169,8		2,7	1,6	2,5	10,8	30,1
77 78	9,1 6,9	7,6 3,7	1,8	124,5 40,8	198,4 85,0		2,2 3,7	2,0 1,1	2,0 1,8	8,8 7,3	25,6 25,4
79	5,9	5,6	1,0	62,8	109,8		2,6	1,1	2,6	10,1	29,1
80	11,4	4,1	1,3	60,8	133,8		2,7	2,5	2,4	16,2	38,5
81	4,2	3,4	0,3	4,3	33,1		4,5	1,5	0,7		21,9
82	2,4	2,3	0,5	2,8	15,7		2,5	2,4	0,9	5,4	20,8
83	1,9	3,4	1,2	7,8	25,6		3,6	1,4	1,1	5,5	21,1
84	4,7	3,7	0,8	13,9	48,2		2,0	1,6	1,3	4,2	15,8
85	3,4	2,6	0,3	2,7	21,3		2,5	1,4	0,7	2,5	12,5
86	7,0	5,5	2,2	84,7	132,0		4,5	1,6	1,0	7,2	26,6
87	13,2	10,0	1,2	158,4	319,7		2,9	1,9	0,9		19,7
88	4,2	3,6	0,8	12,1	42,7		4,2	1,5	1,7	10,7	32,0
89 90	3,7 4,9	3,0 2,4	0,9	10,0 12,9	34,3 39,6		3,2 3,0	1,0 1,6	1,7 1,3	5,4 6,2	20,7 21,6
91	4,9	2,4	0,5	5,0	26,5		3,0	2,4	0,6	4,3	20,9
92	5,2	2,7	0,3	5,6	34,4		2,5	2,1	0,8		17,9
93	11,1	8,5	1,2	113,2	235,7		2,5	1,5	1,4	5,3	18,7
94	5,8	3,8	0,2	4,4	47,9		3,1	2,3	1,5	10,7	30,5
95	4,2	3,1	0,4	5,2	31,9		3,2	2,0	0,6	3,8	19,0
96	4,3	3,5	0,4	6,0	36,3		3,0	1,5	2,5	11,3	31,5
97	5,0	2,3	1,0	11,5	37,6		4,1	1,7	0,8	5,6	23,2
98	3,7	3,5	0,3	3,9	30,2		4,6	1,8	0,5	4,1	23,0
99	2,5	1,0	1,0	2,5	12,0		2,7	1,1	0,9	2,7	12,8
100 101	4,0 5,2	2,2 2,2	0,4	3,5 2,3	22,6 25,8		4,5 2,6	1,6 1,5	0,6	-	21,7 15,2
102	3,0	3,0	0,2	4,5	24,0		2,0	1,5	0,9	2,7	12,3
103	3,9	2,1	0,3	2,5	20,0		3,1	1,7	0,9	4.7	19,2
104	4,3	2,2	0,3	2,8	22,8		4,0	1,8	0,6	4,3	21,4
105	3,3	1,9	0,4	2,5	16,7		2,7	1,2	1,6		-
106	2,1	3,0	0,4	2,5	16,7		3,2	1,2	1,3	5,0	19,1
107	4,5	1,4	0,5	3,2	18,5		2,6	1,1	1,6		
108	2,1	1,5	0,3	0,9	8,5		2,9	0,8	1,1		12,8
109	2,9	2,2	0,2	1,3	14,8	Ц	2,0	0,9	1,7	3,1	13,5
110	2,0 2,5	1,8	0,5	1,8	11,0	H	3,5	1,1	1,3	5,0	19,7
111 112	2,5	1,8 2,0	0,2	0,9	10,7	Н	2,5 1,9	1,3 1,5	1,3 0,6	4,2	16,4 9,8
113	2,1	2,0	0,2	0,8 1,0	10,0 12,2	H	2,5	2,0	0,6		15,4
114	3,3	1,7	0,2	1,7	14,2		2,3	1,8	0,0		
115	2,6	2,6	0,3	1,7	15,6	H	2,5	1,6	0,8		14,6
116	3,2	2,1	0,1	0,7	14,5	H	2,7	1,4	0,6	2,3	12,5
117	3,1	2,1	0,4	2,6	17,2		2,7	1,5	1,1		17,3
118	3,7	1,9	0,2	1,4	16,3		2,4	1,1	0,8	2,1	10,9
119	3,2	2,8	0,2	1,8	20,3		3,0	0,8	0,9	2,2	11,6
120	3,7	2,6	0,3	2,9	23,0		3,4	0,6	0,8	1,6	10,5
121	2,5	2,1	0,3	1,6	13,3		1,6	1,4	0,7		8,7
122	4,0	1,7	0,3	2,0	17,0	Ц	2,3	2,0	0,7	3,2	15,2
123	3,8	2,8	0,3	3,2	25,2	Ц	2,9	0,7	1,2	2,4	12,7
124	2,1	1,8	0,2	0,8	9,1	H	3,5	0,7	0,7	1,7	10,8
125 126	4,4 2,8	1,5 1,6	0,3	2,0 1,3	16,7 11,6	H	2,0 3,2	0,9 1,2	0,9 1,5	1,6 5,8	8,8 20,9
120	4,1	2,3	0,3	3,8	24,0	Н	2,9	1,2	0,6	-	14,7
128	2,6	3,1	0,4	2,4	19,5		2,9	0,7	1,3	1,8	9,8
129	2,9	2,4	0,3	2,1	17,1		2,0	0,7	1,2	0,7	6,7
130	4,7	1,4	0,4	2,6	18,0		3,2	1,2	0,3	1,2	10,3
.00	т, г	٠,٦	ס,⊤	۷,۰	10,0	ш	٥,٢	۰,۷	٠,٥	1,2	10,0

