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Chapter 1

Introduction

1.1 History of vanadium

Vanadium was first discovered in 1801 by Andrés Manuel del Rio, a Spanish professor

of mineralogy working in Mexico City. He originally named the element panchromium

after the various color of its salts, but later renamed it erythronium because of the

red color generated upon heating. Unfortunately, del Rio lost confidence in his discovery,

thinking that he had found the element chromium, which had recently been discovered by

the Frenchman Fourcroy. Vanadium was rediscovered in 1831 by the Swede Nils Gabriel

Sefström. Its present name is derived from the Vanadis, the goddess of love and beauty of

Norse mythology. Metallic vanadium was not isolated until 1867 when Sir Henry Enfield

Roscoe, Professor of Chemistry at Owens College (later the University of Manchester),

reduced vanadium chloride (VCl5) with gaseous hydrogen to give vanadium metal and

HCl. Natural vanadium is a mixture of two isotopes, 51V (99.76%) and 50V (0.24%), the

latter being slightly radioactive with a half-life of >3.9 x 1017 years. Important sources

of the metal are the minerals carnotite [K2(UO2)2(VO4)2] and vanadinite [Pb(VO4)3Cl].

It is also present in some crude oils in the form of organic complexes. Vanadium occurs

with an abundance of 0.014% in the earths crust and is widespread. The element is the

second most abundant transition metal in the oceans (50 nM). Some aquatic organisms

are known to accumulate vanadium. However, the actual function of vanadium and the

nature of the vanadium compounds present in these organisms remains unclear.[1]

In 1983, a naturally occurring vanadium-containing enzyme, vanadium bromoperoxidase

11
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Figure 1.1: A tunicate (Clavelina Puertosecensis) discovered near Discovery Bay,

Jamaica.[2]

(V-BrPO), was discovered in the marine brown alga Ascophyllum nodosum.[3] Since then,

several vanadium haloperoxidases have been isolated and studied, many of these enzymes

have been detected in brown and red seaweeds.[4, 5] However, the accumulation of vana-

dium is not restricted to marine organisms, since vanadium containing haloperoxidases

have also been isolated from terrestrial fungi Curvularia Inaequalis [6] and a vanadium

compound of low molecular weight (amavadin) has been isolated from the toadstool

Amanita muscaria.[7]

The chemistry of vanadium is characterized by multiple oxidation state ranging

from -3 to +5, but with the exception of –2. Of the common oxidation states only the

three highest, i.e. +3, +4 and +5, are important in biological systems.[8] Under ordinary

conditions, the +4 and +5 oxidation states are the most stable ones. The majority

of vanadium(iv) compounds contain the VO2+ unit (vanadyl ion). These complexes

typically have square planar pyrimidal or bipyrimidal geometries with an axial oxo ligand.

The coordination chemistry of vanadium(v) compounds is dominated by oxo complexes,

containing the VO3+ or the VO+
2 moiety. V4+ and V5+ ions are very small with radii

of 0.61 Å, and 0.59 Å, respectively. Due to the d1 configuration of vanadium(iv) ions,

these are easily identified by EPR spectroscopy. Typical eight-line patterns are observed

due to hyperfine interaction of the 51V nucleus (I = 7/2). V(v) is EPR silent due

to its d0 state. Vanadium(v) complexes are therefore diamagnetic, which makes them

appropriate for NMR analyses. Especially 51V NMR is a useful tool in the characterisation
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of vanadium(v) complexes, since the chemical shifts are very sensitive to the nature of

the coordination sphere of the metal.[9, 10]

1.2 Vanadium haloperoxidases

Three classes of haloperoxidases have been identified. One of these consists of enzymes

without a prosthetic group and as such have been detected in a number of bacteria.[11]

The remaining two classes are heme-containing haloperoxidases exemplified by the ClPOs

from the fungus Caldariomyces fumago [12] or myeloperoxidase which is present in white

blood cells[13] and the vanadium-containing haloperoxidases. Enzymes representing these

two classes not only differ in the nature of their prosthetic group but also in at least two

other aspects: catalytic mechanism and stability. Heme-containing peroxidases catalyze

the formation of the hypohalous acid by a redox mechanism, whereas in vanadate con-

taining haloperoxidases the transition metal does not change its redox state[14, 15] but

may function as a Lewis acid. Vanadium haloperoxidases are enzymes that catalyse the

oxidation of a halide by hydrogen peroxide to the corresponding hypohalous acids (or to

a related two-electron oxidised halogenating intermediate such as OX−, X3
− and X+).

In the presence of suitable nucleophilic acceptors, halogenated compounds are formed

according to :

H2O2 + X- + H+ H2O + HOX

HOX + Org-H Org-X + H2O

Vanadate containing haloperoxidases not only posses a very high stability[16] but

they also resist a high concentration of their substrate (H2O2) and their product (HOX)[16]

that would readily inactivate the heme-containing peroxidases. In addition they are much

more resistant toward heat, detergent, and solvent denaturation. The major drawback of

all haloperoxidases including the stable V-HPOs is that they are mainly active at mildly

acidic pH values, whereas for many applications activity at mildly alkaline pH values is

required.
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The enzymes are named after the most electronegative halide ion they are able to oxidize.

Thus vanadium chloroperoxidases (V-ClPOs) can oxidize chloride, bromide and iodide,

while vanadium bromoperoxidases (V-BrPOs) can oxidize bromide and iodide. Iodoper-

oxidase merely catalyses the oxidation of iodide. Hydrogen peroxide does not have the

driving force to oxidize fluoride, however a fluorinating enzyme, fluorinase, has recently

been isolated and is proposed to act by an SN2 mechanism.[17]

Vanadium chloroperoxidase enzymes are the most studied vanadium-containing en-

zymes and crystal structure determination of the azide-substituted form, the apo-form

(metal free) and the tungstate-containing enzyme are available.[18] These have been found

in the terrestrial fungi Curvularia inaequalis.

Figure 1.2: Schematic representation of the structure and active site of the V-ClPO

isolated from the terrestrial fungi Curvularia inaequalis.
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The first crystal structure of the native form of the enzyme was reported in 1996 by

Messerschmidt and Wever (Figure 1.2).[19] The X-ray structure revealed vanadate as the

prosthetic group linked to the protein through only one covalently bond to the imidazole

of the histidine residue (His496). It was proposed that, vanadium(v) has a trigonal

bipyramidal geometry with three non-proteinous oxygen atoms in the equatorial plane

and the fourth one at the apical position postulated as OH group (V–O 193 pm). An

extensive hydrogen bonding interaction is observed, that is capable of fixing the vanadate

in the protein shell. The equatorial oxygen atoms of the prosthetic group are in hydrogen

bonding contact with positively charged amino acid residues, such as Lys353, Arg360

and Arg490. The lysine and one arginine amino acid are also used to compensate for

the negative charge of the vanadate moiety. Moreover, the Arg490 residue is further

stabilized and kept close to the active binding site by the formation of a salt-bridge with

an aspartate residue, namely Asp292. Other key residues in the active site are Gly403

and Ser402, also forming hydrogen bonds with the equatorial oxygen atoms. Furthermore

the His404 residue is the single amino acid hydrogen bonded to the apical hydroxyl group.

The active site of vanadium chloroperoxidase (V-ClPO), revealed the vanadate co-

ordinated at the top of one of the two four–helix bundles in a broad channel, which is

lined on one half with predominantly polar residues and several main-chain carbonyl oxy-

gens. The other half of the channel is hydrophobic, containing Pro-47, Pro-211, Trp-350,

Phe-393, Pro-395, Pro-396, and Phe-397 (see Figure 1.3).

All these amino acids play a very important role in the chloroperoxidase activity.

The vanadate as the prosthetic group of vanadium haloperoxidases, has been found

to be vital for the catalytic reaction, since its removal or reduction leads an inactive

apoprotein derivate.[4, 14] Replacement of vanadate with molybdate did not restore the

haloperoxidase activity of the enzyme,[14] although the protein environment of the V-HPO

enzymes was capable to bind molybdate.[18]

Besides the X-ray structure of the native enzyme, the structure of the peroxide

intermediate in V-ClPO was also determined.[19] The trigonal-bipyrimidal arrangement

is converted to tetragonal-pyrimidal upon addition of H2O2 (Figure 1.4). The oxo group

is now placed in the apical position, whereas the peroxo ligand is located in the tetragonal

plane. Also in the peroxide form an extensive hydrogen-bonding network is present. One
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Figure 1.3: Active side channel of V-HPO enzyme

oxygen of the peroxo group is hydrogen-bonded to the nitrogen of Lys-353 and to the

amide nitrogen of Gly-403.

V

His 496 N O

OO

O

Lys 353

Arg 360

Arg 490

HN(Gly amide)

Figure 1.4: The peroxo vanadium site in V-ClPO.[19]

The second peroxo oxygen is also linked to this glycine nitrogen. The other oxygens form

hydrogen bonds to Ser-402 and Arg-490, respectively, and to the arginine residues Arg-360

and Arg-490, respectively. A catalytic mechanism has been proposed by Messerschmidt

and Wever[19] which is depicted in Figure 1.5. The apical hydroxy unit is hydrogen bonded

to a histidine residue (His404) in a protein environment. This hydrogen bond makes the

–OH group more nucleophilic. When a peroxide molecule approaches the active site,
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the –OH unit is protonated and –H2O is generated. The weakly ligated water molecule

dissociates from the vanadium ion and a side-on bound peroxide intermediate is formed

after the departure of another water molecule.

V

OH

N(His)

O
O

O

HOX

H2O

V

OH

N(His)

O
O

O

V

O
OO

O(His)N

H+ (Lys)

H2O
OH-

X-, H+

H2O2

RH

H2O2

RX + 2H2O

O2 + 2H2O
+ HX

N(His 404)

Figure 1.5: Proposed catalytic mechanism of V-ClPO.

Subsequently, attack of a halide ion at one of the peroxo atoms and the uptake of a proton

from a surrounding water molecule leads to the generation of hypohalous acid (HOX) and

restoration of the native state. At higher acid concentrations, the halogenation activity

was inhibited. It was assumed that this is due to protonation of His404.[20] As a result,

the formation of the peroxide form does not occur, since it is now impossible for the

histidine residue to form a hydrogen bond to the apical OH group. As a consequence,

this hydroxy unit loses its ability to activate the H2O2 by deprotonation and therefore

the peroxide can not be bound to the vanadium ion.

Vanadium haloperoxidases have been shown to catalyse the bromination of various

organic substrates[21, 22], including monochlorodimedone (MCD, 2-chloro-5,5-dimethyl-

1,3-dimedone), which is the standard assay used to evaluate haloperoxidase activity

(Figure 1.6). The halogenation of MCD is followed spectrophotometrically at 290 nm

which monitors the loss of MCD in the enol form. In addition, phenol red can be used
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as organic substrate for oxidative bromination, resulting in the formation of bromphenol

blue.[23, 24]

O OH

Cl

+  X- + H2O2 + H+

X- = Br-, Cl-

O O

Cl X

+ 2H2O
V-HPO

S O

O O

OH

OH

S O

O O

OH

OH

Br

Br

BrBr

V-HPO

Br- + H2O2 + H+

Figure 1.6: Halogenation of MCD (upper reaction) or phenol red (lower reaction) from by

V-HPOs. These are used as standard substrate in haloperoxidase activity determinations.

Vanadate-dependent haloperoxidases are also capable of recognizing substrates with

a specific chirality: it has been demonstrated that these enzymes mediate enantioselec-

tive sulfoxidation by hydrogen peroxide.[25–27] Thus, the asymmetric oxidation of bicyclic

aromatic sulfides with hydrogen peroxide as oxidant by bromoperoxidase from the sea-

weed Corallina officinalis yields the corresponding (s)–sulfoxides with high enantiomeric

excess (ee), while this enzyme is not able to oxidize methyl phenyl sulfide at all.[25, 27]

If, however, this reaction is mediated by the bromoperoxidase from the brown seaweed

Ascophyllum nodosum, the r–enantiomer of the sulfoxide is in 91% ee, under slightly

acidic conditions.[28] The sulfoxide with the opposite configuration was obtained (30%

ee, 45% yield) in the oxidation mediated by the bromoperoxidase from the red seaweed

Corallina pilulifera.[26] In contrast, use of the chloroperoxidase from the mold Curvularia

inaequalis or of recombinant chloroperoxidases led to racemic mixtures.[26] This difference

in reactivity suggests a specific orientation of the substrate in the vicinity of the active

sites,[29] even though the molecular structures of the chloroperoxidase from Curvularia

inaequalis [19] and the bromoperoxidase from Ascophyllum nodosum [30] revealed a high
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degree of amino acid homology in the active sites, with the only difference being the

replacement of His411 by Phe397.

1.3 Phosphate-Vanadate-Analogy

The wide spread physiological effects of vanadium are mainly attributed to the similarity

between its anionic form, vanadate(v), and phosphate. But there are also important dif-

ferences between these two anions. At physiological pH values monovanadate is found as

doubly protonated [VO2(OH)2] species, whereas phosphate occurs in the monoprotonated

form HPO2−
4 . This is also important for possible mechanisms of the transport systems

for these two anions.[31] In addition vanadium is easily reduced under physiological con-

ditions to yield cationic species. The third difference is given by the pronounced ability

of vanadium to adopt higher coordination numbers. The higher coordinative flexibility

of vanadium can deliberately be used for the structural characterization of phosphate

metabolizing enzymes. The crystal structures of several stable enzyme aggregates of

phosphatases with vanadate as transition state analog have been reported. An inter-

esting example are the protein tyrosine phosphatases,[32, 33] which are involved in signal

transduction mechanisms for controlling and regulating intracellular processes (e.g. the

insulin receptor system), in this context it is worth noting that vanadate complexes show

insulin-enhancing effects. In these aggregates the vanadate is in a trigonal bipyrami-

dal coordination gwomwtry and linked to the protein with a single axial bound cysteine

residue, whereas the oxygen atoms of the vanadate moiety are involved in a hydrogen

bonding network.

A similar structure is found for the active site of rat prostatic acid phosphatase

with the complexed transition state analog vanadate (Figure 1.7).[34] In this case the

vanadate is linked to the protein through an axial bound histidine residue. Striking

similarities are observed for the vanadium haloperoxidases - e.g. the chloroperoxidase of

the fungus Curvularia inaequalis.[18, 19] As in the case of the rat prostatic acid phosphatase

the vanadate is directly linked to the protein only through the axial bound histidine

residue and is embedded in the protein via an extensive hydrogen bonding network.
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Figure 1.7: Structure of the active site of the rat prostatic acid phosphatase with com-

plexed vanadate. Hydrogen bonds are shown as broken lines.[34]

1.4 Structural models for vanadium-dependent

haloperoxidases

As already described in the previous sections, many functional models for V-HPO have

been developed since their discovery. In spite of spectroscopic studies carried out on

the native enzyme, the coordination environment around the vanadium(v) center was

unknown initially. Therefore, functional mimics were developed to obtain more insight in

the structural and electronic aspects of the enzyme. Later on, model systems were also

designed examine which structural features are important for the catalytic properties of

these enzymes, and a variety of structural models for the vanadium-dependent haloperoxi-

dases were developed.[1, 35] The latter complexes were designed to mimic the coordination

environment of the vanadium center in the active site of the enzyme regardless of their

activity in the presence of H2O2.
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In the model complexes shown in Figure 1.8 vanadium is in the oxidation state +5.

All ligands consist of oxygen donor sites. Often one or two oxo groups are present at

the vanadium center. The non-oxo oxygens stem from alkoxide and phenolate moieties

or from a water molecule. Another class of model compounds includes the vanadium

complexes which mimic the hydrogen bonding interactions in V-HPO. Only a limited

number of this complexes are known so far, which are depicted in Figure 1.9. In the

first model complex, 1.8, the peroxo-oxygen atom is in hydrogen bonding contact with a

water molecule, while the second one, 1.9, contains an intramolecular hydrogen bonding

interaction established by a pendant amine functionality and the oxygen atom of the

peroxide group. The third one, 1.10, is the ammonium salt of the cis-dioxovanadium(v)

complex with hydroxyl substituted aliphatic side chain. The hydroxyl functionality is

in hydrogen bonding contact with one water molecule, which establishes further an in-

tramolecular hydrogen bonding interaction with the ammonium cation. The ammonium

cation completes this hydrogen bonding network by hydrogen bonding interactions with

the oxygen atom.

1.5 Design of new ligand system

Based on the reported crystal structure of vanadium chloroperoxidase, we have focused

our attention on the synthesis of vanadium complexes with the Schiff base ligands de-

rived from salicylaldehyde itself or one of its ring substituted derivative and amino acid

hydrazides (see Figure 1.10). Starting from protected amino acids, free (unprotected)

different amino acids will be introduced. This achievement has the role to probe the im-

portance of the amino acid residues which are in hydrogen bonding interaction with the

equatorial oxygen atoms of the prosthetic group in vanadium containing haloperoxidases.

Although much knowledge is available about the complex formation between vanadium

and amino acids,[40, 46–58] to the best of our knowledge, no work has been reported on

the complexation of dioxovanadium(v) complexes with N -Salicylidene amino acid hy-

drazide ligands. The interesting information found in the literature is the complexation

of vanadate ion by a dipeptide, glycyl-tyrosine, system.[59]
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1.6 History and occurrence of molybdenum

Molybdenum (from the Greek molybdos meaning ”lead-like”) is not found free in nature,

and the compounds that can be found were, until the late 18th century, confused with

compounds of other elements, such as carbon or lead. In 1778 Carl Wilhelm Scheele was

able to determine that molybdenum was separate from graphite and lead, and isolated

the oxide of the metal from molybdenite. In 1782 Hjelm isolated an impure extract of

the metal by reducing the oxide with carbon. Molybdenum was little used and remained

in the laboratory until the late 19th century. Subsequently, a French company, Schneider

and Co, tried molybdenum as an alloying agent in steel armor plate and noted its useful

properties. Though molybdenum is found in such minerals as wulfenite (PbMoO4) or

powellite (CaMoO4), the main commercial source of molybdenum is molybdenite (MoS2).
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Molybdenum is mined directly, and is also recovered as a byproduct of copper mining.

Molybdenum is present in ores from 0.01% to about 0.5%.

Molybdenum has been found to have a role in biology of all classes of organ-

isms. There are many molybdenum-containing enzymes distributed throughout the

biosphere.[60] The availability of molybdenum to biological systems is due to the high

water solubility of oxidized forms of the metal. The molybdenum containing enzymes

can be distinguished according to their amino acid sequences, spectroscopic properties,

active site structures and catalyzed reactions. However, based on the rapidly growing

number of X-ray crystal structures a classification based on structural homology of the

active sites became appropriate. Considering this the molybdopterin containing enzymes

can be grouped into three principal families all containing a pyranopterin (ppt) as cofactor

element: the active sites consisting of (ppt)MoOS(OH) (the molybdenum hydroxylases),

(ppt)MoO2(S-Cys) (the eukaryotic oxotransferases) and (ppt)2MoOX (the bacterial oxo-

transferases) (see Figure 1.11).[6, 60]

The molybdenum hydroxylases catalyse the reactions differently to other hydroxy-

lase enzymes, with water rather than molecular oxygen as the ultimate source of the

oxygen atom incorporated into product, and with the generation rather than consump-

tion of reducing equivalents. The active sites possess a catalytically labile Mo-OH (or

possibly Mo-OH2) group that is transferred to substrate in the course of the hydroxyla-

tion reaction. These enzymes invariably have other redoxactive centres. The eukaryotic

oxotransferases consist of the sulphite oxidases and plant nitrate reductases.[61] They

catalyse the transfer of an oxygen atom to or from nitrate in a manner that involves

formal oxidation-state changes of the molybdenum. As with the molybdenum hydroxy-

lases, the ultimate source of oxygen is water rather than molecular oxygen. The bacterial

oxotransferases and related enzymes differ from the other two groups of molybdenum

enzymes in having two equivalents of the ppt cofactor co-ordinated to the metal. This

family is quite diverse, as reflected in the fact that serine, cysteine or selenocysteine may

be found co-ordinated to the molybdenum, depending on the enzyme. As in the case

of the molybdenum hydroxylases, both eukaryotic and bacterial oxotransferases utilize

water as the source of the oxygen atom incorporated into product, although for these

enzymes, the catalytically labile oxygen in the active site is an Mo=O group rather than
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an Mo-OH.

The existence of molybdenum in oxotransferase enzymes had increased the interest

for the reactivity and coordination chemistry of cis-dioxomolybdenum complexes.[62, 63]

Moreover, various molybdenum(vi) complexes have been reported as efficient catalysts

for epoxidation and hydroxylation of olefines,[64–67] oxidation of sulfides[68] and alcohols[69]

and as catalysts of oxygen transferring reaction.[70, 71] In addition, MoO3(aq)[72, 73] and

[MoO(O2)2(oxalate)]2−[74] are known as functional mimics for V-HPOs enzyme, being

capable to catalyze the oxidation of halides by hydrogen peroxide. At this point should

be mentioned that, molybdate showed a higher catalytic activity, compared to vana-

date. The reported turnover rate for the catalytic bromide oxidation reaction is ca. 180

molBr-TMBh−1mol−1

Mo which is about 45 times faster than vanadate.[73] However, the
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number of molybdenum-based catalyst for the haloperoxidase catalytic reaction is very

reduced and there are reports of coordination molybdenum compounds as analogs of

vanadium complexes, which were incapable to mediate the catalytic halide oxidation.[75]



Chapter 2

Vanadium(v) complexes with

protected L-α-amino-acid residue

ligands

The oxidation chemistry of vanadium(v) complexes has attracted renewed attention with

the discovery of naturally occurring vanadium containing haloperoxidase.[5, 6, 18, 19, 76, 77] To

get a better understanding of the working mechanism of the enzyme, many vanadium(v)

complexes have been prepared and studied as functional enzyme mimics.[41, 45, 78–81] Fur-

thermore, the coordination chemistry of vanadium related to its biological functions has

been extensively explored.[1, 82] Several papers discuss results for vanadium(iv) complexes

of amino acids ligands.[40, 46–58] However, only a limited number of vanadium complexes

with amino acid hydrazide ligands have been investigated as oxidation catalysts so far.

It was our intention to develop and study a number of different types of vanadium com-

plexes. In order to design a new ligand system capable of enhancing the hydrogen bond-

ing interaction of vanadate moiety from the natural system with amino acid residues, we

have included in this chapter Boc-l-α-serine, Boc-l-α-tryptophan, Boc-l-α-histidine, and

Boc-l-α-phenylalanine amino acids. To gain insight in the catalytic properties of these

compounds, we studied their catalytic properties in bromination reactions and used them

as catalysts in sulfoxidation reaction.

27



28 Chapter 2: V(v)-Complexes with Boc-L-α-amino acid ligands

2.1 Synthesis and Reactions

The synthesis of N -salicylidene amino acid hydrazide ligands follows the pathway de-

picted in Figure 2.1. Boc-l-α-serine, Boc-l-α-histidine, Boc-l-α-tryptophan, and Boc-l-

α-phenylalanine were used as amino acids. The first step is the esterification of Boc-l-

α-amino acids to form the methyl esters. In the second step Boc-l-α-amino acid methyl

esters react with two equivalents of hydrazine hydrate, resulting in the nearly quanti-

tative formation of the corresponding Boc-l-α-amino acid hydrazides. The amino acid

hydrazides were crystallized from the ethyl acetate as colorless solids, whereas the excess

of hydrazine remains in the solution. Subsequent reaction with salicylaldehyde itself or

one of its ring substituted derivative results in the formation of the desired Schiff base

ligands. The protection of amino functionality of amino acids prevents the second Schiff

base condensation reaction between the aldehyde and amino group.

The stoichiometric reactions of these new Schiff base ligands with ammonium or potas-

sium vanadate in refluxing methanol results in the formation of the corresponding salts

of the anionic cis-dioxovanadium(v) complexes, or the neutral complexes (see Table 2.1).

They have a very good solubility in polar organic solvents like DMSO or methanol and

are soluble in water. Single crystals of the complex K[VO2(BrsalhyBocser)]·2H2O (3)

were grown by slow evaporation from methanolic solution. Reaction between equimolar

amounts of the Schiff base ligands with Boc-l-α-phenylalanine residue and tri-isopropylat-

vanadium(v) oxide (VO(OiPr)3) in dry isopropanol under argon atmosphere yields the

corresponding mono-oxovanadium(v) complexes (see Figure 2.2).
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O

R1

N
N

O

R

Boc HN HR2

V

O O
M

Amino acid R1 R2 M+ Complex Formula

residue

L-α-serine H H K+ 1 K[VO2(salhyBocser)]·H2O

H H NH4
+ 2 NH4[VO2(salhyBocser)]·EtOH·H2O

Br H K+ 3 K[VO2(BrsalhyBocser)]·2H2O

Br H NH4
+ 4 NH4[VO2(BrsalhyBocser)]·MeOH

L-α-histidine H H H+a 5 [VO2(HsalhyBochis)]

L-α-tryptophan H H K+ 6 K[VO2(salhyBoctrp)]·H2O

H H H+a 7 [VO2(HsalhyBoctrp)]·MeOH

L-α-phenylalanine H H K+ 8 K[VO2(salhyBocphe)]·H2O

H H NH4
+ 9 NH4[VO2(salhyBocphe)]·H2O

Br H K+ 10 K[VO2(BrsalhyBocphe)]·H2O

H Me K+ 11 K[VO2(MesalhyBocphe)]

H Me NH4
+ 12 NH4[VO2(MesalhyBocphe)]

aneutral complex

Table 2.1: Schematic representation of cis-dioxo-vanadium(v) complexes with Boc-amino

acid residues.
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2.2 Structural characterization

In the molecular structure of the complex anion [VO2(BrsalhyBocser)]− (3) of the potas-

sium salt, the vanadium(v) atom is coordinated by the phenolate oxygen atom O3, the

imine nitrogen atom N1, amide oxygen atom O4 and the two oxo groups O1 and O2,

in a square pyramidal coordinated environment (see Figure 2.3). The ligand acts as a

tridentate ligand. The τ 1 value is 0.15 which is slightly distorted from the ideal square-

pyramidal geometry. The distortion to an ideal-square pyramidal geometry of the vana-

dium atom in the complex K[VO2(BrsalhyBocser)]·2H2O (3) is very similar and compara-

ble to the distortion found in our other dioxovanadium complexes, with N -salicylidene hy-

drazides published previously.[42, 45, 84] The V=O distances V–O1 (161.8(6) pm) and V–O2

(165.4(6) pm) are typical for dioxovandium groups.[42, 85] The angles in the basal plane of

the distorted pyramid are O3–V–O4 150.6(2)◦ and O3–V–N1 83.0(3)◦, which are quite

similar to those previously reported for the cis-VO2 moiety in other complexes.[39, 42, 84, 86]

(see Table 2.2) The anionic nature of the complex and therefore the presence of the imi-

nolate form of the ligand is consistent with the observed V–O4 and O4–C8 bond lengths.

The O4–C8 bond distance, which is the most significant parameter for differentiating be-

tween the iminol and keto form of the amide functionality, exhibits value of 130.0(9) pm

and is nearer to a C–O single bond than to a C=O double bond distance. The bond

lengths N1–N2, N1–C7 of the coordinated ligand system are in good agreement with the

10 for ideal square-pyramidal and 1 for ideal bipyramidal arrangements[83]
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data found for similar dioxovanadium complexes.[42, 84] The adjacent C8–N2 bond display

a typical double bond distance of 129.7(11) pm, and a concomitant lengthening of the

N2-N1 bond of 141.1(10) pm is also apparent. The N1–C7 bond distance of 127.9(11) pm

is pretty close to the usual C=N length (see Table 2.2).[84]

Figure 2.3: Molecular structure of the anionic dioxovanadium(v) complex

[VO2(BrsalhyBocser)]− in crystals of K[VO2(BrsalhyBocser)]·2H2O (3) (thermal ellip-

soids are drawn at the 50% probability level).

In the native form of vanadium-chloroperoxidase, interstitial water molecules were found

near the the Ser402 residue as well as in the vicinity of the apical oxygen atom of the

vandate moiety. In complex K[VO2(BrsalhyBocser)]·2H2O (3) water molecules form a

long hydrogen bonding water channel. As depicted in Figure 2.4, both oxo groups of

the cis-dioxovanadium(v) moiety are participating in the hydrogen bonding network. In

addition, two water molecules form intermolecular hydrogen bonds with each other, and

also involved in the build-up of the hydrogen bonding networks with six neighboring

molecules. The oxo group O2 forms two hydrogen bonds, of which one is to atom N3

(O2· · ·N3B 293.8(2) pm) of the Boc group of one neighboring molecule and the other is to

the oxygen atom of the serine O5 (O2· · ·O5A 308.9(2) pm) of another neighboring dioxo-

vanadium(v) moiety. This hydrogen bonding resembling the interaction discussed for the

native vanadium haloperoxidase enzymes between the vanadate and the serine residue

located at the active site (for VClPO: Ser402).[19] The apical oxygen O1 forms intermole-

cular hydrogen bond with one of the water molecules O1W (O1· · ·O1W 294.1(2) pm),
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which in turn is hydrogen bonded to a second water molecule, connects to the hydrazide

nitrogen atom N2 (O2W· · ·N2E 298.0(2) pm) and the oxygen atom O6 (O2W· · ·O6C

290.4 pm) of the Boc group of two neighboring molecules. The hydroxy function of the

serine moiety does not take part in the coordination of the vanadium, but is hydrogen

bonded to the oxo group of the vanadate O2D (O5· · ·O2D 308.9(3) pm), and to a water

molecule O1W (O5· · ·O1WC 282.9(3) pm) of the two neighboring molecules. This situ-

ation is of specific interest in the light of presence of serine close to the active center in

the haloperoxidases.

In the molecular structure of K[VO2(BrsalhyBocser)]·2H2O (3) the potassium cation is

coordinated to the water molecule of crystallization O1W (270.2 pm), the oxo group

O1 (291.8 pm), amide oxygen atom O4 (303.3 pm), and the oxygen atom of the serine

moiety O5 (283.1 pm) (see Figure 2.5). Moreover, the coordination sphere of the potas-

sium ion includes an oxo group O2D (269.0 pm), an alcoholic oxygen donor atom O3D

(279.4 pm), which belong to the same neighboring molecule, and also an oxo group of

another neighboring molecule O2C (269.2 pm), which it is in a μ2-bridging position with

a neighboring potassium cation KB. In addition, there is a weak interaction with amide

oxygen of adjacent molecule O4D (314.6 pm).
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Figure 2.4: Hydrogen bonding network in K[VO2(BrsalhyBocser)]·2H2O (3). Hydrogen

atoms are omitted for clarity. Broken lines represent hydrogen bonding interactions. Rel-

evant distances (in pm): O1· · ·O1W 294.1(2), O2· · ·N3B 293.8(2), O5· · ·O1WC 282.9(3),

O5· · ·O2D 308.9(2), O6· · ·O2WB 290.4(3), N2· · ·O2WF 298.0(2); Dashed circles repre-

sent symmetry equivalent atoms (symmetry operators: A: – 1 + x, y, z; B: – 1
2

+ x, 5
2

– y,

– z; C: 1
2

+ x, 5
2

– y, – z; D: 1 + x, y, z; E: x, 1 + y, z; F: x, –1 + y, z).
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Figure 2.5: Depiction of the K+ environment in crystals of K[VO2(BrsalhyBocser)]·2H2O

(3). Potassium contacts are shown as doted lines. Relevant distances (in pm): K· · ·O1W

270.2, K· · ·O1 291.8, K· · ·O4 303.3, K· · ·O5 283.1, K· · ·O2D 269.0, K· · ·O3D 279.4,

K· · ·O4D 314.6.
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Table 2.2: Selected bond lengths (pm) and angles (◦) for

K[VO2(BrsalhyBocser)]·2H2O (3).

Bond lengths

V–O1 161.8(6) O4–C8 130.0(9)

V–O2 165.4(6) N1–N2 141.1(10)

V–O3 189.3(6) N1–C7 129.7(11)

V–O4 199.0(6) N2–C8 127.9(11)

V–N1 214.1(7)

Bond angles

O1–V–O2 108.4(3) O3–V–O4 150.6(3)

O1–V–O3 104.9(3) O1–V–N1 109.3(3)

O1–V–O4 99.5(3) O2–V–N1 141.2(3)

O2–V–O3 96.1(3) O4–V–N1 73.5(3)

O2–V–O4 91.6(3) O3–V–N1 83.0(3)

2.3 Spectroscopic Characterization

The formation of the cis-dioxovanadium(v) complexes is confirmed by aaapearance of

strong bands in the IR spectra, corresponding to the ν(VO2+) group. Details are sum-

marized in the experimental section and given in Table 2.3. The infrared spectra of the

ligands exhibit a broad band in the 3220–3300 cm−1 range due to ν(NH), and a strong

band at 1661–1675 cm−1 range assigned to ν(C=O) stretches. However, in the spectra of

the vanadium complexes appears a broad band around 3372 cm−1, the ν(NH) stretching

vibration of the amino acid residues. A medium band at 1692 cm−1 is attributed to the

ν(C=O) stretching vibration of the Boc group of amino acids in the ligands as well as

in the complexes. The strong band in the 1661–1675 cm−1 range in the IR spectra of

the ligands, due to the carbonyl moiety ν(C=O) stretching vibration, are not observed

in the complexes. Instead a strong band is observed around 1617 cm−1, which can be

attributed to the stretching vibration of the conjugate –C=N–N=C– grouping.[84] This
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Table 2.3: Characteristics IR bands [cm−1] for the com-

plexes

.

Formula Complex ν(C=N–N=C) ν(VO2)

K[VO2(salhyBocser)]·H2O 1 1616 908, 949

NH4[VO2(salhyBocser)]·EtOH·H2O 2 1614 908, 932

K[VO2(BrsalhyBocser)]·2H2O 3 1617 904, 949

NH4[VO2(BrsalhyBocser)]·MeOH 4 1616 900, 917

K[VO2(salhyBoctrp)]·H2O 6 1615 906, 912

[VO2(HsalhyBoctrp)]·MeOH 7 1610 909, 981

K[VO2(salhyBocphe)] 8 1617 908, 940

NH4[VO2(salhyBocphe)]·H2O 9 1616 908, 937

K[VO2(BrsalhyBocphe)]·H2O 10 1617 907, 941

K[VO2(MesalhyBocphe)] 11 1616 901, 949

NH4[VO2(MesalhyBocphe)] 12 1601 873, 944

band is characteristic for the coordination of the iminolate form of the ligand to the

dioxovanadium(v) moiety.

A medium/strong band at 1560 cm−1, may originate from the vibration of the (Ph–C–

C=N) bond[87] and typifies complexes derived from salicylaldehyde.[49, 87, 88] An additional

band observed for the complexes at 1273 cm−1 is assigned to the ν(C–O) (iminol) mode.

Also, the complexes show two strong bands between 873 and 949 cm−1 assigned to the

stretching vibrations of the cis-VO2 moiety of the complexes, which are in a good agree-

ment with the other results.

Further evidence for the coordination mode of the ligands was obtained from the 1H– and

13C–NMR spectra, and 51V–NMR spectra of the complexes in DMSO-d6, which are sum-

marized in the experimental section. The 1H–NMR integrations and signal multiplicities

agree with the proposed formula. The 1H–NMR spectra of the ligands derived from sal-

icylaldehyde, and its bromo substituted residues reveal the presence of two isomers in a

ratio as given in the experimental section. The spectra of the free ligands exhibit an OH
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(phenolic) proton resonance at 11.79 and 11.36 ppm respectively for two isomers. The

absence of this signals in the complexes is in accordance with iminolisation and subse-

quent replacement of H by the metal ion. When the metal is coordinated, the deshielding

effect of the metal atom is apparent in some protons, causing a downfield shift of the

corresponding 1H–NMR peaks. A significant downfield shift of ca. 0.39 ppm for the

azomethine (CH=N) proton signal in the complexes with respect to the corresponding

free ligands confirms the coordination of the azomethine nitrogen atom. The aromatic

protons of ligands and complexes as well as the α-CH, β-CH2, and hydroxy group of

amino acids, appear in the expected region, with slight shifts in their positions. A net

difference between the potassium and the ammonium salts of the cis-dioxovanadium(v)

complexes is observed in their 1H–NMR. A broad resonance at ca. 7.10 ppm is observed

in the 1H–NMR of the ammonium salt of the cis-dioxovanadium(v) complexes and is at-

tributed to NH+
4 protons. This resonance is absent in the 1H–NMR of the corresponding

potassium or neutral cis-dioxo- complexes which exhibit instead the specific resonance

of the NH proton at this region. We have also recorded 13C–NMR of ligands and com-

plexes to provide diagnostic tools for the elucidation of the structures. Assignments were

based on the chemical shift and intensity patterns, and on the coordination-induced shift

Δδ = δcomplex – δfree-ligand of the signals for the carbon atoms in the vicinity of the

coordinating atoms.[89] A comparison between the 13C–NMR patterns of the free ligand

and the corresponding 13C–NMR spectra of complexes proved the coordination mode of

the ligands. The most indicative resonance is the down field shift at ca. 155 ppm of

the imine carbon atom (CH=N), that resonate around 140–147 ppm, in the free ligands.

To characterize the compounds further in solution, 51V–NMR spectra of complexes were

also recorded. The dioxovanadium(v) complexes in DMSO-d6 solution, show one strong

resonance at ca. −531 ppm, which is typical for the shift of dioxovanadium(v) com-

plexes containing a mixed O/N donor set.[10, 84, 90, 91] The resonances have line widths at

half-height between 950 and 1300 Hz.
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2.4 Reactivity of the complexes

2.4.1 Bromination reaction of TMB/MCD

In order to examine halide oxidation catalyzed by dioxovanadium complexes, they were

tested in bromination reaction of 1,3,5-trimethoxybenzene (TMB) and monochlorodime-

done (MCD), which were frequently used as model substrates.[42, 79, 92–94] Hydrogen per-

oxide was used as the oxidant and sodium bromide (NaBr) as the bromide source. Re-

actions were performed in acetonitrile solution in a quartz cuvette of 10,00 mm optical

path, thermostat at 20,0 ◦C. For each vanadium complex three standard solutions were

prepared and the reactions were performed in triplicate. TMB, MCD, and NaBr were

premixed in acetonitrile in a ratio of 3:3:9:44. In a typical experiment 6 μm catalyst was

added to the mixture of TMB/MCD/NaBr/acetonitrile with the concentration of 0.12,

0.05, and 0.24 mm respectively. Hydrogen peroxide was then added (0.53 mm). The

reaction was initiated by addition of HClO4 (0.24 mm) and followed by UV at 258 nm,

the characteristic absorption of MCD.[21] Since TMB is much more reactive than MCD,

it reacted preferentially with little change of UV at 258 nm during its bromination. The

increasing of UV intensity at 258 nm before the bromination of MCD is due to the for-

mation of Br−3 (λ = 268 nm in acetonitrile). As soon as the bromination of TMB was

completed, MCD was brominated as indicated by the decreasing UV intensity at 258 nm.

Hence, the period of UV-insensitive time corresponds to the total reaction time of TMB

bromination. (nBu4N)2HVO4 (vanadate) is used as standard for this reaction.[94] There-

fore the turnover frequencies reached by dioxovanadium(v) complexes described here,

were compared with those found for (nBu4N)2HVO4 published previously.[94] The results

are summarized in Table 2.4. The bromination of TMB took 480 s when the reaction

was catalyzed by vanadate alone; this reaction time was shortened to 276 s (turn over

= 263 molBr-TMBh−1mol−1

catalyst) in the presence of NH4[VO2(BrsalhyBocser)]·MeOH

(4), which indicates that, the catalyst is 1.7 times more reactive with respect to the

catalytic bromination of TMB. The turnover frequencies lay in the range 133 – 263

molBr-TMBh−1mol−1

catalyst. No big difference in activity was observed by changing the

amino acid residues, but nevertheless a slightly increase in reactivity was observed in the

direction Trp < Phe < Ser. Thus the dioxovanadium complexes with serine residue ap-
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pear to be the most reactive catalysts (Figure 2.6). This may be due to the fact that the

hydroxy functionality of the serine residue is involved in hydrogen bonding interactions

with the vanadate moiety. To investigate the influence of electron withdrawing and/or

electron donating groups on the aromatic ring on the the reactivity of the model com-

plexes, we have introduced bromo, and Me substituted aldehyde. The results show that,

the bromo-substituted vanadium complexes are more reactive than the unsubstituted

one, as illustrated in Table 2.4.

Table 2.4: Catalytic oxidative bromination of

TMB/MCD by cis-dioxovanadium complexes with

Boc-l-α-amino acid side chain ligands

Formula Complex Time (s) TOF(a)

K[VO2(salhyBocser)]·H2O 1 330 218

NH4[VO2(salhyBocser)]·EtOH·H2O 2 360 201

K[VO2(BrsalhyBocser)]·2H2O 3 282 256

NH4[VO2(BrsalhyBocser)]·MeOH 4 276 263

K[VO2(salhyBoctrp)]·H2O 6 456 158

[VO2(HsalhyBoctrp)]·MeOH 7 540 133

K[VO2(salhyBocphe)]·H2O 8 408 175

K[VO2(BrsalhyBocphe)]·H2O 10 390 186

K[VO2(MesalhyBocphe)] 11 330 218

NH4[VO2(MesalhyBocphe)] 12 330 218

(a) Turnover frequencies (molBr-TMBh−1mol−1

catalyst)

2.4.2 Catalytic oxidation of sulfides catalyzed by

cis-dioxovanadium(v) complexes

Vanadium haloperoxidase enzymes are also capable to catalyze the oxidation of sulfides to

sulfoxides, varying from an enantioselective behavior in the case of vanadium bromoper-

oxidases to a non-selective reaction when vanadium chloroperoxidase has been used to
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Figure 2.6: Comparison of the catalytic activity of the cis-dioxovanadium complexes with

three different amino acid residue: complex 1 serine, complex 6 tryptophan, and complex

8 with phenylalanine residue, towards the catalytic bromination of TMB/MCD, followed

by UV at 258 nm.

mediate the reaction.[26, 28] Various vanadium complexes have been also reported[95, 96] as

catalysts for sulfides oxidation reaction with the complexes involving mainly Schiff base

ligands. The capability of the new chiral cis-dioxovanadium(v) complexes to function as

catalysts for the oxidation of methyl phenyl sulfide by hydrogen peroxide was investigated.

In a standard procedure, 1 mol-% catalyst has been used for the reaction and a slight ex-

cess (1.2 equivalents) of hydrogen peroxide, in a mixture CH2Cl2/CH3OH 7:3. Methanol

was necessary due to the bad solubility of the complex in non-polar solvents and moreover,

for a better miscibility of the aqueous oxidant with the halogenated solvent. After defined

intervals of time, aliquots were taken from the reaction mixture and the product analyzed
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by NMR (determination of the yield) and HPLC (determination of the ee). The outcomes

of the catalytic reaction are summarized in Table 2.5 for the cis-dioxovanadium(v) com-

plexes with Boc-amino acid residues. After 1 hour 22% of the corresponding sulfoxide

was obtained when complex 6, with tryptophan residue, whereas 86% conversion was es-

tablished after 3 hours. For the catalyst 11, with phenylalanine residue, after 1 hour 55%

of sulfoxide was obtained, whereas 98% conversion was established within 3 hours. The

catalysts containing serine residue show to have the highest efficient catalytic activity of

the herein described complexes. The catalytic reaction was completed in less than three

hours when the complexes containing serine residue were used as catalyst. The enantiose-

lectivity of the cis-dioxovanadium(v) complexes with Boc-amino acid residue ligands was

very low, this indicates that the chiral center is too far away from the vanadate moiety.

Nevertheless complex 10 with phenylalanine residue shows to have ee value of 9.34%,

which is the highest ee of the herein described cis-dioxovanadium complexes. The enan-

tioslective sulfoxidation reaction has been reported.[95–98] Reports of vanadium-catalyzed

sulfur oxidation reactions range from 58 to 92% conversion in the period of time of 14-16

hours when oxo- or cis-dioxovanadium(v) complexes were used as catalysts. The yields

of the catalytic reaction raise to 60% conversion of sulfide within two hours, when per-

oxovanadium(v) complexes catalyzed the reaction.[99] Efficient vanadium-based catalyst

for the sulfide oxidation reaction was reported as salen-type oxovanadium(iv) complex

which accomplished 80% conversion after two hours of reaction.[95]
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Table 2.5: Summary of the results of the catalyzed

asymmetric oxidation of methyl phenyl sulfide by

cis-dioxovanadium complexes with Boc-l-α-amino acid

residue ligands

Formula Complex Time Yielda ee b Configurationc

(h) (%) (%)

K[VO2(salhyBocser)]·H2O 1 3 100 n.dd –

K[VO2(BrsalhyBocser)]·2H2O 3 3 100 n.d –

NH4[VO2(BrsalhyBocser)]·MeOH 4 3 100 n.d –

K[VO2(salhyBoctrp)]·H2O 6 1 22 5 s

K[VO2(salhyBoctrp)]·H2O 6 3 86 4.7 s

K[VO2(salhyBocphe)]·H2O 8 1 n.d – –

K[VO2(salhyBocphe)]·H2O 8 3 70 6.6 s

NH4[VO2(salhyBocphe)]·H2O 9 1 n.d. – –

NH4[VO2(salhyBocphe)]·H2O 9 3 80 4.12 s

K[VO2(BrsalhyBocphe)]·H2O 10 1 n.d. – –

K[VO2(BrsalhyBocphe)]·H2O 10 3 59 0.35 s

K[VO2(MesalhyBocphe)] 11 1 55 9.32 s

K[VO2(MesalhyBocphe)] 11 3 98 3.02 s

NH4[VO2(MesalhyBocphe)] 12 1 n.d – –

NH4[VO2(MesalhyBocphe)] 12 3 85 6.7 s

All reactions were carried out at 0 ◦C with vanadium complexes loading to 1 mol-% and

(1.2 equivalents) of hydrogen peroxide (8.24 m), in a mixture CH2Cl2/CH3OH 7:3.

a isolated yield determined by 1H–NMR (400 MHz) using 1,3,5-trimethoxybenzene as in-

ternal standard. b Determined by HPLC using a (S,S)-WHELK-01 chiral column (25 cm

× 4.6 mm). The column was eluted with hexane:2-propanol (90:10), at a flow rate of

2.0 mL/min. c Absolute configuration of the major product was determined to be s,

by comparison of the chromatogram in HPLC with the authentic sample. d n.d. not

determined.
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2.5 Conclusions

The new cis-dioxovanadium complexes with amino acid functionallized ligands have been

synthesized and characterized. The ligands were obtained by the condensation of sali-

cylaldehyde itself or one of its ring substituted derivatives with amino acid hydrazides.

Boc-l-α-serine, Boc-l-α-histidine, Boc-l-α-tryptophan, and Boc-l-α-phenylalanine were

used as amino acid sources. The ligands coordinate in their iminolate form. The com-

pounds exhibit an overall coordination sphere constituting an O4N donor set. For the

vanadium atom a distorted square pyramidal coordination is found. Two water mole-

cules are involved in the buildup of the hydrogen bonding network found in the case of

K[VO2(BrsalhyBocser)]·2H2O (3). The amino acids in the complexes introduced here

are directly involved in coordination. The hydroxy function of amino acids do not take

part in the coordination of the vanadium, but they participate to the hydrogen bonding

network, as shown from X-ray data of K[VO2(BrsalhyBocser)]·2H2O (3). These hydrogen

bonding resembling the interaction discussed for the native vanadium haloperoxidase en-

zymes between the vanadate and the serine residue located at the active site (for VClPO:

Ser402). These complexes can be regarded as structural model for the enzymatic system

due to the relevant hydrogen bonding interactions which involves the oxygen atoms of the

vanadate moiety. The results of catalytic experiments show that the complexes reported

here catalyze the oxidation of bromide by hydrogen peroxide in acidic solution, and thus

are functional mimics of vanadium haloperoxidases. We have also demonstrated that

these vanadium complexes are capable of catalyzing the conversion of an organic sulfide

to an organic sulfoxide in the presence of hydrogen peroxide.
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2.6 Experimental Part

2.6.1 Synthesis of the Schiff base ligands with Boc-L-α-serine

residue

Boc-l-α-serine-methylester

To a suspension of NaHCO3 (0.33 g, 3.9 mmol, 1.1 eq.) in DMF (15 ml) was added

Boc-l-α-serine (0.73 g, 3.55 mmol, 1 eq.) and methyl iodide (0.24 mL, 3.9 mmol, 1.1 eq).

The mixture was stirred at room temperature for 20 hours. Distilled water (100 mL) was

added and the product extracted with ethyl acetate (3 x 50 mL). The combined organic

layers were washed with distilled water and than dried over Na2SO4, and concentrated

in vacuum to obtain the product as a pale yellow oil. This yellow oil was purified by

column chromatography (eluent: ethyl acetate /hexane 1:1).

Total yield: 0.5 g (2.28 mmol, 61%).

1H-NMR (400 MHz, DMSO-d6): δ = 1.4 (s, 9H, C(CH3)3), 3.7 (m, 5H, β-CH2, CH3-

ester), 4.1 (m, 1H, α-CH), 4.8 (s, 1H, OH-amino acid), 6.7 (s, 1H, NHBoc).

13C-NMR (100 MHz, DMSO-d6): δ = 28 (C(CH3)3), 52 (CH3-ester), 56.3 (α-CH), 62

(β-CH2), 78 (O-C(CH3)3), 155 (C=OBoc), 172 (CONH).

Boc-l-α-serine hydrazide

Hydrazine hydrate (0.74 mL, 14 mmol) was added to a solution of Boc-l-α-serine-

methylester (1 g, 4.56 mmol) in methanol and the mixture was stirred at room tem-

perature for 24 hours. The solvent was removed under vacuum. Recrystallization of the

residual from ethyl acetate gave the product as a colorless crystalline solid. mp 128 ◦C.

Total yield: 0.92 g (4.2 mmol, 93%).