Anhang A8 (Fortsetzung): Geometrische Oberfläche von Gesteinspolyedern

	Ki	esels	schie	fer, ble	ich		Alaunschiefer, bleich				
Nr.	а	b	С	V	Α		а	b	С	V	Α
1	8,5	3,5	2,2	65,5	112,3	Н	4,3	4,5	0,7	13,5	51,0
2	5,0	2,5	1,2	15,0	43,0		6,1	2,9	0,9	15,9	51,6
3	2,3	1,7	1,7	6,6	21,4		5,7	5,0	0,4	11,4	65,6
4	2,5	2,3	0,6	3,5	17,3	Н	5,7	1,9	0,3	3,2	26,2
5	1,5	1,5	0,8	1,8	9,3	Н	6,1	3,2	0,6	11,7	50,2
6	2,6	1,5	0,4	1,6	11,1	Н	7,3	2,8	0,2	4,1	44,9
7	3,0	1,5	1,4	6,3	21,6	Н	6,2	1,5	0,4	3,7	24,8
8	3,3	0,9	1,0	3,0	14,3	Н	7,0	1,7	0,4	4,8	30,8
9	5,2	1,5	1,3	10,1	33,0		5,4	2,4	0,3	3,9	30,6
10	4,5	2,0	1,8	16,2	41,4	Н	3,1	1,6	0,7	3,5	16,5
11	8,4	1,8	1,1	16,6	52,7	Н	7,4	1,7	0,3	3,8	30,6
12	4,7	2,2	1,5	15,5	41,4		4,3	2,2	0,3	2,8	22,8
13	3,0	1,7	1,2	6,1	21,5		2,4	2,2	0,2	1,1	12,4
14	3,2	2,0	0,8	5,1	21,1		2,4	1,6	0,2	0,8	9,3
15	2,2	2,2	1,8	8,7	25,5		2,1	2,1	0,5	2,2	13,0
16	2,8	2,4	1,6	10,8	30,1		4,0	2,0	0,7	5,6	24,4
17	5,8	5,8	1,6	53,8	104,4		3,7	1,7	0,8	5,0	21,2
18	4,8	3,0	3,0	43,2	75,6		3,6	1,7	0,2	1,2	14,4
19	3,5	2,4	2,1	17,6	41,6		2,8	1,4	0,6	2,4	12,9
20	5,5	2,4	2,5	33,0	65,9	H	2,8	1,5	0,4	1,7	11,8
21	2,5	1,5	0,8	3,0	13,9	H	7,4	3,4	0,3	7,5	56,8
22	2,7	2,2	1,2	7,1	23,6	H	8,0	4,6	0,9	33,1	96,3
23	2,8	2,1	1,0	5,9	21,6	Н	5,2	1,9	0,3	3,0	24,0
24	4,4	1,9	1,0	8,4	29,3		5,5	2,8	0,4	6,2	37,4
25	4,2	2,6	1,0	10,9	35,4		5,8	3,8	0,5	11,0	53,7
26	4,0	1,5	0,7	4,2	19,7		3,0	3,0	0,4	3,6	22,8
27	4,4	1,9	1,0	8,4	29,3	Н	6,6	5,4	0,7	24,9	88,1
28	3,4	2,3	0,8	6,3	24,8		4,3	2,8	0,8	9,6	35,4
29	6,0	1,6	1,0	9,6	34,4		5,8	5,6	0,7	22,7	80,9
30	4,5	3,2	1,2	17,3	47,3	Н	5,2	2,4	0,4	5,0	31,0
31	5,6	3,1	2,4	41,7	76,5	Н	6,5	4,6	0,6	17,9	73,1
32	4,7	3,0	1,0	14,1	43,6		5,6	2,7	0,6	9,1	40,2
33	4,9	3,0	1,9	27,9	59,4		6,5	1,3	0,5	4,2	24,7
34	4,0	3,5	1,0	14,0	43,0		8,4	3,3	0,8	22,2	74,2
35	4,5	3,7	1,0	16,7	49,7		6,4	1,5	0,4	3,8	25,5
36	6,9	2,9	1,9	38,0	77,3		6,2	1,5	0,4	3,7	24,8
37	8,4	4,6	1,5	58,0	116,3		3,2	3,2	0,4	4,1	25,6
38	7,0	5,6	0,9	35,3	101,1		5,6	1,9	0,6	6,4	30,3
39	8.5	5,8	4,9	241,6	238,7		5,6	3,0	0,3	5,0	38,8
40	7,8	1,7	1,4	18,6	53,1		4,5	3,5	0,4	6,3	37,9
41	4,2	3,5	1,7	25,0	55,6		3,8	2,9	0,3	3,3	26,1
42	2,5	1,7	1,3	5,5	19,4		4,2	2,6	0,3	3,3	25,9
43	3,1	1,4	1,1	4,8	18,6		3,3	2,2	0,2	1,5	16,7
44	4,5	2,0	0,4	3,6	23,2	П	3,7	2,6	0,7	6,7	28,1
45	4,5	1,9	1,1	9,4	31,2		3,1	2,4	0,5	3,7	20,4
46	4,0	2,5	0,8	8,0	30,4		3,2	2,5	0,7	5,6	24,0
47	3,5	2,2	0,6	4,6			2,5	2,0	0,2	1,0	11,8
48	6,0	5,7	1,3	44,5	98,8		3,0	1,5	0,5	2,3	13,5
49	4,6	3,6	2,4	39,7	72,5		3,4	2,0	0,4	2,7	17,9
50	4,0	2,0	2,0	16,0	40,0		3,6	2,4	0,4	3,5	22,1
51	3,7	2,6	2,0	19,2	44,4		3,1	1,4	0,2	0,9	10,5
52	4,9	4,5	3,0	66,2	100,5		5,0	1,6	0,6	4,8	23,9
53	5,5	2,3	1,8	22,8	53,4		3,2	2,2	0,4	2,8	18,4
54	3,3	3,0	1,3	12,9	36,2		5,1	4,6	0,4	9,4	54,7
55	2,6	2,4	1,8	11,2	30,5		3,2	2,0	0,2	1,3	14,9
56	3,0	2,9	1,3	11,3	32,7		2,6	2,6	0,6	4,1	19,8
57	4,4	2,5	1,3	14,3	39,9		3,8	2,5	0,7	6,7	27,8
58	5,2	2,1	1,2	13,1	39,4		3,0	2,5	0,4	3,0	19,4
59	5,5	3,5	1,3	25,0	61,9		2,5	2,5	0,7	4,4	19,5
60	5,8	4,6	1,8	48,0	90,8		3,7	2,2	0,4	3,3	21,0
		,			, ,	_		,	,		

Anhang A8 (Fortsetzung): Geometrische Oberfläche von Gesteinspolyedern

	Ki	esels	schie	fer, ble	ich		Ala	auns	chiet	er, ble	eich
Nr.	а	b	С	V	Α		а	b	С	V	Α
61	5,8	4,6	1,4	37,4	82,5		6,6	1,9	0,4	5,0	31,9
62	13,0	5,2	5,1	344,8	320,8		3,0	2,4	0,5	3,6	19,8
63	7,5	2,4	1,8	32,4	71,6		5,6	1,5	0,7	5,9	26,7
64	3,9	2,1	1,2	9,8	30,8		4,8	1,4	0,4	2,7	18,4
65	5,0	4,2	1,9	39,9	77,0		8,6	4,3	0,6	22,2	89,4
66	3,1	3,1	1,0	9,6	31,6		6,5	5,4	0,5	17,6	82,1
67 68	3,2 3,3	2,3	1,8 1,2	13,2 10,3	34,5 31,3	Н	7,7 5,9	3,8 4,4	0,6	17,6 13,0	72,3 62,2
69	2,4	2,3	1,2	7,2	23,3		5,9	4,4	0,5	21,1	64,3
70	11,0	7,0	2,4	184,8	240.4		4,2	3,7	0,3	4,7	35.8
71	2,7	1,5	0,9	3,6	15,7		5.6		0,7	11,8	45,6
72	2,5	2,4	1,5	9,0	26,7		5,2	3,0	0,8	12,5	44,3
73	3,7	2,5	1,9	17,6	42,1		5,1	2,6	0,2	2,7	29,6
74	3,6	1,6	0,7	4,0	18,8		6,2	6,1	0,6	22,7	90,4
75	2,7	2,3	1,7	10,6	29,4		4,1	2,6	0,6	6,4	29,4
76	4,9	2,3	1,6	18,0	45,6		7,3		0,3	5,0	39,3
77	5,3	2,9	2,0	30,7	63,5		5,5	3,4	0,9	16,8	53,4
78	3,6	2,9	2,1	21,9	48,2		2,6	1,6	0,2	0,8	10,0
79	2,7	2,0	1,9	10,3	28,7		2,3	1,9	0,4	1,7	12,1
80	8,4	4,0	2,1	70,6	119,3	H	2,7	2,7	0,6	4,4	21,1
81	8,4	4,7	2,8	110,5	152,3	Н	2,9	,	0,2	0,9	10,5
82 83	4,2 10,3	4,2 3,3	4,1 2,4	72,3 81,6	104,2 133,3		3,9 2,6	2,1 1,5	0,4	3,3	21,2 9,4
84	6,3	1.9	0,6	7,2	33,8	Н	3,2	1,5	0,2	0,8 1,4	12,4
85	5,3	2,4	2,2	28,0	59,3		6,2	2,9	0,3	5,4	41,4
86	4,4	4.2	1,9	35,1	69,6		11,2	2,3	1,4	37,6	91,8
87	8,6	3,1	1,1	29,3	79,1		5,6		0,6	15,5	63,8
88	8,8	2,9	1,2	30,6	79,1		6,2	1,9	0,6	7,1	33,3
89	8,0	2,4	2,3	44,2	86,2		3,1		0,3	1,8	14,8
90	4,1	3,1	1,1	14,0	41,3		2,6	1,9	0,6	3,0	15,3
91	8,0	5,0	1,5	60,0	119,0		4,5	1,3	0,4	2,3	16,3
92	2,2	1,4	0,6	1,8	10,5		2,9	1,1	0,3	1,0	8,8
93	2,4	1,8	0,8	3,5	15,4		5,7	1,2	0,4	2,7	19,2
94	3,9	0,9	0,8	2,8	14,7		2,6	,	0,5	1,4	9,4
95	3,6	1,4	1,0	5,0	20,1		1,5	1,4	0,4	0,8	6,5
96	3,0	2,3	1,4	9,7	28,6		10,5	3,2	0,4	13,4	78,2