Elemental analysis for C8H17N3O4 (219.2 g/mol): calculated C: 43.82%, H: 7.82%, N:

19.17%; found C: 43.87%, H: 7.62%, N: 19.44%.

1H-NMR (200 MHz, MeOD-d4): δ = 1.44 (s, 9H, C(CH3)3), 3.7 (d, 2H, 3J = 5.4 Hz,

β-CH2), 4.09 (t, 3J = 6.7 Hz, 1H, α-CH), 4.84 (s, 5H, OH-amino acid, (NH)2, NH2)
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ppm.

13C-NMR (50 MHz, MeOD-d4): δ = 28 (C(CH3)3), 57 (α-CH), 63 (β-CH2), 81 (O-

C(CH3)3), 158 (C=OBoc), 172 (C=ONHN) ppm.

EI–MS: (m/z ) = 220 (M+. 20%), 164 (M+. - C(CH3)3 40%), 119 (M+. - C(CH3)3 - CO2

80%), 104 (M+. - C(CH3)3 - CO2 - NH 10%), 88 (M+. - C(CH3)3 - CO2 - NH - NH2 12%),

60 ( 100%).

N -Salicylidene-Boc-l-α-serine-hydrazide (HsalhyBocser)

Boc-l-α-serine-hydrazide (0.82 g, 3.74 mmol) was dissolved in methanol (30 mL). Sali-

cylaldehyde (0.39 mL, 3.7 mmol) was added dropwise under constant stirring. After 10

minutes the reaction mixture turned its color to yellow. The resulting reaction mixture

was stirred for 6 hours. A colorless precipitate formed during the reaction period. It was

filtrated off, recrystallized from methanol and dried in vacuum. The NMR data confirm

the presence of product as two isomers in ratio 2.9:1. mp 191 ◦C.

Total yield: 0.99 g (3.06 mmol, 82%).

Elemental analysis for C15H21N3O5 (323.34 g/mol): calculated C: 55.72%, H: 6.55%,

N: 13.00%; found C: 55.16%, H: 6.64%, N: 12.78%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.37 (s, 9H, C(CH3)3), 3.64 (m, 2H, β-CH2),

4.05 (m, 1H, α-CH), 4.99 (1H, s, OH–Amino acid), 6.90 (m, 3H, NHBoc + Ph), 7.21

(m, 1H, Ph), 7.51 (m, 1H, Ph), 8.43 and 8.63 (s, 1H, CH=N), 10.00, 11.12 and 11.30,

11.70 (s, 1H, OH, NH) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 28 (C(CH3)3), 56.00, 54.00 (α-CH), 61.17, 61.54

(β-CH2), 78.00, 78.34 (OC(CH3)3), 116.11, 116.36 (Ph), 118.30 and 118.63, 119.34 and

120.00 (Ph), 126.28, 129.38 (Ph), 131.05, 131.33 (Ph), 140.00, 147.00 (CH=N), 156.12,

156.32 (Ph), 155.24, 157.33 (C=OBoc), 167.13, 171.34 (O=CNHN) ppm.

IR data ν̃/cm−1: 3372 (OH), 3261 (NH), 1675 (C=O).
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5-Bromo-2-hydroxy-salicylidene-l-α-serine-hydrazide (BrsalhyBocser)

To a solution of Boc-l-α-serine hydrazide (1.15 g, 5.25 mmol) in methanol was added

slowly by stirring a solution of 5-bromo-2-hydroxy-benzaldehyde (1.06 g, 5.46 mmol) in

methanol resulting in a yellow solution and colorless crystalline solid precipitated. The

reaction mixture was stirred at room temperature for 4 hours. The separated colorless

compound was collected by filtration, recrystallized from methanol and dried in vacuum.

The NMR data confirm the presence of product as two isomers in ratio 1:2.3. mp 216 ◦C.

Total yield: 1.25 g (3.09 mmol, 59.2%).

Elemental analysis for C12H20N3O5Br (402.24 g/mol): calculated C: 44.79% H: 5.01%

N: 10.45%; found C: 44.78%, H: 4.81%, N: 10.36%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.37 (s, 9H, C(CH3)3), 3.53–3.68 (m, 2H, β-CH2),

4.03 (m, 1H, α-CH), 4.99 (s, 1H, OH–Amino acid), 6.72 (br, 1H, NHBoc), 6.83–6.93 (m,

1H, Ph), 7.34–7.41 (m, 1H, Ph), 7.73–7.89 (m, 1H, Ph), 8.21 and 8.39 (s, 1H, CH=N),

10.3, 11.15 and 11.34, 11.79 (s, 1H, OH, NH) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 28 (C(CH3)3), 53.83, 55.93 (α-CH), 61.15, 61.51

(β-CH2), 78.07, 78.33 (OC(CH3)3), 110.42, 10.87 (Ph – Br), 118.38, 118.63 (Ph), 121.24,

122.68 (Ph), 127.64, 130.38 (Ph), 133.30, 133.50 (Ph), 138.10, 144.74 (CH=N), 155.22,

155.50 (Ph), 156.31 (C=OBoc), 167 (O=CNHN) ppm.

IR data ν̃/cm−1: 3372 (OH), 3261 (NH), 1674–1689 (C=O).

2.6.2 Synthesis of N -salicylidene-Boc-L-α-histidine-hydrazide

(HsalhyBochis)

To a solution of Boc-l-α-histidine-hydrazide (1g, 3.7 mmol) in methanol (20 mL), sali-

cylaldehyde (4.52 mg, 3.7 mmol, 0.4 mL) was added slowly dropwise with stirring at

4 ◦C (ice bath) for 1 hour, and then at room temperature for another 3 hours. The

resulting yellow solution was additionally refluxed for 1 hour. The reaction was followed

by TLC (diethyl ether: hexane/5:1) until all starting material was completely reacted.

The solvent was removed in vacuo. The remaining yellow solid was purified by column
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chromatography (eluent Et2O:hexane/5:1) to obtain the product as a colorless solid.

Total yield: 820 mg ( 2.2 mmol, 60%).

2.6.3 Synthesis of the Schiff base ligands with

Boc-L-α-tryptophan residue

Boc-l-α-tryptophan-methyl-ester

Using the method described for Boc-l-α-serine-methyl-ester, Boc-l-α-tryptophan (5 g,

16.4 mmol) was converted to the title compound as a colorless solid. mp 47 ◦C.

Total yield: 3.74 g (11.7 mmol, 71.5%).

Elemental analysis for C17H22N2O4 (318.37 g/mol): calculated C: 64.13%, H: 6.97%,

N: 8.80%; found C: 64.43%, H: 6.69%, N: 8.78%.

1H-NMR (200 MHz, DMSO-d6): δ = 1.32 (s, 9H, C(CH3)3), 2.92–3.32 (m, 2H, β-CH2),

3.59 (s, 1H, CH3–ester), 4.18–4.25 (m, 1H, α-CH), 6.95–6.99 (m, 1H, NHBoc), 7.04–7.08

(m, 2H, Ph), 7.14–7.18 (m, 1H, Ph), 7.34 (m, 1H, Ph), 7.48 (m, 1H, Ph), 10.83 (s, 1H,

NH–Ph) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 26.79 (β-CH2), 28.10 (CH3)3), 51.69 (CH3),

54.64 (α-CH), 78.20 (O(C(CH3)3), 109.71 (Ph), 111.40 (Ph), 117.95 (Ph), 118.35 (Ph),

120.90 (Ph), 123.69 (Ph), 127.02 (Ph), 136.06 (Ph), 155.3 (NHC=OOC(CH3)3), 172.89

(O=CNHNC) ppm.

Boc-l-α-tryptophan-hydrazide

Using the method described for Boc-l-α-serine-hydrazide, Boc-l-α-tryptophan-methyl-

ester (3.29 g, 10.33 mmol) was converted to the title compound as a colorless solid.

mp 63 ◦C.

Total yield: 2.37 g (7.44 mmol, 72%).

Elemental analysis for C16H22N4O3 (318.37 g/mol): calculated C: 60.36%, H: 6.97 %,

H: 17.60 %; found C: 60.66%, H: 6.96%, N: 17.55%.
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1H-NMR (400 MHz, DMSO-d6): δ = 1.3 (s, 9H, C(CH3)3), 2.85 – 2.91 (dd, 3J =

9.2 Hz, 2J = 14.47 Hz, 1H, β-CH2), 2.98 – 3.02 (dd, 3J = 5.0 Hz, 2J = 14.47 Hz, 1H,

β-CH2), 4.16 (m, 1H, α-CH), 6.73–6.75 (br, 1H, NHBoc), 6.95–6.98 (m, 1H, Ph), 7.03 –

7.06 (m, 1H, Ph), 7.11 (s, 1H, Ph), 7.29–7.32 (1H, m, Ph), 7.57 – 7.59 (m, 1H, Ph), 9.12

(1H, s, NH–NH2), 10.78 (s, 1H, NH–Ph) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 27.75 (β-CH2), 28.16 (CH3)3), 54.21 (α-CH),

77.86 ((O(C(CH3)3), 110.16 (Ph), 110.82 (Ph), 118.16 (Ph), 118.49 (Ph), 120.78 (Ph),

123.64 (Ph), 127.31 (Ph), 136.02 (Ph), 155.04 (NHC=OOC(CH3)3), 171.35 (O=CNHNC)

ppm.

EI-MS: (MeOH) m/z = 318 (20% [M+.]), 262 (10%), 245 (2%), 201 (22%), 170 (12%),

130 (100%).

N -Salicylidene-Boc-l-α-tryptophan-hydrazide (HsalhyBoctrp)

Salicylaldehyde (0.33 mL, 3.14 mmol) was slowly added dropwise to a solution of Boc-

l-α-tryptophan-hydrazide (1g, 3.14 mmol) in methanol (30 mL). The reaction mixture

turned its color to yellow once the salicylaldehyde was added. The mixture was stirred

at room temperature for 12 hours. The product was obtained as a colorless solid. (The

reaction was followed by TLC). The NMR data confirm the presence of product as two

isomers in ratio 2.5:1. mp 157 ◦C.

Total yield: 1.12 g (2.68 mmol, 85.5%)

Elemental analysis for C23H26N4O4 (422.48 g/mol): calculated C: 65.39 %, H: 6.20 %,

N: 13.26 %; found C: 65.40 %, H: 6.31 %, N: 13.26 %.

1H-NMR (400 MHz, DMSO-d6): δ = 1.31 (s, 1H, C(CH3)3), 2.94–3.1 (m, 2H, β-CH2),

4.3 and 5.2 (q, 3J = 5.99 Hz, 7.23 Hz, 1H, α-CH), 6.84–6.92 (m, 2H, Ph; NHBoc),

6.97–7.07 (m, 2H, Ph), 7.18 (s, 1H, Ph), 7.24–7.34 (2H, m, Ph), 7.49–7.51 (m, 1H, Ph),

7.62–7.72 (m, 2H, Ph), 8.36 and 8.42 (s, 1H, CH=N), 10.03, 10.78 and 11.11, 11.28 (s,

1H, OH, NH), 11.76 (s, 1H, OH) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 27.55 (β-CH2), 28.15 CH3)3), 51.66 and 54.21 (α-

CH), 77.82 and 78.12 (O(C(CH3)3), 109.78 (Ph), 110.27 (Ph), 111.30 (Ph), 116.11 (Ph),

116.31 (Ph), 118.06 (Ph), 118.19 (Ph), 118.39 (Ph), 118.48 (Ph), 118.63 (Ph), 119.28
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(Ph),120.37 (Ph), 120.87 (Ph), 123.90 (Ph), 126 .6 (Ph), 127.16 (Ph), 129.28 (Ph), 131.07

(Ph), 131.28 (Ph), 136.04 (Ph), 140.83 (CH=N), 147.33 (C–NH), 155.29 (Ph), 156.35

(Ph), 157.28 (N=C–OH), 168.56 (NHC=OOC(CH3)3), 173.51 (O=CNHNC) ppm.

IR data ν̃/cm−1: 3335 (OH), 3256 (NH), 1669 (C=O), 1616 (C=N).

ESI-MS (positive mode): m/z = 422 ([M + H+] 8%).

2.6.4 Synthesis of the Schiff base ligands with

Boc-L-α-phenylalanine residue

Boc-l-α-phenylalanine-methyl-ester

Using the method described for Boc-l-α-serine-methyl-ester, Boc-l-α-Phenylalanine (6.5 g,

24.5 mmol) was converted to the title compound as an orange oil.

Total yield: 6.34 g (23 mmol, 93%)

1H-NMR (200 MHz, MeOD-d4): δ = 1.36 (s, 9H, C(CH3)3), 3.04–3.14 (dd, 3J =

5.84 Hz, 2J = 13.63 Hz, 2H, β-CH2), 3.66 (s, 1H, CH3–ester), 4.33–4.40 (m, 1H, α-CH),

4.83 (s, 1H, NHBoc), 7.17–7.30 (m, 5H, Ph) ppm.

13C-NMR (50 MHz, MeOD-d4): δ = 28.64 (C(CH3)3), 38.66 (β-CH2), 52.57 (CH3–

ester), 56.47 (α-CH), 80.51 (OC(CH3)3), 127.75 (Ph), 129.39 (Ph), 130.21 (Ph), 138.32

(Ph), 157.64 (C=OBoc), 174.11 (O=CNHNC) ppm.

Boc-l-α-phenylalanine-hydrazide

Using the method described for Boc-l-α-serine-hydrazide, Boc-l-α-Phenylalanine-methyl-

ester (6 g, 21.5 mmol) was converted to the title compound as a colorless solid.

mp 127 ◦C.

Total yield: 5.69 g (21.1 mmol, 98.5%).

Elemental analysis for C14H21N3O3 (279.34 g/mol): calculated C: 60.20%, H: 7.58%,

N: 15.04%; found C: 60.23%, H: 7.54%, N: 15.20%.

13C-NMR 400 MHz, CDCl3): δ = 1.36 (s, 9H, C(CH3)3), 2.99–3.02 (m, 2H, β-CH2),
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3.57 (br, 2H, NH2–hydrazide), 4.33 (m, 1H, α-CH), 5.23 (br, 1H, NH–hydrazide), 7.13–

7.27 (m, 5H, Ph) ppm.

13C-NMR (100 MHz, CDCl3): δ = 28.25 (C(CH3)3), 38.59 (β-CH2), 54.57 (α-CH),

80.27 (O(C(CH3)3), 126.97 (Ph), 128.62 (Ph), 129.17 (Ph), 136.44 (Ph), 155.36

(C=OBoc), 172 (O=CNHNC) ppm.

N -Salicylidene-Boc-l-α-phenylalanine-hydrazide (HsalhyBocphe)

A sample of Boc-l-α-Phenylalanine-hydrazide (1.5 g, 5.37 mmol) was dissolved in methan-

ol (50 mL). Salicylaldehyde (0.7 g, 5.73 mmol) was added dropwise under constant stirring

and stirring was continued overnight. Removing of the solvent under reduced pressure

yielded the product as a white-yellowish solid, which was dried under vacuum. The NMR

data confirm the presence of product as two isomers in ratio 2:1. mp 91 ◦C.

Total yield: 2.03 g (5.30 mmol, 98.8%).

Elemental analysis for C21H25N3O4 (383.45 g/mol): calculated C: 65.78%, H: 6.57%,

N: 10.96%; found C: 65.43%, H: 6.45%, N: 10.59%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.29 (s, 9H, C(CH3)3), 2.78 – 2.87 (m, 1H, β-

CH2), 2.96 – 3 (m, 1H, β-CH2), 4.22 (m, 1H, α-CH), 6.86 (m, 2H, Ph), 7.24 (m, 5H,

Ph, NHBoc), 7.51 (m, 1H, Ph), 7.67 (m, 1H, Ph), 8.31 and 8.44 (s, 1H, CH=N), 10.05,

11.06 and 11.29, 11.75 (s, 1H, OH, NH) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 28, 30.62 (C(CH3)3), 36.40, 37.20, (β-CH2),

53.18, 55 (α-CH), 77.91, 78.14 (O(C(CH3)3), 115.35 (Ph), 116.15 (Ph), 116.30 (Ph),

117.19 (Ph), 118.62 (Ph), 119.28 (Ph), 120.20 (Ph), 122.24 (Ph), 126.29 (Ph), 127.04

(Ph),128.05 (Ph), 129.06 (Ph), 129.18 (Ph), 131.06 (Ph), 131.30 (Ph), 136.36 (Ph), 137.80

(Ph), 138.26 (Ph), 140.97, 147.95 (CH=N), 155.33 (Ph), 156.35 (Ph), 157.24 (Ph), 160.68

(C=OBoc), 168.15, 172.83 (O=CNHNC) ppm.

EI–MS (positive mode): m/z = 383 (M + H+ 24%), 327 (50%), 310 (15%), 256 (2%),

192 (44%), 120 (82%), 57 (100%).

IR data ν̃/cm−1: 3341 (br, OH), 3219 (br, NH), 1665 (C=O), 1610 (C=N).
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o-Hydroxy-acetophenone-Boc-l-α-phenylalanine-hydrazide

(MesalhyBocphe)

To a solution of Boc-l-α-Phenylalanine-hydrazide (0.48 g, 1.72 mmol) in methanol

(30 mL), was added dropwise 2-hydroxyacetophenone (0.24 g, 1.73 mmol) and the re-

action mixture was refluxed for 8 hours. The reaction mixture was taken to dryness

by means of a rotary evaporator, and the remaining yellow solid was crystallized from

ethanol, to obtain the product as a colorless solid which was finally dried in vacuum.

mp 179 ◦C.

Total yield: 0.35 g (0.88 mmol, 51%).

Elemental analysis for C22H27N3O4 (397.48 g/mol): calculated C: 66.48%, H: 6.85%,

N: 10.57%; found C: 66.45%, H: 6.86%, N: 10.52%.

1H-NMR (200 MHz, DMSO-d6): δ = 1.31 (s, 9H, C(CH3)3), 2.47 (s, 3H, CH3), 2.85

– 2.94 (m, 2H, β-CH2), 4.5 (m, 1H, α-CH), 6.83 – 6.9 (m, 2H, Ph), 7.19 – 7.31 (m, 6H,

Ph; NHBoc), 7.55 – 7.60 (m, 1H, Ph), 11.04 (s, 1H, NHC=O), 13.12 (s, 1H, Ph–OH)

ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 13.61 (CH3), 28.14 (C(CH3)3), 40.75 (β-CH2),

54.30 (α-CH), 78.19 (OC(CH3)3), 117.2 (Ph), 118.49 (Ph), 119.25 (Ph), 126.32 (Ph),

128.02 (Ph), 128.38 (Ph), 129.27 (Ph), 131.12 (Ph), 137.73 (Ph), 155.45 (C=N), 155.86

(Ph), 158.49 (C=OBoc), 169 (O=CNHNC) ppm.

IR data ν̃/cm−1: 3392 (OH), 3300 (NH), 1698, 1661 (C=O), 1606 (C=N).

EI-MS (positive mode): 398 (M + H+ 60%), 341 (36%), 206 (50%), 177 (100%), 120

(52%), 57 (94%).

5-Bromo-2-hydroxy-salicylidene-Boc-l-α-phenylalanine-hydrazide

(BrsalhyBocphe)

To a solution of Boc-l-α-phenylalanine-hydrazide (1.5 g, 5.37 mmol) in methanol (10 mL)

was added a solution of 5-bromo-2-hydroxy-benzaldehyde (1.1 g, 5.47 mmol) in methanol

(50 mL). The reaction mixture was stirred at room temperature overnight. Then the

reaction mixture was filtrated and the filtrate was cooled at 0 ◦C for an overnight period.
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The colorless crystalline precipitate thus obtained was filtrated, and dried in vacuum.

The NMR data confirm the presence of product as two isomers in ratio 1.1:1. mp 169 ◦C.

Total yield: 0.90 g (1.95 mmol, 36%).

Elemental analysis for C21H24BrN3O4 (462.34 g/mol): calculated C: 54.55%, H: 5.23%,

N: 9.09%; found C: 54.42%, H: 5.35%, N: 9.16%.

1H-NMR (200 MHz, DMSO-d6): δ = 1.31 (s, 9H, C(CH3)3), 2.77 – 2.99 (m, 2H,

β-CH2), 4.19 and 4.99 (m, 1H, α-CH), 6.85–6.89 (m, 1H, Ph), 7.10–7.43 (m, 7H, Ph;

NHBoc), 7.74–8.87 (m, 1H, Ph), 8.22, 8.37 (s, 1H, CH=N), 10.36, 11.09 (s, 1H, OH,

NH), 11.37, 11.81 (s, 1H, Ph–OH) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 28.38 (C(CH3)3), 38.42 (β-CH2), 53.16, 55.05

(α-CH), 77.91, 78.12 (OC(CH3)3), 110.38 (Ph), 110.61 (Ph), 110.71 (Ph), 118.43 (Ph),

118.56 (Ph), 121.22 (Ph), 122.77 (Ph), 126.08 (Ph), 127.54 (Ph), 128.06 (Ph), 128.99

(Ph), 129.15 (Ph), 130.20 (Ph), 133.14 (Ph), 133.47 (Ph), 137.76 (Ph), 138.36 (Ph),

138.54 (CH=N), 144.62 (C=N), 155.31 (Ph), 155.43 (Ph), 156.22 (Ph), 168.37 (C=OBoc),

173.25 (O=CNHNC) ppm.

IR data ν̃/cm−1: 3341 (OH), 3260 (NH), 1690, 1665 (C=O), 1611 (C=N).

2.6.5 Synthesis of cis-dioxovanadium(v)-complexes with Boc-

L-α-serine residue ligands

K[VO2(salhyBocser)]·H2O (1)

To a solution of the ligand HsalhyBocser (70 mg, 0.22 mmol) in methanol (20 mL) was

added KVO3 (30 mg, 0.22 mmol). The reaction mixture was heated at reflux for 3

hours yielding a yellow solution. The hot reaction mixture was filtrated to remove the

unreacted KVO3. The product was collected as a yellow microcrystalline powder by slow

concentration of the reaction mixture at room temperature. mp 164 ◦C.

Total yield: 90 mg (0.19 mmol, 89%).

Elemental analysis for C15H21KN3O8V (461.38 g/mol): calculated C: 39.05%, H:

4.59%, N: 9.11%; found C 38.84%, H 4.70%, N 8.99%.
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1H-NMR (400 MHz, DMSO-d6): δ = 1.39 (s, 9H, C(CH3)3), 3.33 (s, 2H, H2O), 3.56–

3.62 (m, 2H, β-CH2), 4.22 (s, 1H, α-CH), 4.71 (s, 1H, OH–Amino acid), 6.50–6.52 (d,

3J = 8.20 Hz, 1H, NHBoc), 6.74–6.89 (m, 2H, Ph), 7.17 (m, 1H, Ph), 7.49–7.50 (m, 1H,

Ph), 8.78 (s, 1H, CH=N) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 28.22 (C(CH3)3), 54.35 (α-CH), 62.42 (β-CH2),

77.85 (OC(CH3)3), 116.55 (Ph), 119.41 (Ph), 119.68 (Ph), 132.43 (Ph), 132.94 (Ph),

155.03 (Ph), 155.49 (C=N), 164.61 (NHC=OBoc), 173.91 (O–CNNC) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = - 531 ppm (ν1/2 = 831 Hz) ppm.

IR data ν̃/cm−1: 3413 (s, br; OH), 1616 (s, br; C=N–N=C), 949 (s, VO2), 908 (s, VO2).

ESI-MS (negative ion mode, in methanol): m/z = 404 ([VO2(salhyBocser)] – H+).

NH4[VO2(salhyBocser)]·EtOH·H2O (2)

To a solution of the ligand HsalhyBocser (150 mg, 0.46 mmol) in methanol (20 mL) was

added NH4VO3 (54 mg, 0.46 mmol). The reaction mixture was heated at reflux for 30

minutes when all vanadate has been reacted, yielding a dark brown solution. The hot

reaction mixture was filtrated, the solvent was removed to dryness and the residue is

recrystallized from ethanol to obtain the product as a brown solid.

Total yield: 174 mg (0.358 mmol, 78%).

Elemental analysis for C17H31N4O9V (486.39 g/mol): calculated C: 41.98%, H: 6.42%,

N: 11.52%; found C: 41.78%, H: 5.75%, N: 11.38%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.06 (t, 3J = 7 Hz, 3H, EtOH), 1.37 (s, 9H,

C(CH3)3), 3.33 (s, 2H, H2O), 3.56 – 3.61 (m, 2H, β-CH2 overlapping with ethanol), 4.22

(br, 1H, α-CH), 4.72 (br, 1H, OH–Amino acid), 6.56 (m, 1H, Ph), 7.08 (br, 5H, NHBoc

+ NH+
4 ), 7.41 (m, 1H, Ph), 7.74 (s, 1H, Ph), 8.70 (s, 1H, CH=N) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 18.51 (EtOH), 28.27 (C(CH3)3), 48.59

(CH3CH2OH), 54.46 (α-CH), 56.06 (EtOH), 62.37 (β–CH2), 77.89 (OC(CH3)3), 114.89

(Ph), 115.28 (Ph), 115.80 (Ph), 129.30 (Ph), 131.35 (Ph), 132.05 (Ph), 155.07 (C=N),

163.00 (NHC=OBoc), 169.40 (O–CNNC) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = - 530.89 ppm (ν1/2 = 1057 Hz) ppm.