97 98	2,3 4,2	2,3 3,6	2,2 1,2	11,6 18,1	30,8 49,0	Н	3,5 4,1	3,1 2,7	0,1	1,1 2,2	23,0 24,9
99	3,2	2,4	2,0	15,4	37,8		8,2		0,2	4,6	30.6
100	3,9	3,1	2,1	25,4	53,6		10,1	2,5	0,5	12,6	63,1
101	2,4	2,0	1,5	7,2	22,8		3,0		0,8	3,6	16,2
102	6,5	4,2	1,4	38,2	84,6		3,7	2,4	0,5	4,4	23,9
103	5,5	5,1	1,1	30,9	79,4		3,7	2,0	0,8	5,9	23,9
104	4,5	3,4	2,1	32,1	63,8		5,6	2,5	0,3	4,2	32,9
105	3,7	2,4	1,1	9,8	31,2		5,1	2,2	0,9	10,1	35,6
106	5,2	3,2	2,4	39,9	73,6		4,4	1,8	0,3	2,4	19,6
107	3,9	3,0	1,6	18,7	45,5	Ц	3,2	1,6	,	2,0	14,1
108	5,4	3,3	2,0	35,6	70,4		3,4		0,5	5,4	28,4
109	3,2	3,2	1,3	13,3	37,1		3,6	2,3	0,4	3,3	21,3
110 111	3,5 3,5	3,5 3,1	1,3 1,1	15,9 11,9	42,7 36,2	H	4,2 3,5	1,5 2,1	0,4	2,5 1,5	17,2
112	5,3	2,9	1,1	24,6			3,5	1,5	0,2	1,1	16,9 12,8
113	5,3	1,5	0,9	7,0	57,0 27,7	H	3,7	1,5	0,2	2,1	14,4
114	3,0	2,1	1,1	6,9	23,8	Н	7,2	2,3	0,4	8,3	42,6
115	4,0	2,6	1,4	14,6	39,3		10,0	1,7	0,5	8,5	45,7
116	3,0	2,0	2,0	12,0	32,0		2,4	1,9	0,1	0,5	10,0
117	3,9	3,1	2,2	26,6	55,0		11,1	5,3	0,7	41,2	140,6
118	4,0	3,1	1,2	14,9	41,8		6,4	1,7	0,6	6,5	31,5
119	8,7	4,6	2,1	84,0	135,9		6,2	2,5	0,4	6,2	38,0
120	3,8	3,0	1,9	21,7	48,6		4,9	2,7	0,3	4,0	31,0
121	5,6	3,5	1,9	37,2	73,8		4,1	1,2	0,4	2,0	14,1
122	4,0	2,1	1,2	10,1	31,4		4,8	1,5	0,3	2,2	18,2
123	2,6	2,1	1,7	9,3	26,9		3,6	1,2	0,3	1,3	11,5
124	2,1	1,6	0,5	1,7	10,4	H	4,5	0,8	0,2	0,7	9,3
125	3,2	1,9	1,3	7,9	25,4	Н	2,0	0,9	0,2	0,4	4,8
126 127	2,6	2,5 4,4	1,3 3,6	8,5 103,0	26,3 135,7	H	0,6 5,2	1,8 2,7	0,3	0,3 7,0	3,6 36,0
128	6,5 2,4	2,2	0,5	2,6	15,7	Н	4,3	2,7	0,5	3,4	22,2
129	6,0	3,5	2,7	56,7	93,3		3,9	2,0	0,4	0,8	17,6
130	6.5	5,0	3,3	107,3	140,9		3,8	2,1	0,1	3,3	21,5
.00	٠,٠	0,0	5,5	101,0	1-0,3	Ш	5,5	۷,۲	∪,∓	5,5	٠,٦

Anhang A9: Äußere Oberfläche von Sand und Kies (Probe 117)

Anm.: Volumenberechnungen basieren auf der Dichte von Quarz (2.65 g/cm³)

r [cm]	AO [cm ²]	Kugel-V [cm ³]	Klassen- Masse [g]	Klassen-V [cm ³]	Klassen- Kornzahl	Klassen- oberfläche [cm²]	Klassen- volumen [cm³]	Flächen [cm²/cm³]
Korndat	en: mittler	e Korngröße	aus Siebfr	aktion				
0,3	1,1310	0,11309734	220,46	83,19	736	832	83,1925	
0,15	0,2827	0,01413717	39,65	14,96	1058	299	14,9623	
0,075	0,0707	0,00176715	23,09	8,71	4931	349	8,7132	
0,0375	0,0177	0,00022089	12,7	4,79	21696	383	4,7925	
0,019	0,0045	0,00002873	19,32	7,29	253753	1151	7,2906	
0,0095	0,0011	0,00000359	6,25	2,36	656712	745	2,3585	
					Summe:	3759	121,3094	31
Korndat	en: minim	ale Korngröß	Be aus Sieb	fraktion				
0,2	0,5027	0,03351032	220,46	83,19	2483	1248	83,1925	
0,1	0,1257	0,00418879	39,65	14,96	3572	449	14,9623	
0,05	0,0314	0,00052360	23,09	8,71	16641	523	8,7132	
0,025	0,0079	0,00006545	12,7	4,79	73223	575	4,7925	
0,0125	0,0020	0,00000818	19,32	7,29	891133	1750	7,2906	
0,00625	0,0005	0,00000102	6,25	2,36	2306245	1132	2,3585	
					Summe:	5676	121,3094	47
Korndat	en: maxim	ale Korngröl	ße aus Sieb	fraktion				
0,4	2,0106	0,26808257	220,46	83,19	310	624	83,1925	
0,2	0,5027	0,03351032	39,65	14,96	446	224	14,9623	
0,1	0,1257	0,00418879	23,09	8,71	2080	261	8,7132	
0,05	0,0314	0,00052360	12,7	4,79	9153	288	4,7925	
0,025	0,0079	0,00006545	19,32	7,29	111392	875	7,2906	
0,0125	0,0020	0,00000818	6,25	2,36	288281	566	2,3585	
					Summe:	2838	121,3094	23

Den Korndaten liegen Siebanalysen (GELETNEKY, unveröff. Ergebnisse) zugrunde, getrennt wurden folgende Fraktionen:

> 4 mm Durchmesser

²⁻⁴ mm

¹⁻² mm

^{0.5-1} mm

^{0.25-0.5} mm

^{0.125-0.25} mm

Anhang A10: Äußere Oberfläche mit Paraffintränkungsmethode

m₁ [g]: Masse des Gesteinspolyeders

 m_2 [g]: Masse des ummantelten Gesteinspolyeders m_{paraff} [g]: Paraffinmantel-Masse, Dichte = 0,9 g/cm³

Vpara [cm3]: Paraffinvolumen

d [cm]: Mächtigkeit der Paraffinhaut

AO_P [cm²]: Oberfläche aus Paraffinumhüllung

AO-Q [cm²]: Oberfläche aus Quader mit Kanten a, b, c

P/Q: Quotient der Oberflächendaten

Alaunscl	hiefer, ble	eich:					
m₁ [g]	m ₂ [g]	m _{paraff}	Vpara	d [mm]	AO_P	AO_Q	P/Q
5,754	6,390	0,636	0,7	0,040	18	17	1,1
6,663	7,370	0,707	0,8	0,040	20	14	1,5
2,623	2,950	0,327	0,4	0,040	9	15	0,6
28,384	30,449	2,065	2,3	0,040	57	72	0,8
23,796	25,516	1,720	1,9		48	62	0,8
25,291	27,449	2,158	2,4	0,040	60	66	0,9
22,083	23,616	1,533	1,7	0,040	43	46	0,9
5,839	6,429	0,590	0,7	0,040	16	25	0,7
14,430	15,337	0,907	1,0	0,040	25	33	0,8
55,127	57,988	2,861	3,2	0,040	79	92	0,9
4,726	5,296	0,570	0,6	0,040	16	20	0,8
8,502	9,123	0,621	0,7	0,040	17	24	0,7
3,261	3,625	0,364	0,4	0,040	10	12	0,8
7,807	8,413	0,606	0,7	0,040	17	21	0,8
4,531	4,963	0,432	0,5	0,040	12	17	0,7
5,161	5,623	0,462	0,5	0,040	13	16	0,8
9,08	9,753	0,673	0,7	0,040	19	24	0,8
15,638	16,827	1,189	1,3	0,040	33	31	1,1
14,315			1,6		41	55	0,7
3,172	3,552	0,38	0,4	0,040	11	14	0,8
4,297	4,676	0,379	0,4	0,040	11	16	0,7
2,869		0,338	0,4	0,040	9	11	0,9
4,388	4,797	0,409	0,5	0,040	11	17	0,7

Alaunscl	hiefer, sc	hwarz:					
m₁ [g]	m ₂ [g]	m _{paraff}	Vpara	d [mm]	AO_P	AO_Q	P/Q
20,705	21,82	1,115	1,2	0,035	35	26	1,4
36,632	37,382	0,75	0,8	0,055	15	26	0,6
12,43	13,09	0,66	0,7	0,055	13	21	0,6
30,614	32,528	1,914	2,1	0,055	39	23	1,7
7,38	8,039	0,659	0,7	0,055	13	15	0,9
3,66	3,952	0,292	0,3	0,055	6	21	0,3
5,842	6,399	0,557	0,6	0,055	11	19	0,6
3,634	4,053	0,419	0,5	0,055	8	11	0,8
10,587	11,629	1,042	1,2	0,055	21	22	1,0
29,794	31,237	1,443	1,6	0,055	29	16	1,8
4,917	5,319	0,402	0,4	0,055	8	13	0,6
3,651	3,971	0,32	0,4	0,055	6	15	0,4