IR data ν̃/cm−1: 3372 (s, OH), 3190 (br, NH), 1649 (C=OBoc), 1614 (s, C=N–N=C),
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932 (s, VO2), 908 (s, VO2).

K[VO2(BrsalhyBocser)]·2H2O (3)

To a solution of the ligand BrsalhyBocser (80 mg, 0.25 mmol) in methanol (20 mL)

was added KVO3 (40 mg, 0.25 mmol). The reaction mixture was heated at reflux for 5 h

yielding a yellow solution. The hot reaction mixture was filtrated to remove the unreacted

KVO3. Upon standing at 5 ◦C, yellow colored single crystals suitable for X-ray studies

formed within one month.

Total yield: 83 mg (0.14 mmol, 60%).

Elemental analysis for C15H22BrKN3O9V (558.29 g/mol): calculated C: 32.27%, H:

3.97%, N: 7.53%; found C: 33.06%, H: 4.03%, N: 7.48%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.39 (s, 9H, C(CH3)3), 3.33 (s, 4H, H2O), 3.56-

3.61 (m, 2H, β-CH2), 4.22 (br, 1H, α-CH), 4.72 (br, 1H, OH–Amino acid), 6.54 (d, 3J

= 8.4 Hz, 1H, NHBoc) 6.72 (m, 1H, Ph), 7.40 (m, 1H, Ph), 7.72 (s, 1H, Ph), 8.79 (s, 1H,

CH=N) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 28.22 (C(CH3)3), 54.43 (α-CH), 62.37 (β–CH2),

77.86 (OC(CH3)3), 106.83 (Ph), 121.61 (Ph), 121.80 (Ph), 133.85 (Ph), 135.06 (Ph),

154.29 (C=N), 155.02 (Ph), 163.51 (NHC=OBoc), 174.55 (O–CNNC) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = - 531.1 ppm (ν1/2 = 950 Hz) ppm.

IR data ν̃/cm−1: 3372 (s, br; OH), 1617 (s, br; C=N–N=C), 949 (s, VO2), 904 (s, VO2).

UV/Vis (DMF solution, λmax in nm (ε in 103 M−1 cm−1)): 287 (10.8), 386 (5).

ESI-MS (negative ion mode, in methanol): m/z = 482 ([VO2(BrsalhyBocser)] – H+).

NH4[VO2(BrsalhyBocser)]·MeOH (4)

To a solution of the ligand BrsalhyBocser (1.10 g, 2.76 mmol) in methanol (20 mL) was

added NH4VO3 (0.37 g, 2.76 mmol). The reaction mixture was heated at reflux for 3

hours yielding a dark brown solution. The hot reaction mixture was filtrated off, and left

to cool at room temperature to give a yellow precipitate, which was recrystallized from

CHCl3.
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Total yield: 0.66 g (1.24 mmol, 45%).

Elemental analysis for C16H26BrN4O8V (533.25 g/mol): calculated C: 36.04%, H:

4.91%, N: 10.51%; found C: 36.25%, H: 4.48%, N: 9.75%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.35 (s, 9H, C(CH3)3), 3.56 – 3.61 (m, 2H, β-CH2

+ CH3OH), 4.22 (br, 1H, α-CH), 4.73 (br, 2H, OH–Amino acid + CH3OH), 6.56 (m,

1H, Ph), 7.08 (br, 5H, NHBoc + NH+
4 ), 7.41 (m, 1H, Ph), 7.74 (s, 1H, Ph), 8.80 (s, 1H,

CH=N) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 28.27 (C(CH3)3), 48.59 (CH3OH), 54.46 (α-CH),

62.37 (β–CH2), 77.89 (OC(CH3)3), 106.97 (Ph), 121.63 (Ph), 121.80 (Ph), 133.95 (Ph),

135.16 (Ph), 154.29 (C=N), 155.07 (Ph), 163.51 (NHC=OBoc), 174.55 (O–CNNC) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = - 532.20 ppm (ν1/2 = 1308 Hz) ppm.

IR data ν̃/cm−1: 3325 (s, OH), 1690 (s, C=OBoc), 1616 (s, C=N–N=C), 917 (s, VO2),

900 (s, VO2).

2.6.6 Synthesis of cis-dioxovanadium(v)-complexes with Boc-

L-α-histidine residue ligands

2.6.7 [VO2(HsalhyBochis)] (5)

To a solution of Schiff base ligand HsalhyBochis (300 mg, 0.80 mmol) in dry methanol

(35 mL) was added NH4VO3 (94 mg, 0.80 mmol) to give a brown colored mixture. The

resulting mixture was refluxed for 6 hours when a clear solution was obtained. The hot

dark brown mixture was filtrated off and the volume of the solution was reduced to about

half of its original volume, under reduce pressure and left overnight at room temperature

to give a yellow precipitate.

Total yield: 182 mg (0.4 mmol, 50%).

Elemental analysis for C18H22N5O6V (455.1 g/mol): calculated C: 47.48%, H: 4.87%,

N: 15.38%; found C: 47.22%, H: 4.71%, N: 15.10%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.32 (s, 9H, C(CH3)3), 3.00 (m, 2H,β-CH2), 4.50

(s, 1H, α-CH), 6.77 (m, 1H, His-Ph), 6.90 (m, 2H, Ph), 7.16 (m, 1H, Ph), 7.30 (m, 1H,

Ph), 7.50 (m, 1H, His-Ph), 8.67 (s, 1H, NH), 8.79 (s, 1H, CH=N) ppm.
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13C-NMR (100 MHz, DMSO-d6): δ = 28.13 (C(CH3)3), 28.55 (β-CH2), 51.29 (α-CH),

78.05 (OC(CH3)3), 116.68 (Ph), 117.19 (Ph), 118.60 (C4), 119.32 (Ph), 119.57 (Ph),

129.24 (Ph), 133.24 (Ph), 154.98 (CH=N), 156.08 (C=OBoc), 171.34 (O=CNHN) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = - 530.30 ppm (ν1/2 = 1321 Hz) ppm.

ESI-MS (negative ion mode, in methanol): m/z = 454 ([VO2(salhyBochis)] – H+).

2.6.8 Synthesis of cis-dioxovanadium(v)-complexes with Boc-

L-α-tryptophan residue ligands

K[VO2(salhyBoctrp)]·H2O (6)

To a stirred solution of ligand (HsalhyBoctrp) (0.49 g, 1.16 mmol) in methanol (20 mL)

was added (0.16 g, 1.16 mmol) of KVO3. The resulting yellow solution was heated at

65 ◦C for 1 day. The hot reaction mixture was filtrated off and then left to cool at room

temperature. The yellow product was obtained within a few days on slow evaporation of

the solvent in air. mp 206 ◦C.

Total yield: 0.58 g (1.03 mmol, 89%).

Elemental analysis for C23H26KN4O7V (560.62 g/mol): calculated C: 49.28%, H:

4.68%, N: 10.00%; found C: 49.01%, H: 4.56%, N: 10.11%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.34 (s, 9H, C(CH3)3), 3.02 – 3.2 (m, 2H, β-CH2),

3.31 (s, 2H, H2O), 4.42 (m, 1H, α-CH), 6.48 – 6.52 (br, 1H, NHBoc), 6.73 – 6.78(m, 2H,

Ph), 6.93 – 7.06 (m, 3H, Ph), 7.26 – 7.3(m, 2H, Ph), 7.44 – 7.54 (m, 2H, Ph), 8.75 (s,

1H, CH=N), 10.74 (s, 1H, NH) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 28.19 (C(CH3)3), 30.64 (β-CH2), 52.73 (α-CH),

77.72 O(C(CH3)3), 110.28 (Ph), 111.25 (Ph), 116.49 (Ph), 118.10 (Ph), 118.24 (Ph),

119.41 (Ph), 119.63 (Ph), 120.58 (Ph), 123.57 (Ph), 127.73 (Ph), 132.40 (Ph), 132.98

(Ph), 135.86 (Ph), 154.73 (CH=N), 155.52 (Ph), 164.47 (C=OBoc), 174.78 (O–CNNC)

ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -530.37 ppm.

IR data ν̃/cm−1: 3414 (NH), 1615 (C=N–N=C), 912 (s, VO2), 906 (s,VO2).
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UV/Vis (DMF solution, λmax in nm (ε in 103 M−1 cm−1)): 311 (7.2), 387 (5).

UV/Vis (Acetonitrile solution, λmax in nm (ε in 103 M−1 cm−1)): 223 (29.6), 280 (14.4),

386 (5.9).

ESI-MS(negative mode): m/z = 503.2 ([VO2(salhyBoctrp)] – H+).

[VO2(HsalhyBoctrp)]·MeOH (7)

To a solution of Schiff base ligand HsalhyBoctrp (180 mg, 0.427 mmol) in methanol

(20 mL) was added NH4VO3 (49 mg, 0.426 mmol). The resulting mixture was refluxed

for 3.5 hours until all vanadate was reacted, filtrated off, and the solution was allowed

to stand at room temperature, to evaporate slowly the solvent to obtain the dark brown

solid which was filtered off, and dried in air.

Total yield: 70 mg ( 0.13 mmol, 30%).

Elemental analysis for C24H29N4O7V (536.45 g/mol): calculated C: 53.73%, H: 5.45%,

N: 10.46%; found C: 53.99%, H: 5.31%, N: 9.56%.

51V-NMR (105 MHz, DMSO-d6): δ = -531.39 ppm.

IR data ν̃/cm−1: 3409 (NH), 1697 (C=OBoc), 1610 (C=N–N=C), 981 (s, VO2), 909 (s,

VO2).

2.6.9 Synthesis of cis-dioxovanadium(v)-complexes with Boc-

L-α-phenylalanine residue ligands

K[VO2(salhyBocphe)]·H2O (8)

To a solution of HsalhyBocphe (0.5 g, 1.3 mmol) in methanol (40 mL) was added KVO3

(0.18 g, 1.3 mmol). The solution changed its color from yellow to orange. The reaction

mixture was heated at 65 ◦C for 1 day to obtain a dark orange solution then filtrated

off and the filtrate was kept at ambient temperature to allow for slow evaporation of the

solvent. A few days later, yellow crystalline solid appeared at the bottom of the flask

which was isolated by filtration and dried in vacuo. mp 185 ◦C.
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Total yield: 0.61 mg (1.21 mmol, 93%).

Elemental analysis for C21H25KN3O7V (521.48 g/mol): calculated C: 48.37%, H:

4.83%, N: 8.06)%; found C: 48.50%, H: 5.05%, N: 8.19%.

1H-NMR (200 MHz, DMSO-d6): δ = 1.31 (s, 9H, C(CH3)3), 2.81 – 2.92 (dd, 3J =

8.8 Hz, 2J = 13.53 Hz, 1H, β-CH2), 3.02 – 3.09 (dd, 3J = 5.12 Hz, 2J = 13.53 Hz, 2H,

β-CH2), 3.31 (s, 2H, H2O), 4.36 – 4.38 (m, 1H, α-CH), 6.71 – 6.78 (m, 2H, Ph), 7.20 –

7.35 (m, 5H, Ph, NHBoc), 7.50 (m, 1H, Ph), 8.77 (s, 1H, CH=N) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 28.17 (C(CH3)3), 38 (β-CH2), 53.19 (α-CH),

77.70 (OC(CH3)3), 116.53 (Ph), 119.45 (Ph), 119.65 (Ph), 125.98 (Ph), 127.87 (Ph),

129.28 (Ph), 132.45 (Ph), 133.02 (Ph), 138.28 (Ph), 154.83 (Ph), 155.65 (CH=N), 164.48

(C=OBoc), 174.63 (O–CNNC) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -530.78 ppm (ν1/2 = 957 Hz) ppm.

IR data ν̃/cm−1: 3420 (br, H2O), 1617 (s, C=N–N=C), 940 (s, VO2), 908 (s, VO2).

UV/Vis (MeOH solution, λmax in nm (ε in 103 M−1 cm−1)): 279 (10.9), 381 (2.7).

ESI-MS (negative ion mode, in methanol): m/z = 464 ([VO2(salhyBocPhe)] – H+).

NH4[VO2(salhyBocphe)]·H2O (9)

To a solution of Schiff base ligand HsalhyBocphe (0.5 g, 1.3 mmol) in methanol (40 mL)

was added NH4VO3 (0.15 g, 1.31 mmol). The resulting mixture was heated under reflux

for 3 days. The hot reaction mixture was filtrated to remove the unreacted NH4VO3. The

filtrate was kept at ambient temperature to allow for slow evaporation of the solvent. A

few days later, brown precipitate appeared at the bottom of the flask which was isolated

by filtration and dried in vacuo. mp 138 ◦C.

Total yield: 0.55 g (1.14 mmol, 88%).

Elemental analysis for C21H29N4O7V (500.42 g/mol): calculated C: 50.40%, H: 5.84%,

N: 11.20%; found C: 50.63%, H: 5.65%, N: 10.92%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.31 (s, 9H, C(CH3)3), 2.84 – 3.16 (m, 2H,

β-CH2), 3.34 (s, 2H, H2O), 4.37 (m, 1H, α-CH), 6.75 (m, 2H, Ph), 7.15 (m, 10H, Ph,

NH+
4 , NHboc), 8.78 (s, 1H, CH=N) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 28.15 (C(CH3)3), 38 (β-CH2), 53.03 (α-CH), 77.71
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(OC(CH3)3), 116.72 (Ph), 119.53 (Ph), 125.56 (Ph), 126 (Ph), 127.88 (Ph), 128.06 (Ph),

129.25 (Ph), 133.13 (Ph), 138.24 (Ph), 154.82 (CH=N), 155.37 (Ph), 168 (C=OBoc),

174.32 (O–CNNC) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -531.07 ppm (ν1/2 = 1050 Hz).

IR data ν̃/cm−1: 3424 (br, H2O), 1616 (s, C=N–N=C), 937 (s, VO2), 908 (s, VO2).

UV/Vis (MeOH solution, λmax in nm (ε in 103 M−1 cm−1)): 279 (14.9), 381 (4.3).

ESI-MS (negative ion mode, in methanol): m/z = 464 ([VO2(salhybocphe)] – H+).

K[VO2(BrsalhyBocphe)]·H2O (10)

To a solution of Schiff base ligand BrsalhyBocphe (0.4 g, 0.86 mmol) in methanol (40 mL)

was added KVO3 (0.2 mg, 0.86 mmol). The resulting dark yellow solution was heated

at 60 ◦C for 1 day until the majority of KVO3 was reacted. The color of the reaction

mixture became orange. It was filtrated and the filtrate volume was reduced to ca. 5 mL

by rotary evaporation and finally cooled at room temperature. A few days later, yellow

crystalline precipitate formed, which was isolated by filtration and dried in vacuo.

mp 196 ◦C.

Total yield: 0.4 g (0.68 mmol, 79%).

Elemental analysis for C21H24BrKN3O7V (598.99 g/mol): calculated C: 42.01%, H:

4.03%, N: 7.00%; found C: 41.96%, H 3.88%, N 6.94%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.30 (s, 9H, C(CH3)3), 2.86 (dd, 3J = 8.79 Hz,

2J = 13.7 Hz, 1H, β-CH2), 3.05 (dd, 3J = 5.4 Hz, 2J = 13.7 Hz, 1H, β-CH2), 3.32 (s, 2H,

H2O), 4.38 (m, 1H, α-CH), 6.73 (d, 2J = 8.9 Hz, 1H, Ph), 6.80 ( m, 1H, NHBoc), 7.16 –

7.20 (m, 5H, Ph), 7.41 (m, 8.8 Hz, 1H, Ph), 7.73 (m, 1H, Ph), 8.78 (s, 1H, CH=N) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 28.16 (C(CH3)3), 38.23 (β-CH2), 53.24 (α-CH),

77.70 (OC(CH3)3), 106.83 (Ph), 121.57 (Ph), 121.82 (Ph), 125.99 (Ph), 127.87 (Ph),

129.24 (Ph), 133.87 (Ph), 135.11 (Ph), 138.24 (Ph), 154.54 (Ph), 154.85 (CH=N), 163.51

(C=OBoc), 175.40 (O–CNNC) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -530.47 ppm (ν1/2 = 983 Hz).

IR data ν̃/cm−1: 3420 (br, H2O), 1617 (s, C=N–N=C), 941 (s, VO2), 907 (s, VO2).

UV/Vis (MeOH solution, λmax in nm (ε in 103 M−1 cm−1)): 290 (12), 390 (3.6).
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ESI-MS (negative ion mode, in methanol): m/z = 544 ([VO2(Brsalhybocphe)] – H+).

K[VO2(MesalhyBocphe)] (11)

To a solution of the ligand MesalhyBocphe (0.46 g, 1.16 mmol) in methanol (40 mL) was

added KVO3 (0.16 g, 1.16 mmol). The resulting mixture was heated to 60 ◦C for 2 days.

The hot mixture was filtrated and the resulting solution was reduced in vacuum to about

half of its original volume. After standing overnight a crystalline material in the form of

yellow plates can be isolated. mp 185 ◦C.

Total yield: 0.56 g (1.08 mmol, 93%).

Elemental analysis for C22H25KN3O6V (517.49 g/mol): calculated C: 51.06%, H:

4.87%, N: 8.12%; found C: 49.91%, H: 4.86%, N: 7.96%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.31 (s, 9H, C(CH3)3), 2.67 (s, 3H, CH3), 2.85

– 2.91 (dd, 3J = 9.6 Hz, 2J = 13.4 Hz, 1H, β-CH2), 3.07 – 3.1 (dd, 3J = 4.4 Hz, 2J =

13.4 Hz, 1H, β-CH2), 4.53 (m, 1H, α-CH), 6.75 – 6.79 (m, 3H, Ph, NHboc), 7.23 – 7.29

(m, 5H, Ph), 7.66 – 7.70 (m, 1H, Ph) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 15.90 (CH3), 28.17 (C(CH3)3), 38.19 (β-CH2),

53.76 (α-CH), 77.62 (OC(CH3)3), 116.83 (Ph), 119.85 (Ph), 122.80 (Ph), 125.90 (Ph),

127.84 (Ph), 129.22 (Ph), 129.29 (Ph), 131.43 (Ph), 138.54 (Ph), 155.03 (N=C(CH3)),

161.57 (Ph), 164.17 (C=OBoc), 173.56 (O–CNNC) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -532.23 ppm (ν1/2 = 720 Hz).

IR data ν̃/cm−1: 1616 (s, C=N–N=C), 949 (s, VO2), 901 (s, VO2).

UV/Vis (Acetonitrile solution, λmax in nm (ε in 103 M−1 cm−1)): 211 (26), 271 (12.8),

366 (6). UV/Vis (MeOH solution, λmax in nm (ε in 103 M−1 cm−1)): 291 (12.0), 361

(4.2).

ESI-MS (negative ion mode, in methanol): m/z = 478 ([VO2(Mesalhybocphe)] – H+).

NH4[VO2(MesalhyBocphe)] (12)

To a solution of MesalBocPheHy (230 mg, 0,58 mmol) in methanol (30 mL), NH4VO3

(75 mg, 0.64 mmol) was added. The mixture was heated at reflux for 1 hour yielding
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a red-brown precibitate. The hot reaction mixture was filtrated, and the filtrate was

allowed to evaporate slowly in air at room temperature. The separated brown solid was

collected by filtration and dried in vacuum. mp 127 ◦C.

Total yield: 0.24 g (0.49 mmol, 83%).

Elemental analysis for C22H29N4O6V (496.43 g/mol): calculated C: 53.23%, H: 5.89%,

N: 11.29%; found C: 53.54%, H: 5.65%, N: 10.19%.

1H-NMR (400 MHz, DMSO-d6): δ = (s, 9H, C(CH3)3), 2.67 (s, 3H, CH3), 2.85 – 3.11

(m, 2H, β-CH2), 4.37 (m, 1H, α-CH), 6.78 (m, 2H, Ph), 6.96 (s, 1H, NHboc), 7.09 –

7.28 (m, 5H, Ph and NH4
+), 7.69 – 7.71 (m, 1H, Ph) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 15.96 (CH3), 28.16 (C(CH3)3), 38.17 (β-CH2),

53.73 (α-CH), 77.64 (OC(CH3)3), 117.08 (Ph), 119.55 (Ph), 122.20 (Ph), 125.92 (Ph),

127.86 (Ph), 129.20 (Ph), 129.33 (Ph), 131.60 (Ph), 138.61 (Ph), 155.06 (Ph), 161.50

(C=N), 164.15 (C=OBoc), 173.6 (O–CNNC) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -546.58, -533.67 ppm.

IR data ν̃/cm−1: 1601 (s, C=N–N=C), 944 (s, VO2), 873 (s, VO2).

UV/Vis (DMF solution, λmax in nm (ε in 103 M−1 cm−1)): 260 (10.6), 365 (3.3).

ESI-MS (negative ion mode, in methanol): m/z = 478 ([VO2(MesalhyBocPhe)] – H+).

2.6.10 Synthesis of monooxovanadium complexes with phenyl-

alanine Schiff base ligands

VO(OiPr)(salhyBocphe) (13)

To a solution of HsalhyBocphe (0.3 g, 0.78 mmol) in 30 mL dryed iso-propanol [VO(OiPr)3]

(192 mg, 0.78 mmol) was added dropwise under an argon atmosphere. The reaction mix-

ture was stirred under argon for 2 h yielding a brown solution. The solvent was removed

under reduced pressure to obtain the product as a brown solid.

Total yield: 90 mg ( 0.18 mmol, 23.83%).

Elemental analysis for C24H30N3O6V (507.5 g/mol): calculated C: 56.80%, H: 5.96%,

N: 8.28%; found C: 56.85%, H: 5.55%, N: 8.97%.
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VO(OiPr)(MesalhyBocphe) (14)

To a solution of MesalhyBocphe (0.5 g, 1.26 mmol) in 30 mL dried iso-propanol

[VO(OiPr)3] (0.31 g, 1.26 mmol) was added dropwise under an argon atmosphere. The

reaction mixture was stirred under argon for 2 h yielding a brow solution. The solvent

was removed under reduced pressure to obtain the product as a brown solid.

Total yield: 0.37 g ( 0.71 mmol, 56%).

Elemental analysis for C25H32N3O6V (521.5 g/mol): calculated C: 57.58%, H: 6.19%,

N: 8.06%; found C: 56.77%, H: 6.22%, N: 7.91%.

EI-MS (positive mode): m/z = 522 (M + H+ 5%).

V2O3(MesalhyBocphe) (15)

To a suspension of VO(OiPr)(MesalhyBocphe) (0.11 g, 0.21 mmol) was added 10 mL

distilled water, followed by 10 mL methanol. Nothing has dissolved. The solvent was

removed under reduced pressure, and to the residue were added 10 mL aceton, and the

mixture was heated slowly to 56 ◦C until complete dissolved. The brown solution was

kept at 0 ◦C for several days, no precipitate formed. The solvent was removed slowly

under reduced pressure, to obtain the brown solid, which was dried under vacuum.

Total yield: 0.73 g (0.78 mmol, 62%).

Elemental analysis for C44H50N6O11V2 (940.8 g/mol): calculated C: 56.17%, H: 5.36%,

N: 8.93%; found C: 55.61%, H 5.40%, N 8.84%.

EI-MS (negative mode): m/z = 940 (M – H+ 20%).

2.6.11 Catalytic oxidative bromination of TMB/MCD

The bromination reaction was performed in acetonitrile solution, thermostat at 20 ◦C.

For each complex, three standard solutions of the same concentration were prepared.

All measurements were performed in triplicate. Typical procedure: The standard assay
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mixture was prepared in an optical cuvette, covered with a teflon-cover, and contained:

0.24 mm sodium bromide (NaBr), 0.24 mm HClO4, 0.12 mm TMB, 6 μm vanadium com-

plex, 0.53 mm hydrogen peroxide (H2O2), and 0.05 μm MCD (final concentration in the

cuvette). Total volume of the reaction mixture is 2 mL. Each compound was added in

the following order: 1,3,5-trimethoxybenzene (TMB), monochlorodimedone (MCD) and

NaBr were premixed in acetonitrile to have the concentrations of 0.27 mm, 0.114 mm

and 0.54 mm, in ratio 3:3:9 respectively. 880 μL of this mixture was added to 12 μL of

vanadium complex, followed by 100 μL of hydrogen peroxide (H2O2). The reaction was

initiated by addition of 52 μL of HClO4 and followed by UV at 258 nm.