Anhang A10: (Fortsetzung): Äußere Oberfläche mit Paraffintränkungsmethode

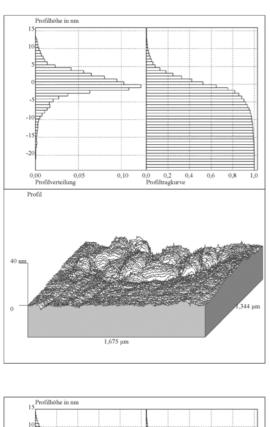
Kieselsc	hiefer, bl	eich:					
m₁ [g]	m ₂ [g]	m _{paraff}	Vpara	d [mm]	AO_P	AO_Q	P/Q
24,534	25,569	1,035	1,2		29	32	0,9
7,621	8,170	0,549	0,6		15	19	0,8
93,655	96,588	2,933	3,3	0,040	81	85	1,0
73,62	75,633	2,013	2,2	0,040	56	64	0,9
56,905	58,743	1,838	2,0	0,040	51	48	1,1
54,968	56,591	1,623	1,8	0,040	45	49	0,9
11,651	12,13	0,479	0,5	0,040	13	15	0,9
5,825	6,159	0,334	0,4	0,040	9	10	0,9
13,783	14,363	0,58	0,6	0,040	16	26	0,6
16,138	16,749	0,611	0,7	0,040	17	27	0,6
5,463	5,827	0,364	0,4	0,040	10	10	1,0
20,233	20,914	0,681	0,8	0,040	19	25	0,8
9,523	9,99	0,467	0,5	0,040	13	17	0,8
5,098	5,486	0,388	0,4	0,040	11	11	1,0
7,829	8,757	0,928	1,0	0,040	26	25	1,0

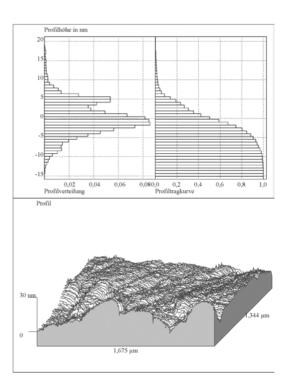
Kieselsc	hiefer, so	hwarz:					
m₁ [g]	m ₂ [g]	m _{paraff}	Vpara	d [mm]	AO_P	AO_Q	P/Q
15,067	15,661	0,594	0,7	0,040	17	34	0,5
13,265	13,8	0,535	0,6	0,040	15	26	0,6
21,781	22,652	0,871	1,0	0,040	24	30	0,8
34,84	36	1,16	1,3	0,040	32	33	1,0
44,233	45,642	1,409	1,6	0,040	39	41	1,0
8,799	9,191	0,392	0,4	0,040	11	12	0,9
19,516	20,368	0,852	0,9	0,040	24	28	0,8
45,32	46,774	1,454	1,6	0,040	40	36	1,1
19,915	20,799	0,884	1,0	0,040	25	19	1,3
23,543	24,368	0,825	0,9	0,040	23	30	0,8
55,617	57,335	1,718	1,9	0,040	48	53	0,9
69,949	72,593	2,644	2,9	0,060	49	37	1,3
30,332	31,56	1,228	1,4	0,040	34	34	1,0
11,182	11,841	0,659	0,7	0,040	18	23	0,8
6,435	6,857	0,422	0,5	0,040	12	20	0,6
7,56	7,945	0,385	0,4	0,040	11	17	0,6
18,629	19,359	0,73	0,8	0,040	20	35	0,6
6,574	6,922	0,348	0,4	0,040	10	10	1,0
7,758	8,135	0,377	0,4	0,040	10	12	0,9
4,433	4,699	0,266	0,3	0,040	7	13	0,6

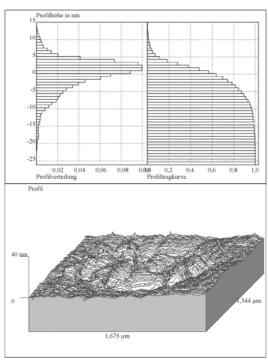
Anhang A11: mechanische Rauhigkeitsanalyse (DEKTAK)

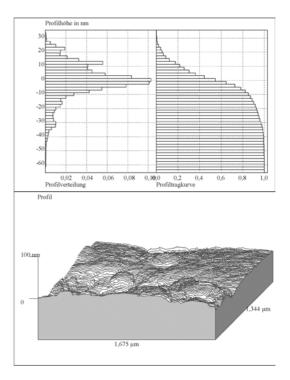
Probe	Spezifikat.	Profil	Polygon	Verlän- gerung	Auflö- sung	F	Wellig- keit	Rq
		[µm]	[µm]		[Punkte]		[µm]	[µm]
211-2		3000	3078	1,026	1200	1,04	8,5	5,6
		100	104	1,039	2000		2	0,6
		300	309	1,028	1200		3,9	0,8
	senkrecht	3000	3053	1,019	1200		8	5
211-2 b-1		8000	8229	1,029	1600	1,03	17,4	9,9
2	schwarz	3000	3117	1,039	1200		5,5	8,2
3		3000	3064	1,021	1200		5,8	4,9
4		3000	3062	1,021	1200	1,04	6,1	5,4
5	hell	100	106	1,056	2000		1,3	0,3
6		300	313	1,044	1200		7	0,8
7	schwarz	300	311	1,037	1200		2,2	0,6
9		100	104	1,037	2000	1,03	1,4	0,3
10	Übergang	300	309	1,029	1200		4,8	1
11		3000	3070	1,023	1200		4,6	5,7
224		3000	3133	1,044	1200	1,11	6,7	4,2
		100	103	1,025	2000		1	0,3
		300	307	1,022			2,9	0,9
	senkrecht	3000	3191	1,064			3,8	4,3
225		100	132	1,318	2000	1,15		1,3
		300	300		1200			0,1
		3000	3251	1,084	1200		42	13,4
	senkrecht	3000	3189	1,063	1200		54	10
228-1		3000	3055	1,018	1200	1,04	13,2	3,5
		100	104	1,041	2000			0,3
		300	305	1,015	1200		1,4	0,6
	senkrecht	3000	3065	1,021	1200		6,3	5,3
229		3000	3113	1,038	1200	1,08	8,5	6,5
		100	105	1,05	2000		1	1
		300	315	1,048	1200		5,1	1,2
	senkrecht	3000	3107	1,036	1200		8	6,9
230-1		3000	3070	1,023	1200	1,11	8,6	4,7
		100	102	1,018	2000		0,7	0,1
		300	304	1,012	1200		2	0,7
	senkrecht	2500	2707	1,083	1000		6,7	5
230-1		2000	2121	1,061	2000	1,09	11,1	4,5
		2000	2113	1,056	2000		6,5	4,2
	senkrecht	2000	2057	1,028	2000		6,5	4,6
230a		3000	3092	1,031	1200	1,04	7,5	2,9
	senkrecht	3000	3023	1,008	1200	,	4,2	2,6

Anhang A11 (Fortsetzung): mechanische Rauhigkeitsanalyse (DEKTAK)


Probe	Spezifikat.	Profil	Polygon	Verlän- gerung	Auflö- sung	F	Wellig- keit	Rq
		[µm]	[µm]		[Punkte]		[µm]	[µm]
231		3000	3155	1,052	1200	1,08	12	7,9
		3000	3129	1,043	1200		8,8	7
	senkrecht	3000	3071	1,024	1200		2,5	1,3
	senkrecht	3000	3093	1,031	1200		12,5	6,7
231		3000	3124	1,041	1200	1,07	9,9	7,3
		100	104	1,035	2000		2,5	0,7
		300	315	1,051	1200		0,7	0,6
	senkrecht	3000	3073	1,024	1200		16,6	5,9
231-g		3000	3247	1,082	1200		12,9	10,7
		5000	5338	1,068	2000		9,6	13,1
232		2000	2058	1,029			55	5,8
		3000	3205	1,068	1200	1,13	28,3	9,9
		100	104	1,038	2000		0,9	0,3
		300	308	1,026	1200		2,6	1
	senkrecht	3000	3162	1,054	1200		58,4	9,3
233		2000	2064	1,032	2000	1,08	21	7,6
		2000	2054	1,027	2000		24	4
		2890	2986	1,033	1200		21	6,3
	senkrecht	2000	2105	1,052	2000		2,5	5,1


Anhang A12: Rauhigkeitsmikroskopie (WLI, LSM)


Lokation	Probe	LSM, WLI: Meßfeld: Aufl: xy;z [nm]	92x9	100x 2µm² 100		WLI 140x140µm² 500; 100						LSM: 50x 184x184µm² 400; 250		
rms-Rauhigkeit [μm], Rauhigkeitsfaktor:			rms	F	rms	min	max	F	min	max		ns Ihg.)	F	
S3 Creu	228 229	bleich schwarz	2,2	4,6 4,6							3,8 3,5	(4,9)	4,3 4,6	
S1 Hohenleuben	211-2b/c	AS, schwarz Ü schw Ü grau Ügelb/bleich AS, bleich Süd, bleich KS, schwarz KS, bleich	5 2,4 3,5 4,4	9,7 4,2 6,6 12,4	4 4,9 3,6 8,2	2,5 3,8 3,1 3,3	6,4 4,2 6,6 3,9	2,7 3,9	2,9 2,5 3,7 3,7	4,1 2,9 4 3,7 6,9	3,7 6,6 3,6 4,6	(7,4) 8,7 (6,9)	5,7 5,5 5,9	
S3 Gamm	128	AS, Kruste	3,4	3,2										
S1 Au	121-2	KS, rot			3			2,7						


Für das Laser-Scanning-Microskop sind die verwendeten Objektive (50x, 100x) angegeben. Für die Weißlichtinterferometermessungen existieren Mittelwerte der rms-Rauhigkeit sowie Minimal- und Maximalwerte aus Wiederholungsmessungen. Bei LSM-Messungen mit 50x-Objektiv sind Wiederholungsmessungen angegeben; Werte in Klammern zeigen Abweichungen von den rms-Daten aus den übrigen Messungen an.

Anhang A13: AFM-Abbildung von Oberflächen polierter Dünnschliffe
Histogramme der Oberflächenanteile auf polierten Dünnschliffen (Probe 126):
ungebleicht:
gebleicht:

Anhang A14: Porosimetrie-Untersuchungen (Quecksilber-Intrusion, N₂-BET-Adsorption)