2.6.12 General procedure for preparation of chiral sulfoxides:

Vanadium complex (0.02 mmol) was dissolved at room temperature in a mixture of

CH2Cl2/CH3OH 7:3 (20 mL) and 1,3,5-trimethoxybenzene (0.34 g, 2.0 mmol) as inter-

nal standard was added followed by (0.24 ml, 2.0 mmol) phenyl methyl sulfide. The

resulting solution was cooled down on an ice-bath and H2O2 8.24 m (1.2 equiv., 0.31 mL,

2.5 mmol) was added dropwise. The reaction solution was warmed up to room tempera-

ture and stirred in a capped flask and monitored by thin-layer chromatography technique

(Et2O:n-hexane 9:1). After 1, and 3-hours reaction time, aliquots of the reaction solutions

(2.0 mL) were quenched with ca. 5 mL of a stock solution of NaOH (0.1 m) and extracted

with ethyl acetate (3×4 mL). The collected organic phases were removed completely to

dryness and the residue was redissolved in deuterated chloroform (600 μL) and analyzed

by 1H–NMR to determine the yield. From this solution was then taken 60 μL of chloro-

form, removed the solvent to dryness and the residue redissolved in 2 mL dichlormethane

and the enantiomeric excess was determined by chiral HPLC. HPLC retention times for

the methylphenyl sulfoxides (r) = 21.17 min and (s) = 29.60 min (hexane:2-propanol,

95:5).



Chapter 3

Vanadium(v) complexes with free

L-α-amino-acid residue ligands

Among the biological functions of vanadium, tyrosine and tyrosine derivative complexes

play a distinctive role in physiological interactions involving vanadium in the oxidation

states +v, +iv, +iii. A prominent example is the potential of tunichromes of vanadium

sequestering sea squirts (Ascidiaceae) in the reduction of vanadate (H2VO4
−) to vanadyl

(VO2+) and Viii (VO(OH)(H2O)4).
[100] Protein phosphatases and kinases are inhibited

or stimulated by vanadate, and it has been proposed that this activity of vanadates is

related to the presence of vanadium coordination to tyrosine (or serine or threonine) in

the active site of these enzymes, a view which is corroborated by the structure of elucida-

tion of a bovine low molecular weight phosphotyrosyl phosphatase,[33] in which vanadate

is covalently attached to a serinate, giving rise to an overall trigonal bipyramidal coor-

dination array. Further it has been suggested that the insulin–enhancing behavior of

many vanadium compounds has been traced back to the inhibition of a protein tyro-

sine phosphatase.[101] Furthermore, based on the reported crystal structure of vanadium

chloroperoxidase,[19] amino acid residues such as serine, lysine, histidine, arginine and

aspartate are present at the active center.

Although many dioxovandium(v) complexes have been prepared, and characterized by

X-Ray crystallography, the structure of cis-dioxovanadium complexes containing

N -salicylidene amino acid hydrazide ligands have not been found. Herein we report the

first examples of cis-dioxovanadium complexes with N -Salicylidene amino acid hydrazide

65
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ligands. We have included tyrosine, phenylalanine and leucine in this chapter, in order

to enhance the hydrogen bonding interaction of the prosthetic group of V-HPOs, and

further to allow comparison of the halogenating properties of the cis-dioxovanadium(v)

complexes with protected amino acid residue ligands, described in Chapter 2.

3.1 Synthesis and Reactions

To synthesize the Schiff base ligands two possible methods can be used. The first method

was applied for the Schiff base ligands with phenylalanine residue, and involves the re-

moval of the Boc protecting group from the Schiff base ligands containing protected

phenylalanine, described in chapter 2. The most commonly reported method in the litera-

ture is the deprotection of Boc-group with trifluoroacetic acid (TFA), in CH2Cl2.
[102–104].

In the present work the removal of the Boc group was performed with 20 equiv. of TFA

in CH2Cl2 for 23–24 hours, followed by neutralization with a 20% aqueous solution of

sodium hydrogen carbonate (see Figure 3.1). After working up the products were ob-

tained in good yield 80–90%. Completion of the reaction was monitored by TLC (ethyl

acetate/hexane 4:6) until the disappearance of starting material.

OH
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NH
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O

OH

N
N
H

O

NH2

R R

TFA

CH2Cl2
r.t 23-24 h

R = H, Br

Figure 3.1: Synthesis of N -Salicylidenehydrazide ligands with phenylalanine residue by

the removal of Boc group from the corresponding Schiff base ligand with protected pheny-

lalanine.

The synthesis of N -salicylidene amino acid hydrazide ligands using the second method

follows the pathway depicted in Figure 3.2. l-α-leucine, l-α-phenylalanine, and l-α-

tyrosine were used as amino acids. Amino acid-methyl-ester-hydrochlorides were used as

starting materials.
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Figure 3.2: Schematic representation of the synthesis of N -Salicylidenehydrazide ligands

with free amino acid substitutions.
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(a) neutral complex, with protonated 
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Figure 3.3: Schematic representation of chiral cis-dioxo-vanadium(v) complexes with

free amino acid residues.

In the case of leucine, the synthesis of leucine-hydrazide was straightforward, thus

leucine methyl-ester-hydrochloride reacts with two equivalents of hydrazine monohydrate,

in methanol solution at room temperature. When one equivalent of hydrazine was used

the reaction time was prolonged. Hydrazide-hydrochloride can be separated from the

leucine hydrazide by recrystallization from ethanol. In the case of phenylalanine and

tyrosine the first step was removing of hydrochloric acid to obtain the free amino acid-

methyl-esters.[105] These esters react then in the next step with two folds excess of hy-

drazine monohydrate resulting in the formation of the corresponding amino acid hy-

drazides, which were crystallized directly from the reaction mixture as colorless solids,

and further purification was unnecessary. The excess of hydrazine remains in the solu-

tion. Subsequent reaction of amino acid hydrazides with salicylaldehyde (itself or one of

its ring substituted derivative) results in the formation of the desired Schiff base ligands.

Preparation of vanadium complexes were carried out with the vanadium precursor com-

pounds ammonium vanadate (NH4VO3), potassium vanadate (KVO3), vanadium sulfate

tryhydrate, and triisopropoxyvanadium(v) oxide (VO(OiPr)3).

Stoichiometric reaction of the ligands with ammonium metavanadate in refluxing methanol
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solution, result in the formation of the neutral cis-dioxovanadium complexes

[VO2(Mesalhyleu)] (16), [VO2(Mesalhyphe)]·MeOH (18), [VO2(Mesalhytyr)]·MeOH (20),

and the ammonium salts of the anionic cis-dioxovanadium complexes

NH4[VO2(salhyCONH2)] (22), and NH4[VO2(BrsalhyCONH2)]·H2O (25) (Figure 3.3;

3.5). Sodium salts of the anionic cis-dioxovanadium complexes Na[VO2(salhyCONH2)]

·MeOH·H2O (21), and Na[VO2(BrsalhyCONH2)] (24) were obtained when vanadyl sul-

fate trihydrate was used as the vanadium source, under basic conditions (at pH 12–13

using 0.1 m NaOH), in a methanol:water mixture at 65 ◦C (see Figure 3.5). During this

reaction aerial oxygen acts as the oxidising agent in the oxidation of vanadium(vi) to (v).

This method represents an alternative method to synthesize dioxovanadium complexes,

but in comparison with he first method this has the disadvantage of longer reaction time.

In the case of the Schiff base ligand with tyrosine residue in an alternative way

the ligand was allowed to react with tri-isopropylatvanadium(v) oxide (VO(OiPr)3) in

dry isopropanol under argon atmosphere. Our initially idea was to synthesize monooxo-
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Figure 3.4: Schematic representation of chiral cis-dioxo-vanadium(v) complex 20 with

tyrosine substituted ligand.



70 Chapter 3: V(v)-complexes with free L-α-amino acid ligands

vanadium complex, but unfortunately we could not isolate this complex. An unidentified

mixture of compounds was formed, which was converted to the neutral cis-dioxovanadium

complex 20, as a product of the hydrolization reaction by addition of water and methanol

(Figure 3.4).

To synthesize the potassium salts of the anionic cis-dioxovanadium(v) complexes

K[VO2(Mesalhyleu)]·5H2O (17), K[VO2(Mesalhyphe)] (19), K[VO2(salhyCONH2)]

·MeOH (23), and K[VO2(BrsalhyCONH2)]·H2O (26) potassium vanadate reacts with

the ligands in methanol solution heated at reflux (see Figure 3.3, 3.5).

The Schiff base ligands with salicylaldehyde, and its bromo substituted derivative,

react with the above-mentioned vanadium sources in order to synthesize the correspond-

ing cis-dioxovanadium complexes. Unfortunately, they were not able to give the desired

complexes. Instead vanadium complexes 21 to 26 were obtained as the products of the

oxidative removal of amino acid residues from the α-methyl groups, followed by oxida-

tion of the Cα–C bond, leading to the formation of the α-ketoamides (see Figure 3.5).

The unprecedented complexes thus formed, serve as very good catalyst for the oxidation

reaction of Cα–C to C=O.

The sodium salts of the anionic cis-dioxovanadium complexes 21, 24 were obtained

when VOSO4 was used under basic conditions (0.1 m NaOH), the potassium salts of

the anionic cis-dioxovanadium complexes 23, 26 were obtained using KVO3, and the

corresponding ammonium salt of the anionic cis-dioxovandium complexes 22, 25 were

isolated using NH4VO3 as vanadium source. In another attempt we tried to prevent aerial

oxygen which acts as the oxidising agent. Therefore the ligand Brsalhyphe was allowed

to react with 1 equivalent of NH4VO3 in dry methanol under argon atmosphere. Again

the Cα–C side chain of phenylalanine was oxidized generating the complex 25 with α-

ketoamide ligand. The oxidative transformation of Cα–C side chain of an amino acid to

a carbonyl (CO) function has been reported previously.[106] They report a novel strategy

for the backbone modification at the α-carbon of serine and threonine residues in peptide,

where Ru(viii) was used as a powerful oxidizing agent. It is no wonder that there are

only a few examples of backbone modifications at the α-carbon in peptides,[107, 108] and

our complexes described here are the first examples of the cis-dioxovanadium complexes

which in situ generate the oxidative scission of the Cα–C side chain of an amino acid.
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Figure 3.5: Unprecedent formation of cis-dioxovanadium(v) complexes from the Schiff

base ligands with salicylaldehyde (R1 = H), and its bromo substituted residue (R1 = Br).

3.2 Structural characterization

3.2.1 Complexes with phenylalanine residue (18)

The molecular structure of the neutral cis-dioxovanadium(v) complex [VO2(Mesalhyphe)]

·MeOH (18) together with the atom numbering scheme is shown in Figure 3.6, and se-

lected bond lengths and angels in Table 3.1. The vanadium(v) atom is five coordinated

by the phenolate oxygen atom O3, the imine nitrogen atom N1, amide oxygen atom O4

and the two oxo groups O1 and O2, in a square pyramidal coordinated environment. The

ligand acts as a tridentate ligand. The aromatic ring of the aldehyde together with the

hydrazide groups lye in the basal plane. Relative to the mean plane given by the ligand

system (O3 N1 C8 O4), the vanadium atom is displaced toward the apical oxo group

O1 by 40.2 pm, while the equatorial oxo group is slightly distorted on the opposite side

by 27.0 pm. The τ value is 0.08 which is slightly distorted from the square-pyramidal
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geometry (0 for ideal square-pyramidal and 1 for ideal bipyramidal arrangements.[83]).

Figure 3.6: Molecular structure of [VO2(Mesalhyphe)]·MeOH (18) (thermal ellipsoids are

drawn at the 50% probability level).

The V=O distances V–O1 (161.7(18) pm) and V–O2 (165.8(17) pm) are typical for

dioxo-vandium groups.[42, 85] The angles in the basal plane of the distorted pyramid are

O3–V–O4 149.3(8)◦ and O3–V–N1 81.9(8)◦, which are quite similar to those previously

reported for the cis-VO2 moiety in other complexes.[39, 42, 84, 86] The iminolate form of the

ligand is consistent with the observed V–O4 and O4–C8 bond lengths. The O4–C8 bond

distance, which is the most significant parameter for differentiating between the iminol

and keto form of the amide functionality, exhibits value of 130.4(3) (pm) and is nearer to a

C–O single bond than to a C–O double bond distance. The bond lengths N1–N2, N1–C7

of the coordinated ligand system are in good agreement with the data found for similar

dioxovanadium complexes.[42, 84] The adjacent C8–N2 bond display a typical double bond

distance of 129.4(3) (pm), and a concomitant lengthening of the N2-N1 bond of 141.5(3)

(pm) is also apparent. The N1–C7 bond distance of 131.8(11) (pm) is pretty close to

the usual C=N length.[84] The protonated amino group compensates the negative charge

of the vanadate moiety. Similar charge compensation is formed at the lysine residue in

the vanadium dependent haloperoxidase enzymes, and the lysine is involved in strong

hydrogen bonding interaction.
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The complex crystallizes in the orthorhombic space group P212121 with one methan-

ol molecule as solvent of crystallization. An extensive hydrogen bonding interaction is

observed, which involves particularly both double bonded oxo groups of the vanadate

moiety, mimicking the environment found in the native enzyme (Figure 3.7). The apical

oxygen atom O1 forms an intermolecular hydrogen bond with the methanol molecule of

crystallization (O1· · ·O1M 286.1(28) pm), which is involved in bifurcated hydrogen bond-

ing interaction with the apical oxo group O1 and the protonated amino group (O1M· · ·N3

280.1(33) pm). The oxygen atom O2 is in hydrogen bonding interactions with two pro-

tonated amino groups from two neighboring molecules (O2· · ·N3A 281.5(28) pm, and

O2· · ·N3B 279.4(29) pm). A very important role in the native vanadium haloperoxidases

is attributed to the lysine residue that is hydrogen bonded to the equatorial oxygen atoms

of the vanadate as the prosthetic group V–O· · ·NH3
+.

Figure 3.7: Representation of the hydrogen bonding interactions in crystals of com-

plex [VO2(Mesalhyphe)]·MeOH (18) (broken lines represent hydrogen bonds); relevant

distances (in pm): N3· · ·O2C 281.5(28), N3· · ·O2D 279.4(29), N3· · ·O1M 280.1(33),

O1· · ·O1M 286.1(28) (symmetry transformations: A: – 1 + x, y, z; B: – 1
2

+ x, 1
2

– y, –z;

C: 1 + x, y, z; D: 1
2

+ x, 1
2

– y, –z).
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A similar situation is found in the case of this complex, where the place of the lysine

residue is taken by phenylalanine residue leading to a similar V–O· · ·N bridge. Moreover

the compensation of the negative charge on the vanadium center by protonated function-

alities of the ligand is quite rare and only two more examples are known in the literature.

These are the cis-dioxovanadium(v) complexes based on N -salicylidene hydrazides that

contain an amino-functionalized aliphatic side chain,[41] and on N -salicylidene dimethyl-

amino acetic hydrazide, which contain a substituted quaternary amino group.[109]

Figure 3.8: Representation of the two-dimensional hydrogen bonding interactions in crys-

tals of complex [VO2(Mesalhyphe)]·MeOH (18), as viewed along the [100] direction; bro-

ken lines represent hydrogen bonding interactions.
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Figure 3.9: Representation of the two-dimensional hydrogen bonding interactions in crys-

tals of complex [VO2(Mesalhyphe)]·MeOH (18), as viewed along the [001] direction; bro-

ken lines represent hydrogen bonding interactions.
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3.2.2 Complexes with tyrosine residue (20a and 20b)

According with the used synthesizing method and the solvent of crystallization, two

types of crystals could be isolated. Crystallization from a 1:1 mixture of methanol-

water, following the synthesizing method A, affords complex 20a (see Figure 3.10), while

crystallization from methanol, according with method B and C, leads to complex 20b

(see Figure 3.12). The first mentioned compound contains one methanol, and three

water molecules of crystallization per formula unit. Molecular structure determination

of complex 20a shows two crystallographically independent cis-dioxovanadium moieties,

which form a racemic mixture thus the chirality of the compound has a value of 0.59

(0 for chiral and 1 for no chiral molecules)

Figure 3.10: Molecular structure of [VO2(Mesalhytyr)]·MeOH·3H2O (20a) (thermal el-

lipsoids are drawn at the 50% probability level).

The complex crystallizes in the monoclinic space group P21. The vanadium atoms

are five coordinated in a square pyramidal geometry with a τ value of 0.004 in the first

molecule and, distorted square pyramidal geometry with a τ value of 0.09 in the second

molecule. The protonated amino groups compensate the negative charges of the vanadate

moieties similar to the lysine residue in the vanadium dependent haloperoxidase enzymes.
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The tridentate chelate system coordinates through the phenolate (O13 and O23) and

iminolate (O14 and O24) oxygen atoms, as well as the imine nitrogen atoms (N11 and

N21). The bond lengths C18–O14 and C28–O24 of 131.1(4) and 129.7(4) respectively,

are consistent with the enolized form of the amide functionality and in agrement with the

observed V1–O14 and V2–O24 bond lengths of 198.5(3) and 198.3(2), respectively. The

vanadium to oxo group bond lengths (V=O) of 162.2(3) pm and 162.4(3) pm, respectively,

are similar to reported bond distances in cis-dioxovanadium(v) complexes, as well as

the V–N and V–O bond lengths.[84, 110] Selected bond lengths and angles are listed in

Table 3.2.

Figure 3.11: Representation of the hydrogen bonding interactions in crystals of complex

[VO2(Mesalhytyr)]·MeOH·3H2O (20a).

The molecular structure of the neutral cis-dioxovanadium(v)-complex [VO2(Mesalhytyr)]

·MeOH (20b) given in Figure 3.12, also shows similarities with the corresponding phenyl-

alanine substituted analog [VO2(Mesalhyphe)]·MeOH (18). For the vanadium atom a
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slightly distorted square pyramidal coordination is found with the equatorial plane formed

by ONO donor atoms of the Schiff base ligand together with the oxo group O2. The

apical position in the coordination polyhedron at the vanadium atom is occupied by the

other oxo group O1 with a V=O1 bond distance of 161.0(18) pm. This bond distance is

comparable with that of complex 18 described previously and within the reported range

of vanadium to axial oxygen atom distances in cis-dioxovanadium(v) complexes.[39, 90, 111]

The aromatic ring of the aldehyde together with the hydrazide groups lye in the mean

plane. The vanadium atom is displaced from the mean plane given by the ligand system

(O3 N1 C8 O4), toward the apical oxo group O1 by 33.6 pm, whereas the oxo group O2

is slightly distorted to the opposite side by 47.5 pm. This leads to a τ value of 0.09 which

is as in the case of 18, slightly distorted from the square pyramidal geometry.

Figure 3.12: Molecular structure of [VO2(Mesalhytyr)]·MeOH (20b) (thermal ellipsoids

are drawn at the 50% probability level).

The important difference between the phenylalanine and tyrosine derivative is, that,

the network observed for [VO2(Mesalhytyr)]·MeOH (20) contains an additional donor

group, namely the hydroxyl functionality which is in hydrogen bonding contact with the

methanol molecule of one neighboring molecule (O5· · ·O1MD 276.8(1) pm), and the oxo

group of another neighboring molecule O2D (O5· · ·O2D 264.0(2) pm). The compensation

of the negative charge of the vanadate center, as in the case of the complex 18, is done

by the positively charged tyrosine functionality, which is involved in strong hydrogen

bonding interactions (Figure 3.13). A vital role for the catalytic activity of vanadium
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haloperoxidases enzyme has been attributed to histidine residue (His486 V-BPO and

His496 V-CPO) as the single amino acid residue covalently bonded to the vanadium

atom. The same situation is found in the described herein complex, where the apical

oxygen atom O1 is hydrogen bonding contact to the protonated amino group of a neigh-

boring molecule N3C (O1· · ·N3C 279.3(1) pm) leading to a similar V–O· · ·N bridge. The

methanol molecule of crystallization establishes further an intermolecular hydrogen bond-

ing interaction with the protonated amino group N3 (O1M· · ·N3 276.5(1) pm), which is

further involved in hydrogen bonding interaction with the equatorial oxo group O2 of a

neighboring molecule (N3· · ·O2B 280.0(1) pm).

Figure 3.13: Representation of the hydrogen bonding interactions in crystals of com-

plex [VO2(Mesalhytyr)]·MeOH (20b). Only hydrogen atoms bonded to heteroatoms are

shown, broken lines represent hydrogen bonds, dashed circles symmetry equivalent atoms;

relevant distances (in pm): N3· · ·O1C 279.3(1), N3· · ·O2B 280.0(1), N3· · ·O1M 276.5(1),

O5· · ·O1MD 276.8(1), O2· · ·O5A 264.0(2) (symmetry operators: A: – 1
2

+ x, 1
2

+ y, z; B:

– x, y, –z; C: – x, y, 1 – z; D: – 1
2

– x, – 1
2

+ y, 1 – z; E: – 1
2

+ x, – 1
2

+ y, z; F: – 1
2

– x,

1
2

+ y, 1 –z;).
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Figure 3.14: Representation of the two-dimensional hydrogen bonding interactions in

crystals of complex [VO2(Mesalhytyr)]·MeOH (20b), as viewed along the [001] direction;

broken lines represent hydrogen bonding interactions.

Figure 3.15: Representation of the two-dimensional hydrogen bonding interactions in

crystals of complex [VO2(Mesalhytyr)]·MeOH (20b), as viewed along the [010] direction;

broken lines represent hydrogen bonding interactions.
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3.2.3 Comparison of the structures 18 and 20b

At the first glance, the molecular structure of the neutral cis-dioxovanadium(v)-complex

[VO2(Mesalhytyr)]·MeOH (20b) shows high similarity with those observed for the corre-

sponding phenylalanine substituted analog [VO2(Mesalhyphe)]·MeOH (18). The overlay

of the covalent parts of the two structures shown in Figure 3.16 confirms this. However,

from Figure 3.16 it is also obvious, that there are significant differences regarding the

orientation of the amino acid residue of the ligand system. This is illustrated by the

torsion angle N2–C8–C9–N3 which has a value of 146.7◦ in complex 18 with the amino

acid functionality orientated on the same side as with the vanadate center and phenyl-

alanine residue on the opposite side; whereas in complex 20b the tyrosine functionality

is orientated on opposite direction with the torsion angle of 7.3◦. The overlay of two

molecular structures was done by method of least square refinement fitting the covalent

parts of the two vanadium complexes except the functionalized amino acid residue.

Figure 3.16: Overlay of the molecular structures of complex 18 (thick lines) and complex

20b (atom numbering extension A, broken lines).

3.2.4 Unprecedented complex 21

The molecular structure of Na[VO2(salhyCONH2)]·MeOH·H2O (21) determined by X-ray

crystallography features a dioxovanadium(v) moiety as depicted in Figure 3.17. In the
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equatorial plane, the vanadium atom is coordinated by the oxo group O2 and the donor

atoms N1, O3 and O4 of the tridentate chelate ligand. The apical position at the vana-

dium atom is occupied by the oxo group O1. The geometry around the vanadium center

is, as in the case of complexes 18 and 21, slightly distorted from the square pyrami-

dal geometry, with the τ value of 0.13. The distances V–O1 162.9(19) pm, and V–O2

163.6(17) pm are well within the expected range and very similar with the corresponding

bond lengths in two other complexes 18, and 21.

Figure 3.17: Molecular structure of [VO2(salhyCONH2)]
− in crystals of

Na[VO2(salhyCONH2)]·MeOH·H2O (21) (thermal ellipsoids are drawn at the 50%

probability level).

Relevant bond distances and angles in complex 21 are listed in Table 3.1. The com-

plex crystallizes in the monoclinic space group P21/n with one methanol, and one wa-

ter molecule as solvent of crystallization. An intramolecular hydrogen bonding inter-

action is established between the apical oxo group O1 and the methanol of crystalliza-

tion (O1· · ·O1M 275.8(1) pm), and further to the water of one neighboring molecule

(O1· · ·O1WC 290.0(1) pm) (Figure 3.18). The water molecule of crystallization estab-

lishes two hydrogen bonding interactions of which one is to the apical oxo group of one

neighboring molecule O1C, and the other is to the oxygen atom O3 of another neighbor-

ing molecule O3B (O1W· · ·O3B 276.5(1) pm). The amino group is in hydrogen bonding

interaction with the equatorial oxo group O2 of one neighboring molecule (N3· · ·O2A

298.8(1) pm), and the oxygen atom O5 of another neighboring molecule (N3· · ·O5D
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286.8(1) pm). This situation is similar to the other complexes 18 and 20, where the

equatorial oxygen atom is hydrogen bonded to the protonated functionalities of the amino

acid and moreover similar with the vanadium chloroperoxidase enzyme, where the lysine

residue formes hydrogen bond to the equatorial oxygen atom of the prosthetic group. In

the native form of vanadium-chloroperoxidase enzyme water molecules were found near

the Ser402 residue as well as in the vicinity of the apical oxygen atom of the vanadate

moiety.

Figure 3.18: Representation of the hydrogen bonding interactions in crystals of com-

plex Na[VO2(salhyCONH2)]·MeOH·H2O (21). Only hydrogen atoms bonded to hetero-

atoms are shown, broken lines represent hydrogen bonds, dashed circles symmetry equiv-

alent atoms; relevant distances (in pm): O1· · ·O1WA 290.0(1), O1· · ·O1M 275.8(1),

O1W· · ·O3B 276.5(1), O2· · ·N3D 298.8(1), N3· · ·O5D 286.8(1) (symmetry operators: A:

– 1
2

+ x, 1
2

– y, – 1
2

+ z; B: – 1 + x, y, z; C: 1 – x, – y, 1 – z; D: 1
2

+ x, 1
2

– y, 1
2

+ z; E:

1 + x, y, z).
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The solvent molecules in complex 21 form a long hydrogen bonding channel (Figure 3.19

and 3.20). Thus the complex 21 presents a similar hydrogen bonding network established

between water, methanol molecules, and additionally it contains also sodium cations,

coordinated to the water molecule of crystallization, methanol molecules and also to the

the oxygen atom O5.

Figure 3.19: Representation of the two-dimensional hydrogen bonding interactions in

crystals of complex Na[VO2(salhyCONH2)]·MeOH·H2O (21), as viewed along the [100]

direction; broken lines represent hydrogen bonding interactions; dotted lines represent

sodium contacts.
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Figure 3.20: Representation of the two-dimensional hydrogen bonding interactions in

crystals of complex Na[VO2(salhyCONH2)]·MeOH·H2O (21), as viewed along the [001]

direction; broken lines represent hydrogen bonding interactions; dotted lines represent

sodium contacts.
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Table 3.1: Selected bond lengths (pm) and angles (◦) for

complexes 18, 20b, and 21.

18 20b 21

Bond lengths

V–O1 161.7(18) 161.0(18) 162.9(19)

V–O2 165.8(17) 167.0(2) 163.6(17)

V–O3 187.3(17) 186.4(2) 190.0(16)

V–O4 197.5(18) 198.6(2) 197.1(16)

V–N1 214.6(2) 214.6(3) 215.0(2)

O4–C8 130.4(3) 129.6(4) 130.2(3)

N1–N2 141.5(3) 140.2(4) 141.0(3)

N1–C7 131.8(3) 131.1(4) 129.2(3)

N2–C8 129.4(3) 128.5(5) 129.5(3)

Bond angles

O1–V–O2 110.2(10) 108.5(12) 108.97(10)

O1–V–O3 106.2(9) 102.7(12) 102.51(8)

O1–V–O4 99.0(9) 101.4(11) 100.39(8)

O2–V–O3 95.9(8) 96.1(3) 96.56(8)

O2–V–O4 91.4(8) 92.8(10) 92.65(8)

O3–V–O4 149.3(8) 149.9(10) 150.95(8)

O1–V–N1 104.1(9) 106.5(11) 107.06(9)

O2–V–N1 144.8(9) 144.5(10) 143.28(9)

O4–V–N1 75.2(8) 74.5(11) 74.01(7)

O3–V–N1 81.9(8) 81.4(10) 82.31(7)
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Table 3.2: Selected bond lengths (pm) and angles (◦) for

complex 20a.

Bond lengths

V1−O11 162.3(3) V2−O21 162.4(3)

V1−O12 166.2(2) V2−O22 166.0(2)

V1−O13 185.4(3) V2−O23 186.1(3)

V1−O14 198.5(3) V2−O24 198.3(2)

V1−N11 216.8(3) V2−N21 215.3(3)

O14−C18 131.1(4) O24−C28 129.7(4)

N11−N12 140.5(4) N21−N22 140.7(4)

N12−C18 130.8(3) N22−C28 128.8(5)

Bond angles

O11−V1−O12 107.55(13) O21−V2−O22 107.13(13)

O11−V1−O13 105.64(13) O21−V2−O23 107.26(13)

O12−V1−O13 98.36(12) O22−V2−O23 97.43(12)

O11−V1−O14 102.70(14) O21−V2−O24 104.04(13)

O12−V1−O14 89.93(12) O22−V2−O24 89.21(11)

O13−V1−O14 146.36(12) O23−V2−O24 144.36(11)

O11−V1−N11 104.48(12) O21−V2−N21 102.49(13)

O12−V1−N11 146.63(12) O22−V2−N21 148.91(12)

O13−V1−N11 81.62(11) O23−V2−N21 82.41(11)

O14−V1−N11 74.02(10) O24−V2−N21 74.49(10)
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Table 3.3: Comparison of the bond lengths and

C8–N2–N1 angle for complexes 18, 20b, and 21

Complex d(N1–N2) (C8–N2–N1) d(C8–O4) d(C8–N2) d(V–O4)

/pm /◦ /pm /pm /pm

18 141.5 108.62 130.4 129.4 197.5

20b 140.2 109.13 129.6 128.5 198.6

21 141.0 107.80 130.2 129.5 197.1

3.3 Spectroscopic Characterization

The spectroscopic characterization of the complexes are consistent with the proposed

structures (see Table 3.4). The IR spectra contain strong stretching vibration in the re-

gion 899–942 cm−1 for the anionic complexes and 862–951 cm−1 for the neutral complexes.

These stretching vibrations were assigned to the cis-VO2 moiety and the vibrations are

similar with reported values for ν(VO+
2 ) group[81, 112, 113]. The coordination mode of the

Schiff base ligands are identical with our cis-dioxovanadium(v) complexes published

previously.[82] The infrared spectra of the ligands exhibits a strong band in the 1654–

1684 region due to ν(C=O) stretching vibrations, and a strong band at 1603–1623 cm−1

due to ν(C=N) stretches. These vibrations are absent in the IR spectra of the corre-

sponding complexes. Instead a strong band is observed at around 1600–1617 cm−1 which

can be attributed to the stretching vibration of the conjugate –C=N–N=C– grouping.[84]

This band is characteristic for the coordination of the iminolate form of the ligand to

the dioxovanadium(v) moiety. In the case of the complexes 21 to 26 a strong band

is observed at 1685–1703 cm−1, which is attributed to the carbonyl ν(C=O) stretch-

ing vibrations, confirming the transformation of Cα–C side chain of the amino acids

to the carbonyl (CO) function. The IR spectra of the free ligands as well as those of

the corresponding cis-dioxovanadium complexes exhibit a broad vibration in the region

3332–3447 cm−1 attributed to the amino functionality of the amino acids. The charac-
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teristic ligand stretching vibrations at 3276–3132 cm−1 due to ν(O–H) were not observed

in the IR spectra of the complexes, indicating the coordination of the ligands through

the phenolate function. The presence of water and methanol molecules in the spectra

of complexes is shown by broad bands at 3609 and 3634 cm−1, for ν(O–H)–H2O and

ν(O–H)–MeOH, respectively.

Table 3.4: Characteristics IR bands [cm−1] of the cis-

dioxovanadium complexes with free amino acid residue

ligands

Formula Complex ν(C=N–N=C) ν(VO2)

[VO2(Mesalhyleu)] 16 1607 951, 862

K[VO2(Mesalhyleu)]·5H2O 17 1606 951, 862

[VO2(Mesalhyphe)]·MeOH 18 1600 940, 870

K[VO2(Mesalhyphe)] 19 1601 942, 899

[VO2(Mesalhytyr)]·MeOH 20 1617 927, 881

Na[VO2(salhyCONH2)]·MeOH·H2O 21 1612 926

NH4[VO2(salhyCONH2)] 22 1616 910

K[VO2(salhyCONH2)]·MeOH 23 1612 926

Na[VO2(BrsalhyCONH2)] 24 1617 929

NH4[VO2(BrsalhyCONH2)]·H2O 25 1616 916

K[VO2(BrsalhyCONH2)]·H2O 26 1614 927

Further evidence for the coordination mode of the ligands was obtained from the

1H– and 13C–NMR spectra, and 51V–NMR spectra of the complexes in DMSO-d6, which

are summarized in the experimental section. The 1H–NMR integrations and signal mul-

tiplicities agree with the proposed formula. The 1H–NMR spectra of the ligands with

salicylaldehyde and its bromo substituted residue reveal the presence of two isomers in a

ratio as given in the experimental section. When the metal is coordinated, the deshield-

ing effect of the metal atom is apparent in some protons, causing a downfield shift of

the corresponding 1H–NMR peaks. A significant downfield shift of ca. 0.30 ppm for the
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azomethine (CH=N) proton signal in the complexes with respect to the corresponding

free ligands confirms the coordination of the azomethine nitrogen atom. The aromatic

protons of ligands and complexes as well as the α-CH, β-CH2, and hydroxy group of

tyrosine residue, appear in the expected region, with slight shifts in their positions (see

Experimental Section). In the case of the complexes 21, to 26, no signals are present for

the α-CH, β-CH2, and the aromatic protons of the amino acid residues. This is consistent

with the oxidation of the Cα–C bond, and removing of the rest of amino acid residue. The

1H–NMR spectra of the complex 20b does not show any methanol molecule, instead a

peak corresponding to the water molecule appears at 3.33 ppm. This was also confirmed

by elemental analysis. Whereas the structure analyzes show one methanol molecule, per

formula unit. This can be explained due to the fact that the X-ray analysis were per-

formed on fresh crystals from the methanol solution, whereas for NMR and elemental

analysis the sample was dried completely before analyzing. It seems that after drying

methanol has been removed and water has been absorbed from the complex 20b.

A broad resonance at ca. 7.22 ppm is observed in the 1H–NMR spectra of the

ammonium salt of the cis-dioxovanadium(v) complexes 22 and 25 and is attributed to

NH+
4 protons. This resonance is absent in the 1H–NMR of the neutral, and potassium

salts of the anionic cis-dioxo- complexes. The 1H–NMR of the neutral complexes 16, 18

and 20 exhibit a broad band at ca. 8.15 ppm attributable to the protonated amino acid

functionality NH+
3 , whereas the 1H–NMR of the cis-dioxovanadium complexes 21 to 26,

formed by the oxidation of the Cα–C bond, gave two broad signals in range 7.50–7.80 ppm

corresponding to the amino acid functionality NH2. Furthermore temperature-dependent

1H–NMR experiments of the complex Na[VO2(BrsalhyCONH2)] (24) were carried out at

400 MHz in DMSO-d6 solution. Complex 24 exhibits two moderately broad singlets at

room temperature, at 7.5 and 7.7 ppm, ca. 0.2 ppm apart from each other, corresponding

to the two protons of the amide NH2. These signals broaden further as the temperature

increases, until they coalesce into a broad single signal at 353 K (Figure 3.21). On the

basis of these data it could be inferred that the studied cis-dioxovanadium complexes 21

to 26, formed by the oxidation of the Cα–C bond, prefer to attain a conformation where

the two protons of the amide NH2 functionality are not equivalent. When conformational

interconversion is very slow on the NMR time scale, two broad signals are detected (at
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Figure 3.21: Temperature-dependent 1H–NMR experiments of the complex

Na[VO2(BrsalhyCONH2)] (24) carried out at 400 MHz in DMSO-d6 solution

room temperature). As the temperature increases, the interconversion rate increases and

the two signals broaden accordingly.

A comparison between the 13C–NMR patterns of the free ligand and the corre-

sponding 13C–NMR spectra of complexes proved the coordination mode of the ligand.

The most indicative resonance is the down field shift at 164 ppm of the imine carbon

atom (CH=N) in the complex, that resonate around 148 – 158 ppm, respectively, in the

free ligand as a consequence of the E-Z isomers.

A very good indication of the integrity of complexes in solution is represented by

51V–NMR spectra. The cis-dioxovanadium(v) complexes in DMSO-d6 solution, show one

strong resonance at ca. −533 ppm, which is typical for the shift of dioxovanadium(v)
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complexes containing a mixed O/N donor set.[10, 84, 90, 91] The resonances have line widths

at half-height between 757 and 1077 Hz.

3.4 Reactivity of the complexes

3.4.1 Oxidative bromination of

1,3,5-trimethoxybenzene/monochlordimedone

Following the procedure outlined in chapter 2, the cis-dioxovanadium(v) complexes with

free amino acid residues described here, were also tested towards their capability to cat-

alyze the oxidative bromination of 1,3,5-trimethoxybenzene (TMB) and monochlordime-

done (MCD). The results are summarized in Table 3.5. The turnover frequencies reached

by dioxovanadium(v) complexes described here, were compared with those found for

(nBu4N)2HVO4 published previously.[94] The bromination of TMB took about 480 s when

the reaction was catalyzed by vanadate alone; this reaction time was shortened to 204 s

(turn over = 350 molBr-TMBh−1mol−1

catalyst) in the presence of [VO2(Mesalhyleu)] (16),

which indicates that the catalyst is 2.3 times more reactive with respect to the catalytic

bromination of TMB.

Table 3.5: Catalytic oxidative bromination of

TMB/MCD catalyzed by cis-dioxovanadium com-

plexes with free amino acid residue ligands

Formula Complex Time (s) TOF(a)

[VO2(Mesalhyleu)] 16 204 350

[VO2(Mesalhyphe)]·MeOH 18 252 288

[VO2(Mesalhytyr)]·MeOH 20 240 297

Na[VO2(salhyCONH3)]·MeOH·H2O 21 336 216

(a) Turnover frequencies (molBr-TMBh−1mol−1

catalyst) are calculated for each complex

taking into account the completed bromination of TMB within the corresponding time.
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The turnover frequencies lay in the range 216–350 molBr-TMBh−1mol−1

catalyst. No big

difference in activity was observed by changing the amino acid residues, but nevertheless

a slightly increase in reactivity was observed in the direction Phe < Tyr < Leu. Thus the

dioxovanadium complexes with leucine residue appear to be the most reactive catalysts.

Moreover it is obviously that the cis-dioxovanadium(v) complexes with free amino acid

residues react faster than those with Boc protected amino group, described in chapter 2.

Figure 3.22: Comparison of the catalytic activity towards bromination of TMB/MCD

for vanadium complexes, with free amino acid residues



94 Chapter 3: V(v)-complexes with free L-α-amino acid ligands

3.4.2 Oxidation of sulfides catalyzed by cis-dioxovanadium com-

plexes with free amino acid functionalized ligands

The new chiral cis-dioxovanadium complexes with free amino acid ligands, were also

tested toward their capability to catalyze the oxidation of methyl phenyl sulfide, using

hydrogen peroxide as oxidant. Following the typical procedure described in chapter 2,

1 mol-% catalyst has been used for the reaction and a slight excess (1.2 equivalents) of

hydrogen peroxide, in a mixture CH2Cl2/CH3OH 7:3. After defined intervals of time,

aliquots were taken from the reaction mixture and the product analyzed by NMR (deter-

mination of the yield) and HPLC (determination of the ee). The outcomes of the catalytic

reaction are summarized in Table 3.6 for the cis-dioxovanadium(v) complexes with free-

amino acid residues. After 3 hours 72% of the corresponding sulfoxide was obtained when

complex 16, with leucine residue, was used as catalyst, whereas 75% conversion was es-

tablished within the same time, by the catalyst 18 with phenylalanine residue. For the

catalyst 20, with tyrosine residue, after 1 hour 24% of sulfoxide was obtained, whereas

86% conversion was established within 3 hours, which is also the most efficient catalytic

activity of the herein described complexes. This results are similar with the previous de-

scribed vanadium complexes with Boc-amino acid ligands and also similar with reported

capability of vanadium complexes to catalyze the sulfur oxidation reaction[95, 96] where

Salen-type oxovanadium(iv) complex which accomplished 80% conversion after two hours

of reaction,[95] were reported as efficient vanadium-based catalyst for the sulfide oxidation

reaction. The enantioselectivity of the cis-dioxovanadium(v) complexes with free amino

acid residues, is very low, similar with the ee of the cis-dioxovanadium(v) complexes

with with Boc-amino acid residue ligands. This indicates that the chiral center is too far

away from the vanadate moiety.
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Table 3.6: Catalyzed asymmetric oxidation of methyl

phenyl sulfide using various complexes

Formula Complex Time Yielda ee b Configurationc

(h) (%) (%)

[VO2(Mesalhyleu)] 16 1 6 13.7 s

[VO2(Mesalhyleu)] 16 3 72 0.4 s

[VO2(Mesalhyphe)]·MeOH 18 1 0 0 –

[VO2(Mesalhyphe)]·MeOH 18 3 75 2 s

K[VO2(Mesalhyphe)] 19 1 2 0.84 s

K[VO2(Mesalhyphe)] 19 3 7 12 s

K[VO2(Mesalhyphe)] 19 24 25 1.5 s

[VO2(Mesalhytyr)]·MeOH 20 1 24 4.1 s

[VO2(Mesalhytyr)]·MeOH 20 3 86 1.5 s

All reactions were carried out at 0 ◦C with vanadium complexes loading to 1 mol-% and

(1.2 equivalents) of hydrogen peroxide (8.24 m), in a mixture CH2Cl2/CH3OH 7:3. ayield

determined by 1H–NMR (400 MHz) using 1,3,5-trimethoxybenzene as internal standard.

b Determined by HPLC using a (S,S)-WHELK-01 chiral column (25 cm × 4.6 mm).

The column was eluted with hexane:2-propanol (90:10), at a flow rate of 2.0 mL/min.

c Absolute configuration of the major product was determined to be s, by comparison of

the chromatogram in HPLC with the authentic sample.

3.4.3 Spectrophotometric titration

The spectrophotometric titration of complex 18 was studied, in order to see the stability

of complex in water. Therefore a 0.05 mm solution of complex in water was prepared,

and titrated with a 10−2 m aqueous solution of HCl. The spectral studies shown that

the complex slowly decompose in water. The hydrolyses of complex takes about 4 hours.

During this period, a gradually loss in intensity of the bands at 260–280 nm due to the

monomeric cis-dioxovanadium and their final disappearance is observed. The band at
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Figure 3.23: Spectrophotometric titration of [VO2(Mesalhyphe)]·MeOH (18) with 0.01 m

HCl. The spectra were recorded every 10 minutes after the addition of HCl to a 0.05 mm

aqueous solution of 18

210 nm increase its intensity. The spectrum exhibits further formation of the new band

at ca. 250 nm due to the hydrolyzed product, with the isosbestic point clearly present

(Figure 3.23).

3.5 Conclusions

New cis-dioxovanadium(v) complexes with N -salicylidene-amino-acid-hydrazides have

been synthesized and fully characterized. This complexes are of interest due to the pres-

ence of free amino acid residues within vicinity of the vanadium atom. The importance

of these residues are exemplified by the vast number of hydrogen bonding interactions

observed, which are involved in pathways relevant to the enzymatic activity. The ob-

served hydrogen bonding network of the complexes show similar features as the active

site of V-HPO. The complexes are capable to oxidise bromide, to produce brominated

1,3,5-trimethoxybenzene (TMB)/ monochlorodimedone (MCD), thus modelling the cor-
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responding enzyme reaction. Therefore, the herein described complexes can be regarded

as both structural and functional model complexes for vanadium haloperoxidases. More-

over complexes showed significant capability for sulfide oxidation, where 86% conversion

of thioanisole within three hours was observed using the dioxovanadium complex with

tyrosine residue.

3.6 Experimental Section

3.6.1 Synthesis of the Schiff base ligands with L-α-leucine residue

l-α-Leucine hydrazide

To a solution of l-α-leucine-methyl-ester-hydrochloride (10.00 g, 55.05 mmol) in methanol

(130 mL) was added dropwise with stirring hydrazine monohydrate (80 %) (5.37 mL,

3 eq.). The reaction mixture was stirred at room temperature for an overnight period.

The solvent was removed to dryness to obtain a colorless viscous oil which was dried

under strong vacuum and then solidified upon staying at room temperature. This was

recrystallized from ethanol. Colorless needles were separated out, which were identified

as hydrazide hydrochloride. From the ethanolic filtrate was isolated the right product as

a colorless solid.

Total yield: 6.32 g (43.49 mmol, 79%).

1H-NMR (400 MHz, CDCl3): δ = 0.94 (m, 6H, (CH3)2), 1,5 (m, 1H, γ-CH), 1.64 (m,

2H, β-CH2), 3.5 (t, 3J = 7.32 Hz, 1H, α-CH), 5.61 (br, 4H, 2NH2), 9.32 (br, 1H, NH)

ppm.

13C-NMR (50 MHz, CDCl3): δ = 22.27, 22.66 (C(CH3)2), 23.96 (γ-CH), 42.78 (β-

CH2), 55.99 (α-CH), 171.87 (C=O) ppm.

N -Salicylidene-l-α-leucine-hydrazide (Hsalhyleu)

To a stirred solution of leucine-hydrazide (1.11 g, 7.66 mmol) in methanol (30 mL) was

added dropwise salicylaldehyde (0.56 mL, 7.66 mmol). The resulting yellow solution
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was stirred at room temperature for 6 hours. The volume of the filtrate solution was

concentrated to about half under reduce pressure and left at room temperature when an

yellow precipitate is formed overnight. The precipitate was collected and recrystallized

from ethanol to obtain the product as an yellow solid. The NMR data confirm the

presence of two isomers in ratio 1.7:1.

Total yield: 1.74 g (6.97 mmol, 91%).

1H-NMR (200 MHz, DMSO-d6): δ = 0.97 (m, 6H, (CH3)2), 1,59 (m, 3H, γ-CH, β-

CH2), 3.75, 4.54 (t, 3J = 6.68 Hz, 1H, α-CH), 6.88 (m, 2H, Ph), 7.27 (m, 1H, Ph),

7.50—7.67 (m, 1H, Ph), 8.57, 8.68 (CH=N) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 22.13, 22.27, 22.65, 22.93, (C(CH3)2), 23.68, 23.89

(γ-CH), 40.78 (overlapped with deuterated solvent, β-CH2), 48.41, 55.99 (α-CH), 116.36

(Ph), 118.64, 119.31, (Ph), 119.95, 125.45, (Ph), 128.92, 131.51 (Ph), 141.99, 147.87

(CH=N), 156.67, 157.36 (Ph), 167.55, 171.43 (C=O) ppm.

IR data (KBr disk, cm−1): ν̃ = 3334 (NH2), 3151 (O–H), 1684 (C=O), 1623 (C=N).

o-Hydroxy-acetophenone-l-α-leucine-hydrazide (Mesalhyleu)

To a solution of leucine-hydrazide (2.77 g, 19.08 mmol) in methanol (30 mL) was added

dropwise 2-hydroxy-acetophenone (1.95 mL, 19.08 mmol). The yellow reaction mixture

obtained was heated at 40 ◦C for 22 hours. The resulting solution was evaporated to

dryness under reduced pressure and the remaining yellow solid was dried under vacuo.

m.p 108 ◦C.

Total yield: 4.99 g (18.95 mmol, 99.32%).

[α]22D : + 17.5; c = 1 g in 100 mL solution 2.5 n HCl in methanol.

1H-NMR (400 MHz, DMSO-d6): δ = 0.98 (m, 6H, (CH3)2), 1,63 (m, 3H, γ-CH, β-

CH2), 3.17 (s, 3H, CH3), 4.13 (t, 3J = 6.68 Hz, 1H, α-CH), 6.89 (m, 2H, Ph), 7.31 (m,

1H, Ph), 7.61 (m, 1H, Ph), 7.89 (br, 2H, NH2), 13.07 (OH) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 14.78 (CH3), 22.67, 23.17, (C(CH3)2), 24.41

(γ-CH), 40.82 (β-CH2), 50.78 (α-CH), 117.57 (Ph), 118.02 (Ph), 119.631 (Ph), 128.95

(Ph), 131.82 (Ph), 136.68 (Ph), 157.79 (CH=N), 159.03 (Ph), 168.61 (C=O) ppm.

IR data (KBr disk, cm−1): ν̃ = 3383 (NH2), 3132 (O–H), 1684 (C=O), 1610 (C=N).
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5-Bromo-2-hydroxy-salicylidene-l-α-leucine-hydrazide (Brsalhyleu)

To a solution of l-α-leucine-hydrazide (4.90 g, 33.75 mmol) in methanol (40 mL) was

added slowly while stirring a solution of 5-bromo-2-hydroxy-benzaldehyde (6.80 g,

33.75 mmol) in methanol (140 mL) resulting in a clear yellow solution. The reaction

mixture was stirred at room temperature overnight. The solvent was evaporated to dry-

ness, and the yellow viscous oil was dried under strong vacuum to obtain the product as

an yellow solid. The NMR data confirm the presence of two isomers in ratio 1.2:1.

Total yield: 10.75 g (32.75 mmol, 97.04%).

Elemental analysis for C13H18BrN3O2 (328.20 g/mol): calculated C: 47.57%, H: 5.53%,

N: 12.80%; found C: 45.65%, H: 5.27%, N: 11.33%.

1H-NMR (200 MHz, DMSO-d6): δ = 0.93 (m, 6H, (CH3)2), 1.38–1,81 (m, 3H, γ-CH,

β-CH2), 3.40, 4.40 (t, 3J = 6.68 Hz, 1H, α-CH), 6.81–6.92 (m, 1H, Ph), 7.38 (m, 1H,

Ph), 7.76 (m, 1H, Ph), 8.28, 8.48 (CH=N) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 21.35, 21.95, 22.89, 23.15, (C(CH3)2), 23.88, 24.02

(γ-CH), 41.84, 42.98 (β-CH2), 48.68, 51.85 (α-CH), 110.31, 110.60 (Ph), 118.64, 121.24,

122.49, 127.41, 130.15, 133.33, 133.47 (all Ph), 139.25, 144.98 (CH=N), 155.70, 156.36

(Ph), 170.76, 173.76 (C=O) ppm.

IR data (KBr disk, cm−1): ν̃ = 3336 (NH2), 3153 (O–H), 1676 (C=O), 1617 (C=N).