Proben-Nummer	Lithologie, Herkunft	A-BET [m²/g]		BET-Fläche [m²/g], Einzelmessungen						Porosität [%]	häufigster r [nm]	Dichtediff. [g/cm³]	Dichte 1bar [g/cm³]	Dichte 4 kbar [g/cm³]
120-2	S1-AS-"Zersatz", Gessental	6	5,2	5,3	5,6	5,8	5,7							
121-1	S1-KS, Auberg	2	1,7	1,8										
121-2	S1-KS, Auberg	<	0,0											
121-3	S1-KS, Auberg	2	1,6	1,4										
121-4	S1-KS, Auberg	<	0,0											
121-5	S1-KS, Auberg	'	0,0											
122	Tonschiefer, Mennsdf.	6	5,4	5,7										
126c	S1-AS-bleich, Jarosit, Gammig	2	2,0	2,1										
126d	S1-AS-schwarz, Gammig	14	13,0	13,9	14,2	14,1								
129c	S3-AS-bleich, Jarosit, Gammig	3	2,8	2,9	3,5	3,3	3,3	3,5	5	15	50	0,36	2,27	2,63
129c2	S3-AS-bleich, Jarosit, Gammig								4	13	35	0,33	2,29	2,62
129d	S3-AS-schwarz, Gammig	5	5,0	4,7					11	8,5	5	0,22	2,38	2,6
129d2	S3-AS-schwarz, Gammig								7	11,5	18	0,29	2,30	2,59
129e	S3-AS-bleich, Gammig								4	16,2	60	0,43	2,22	2,65
131	S2/3-AS-braun, Gräfenw.	8	7,8	7,8										
133	S1-AS, Kruste, Weißb. Mulde	17	16,9	17,6	17,5									
134	Vulkanit, Rotl., Weißb. Mulde	13	13,0	12,8										
137	S1, AS, kalkreich, Drosen	29	28,6	28,5										
181	Og3, rötlich, Baldenhain S	1	0,9	1,0										
187	S1, AS, kalkreich, Baldenhain	7	7,4	7,3										
207-1	S1?, AS-schwarz, Gessental	9	8,6	8,6										
207-2	S1?, AS-schwarz, Gessental	12	11,5	11,7										
208	S1?, AS-schwarz, Gessental	24	24,0	24,1										
209-3	S1?, AS-schw., Kruste, Gess.	13	13,2	13,3										
210	Og3, Burg Reichenfels	2	2,2	2,6										
211-4	S1-AS-hellviolett, Kr., Hlb. N	7	5,5	6,1	6,0	7,6	7,8							
213	S1-AS-grau, Halde Schmiedef.	2	2,2	1,9										
221	S3, AS-bleich, Döhlen	5	4,8	4,9										
222	S3, AS-bleich, Döhlen	7	6,5											
223	Verwitt.schutt, Hlb., S	13												
224-1	S1-AS-bleich, Hlb., S	6	7,6		4,8	5,1			4	28	115	0,71	1,82	2,53
224-2	S1-AS-schw., Hlb., S	6	5,0		6,1	6,7	6,2		5	10	34	0,25	2,17	2,42
225a	S3-AS-schw., St. Rose	10	9,6						6	5,8	6,6	0,15	2,48	2,63
225b	S3-AS-schw., Kruste, St. Rose	36	35,5						1	2,7		0,07	2,59	2,66
225b1	S3-AS-schw., stark verkr., St. R.	58	57,6						4	7	39	0,18	2,43	2,61
228	S3-AS-bleich, Creunitz	4	3,9						4	14	40	0,38	2,25	2,63
229	S3-AS-schwarz, Creunitz	10		10,4					7	2,9	2	0,07	2,4	2,47
230	S1-AS-schw., Hlb. N (211-2,6)	18	16,3		19,4	19,6			8	8,5	15	0,21	2,25	2,46
231	S1-AS-bleich, Hlb. N (211-3)	8	7,7	7,7					6	26	110	0,65	1,88	2,53
232	S1-KS-schwarz, Hlb. N								3	1,5	2	0,04	2,49	2,53
233	S1-KS-bleich, Hlb., S								1	5,2	100	0,14	2,46	2,6
	S1-AS-Zone: braun, Hlb. N	5	5,4	5,1								•	•	
	S1-AS-Zone: schw., Hlb. N	13												
1188	RotlSandstein, Bebertal	2	2,8	2,9		2,0								

höhere Meßwerttoleranz

Anhang A15: Dichtemessngen an organischem Material (HF-Aufschluß-Rückstand; Schwebfracht)

(Probe 224-2)

Messung:

10 ml-Pyknometer, T = 20.3°C

Pyknometer, Leermessung: 12.2762 ± 0.0001 g Pyknometer mit aqua dest.: 22.2507 ± 0.0001 g Pyknometer mit Probe: 12.4940 ± 0.0002 g

Pyknometer mit Probe und aqua dest: 22.3450 ± 0.0002 g

Berechnung:

$$\begin{split} \rho &= \text{m/V}; \ \Delta \ \rho = \text{I} \ \Delta \text{m/V} \ \text{I} + \text{I} \ \text{m} \ ^* \Delta \text{V/V}^2 \ \text{I} \\ \rho \ (\text{H}_2\text{O}) &= 0.99745 \pm 0.00002 \ \text{g/cm}^3 \\ m \ (\text{H}_2\text{O}), \ \text{Pykn. mit Probe} = 9.8510 \pm 0.0004 \ \text{g} \\ V \ (\text{H}_2\text{O}), \ \text{Pykn. mit Probe} = 9.8762 \pm 0.0006 \ \text{cm}^3 \\ V \ (\text{C}_{\text{org}}) &= 0.1238 \pm 0.0003 \ \text{g} \\ m \ (\text{C}_{\text{org}}) &= 0.2178 \pm 0.0003 \ \text{g} \\ \rho \ (\text{C}_{\text{org}}) &= 1.759 \pm 0.007 \ \text{g/cm}^3 \end{split}$$