3.6.2 Synthesis of the Schiff base ligands with L-α-phenylalanine

residue

l-α-Phenylalanine methyl ester

To ethyl acetate (46 mL), water (35 mL), and l-α-phenylalanine-methyl-ester-hydro-

chloride (5.00 g, 23.0 mmol) in a 250 mL separatory funnel, (1 84 g, 13.0 mmol) of

potassium carbonate was added gradually to pH 7.5. After each addition the mixture

was shaken. At the end both layers became clear. The acetate layer was then separated
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and the aqueous layer was extracted with ethyl acetate (3 x 100 mL). The organic phases

were combined, dried over sodium sulfate, filtrated and the solvent was evaporated to

obtain a pale yellow oil which was used in the next step without further purification.

Total yield: 3.44 g (22.7 mmol, 99%)

l-α-Phenylalanine-hydrazide

To a stirred solution of l-α-phenylalanine-methyl-ester (3.72 g, 25.00 mmol) in methanol

(40 mL) was dropped (2.41 mL, 50 mmol) of hydrazine monohydrate (80 %). The pale

yellow clear solution was stirred at room temperature. After 1 day a colorless precipitate

was formed. The reaction mixture was stirred for an additional day. Then stopped

the reaction, filtrated, and dried in air. A second part of the product was obtained by

reducing the volume of the solvent from the filtrate. m.p 89 – 90 ◦C.

Total yield: 3.64 g (20.00 mmol, 81.2%).

Elemental analysis for C9H13N3O (179.22 g/mol): calculated C: 60.32%, H: 7.31%, N:

23.45%; found C: 60.18%, H: 7.25%, N: 23.29%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.64 (br, 2H, NH2), 2.57 – 2.63 (dd, 3J = 8 Hz,

2J = 13.32 Hz, 1H, β–CH2), 2.85 – 2.90 (dd, 3J = 4.76 Hz, 2J = 13.32 Hz, 1H, β–CH2),

3.37 (m, 1H, α–CH), 4.15 (br, 2H, NH2), 7.16 – 7.28 (m, 5H, Ph), 8.93 (br, 1H, NH)

ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 40.62 (β-CH2), 55.71 (α–CH), 126.48 (Ph),

128.52 (Ph), 129.72 (Ph), 139.27 (Ph), 174.05 (C=O) ppm.

EI-MS (positive ion mode, in methanol): m/z = 180 (70% [M+]), 120 (100%).

N -Salicylidene-l-α-phenylalanine-hydrazide (Hsalhyphe)

Method 1 Removing of the Boc group from the Schiff base ligand with protected

phenylalanine HsalhyBocphe

To a stirred solution of the ligand (1.789 g, 5.533 mmol) in 25 mL CH2Cl2, cooled to

0 ◦C was added trifluoroacetic acid (4.67 mL, 10 equiv.), and the mixture was stirred at

room temperature for 23 h, until the TLC (ethyl acetate/hexane 4:6) does not show the
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starting material. The reaction was then stopped and the pH of the solution was adjusted

to 9–10 with a 20% aqueous solution of sodium hydrogen carbonate. The resulting

biphasic mixture was transferred to a separatory funnel, and the organic and aqueous

layers were separated. The product was extracted from the combined aqueous layers with

chloroform (3 x 40 mL). All organic phases were combined, dried over sodium sulfate and

concentrated in vacuum. The remaining yellow solid was recrystallized from ethanol to

obtain the product as a yellow solid which was finally dried under vacuum.

Total yield: 1.42 g (5.03 mmol, 90%).

Method 2 Starting from phenylalanine-hydrazide

Following the procedure described for Hsalhyleu, l-α-phenylalanine-hydrazide (2.92 g,

16.30 mmol) was converted to the title compound as an yellowish white solid. The NMR

data confirm the presence of two isomers in ratio 1:0.18. m.p 55 ◦C.

Total yield: 4.00 g (13.87 mmol, 85.1%)

Elemental analysis for C16H17N3O2 (283.33 g/mol): calculated C: 67.83%, H: 6.05%,

N: 14.83%; found C: 67.90%, H: 6.04%, N: 14.67%.

1H-NMR (400 MHz, DMSO-d6): δ = 2.70 – 2.75 (dd, 3J = 7.5 Hz, 2J = 13.25 Hz, 1H,

β-CH), 2.96 – 3.00 (dd, 3J = 5.6 Hz, 2J = 13.25 Hz, 1H, β-CH2, 4.35 (dd, 3J = 5.6,

7.5 Hz, 1H, α-CH), 6.86 (m, 3H, Ph), 7.24 (m, 5H, Ph), 7.42 (m, 1H, Ph), 7.72 (m, 1H,

Ph), 8.20 and 8.40 (s, 1H, CH=N) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 41.15, 41.45 (β-CH2), 52.95, 56.21 (α-CH),

116.63, 116.82 (Ph), 118.97, 119.07 (Ph), 119.74, 119.88 (Ph), 126.48, 126.64 (Ph), 128.45,

128.76 (Ph), 129.75, 129.91 (Ph), 131.44, 131.70 (Ph), 138.90, 139.27 (Ph), 147.99, 148.50

(Ph), 156.85, 157.83 (CH=N), 171.30, 176.22 (C=O) ppm.

EI–MS (positive mode, in methanol): m/z = 283 (30% [M+]), 192 (42%), 120 (100%).

IR data (KBr disk, cm−1): ν̃ = 3361 (NH2), 3209 (O–H), 1675 (C=O), 1622 (C=N).

o-Hydroxy-acetophenone-l-α-phenylalanine-hydrazide (Mesalhyphe)

Following the procedure described for Mesalhyleu, l-α-phenylalanine-hydrazide (1.41 g,

7.867 mmol) was converted to the title compound as an yellowish white solid, by heating
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slowly at 65 ◦C for an overnight period. m.p 105 ◦C.

Total yield: 1.96 g (6.592 mmol, 84%).

Elemental analysis for C17H19N3O2 (297.35 g/mol): calculated C: 68.67%, H: 6.44%,

N: 14.13%; found C: 68.76%, H: 6.58%, N: 13.89%.

[α]22D : + 40◦; c = 2 g in 100 mL solution 2.5 n HCl in methanol.

1H-NMR (400 MHz, DMSO-d6): δ = 2.28 (s, 3H, CH3), 2.76 (dd, 3J = 7.76 Hz, 2J =

13.24 Hz, 1H, β–CH2), 3.00 (dd, 3J = 4.64 Hz, 2J = 13.24 Hz, 1H, β–CH2), 3.37 (br, 1H,

NH), 3.74 (t, 3J = 7.76 Hz, 1H, α-CH), 4.84 (br, 2H, NH2), 6.86 – 6.90 (m, 2H, Ph),

7.20 – 7.30 (m, 6H, Ph), 7.58 (m, 1H, Ph), 13.17 (br, 1H, OH) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 13.72 (CH3), 41.48 (β–CH2), 55.43 (α-CH),

117.69 (Ph), 118.94 (Ph), 119.76 (Ph), 126.61 (Ph), 128.56 (Ph), 128.79 (Ph), 129.80

(Ph), 131.53 (Ph), 138.97 (Ph), 155.10 (C=N), 159 02 (Ph), 171.90 (C=O) ppm.

IR data (KBr disk, cm−1): ν̃ = 3398 (NH2), 3297 (O–H), 1685 (C=O), 1603 (C=N).

5-Bromo-2-Hydroxy-salicyliden-l-α-phenylalanine-hydrazide

(Brsalhyphe)

Method 1 Removing of the Boc group from the ligand BrsalhyBocphe

Following the Method 1 described for Hsalhyphe, BrsalhyBocphe (520 mg, 1.125 mmol)

was converted to Brsalhyphe as an yellow solid. The NMR data confirm the presence of

two isomers in ratio 1:2.3.

Total yield: 0.310 g (0.856 mmol, 80%).

1H-NMR (400 MHz, DMSO-d6): δ = 2.70 – 2.75 (dd, 3J = 7.6 Hz, 2J = 13.6 Hz, 1H,

β-CH), 2.96 – 3.00 (dd, 3J = 5.6 Hz, 2J = 13.48 Hz, 1H, β-CH2), 4.34 (m, 1H, α-CH),

6.86 (m, 2H, Ph), 7.24 (m, 5H, Ph,), 7.42 (m, 1H, Ph), 7.72 (m, 1H, Ph), 8.20 and 8.40

(s, 1H, CH=N) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 40 (overlapping with DMSO-d6), 41.42 (β-CH2),

56.19, 56.50 (α-CH), 110.76, 111.08 (Ph), 118.93, 119.12 (Ph), 121.69, 123.26 (Ph),

126.53, 126.65 (Ph), 128.23, 128.45 (Ph) 128.54, 128.61 (Ph), 129.73, 129.75 (Ph), 130.88

(Ph), 133.57, 133.90 (Ph), 138.90 (Ph), 139.43, 145.38 (Ph), 156.07, 156.88 (CH=N),

171.47, 172.83 (C=O) ppm.
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EI–MS (positive mode): m/z = 361 (36% [M+]), 120 (100%).

Method 2 Starting from phenylalanine-hydrazide

Following the procedure described for Brsalhyleu, l-α-phenylalanine-hydrazide (2.53 g,

14.13 mmol) was converted to the title compound, which was precipitated from the

reaction solution as an yellow solid. Additional material can be obtained by reduction

under strong vacuum of the solution to about half of its original volume. The product

was purified by recrystallization from ethanol. The NMR data confirm the presence of

two isomers in ratio 1:2.4. m.p 65 ◦C.

Total yield: 3.70 g (10.24 mmol, 73%).

Elemental analysis for C16H16N3O2Br (361.22 g/mol): calculated C: 53.05%, H: 4.45%,

N: 11.60%; found C: 53.16%, H: 4.43%, N: 11.58%.

1H-NMR (400 MHz, DMSO-d6): δ = 2.63 – 2.75 (dd, 3J = 6.76 Hz, 2J = 13.48 Hz, 1H,

β-CH), 2.92 – 3.00 (dd, 3J = 6.76 Hz, 2J = 13.48 Hz, 1H, β-CH2), 3.52, 4.35 (m, 1H,

α-CH), 6.86 (m, 1H, Ph), 7.24 (m, 5H, Ph), 7.42 (m, 1H, Ph), 7.72 (m, 1H, Ph), 8.20

and 8.40 (s, 1H, CH=N) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 41.31, 41.42 (β-CH2), 53.15, 56.20 (α-CH),

111.05, 110.75 (Ph), 118.95, 119.12 (Ph), 121.70, 123.56 (Ph), 126.52, 126.64 (Ph), 128.53,

128.61 (Ph), 129.75, 130.87 (Ph), 133.56, 133.89, (Ph), 138.91, 139.45 (Ph), 145.39,

147.99, (Ph), 156.12, 156.91 (CH=N), 171.48, 176.46 (C=O) ppm.

IR data (KBr disk, cm−1): ν̃ = 3390 (NH2), 3205 (O–H), 1675 (C=O), 1616 (C=N).

EI–MS (positive mode, in methanol): m/z = 361 (36% [M+]), 120 (100%).

3.6.3 Synthesis of the Schiff base ligands with L-α-tyrosine

residue

l-α-Tyrosine-ethyl ester

Using the method described for l-α-phenylalanine methyl-ester, l-α-tyrosine-ethyl-ester-

hydrochloride (12.28 g, 0.05 mol), was converted to the title compound as a colorless
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solid. m.p 103 ◦C.

Total yield: 8.9 g (0.043 mol, 85%).

Elemental analysis for C11H15NO3 (209.14 g/mol): calculated C: 63.14%, H: 7.22%,

N: 7.17%; found C: 63.38%, H: 7.33%, N: 6.70%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.17 (m, 3H, CH3-ester), 2.8 (m, 2H, β–CH2),

3.59 (m, 2H, CH2-ester), 4.09 (m, 1H, α-CH), 4.83 (s, 3H, NH2 + OH), 6.69 (m, 2H,

Ph-HB), 6.98 (m, 2H, Ph-HA) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 14.44 (CH3-ester), 40.88 (β-CH2), 56.78 (CH2-

ester), 61.92 (α-CH), 116.34 (Ph), 128.80 (CPh-β-CH2), 131.37 (Ph), 157.46 (CPh-OH),

176.42 (C=O) ppm.

l-α-Tyrosine-hydrazide

Following the method described for l-α-phenylalanine hydrazide, l-α-tyrosine-ethyl-ester

(6.5 g, 0.031 mol), was converted to the title compound as a colorless solid. m.p. 199 ◦C.

Total yield: 6.3 g (0.03 mol, 98%).

Elemental analysis for C9H13N3O2 (195.22 g/mol): calculated C: 55.37%, H: 6.71%,

N: 21.25%; found C: 55.75%, H: 6.47%, N: 21.80%.

1H-NMR (400 MHz, DMSO-d6): δ = 2.5 (dd, 3J = 7.8 Hz, 2J = 13.3 Hz, 1H, β–CH2),

2.75 (dd, 3J = 5.6 Hz, 2J = 13.3 Hz, 1H, β-CH2), 3.23 (dd, 3J = 5.6, 7.8 Hz, 1H, α-CH),

4.4 (br, s, 2H, NH2), 6.43–6.65 (d, JAABB = 8.5 Hz, 2H, Ph), 6.94–7.01 (d, JAABB =

8.5 Hz, 2H, Ph), 9.13 (s, 1H, OH) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 40.75 (β-CH2), 55.43 (α-CH), 55.45 (α-CH),

114.91 (Ph), 128.67 (CPh-β-CH2), 130.11 (Ph), 155.64 (CPh-OH), 173.67 (C=O) ppm.

N -Salicylidene-l-α-tyrosine-hydrazide (Hsalhytyr)

Following the procedure described for Hsalhyleu, l-α-tyrosine-hydrazide (2.00 g, 11 mmol)

was converted to the title compound as an yellowish–white solid, by heating at 40 ◦C

overnight. The yellowish–white solid was recrystallized from ethanol to obtain the prod-

uct as a colorless solid. The NMR data confirm the presence of two isomers in ratio
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1:2.79. m.p 203 ◦C.

Total yield: 2.30 g (7.70 mmol, 70%).

Elemental analysis for C16H17N3O3 (299.33 g/mol): calculated C: 64.20%, H: 5.72%,

N: 14.04%; found C: 64.38%, H: 5.81%, N: 13.92%.

1H-NMR (400 MHz, DMSO-d6): δ = 2.62 (dd, 3J = 7.13 Hz, 2J = 13.53 Hz, 1H,

β-CH2), 2.83 (dd, 3J = 5.66 Hz, 2J = 13.53 Hz, 1H, β-CH2), 3.45 (dd, 3J = 5.6, 7.13 Hz,

1H, α-CH), 6.63 – 6.68 (d, JAABB = 8.50 Hz, 2H, Ph–tyr), 6.88 – 6.99 (m, 2H, Ph), 7,02

– 7,03 (d, JAABB = 8.50 Hz, 2H, Ph–tyr), 7.22 – 7.27 (m, 1H, Ph), 7.44 – 7.47 (m, 1H,

Ph), 8.18 and 8.42 (s, 1H, CH=N)ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 40.73 (β-CH2), 53.09, 56.43 (α-CH), 115.29,

115.46 (Ph), 116.63, 116.83 (Ph), 119.07, 119.73 (Ph), 119.87, 120.64 (Ph), 126.88, 128.78

(Ph), 129.13 (Ph), 129.45, 129.54 (Ph), 129.93, 130.63 (Ph), 131.43, 131.69 (Ph), 141.36,

147.95 (CH=N), 154.87, 156.23 (Ph), 156.88, 157.84 (Ph), 171.45, 176.30 (C=O) ppm.

IR data (KBr disk, cm−1): ν̃ = 3421 (NH2), 3218 (O–H), 1654 (C=O), 1612 (C=N) ppm.

o-Hydroxy-acetophenone-l-α-tyrosine-hydrazide (Mesalhytyr)

Following the procedure described for Mesalhyleu, l-α-tyrosine-hydrazide (2.00 g,

11 mmol) was converted to the title compound as an yellowish–white solid, by refluxing

at 65 ◦C for 7 hours. The volume of the solution was reduced to about 50 mL. Upon cool-

ing to room temperature a yellow precipitate formed, which was collected by filtration,

washed repeatedly with cold methanol, and dried under vacuum. m.p. 208 ◦C.

Total yield: 3.32 g (10.6 mmol, 97.3%).

Elemental analysis for C17H19N3O3 (313.1 g/mol): calculated C: 65.16%, H: 6.11%, N:

13.41%; found C: 65.27%, H: 6.40%, N: 13.31%.

1H-NMR (400 MHz, DMSO-d6): δ = 2.27 (s, 3H, CH3), 2.63 (dd, 3J = 7.13 Hz, 2J

= 13.53 Hz, 1H, β-CH2), 2.83 (dd, 1H, 3J = 5.66 Hz, 2J = 13.53 Hz, β-CH2), 3.63

(dd, 1H, 3J = 5.7, 7.13 Hz, α-CH), 4.8 (br, 2H, NH2–amino acid), 6.63 – 6.67 (d, 2H,

JAABB = 8.50 Hz, Ph–tyr), 6.8 – 6.9 (m, 2H, Ph), 7,01 – 7,03 (d, 2H, JAABB = 8.50 Hz,

Ph–tyr), 7.24 – 7.29 (m, 1H, Ph), 7.55 – 7.57 (m, 1H, Ph), 8.85 (br, 1H, NH), 9.13 (s,

br, OH–amino acid), 13.16 (s, br, 1H, Ph–OH) ppm.
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13C-NMR (50 MHz, DMSO-d6): δ = 13.20 (CH3), 40.73 (β-CH2), 55.23 (α-CH),

114.91 (Ph), 117.21 (Ph), 118.46 (Ph), 119.28 (Ph), 128.35 (Ph), 128.34 (Ph), 130.20

(Ph), 131.05 (Ph), 155.51 (Ph), 155.75 (Ph), 158.54 (C=N), 172.48 (C=O) ppm.

IR data (KBr disk, cm−1): ν̃ = 3389 (NH2), 3222 (O–H), 1664 (C=O), 1653 (C=N) ppm.

5-Bromo-2-Hydroxy-salicyliden-l-α-tyrosine-hydrazide (Brsalhytyr)

Following the procedure described for Brsalhyleu, l-α-tyrosine-hydrazide (1.31 g,

6.72 mmol) was converted to the title compound, which was precipitated from the re-

action solution as an yellow solid. Additional material can be obtained by reduction

under strong vacuum of the solution to about half of its original volume. The NMR data

confirm the presence of two isomers in ratio 1:4.05.

Total yield: 2.50 g (6.63 mmol, 98.75%).

Elemental analysis for C16H16BrN3O3 (378.22 g/mol): calculated C: 50.81%, H: 4.26%,

N: 11.11%; found C: 50.60%, H: 4.28%, N: 11.23%.

1H-NMR (400 MHz, DMSO-d6): δ = 2.62 (dd, 3J = 7.13 Hz, 2J = 13.53 Hz, 1H, β-

CH2), 2.83 (dd, 3J = 5.66 Hz, 2J = 13.53 Hz, 1H, β-CH2), 3.63 (dd, 3J = 5.66, 7.13 Hz,

1H, α-CH), 6.63 – 6.67 (d, JAABB = 8.50 Hz, 2H, Ph–tyr), 6.8 – 6.9 (m, 1H, Ph), 7,01 –

7,03 (d, JAABB = 8.50 Hz, 2H, Ph–tyr), 7.32 – 7.41 (m, 1H, Ph), 7.68 (m, 1H, Ph), 8.18

and 8.38 (s, 1H, CH=N)ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 40.73 (β-CH2), 48.57, 55.33 (α-CH), 110.19,

110.47 (Ph), 114.82, 114.97 (Ph), 118.51, 118.65 (Ph), 121.21, 122.81 (Ph), 127.74, 128.24

(Ph), 128.34 (Ph), 128.84 (Ph), 130.13, 130.40 (Ph), 133.05, 133.38 (Ph), 138.40, 144.90

(CH=N), 155.65, 155.74 (Ph), 156.49 (Ph), 171.07, 176.00 (C=O) ppm.

IR data (KBr disk, cm−1): ν̃ = 3332 (NH2), 3276 (O–H), 1675 (C=O), 1615 (C=N)

ppm.

ESI-MS (negative ion mode): (MeOH) m/z = 379 [M–H+].
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3.6.4 Synthesis of cis-dioxovanadium(v)-complexes with L-α-

leucine residue ligands

[VO2(Mesalhyleu)] (16)

Method A (16·H2O): To a solution of Schiff base ligand Mesalhyleu (0.41 g, 1.56 mmol)

in methanol (30 mL) was added NH4VO3 (0.18 g, 1.56 mmol). The reaction mixture

was heated at 65◦C. In 30 minutes a yellow precipitate was formed. The reaction was

continued for another 2 hours. The hot reaction mixture was filtrated, and the yellow

product was dried under vacuum.

Total yield: 0.37 g (1.02 mmol, 65%).

Elemental analysis for C14H22N3O5V (363.28 g/mol): calculated C: 46.29%, H: 6.10%,

N: 11.57%; found C 45.67%, H: 5.75%, N: 12.11%.

1H-NMR (400 MHz, DMSO-d6): δ = 0.93 (m, 6H, (CH3)2), 1.57–1.79 (m, 3H, γ-CH,

β-CH2), 2.76 (s, 3H, CH3), 3.33 (br, 2H, H2O), 3.92 (t, 3J = 5.49 Hz, 1H, α-CH), 6.79

(m, 2H, Ph), 7.31 (m, 1H, Ph), 7.73 (m, 1H, Ph), 8.15 (br, 3H, NH+
3 ) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 16.58 (CH3), 22.59, 22.84, (C(CH3)2), 24.40

(γ-CH), 40.91, (β-CH2), 50.57 (α-CH), 117.64 (Ph), 120.50 (Ph), 122.37 (Ph), 130.11

(Ph), 132.51 (Ph), 163.76 (CH=N), 164.82 (Ph), 170.70 (C=O) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -533.71 ppm (ν1/2 = 827 Hz).

IR data (KBr disk, cm−1): 3447 (br, NH+
3 ), 1607 (s, C=N–N=C), 951 (s, VO2), 862 (s,

VO2).

ESI-MS (negative ion mode): (MeOH) m/z = 344 ([VO2(Mesalhyleu)] – H+).

Method B (16): The pH of a solution of vanadyl sulfate trihydrate (0.23 g, 1.01 mmol) in

water (40 mL) was adjusted to pH = 13.5 by adding a 0.10 m solution of NaOH (25 mL).

Upon addition of sodium hydroxide to the blue vanadyl sulfate solution in water, it turned

dark gray. The ligand, Mesalhyleu, solution (0.28 g, 1.01 mmol), in methanol (40 mL),

was added to the aqueous solution of vanadyl sulfate, which changed further color to

green brown. The reaction mixture was refluxed at 65◦C. In 1 hour a yellow precipitate

was formed. After 24 hours the precipitate formed, was filtrated, dried and recrystallized
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from methanol.

Total yield: 0.18 g (0.52 mmol, 51.5%).

Elemental analysis for C14H20N3O4V (345.27 g/mol): calculated C: 48.70%, H: 5.84%,

N: 12.17%; found C 48.25%, H: 5.91%, N: 11.97%.

1H-NMR (400 MHz, DMSO-d6): δ = 0.94 (m, 6H, (CH3)2), 1.58–1.77 (m, 3H, γ-CH,

β-CH2), 2.76 (s, 3H, CH3), 3.92 (t, 3J = 5.49 Hz, 1H, α-CH), 6.78 (m, 2H, Ph), 7.31

(m, 1H, Ph), 7.74 (m, 1H, Ph), 8.15 (br, 3H, NH+
3 ) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 16.58 (CH3), 22.59, 22.84, (C(CH3)2), 24.39

(γ-CH), 41.84, (β-CH2), 50.58 (α-CH), 117.63 (Ph), 120.49 (Ph), 122.37 (Ph), 130.11

(Ph), 132.51 (Ph), 163.76 (CH=N), 164.82 (Ph), 170.72 (C=O) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -533.04 ppm (ν1/2 = 862 Hz).

IR data (KBr disk, cm−1): 3447 (br, NH+
3 ), 1607 (s, C=N–N=C), 951 (s, VO2), 862 (s,

VO2).

UV/Vis (DMF solution, λmax in nm (ε in 103 M−1 cm−1)): 288 (14.1), 376 (6.9).

ESI-MS (negative ion mode): (MeOH) m/z = 346 ([VO2(Mesalhyleu)] – H+).

K[VO2(Mesalhyleu)]·5H2O (17)

To a solution of Schiff base ligand Mesalhyleu (0.36 g, 1.37 mmol) in methanol (30 mL)

was added KVO3 (0.19 g, 1.37 mmol). The reaction mixture was heated at reflux yielding

red-brown colored solution. In 1 hour a yellow precipitate was separated out. It was

filtrated and air dried.

Total yield: 0.27 g (0.57 mmol, 42%).

Elemental analysis for C14H29KN3O9V (473.43 g/mol): calculated C: 35.52%, H:

6.17%, N: 8.26%; found C 34.23%, H: 4.08%, N: 8.41%.

1H-NMR (400 MHz, DMSO-d6): δ = 0.93 (m, 6H, (CH3)2), 1.59–1.75 (m, 3H, γ-CH,

β-CH2), 2.77 (s, 3H, CH3), 3.33 (s, 10H, H2O), 3.92 (br, 1H, α-CH), 6.78 (m, 2H, Ph),

7.32 (m, 1H, Ph), 7.75 (m, 1H, Ph), 8.15 (br, 2H, NH2) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 16.58 (CH3), 22.59, 22.84, (C(CH3)2), 24.40

(γ-CH), 40.93, (β-CH2), 59.07 (α-CH), 117.63 (Ph), 120.49 (Ph), 122.37 (Ph), 130.11

(Ph), 132.51 (Ph), 163.76 (CH=N), 164.82 (Ph), 170.72 (C=O) ppm.



Section 3.6: Experimental Section 109

51V-NMR (105 MHz, DMSO-d6): δ = -533.54 ppm (ν1/2 = 790 Hz).

IR data (KBr disk, cm−1): 3398 (br, NH2), 1607 (s, C=N–N=C), 951 (s, VO2), 862 (s,

VO2).

3.6.5 Synthesis of cis-dioxovanadium(v)-complexes with L-α-

phenylalanine residue ligands

[VO2(Mesalhyphe)]·MeOH (18)

Method A: To a solution of the Schiff base ligand Mesalhyphe (145.00 mg, 0.488 mmol)

in methanol (20 mL) was added NH4VO3 (57.00 mg, 0.488 mmol). The reaction mixture

was heated at reflux for 5 hours yielding a red-brown colored solution. The hot reaction

mixture was filtrated to remove small amounts of unreacted NH4VO3. Upon standing at

5 ◦C yellow colored single crystals suitable for X-ray studies formed within two weeks.

The same crystals were formed from the methanolic solution of the complex at room

temperature for 1 day.

Total yield: 95 mg (0.14 mmol, 60%).

Elemental analysis for C18H22N3O5V (411.33 g/mol): calculated C: 52.56%, H: 5.39%,

N: 10.22%; found C: 51.72%, H: 5.19%, N: 10.55%.

IR data (KBr disk, cm−1): 3407 (br, NH+
3 ), 1600 (s, C=N–N=C), 940 (s, VO2), 870 (s,

VO2).

UV/Vis (DMF solution, λmax in nm (ε in 103 M−1 cm−1)): 298 (7.9), 376 (4.8). UV/Vis

(Acetonitrile solution, λmax in nm (ε in 104 M−1 cm−1)): 210 (27.9), 260 (17.2), 362 (4.9).

ESI-MS (negative ion mode): (MeOH) m/z = 378 ([VO2(Mesalhyphe)] – H+).

Method B : The pH of a solution of vanadyl sulfate trihydrate (0.23 g, 1.01 mmol) in water

(40 mL) was adjusted to pH = 13.5 by adding a 0.10 m solution of NaOH (25 mL). Upon

addition of sodium hydroxide to the blue vanadyl sulfate solution in water, it turned dark

gray. The ligand (Mesalhyphe) solution (0.30 g, 1.01 mmol), in methanol (40 mL), was

added to the aqueous solution of vanadyl sulfate, which changed further color to green

brown. The reaction mixture was refluxed for 24 hours resulting in a clear yellow-orange
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solution. The volume of the solution was reduced to half of its original volume and

allowed to stand at 0 ◦C. An orange precipitate is formed, which is filtrated, dried and

recrystallized from methanol to afford yellow crystals suitable for X-Ray measurement.

Total yield: 0.193 g (0.467 mmol, 46.2%).

Elemental analysis for C18H22N3O5V (411.33 g/mol): calculated C: 52.56%, H: 5.39%,

N: 10.22%; found C 52.36%, H: 5.25%, N: 10.29%.

1H-NMR (400 MHz, DMSO-d6): δ = 2.62 (s, 3H, CH3), 3.06 – 3.08 (dd, 3J = 6.4 Hz,

2J = 13.6 Hz, 1H, β–CH2), 3.16 – 3.22 (m, 2H, β–CH2 overlapping with CH3OH), 4.08

(br, 1H, CH3OH), 4.18 (t, 3J = 6.4 Hz, 1H, α-CH), 6.78 (m, 2H, Ph), 7.25 (m, 6H, Ph),

7.70 (d, 2J = 7.60 Hz, 1H, Ph), 8.26 (s, 3H, NH+
3 ) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 16.09 (CH3), 39.96 (β–CH2), 48.59 (CH3OH),

52.74 (α-CH), 117.16 (Ph), 120.03 (Ph), 121.81 (Ph), 126.87 (Ph), 128.35 (Ph), 129.61

(Ph), 132.11 (Ph), 135.57 (Ph), 138.97 (Ph), 164.30 (C=N), 163.56 (Ph), 169.00 (C=O)

ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -533.56 ppm (ν1/2 = 919 Hz).

IR data (KBr disk, cm−1): 3634 (MeOH), 3399 (br, NH+
3 ), 1600 (s, C=N–N=C), 941

(s, VO2), 870 (s, VO2).

K[VO2(Mesalhyphe)] (19)

To a solution of the Schiff base ligand Mesalhyphe (0.107 g, 0.360 mmol) in methanol

(20 mL) was added KVO3 (49.67 mg, 0.360 mmol). The reaction mixture was heated

at reflux for 5 days yielding a clear yellow colored solution. The hot reaction mixture

was filtrated to remove small amounts of unreacted KVO3. Upon standing at room

temperature a yellow precipitate was formed, which was filtrated, and air dried.

Total yield: 107 mg (0.256 mmol, 71%).

Elemental analysis for C17H17KN3O4V (417.37 g/mol): calculated C: 48.92%, H:

4.11%, N: 10.07%; found C: 49.07%, H: 4.28%, N: 9.31%.

1H-NMR (400 MHz, DMSO-d6): δ = 2.64 (s, 3H, CH3), 2.77 – 2.88 (dd, 3J = 7.6 Hz,

2J = 13.6 Hz, 1H, β–CH2), 2.99 – 3.01 (dd, 3J = 6.4 Hz, 2J = 13.6 Hz, 2H, β–CH2), 3.66

(br, 1H, α-CH), 6.78 (m, 2H, Ph), 7.25 (m, 6H, Ph), 7.70 (m, 1H, Ph) ppm.
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13C-NMR (100 MHz, DMSO-d6): δ = 22.44 (CH3), 39.96 (β–CH2), 52.74 (α-CH),

116.82 (Ph), 119.88 (Ph), 122.26 (Ph), 126.18 (Ph), 128.08 (Ph), 129.41 (Ph), 132.16

(Ph), 138.01 (Ph), 139.04 (Ph), 161.30 (C=N), 163.00 (Ph), 164.00 (C=O) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -532.51 ppm (ν1/2 = 659 Hz).

IR data (KBr disk, cm−1): 3370 (br, NH2), 1601 (s, C=N–N=C), 942 (s, VO2), 899 (s,

VO2).

3.6.6 Synthesis of cis-dioxovanadium(v)-complexes with L-α-

tyrosine residue ligands

[VO2(Mesalhytyr)]·MeOH (20)

Method A 20·H2O: The pH of a solution of vanadyl sulfate trihydrate (0.36 g, 1.7 mmol)

in water (60 mL) was adjusted to pH = 13.5 by adding a 0.10 m solution of NaOH. Upon

addition of sodium hydroxide to the blue vanadyl sulfate solution in water it turned dark

gray. The ligand Mesalhytyr solution (0.54 g, 1.7 mmol) in methanol (30 mL) was added

to the aqueous solution of vanadyl sulfate, which changed further color to green brown.

The reaction mixture was refluxed for 24 hours resulting in a yellow-orange solution. The

volume of the solution was reduced to half of its original volume and allowed to stand at

0 ◦C. Yellow crystals were formed in less than one week, which were big enough for X-ray

analyses. After drying in air, crystals were transformed to a powder material; methanol

has been removed from the complex and water has been absorbed, as shown from the

following analyses.

Total yield: 0.35 g (0.9 mmol, 53%).

Elemental analysis for C17H20N3O6V (413.30 g/mol): calculated C: 49.40%, H: 4.88%,

N: 10.17%; found C: 49.32%, H: 4.87%, N: 10.12%.

1H-NMR (200 MHz, DMSO-d6): δ = 2.65 (s, 3H, CH3), 2.96 (dd, 3J = 6.0 Hz, 2J =

14.0 Hz, 1H, β–CH2), 3.10 (dd, 3J = 6.8 Hz, 2J = 14.0 Hz, 1H, β–CH2), 3.33 (s, 2H,

H2O), 4.1 (dd, 3J = 6.0, 6.8 Hz, 1H, α–CH), 6.64 (d, JAABB = 8.5 Hz, 2H, Ph–Tyr), 6.79

(m, 2H, Ph), 7.03 (m, 2H, Ph), 7.3 (m, 1H, Ph), 7.7 (d, JAABB = 7.6 Hz, 1H, Ph–Tyr),
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8.04 (br, 3H, NH+
3 ), 9.5 (s, 1H, OH–amino acid) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 16.12 (CH3), 36.12 (β–CH2), 52.96 (α-CH),

115.17 (Ph), 117.14 (Ph), 120.04 (Ph), 121.84 (Ph), 125.37 (Ph), 129.66 (Ph), 130.61

(Ph), 132.07 (Ph), 156.31 (Ph), 163.50 (Ph), 164.31, (C=N), 169.20 (O–CNNC) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = −533.6 ppm (ν1/2 = 986 Hz).

IR data (KBr disk, cm−1): ν̃ = 3609 (O–H (H2O)), 3369 (br; NH+
3 ), 1617 (s, C=N–N=C)

927 (s, VO2), 881 (s, VO2).

UV/Vis (Acetonitrile solution, λmax in nm (ε in 103 M−1 cm−1)): 215 (14.1), 260 (7.8),

312 (4).

ESI-MS (negative ion mode, in methanol): m/z = 394 ([VO2(Mesalhytyr)] – H+).

Method B 20·H2O: To a solution of Mesalhytyr (0.5 g, 1.6 mmol) in 50 mL dried iso-

propanol are added dropwise under an argon atmosphere [VO(OiPr)3] (0.39 g, 1.6 mmol).

The color of the reaction mixture became brown once the [VO(OiPr)3] was added. The

reaction mixture was stirred under argon for 6 hours yielding a brown precipitate. The

Schlenk tube was kept overnight at 0 ◦C. The precipitate thus obtained was filtrated

under argon, and dried under vacuum. To the crude mass of precipitate was added

10 mL water forming red-brown suspension. Ethanol was then added 10 mL resulting in

a yellow-green solution. The solvent was removed under reduced pressure to obtain the

product as a yellow greenish solid, which is dried under vacuum. Recrystallization from

methanol afford yellow crystals suitable for X-ray measurement.

Total yield: 0.13 g ( 0.33 mmol, 21%).

Elemental analysis for C17H20N3O6V: (413.30 g/mol) calculated C: 49.40%, H: 4.88%,

N: 10.17%; found C: 49.75%, H: 5.08%, N: 9.64%.

1H-NMR (400 MHz, DMSO-d6): δ = 2.66 (s, 3H, CH3), 2.96 (dd, 3J = 6.0 Hz, 2J =

14.0 Hz, 1H, β–CH2), 3.10 (dd, 3J = 6.8 Hz, 2J = 14.0 Hz, 1H, β–CH2), 3.33 (s, 2H,

H2O), 4.1 (br, 1H, α–CH), 6.64 (m, 2H, Ph), 6.79 (d, JAABB = 8.0 Hz, 2H, Ph–tyr), 7.03

(m, 2H, Ph), 7.3 (m, 1H, Ph), 7.7 (d, JAABB = 8.0 Hz, 2H, Ph–tyr), 8.04 (br, 3H, NH+
3 ),

9.3 (s, 1H, OH–amino acid) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 16.1 (CH3), 36.15 (β–CH2), 52.99 (α-CH),

115.14 (Ph), 117.11 (Ph), 120.03 (Ph), 121.82 (Ph), 125.41 (Ph), 129.62 (Ph), 130.58
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(Ph), 132.05 (Ph), 156.27 (Ph), 163.42 (Ph), 164.29 (C=N), 169.25 (O–CNNC) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -533.40 ppm (ν1/2 = 1036 Hz).

IR data (KBr disk, cm−1): ν = 3370 (s, br; NH+
3 ), 1602 (s, br; C=N–N=C), 921 (s,

VO2), 872 (s, VO2).

ESI-MS (negative ion mode, in methanol): m/z = 394 ([VO2(Mesalhytyr)]–H+).

Method C 20·H2O: To a solution of Schiff base ligand Mesalhytyr (0.23 g, 0.93 mmol) in

methanol (20 mL) was added NH4VO3 (0.11 g, 0.93 mmol). The reaction mixture was

heated at reflux for 3.5 hours yielding a red-brown colored solution. The hot reaction

mixture was filtrated to remove small amounts of unreacted NH4VO3. The solution was

kept at room temperature to evaporate the solvent to dryness and the residue as a dark

brown solid was recrystallized from methanol. Upon standing at room temperature yellow

colored single crystals suitable for X-ray studies formed within two days.

Total yield: 0.35 g (0.9 mmol, 53%).

Elemental analysis for C17H20N3O6V (413.1 g/mol): calculated C: 49.40%, H: 4.88%,

N: 10.17%; found C: 49.24%, H: 4.98%, N: 10.09%.

1H-NMR (400 MHz, DMSO-d6): δ = 2.66 (s, 3H, CH3), 2.97 (dd, 3J = 6.0 Hz, 2J =

14.0 Hz, 1H, β–CH2), 3.10 (dd, 3J = 6.8 Hz, 2J = 14.0 Hz, 1H, β–CH2), 3.33 (s, 2H,

H2O), 4.07 (br, 1H, α–CH), 6.64 (d, JAABB = 7.6 Hz, 2H, Ph–tyr), 6.79 (m, 2H, Ph),

7.04 (m, 2H, Ph), 7.31 (m, 1H, Ph), 7.72 (d, JAABB = 7.6 Hz, 2H, Ph–tyr), 8.04 (br, 3H,

NH+
3 ), 9.25 (s, 1H, OH–amino acid) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 16.08 (CH3), 36.10 (β–CH2), 52.94 (α-CH),

115.14 (Ph), 117.10 (Ph), 120.00 (Ph), 121.81 (Ph), 125.36 (Ph), 129.60 (Ph), 130.56

(Ph), 132.03 (Ph), 156.27 (Ph), 163.42 (Ph), 164.28 (C=N), 169.14 (O–CNNC) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -532.82 ppm (ν1/2 = 1077 Hz).

IR data (KBr disk, cm−1): ν = 3599 (O–H H2O), 3367 (s, br; NH+
3 ), 1602 (s, br;

C=N–N=C), 927 (s, VO2), 878 (s, VO2).

ESI-MS (negative ion mode, in methanol): m/z = 394 ([VO2(Mesalhytyr)] – H+).
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3.6.7 Unprecedented obtaining complexes

Na[VO2(salhyCONH2)]·MeOH·H2O (21)

The pH of a solution of vanadyl sulfate trihydrate (0.39 g, 1.15 mmol) in water (50 mL)

was adjusted to pH = 13.5 by adding a 0.10 m solution of NaOH (40 mL). Upon addition of

sodium hydroxide to the blue vanadyl sulfate solution in water, it turned dark gray. The

ligand salhytyr (or salhyphe or salhyleu) solution (1.01 mmol), in methanol (100 mL),

was added to the aqueous solution of vanadyl sulfate, which changed further color to

green brown. The reaction mixture was refluxed for 19 hours resulting in a clear yellow-

orange solution. The volume of the solution was reduced to dryness and the residue

yellow solid was recrystallized from methanol to afford yellow crystals suitable for X-Ray

measurement.

Total yield: 130 mg (0.36 mmol, 31%).

Elemental analysis for C10H13NaN3O7V (361.16 g/mol): calculated C: 33.26%, H:

3.63%, N: 11.63%; found C: 33.38%, H: 3.20%, N: 11.81%.

1H-NMR (400 MHz, DMSO-d6): δ = 3.16 (d, 3H, 3J = 5.20 Hz, CH3OH), 3.32 (s, 2H,

H2O), 4.08 (q, 1H, 3J = 5.60 Hz, CH3OH), 6.81 (m, 2H, Ph), 7.36 (m, 1H, Ph), 7.37 (m,

1H, Ph), 7.53 (m, 1H, Ph), 7.59 (s, 1H, NH2), 7.70 (s, 1H, NH2), 8.99 (s, 1H, CH=N)

ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 48.5 (CH3OH), 116.91 (Ph), 119.37 (Ph), 119.78

(Ph), 132.97 (Ph), 134.00 (Ph), 158.91 (C=N), 162.37 (Ph), 164.71 (C=O), 165.15 (C=O)

ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -529.76 ppm (ν1/2 = 757 Hz).

IR data (KBr disk, cm−1): 3413 (br, NH2), 1695 (s, C=O), 1612 (s, C=N–N=C), 926

(br, VO2).

NH4[VO2(salhyCONH2)] (22)

To a solution of Schiff base ligand Hsalhyphe (or Hsalhytyr, or Hsalhyleu) (0.495 mmol)

in methanol (30 mL) was added NH4VO3 (58 mg, 0.495 mmol). The reaction mixture
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was heated at reflux for 3 hours yielding a red-brown colored solution. The hot reaction

mixture was filtrated to remove small amounts of unreacted NH4VO3. Upon standing

at 0 ◦C a yellow precipitate was formed. The same precipitate was formed from the

methanolic solution of the complex at room temperature for 1 day.

Total yield: 40 mg (0.13 mmol, 26%).

Elemental analysis for C9H11N4O5V (306.15 g/mol): calculated C: 35.31%, H: 3.62%,

N: 18.30%; found C: 34.83%, H: 3.83%, N: 16.76%.

IR data (KBr disk, cm−1): 3459 (br, NH+
3 ), 1685 (s, C=O), 1616 (s, C=N–N=C), 910

(br, VO2).

ESI-MS (negative ion mode, in methanol): m/z = 288 ([VO2(salhyCONH2)] – H+).

K[VO2(salhyCONH2)]·MeOH (23)

To a solution of Schiff base ligand Hsalhyphe (Hsalhytyr or Hsalhyleu) (1.24 mmol) in

methanol (30 mL) was added KVO3 (173 mg, 1.24 mmol). The reaction mixture was

heated at reflux for 3 days yielding a red-brown colored solution. The hot reaction

mixture was filtrated to remove small amounts of unreacted KVO3. The volume of the

solution was reduced slowly at room temperature when a yellow precipitate was formed.

Total yield: 70 mg (0.19 mmol, 15.7%).

Elemental analysis for C10H11KN3O6V (359.25 g/mol): calculated C: 33.43%, H:

3.09%, N: 11.70%; found C: 34.08%, H: 2.89%, N: 10.59%

1H-NMR (400 MHz, DMSO-d6): δ = 3.16 (d, 3H, 3J = 5.20 Hz, CH3OH), 4.08 (q, 1H,

3J = 5.60 Hz, CH3OH), 6.79 (m, 2H, Ph), 7.37 (m, 1H, Ph), 7.57 (m, 2H, Ph + NH from

NH2), 7.76 (s, 1H, NH2), 8.98 (s, 1H, CH=N) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 48.5 (CH3OH), 114.95 (Ph), 119.42 (Ph), 119.75

(Ph), 133.03 (Ph), 134.01 (Ph), 158.86 (C=N), 162.30 (Ph), 164.70 (C=O), 165.09 (C=O)

ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -529.72 ppm (ν1/2 = 947 Hz).

IR data (KBr disk, cm−1): 3413 (br, NH2), 1695 (s, C=O), 1612 (s, C=N–N=C), 926

(br, VO2).

ESI-MS (negative ion mode, in methanol): m/z = 288 ([VO2(salhyCONH2)] – H+).
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Na[VO2(BrsalhyCONH2)] (24)

Following the procedure described for complex 21, the ligand (Brsalhyphe or Brsalhytyr,

or Brsalhyleu) (1.01 mmol) was converted to the title compound as an yellow solid.

Total yield: 58 mg (0.15 mmol, 15%).

Elemental analysis for C9H6BrN3NaO5V: (390.00 g/mol): calculated C: 27.72%, H:

1.55%, N: 10.77%; found C: 28.20%, H: 1.81%, N: 10.07%.

1H-NMR (400 MHz, DMSO-d6): δ = 6.77 (m, 1H, Ph), 7.45 (m, 1H, Ph), 7.50 (s, 1H,

NH2), 7.62 (s, 1H, NH2), 8.97 (s, 1H, CH=N) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 107.08 (Ph), 121.126 (Ph), 122.13 (Ph), 134.39

(Ph), 136.00 (Ph), 157.65 (C=N), 162.10 (Ph), 164.08 (C=O), 165.28 (C=O) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -529.98 ppm (ν1/2 = 950 Hz).

IR data (KBr disk, cm−1): 3440 (br, NH2), 1700 (s, C=O), 1617 (s, C=N–N=C), 929

(br, VO2).

NH4[VO2(BrsalhyCONH2)]·H2O (25)

Following the procedure described for complex 22 the ligand Brsalhyphe (or Brsalhytyr,

or Brsalhyleu) (0.488 mmol) was converted to the title compound as an yellow precipitate.

Total yield: 75 mg (0.19 mmol, 38%).

Elemental analysis for C9H12BrN4O6V: (403.06 g/mol): calculated C: 26.82%, H:

3.00%, N: 13.90%; found C: 26.91%, H: 2.40%, N: 10.38%.

1H-NMR (400 MHz, DMSO-d6): δ = 3.33 (s, 2H, H2O), 6.76 (m, 1H, Ph), 7.22 (br,

4H, NH+
4 ), 7.46 (m, 1H, Ph), 7.52 (s, 1H, NH2), 7.63 (s, 1H, NH2), 8.96 (s, 1H, CH=N)

ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 107.11 (Ph), 121.26 (Ph), 122.10 (Ph), 134.40

(Ph), 136.00 (Ph), 157.61 (C=N), 162.06 (Ph), 164.08 (C=O), 165.24 (C=O) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -530.75 ppm (ν1/2 = 825 Hz).

IR data (KBr disk, cm−1): 3437 (br, NH), 1701 (s, C=O), 1616 (s, C=N–N=C), 916

(br, VO2).
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K[VO2(BrsalhyCONH2)]·H2O (26)

Following the procedure described for complex 23 the ligand Brsalhyphe (or Brsalhytyr,

or Brsalhyleu) (1.41 mmol) was converted to the title compound as an yellow solid.

Total yield: 0.27 g (0.64 mmol, 46%).

Elemental analysis for C9H8BrKN3O6V (424.12 g/mol): calculated C: 25.49%, H:

1.90%, N: 9.22%; found C: 25.56%, H: 1.68%, N: 7.49%.

1H-NMR (400 MHz, DMSO-d6): δ = 3.33 (s, 2H, H2O), 6.85 (m, 1H, Ph), 7.37 (m,

1H, Ph), 7.66 (s, 1H, NH2), 7.80 (s, 1H, NH2), 8.98 (s, 1H, CH=N) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 107.17 (Ph), 121.27 (Ph), 122.14 (Ph), 134.40

(Ph), 136.05 (Ph), 157.72 (C=N), 162.12 (Ph), 164.09 (C=O), 165.23 (C=O) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -531.68 ppm (ν1/2 = 987 Hz).

IR data (KBr disk, cm−1): 3635 (O–H H2O), 3432 (br, NH2), 1730 (s, C=O), 1614 (s,

C=N–N=C), 927 (br, VO2).

3.6.8 Catalytic oxidative bromination of TMB/MCD

The bromination reaction was performed in acetonitrile solution, thermostat at 20 ◦C.

For each complex two standard solutions of the same concentration were prepared. All

measurements were performed in triplicate. Typical procedure: The standard assay

mixture was prepared in an optical cuvette, covered with a teflon-cover, and contained

0.24 mm sodium bromide (NaBr), 0.24 mm HClO4, 0.12 mm TMB, 6 μm vanadium com-

plex, 0.53 mm hydrogen peroxide (H2O2), and 0.05 μm MCD (final concentration in the

cuvette). Total volume of the reaction mixture is 2 mL. Each compound was added in

the following order: 1,3,5-trimethoxybenzene (TMB), monochlorodimedone (MCD) and

NaBr were premixed in acetonitrile to have the concentrations of 0.27 mm, 0.114 mm

and 0.54 mm, in ratio 3:3:9 respectively. 880 μL of this mixture was added to 12 μL of

vanadium complex, followed by 100 μL of hydrogen peroxide (H2O2). The reaction was

initiated by addition of 52 μL of HClO4 and followed by UV at 258 nm.
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3.6.9 Catalytic oxidation of methyl phenyl sulfide:

The vanadium complex (0.02 mmol) was dissolved at room temperature in a mixture

of CH2Cl2/CH3OH 7:3 (20 mL) and 1,3,5-trimethoxybenzene (0.34 g, 2.0 mmol) as in-

ternal standard was added followed by (0.24 ml, 2.0 mmol) phenyl methyl sulfide. The

resulting solution was cooled down on an ice-bath and H2O2 8.24 m (1.2 equiv., 0.31 mL,

2.5 mmol) was added dropwise. The reaction solution was warmed up to room tempera-

ture and stirred in a capped flask and monitored by thin-layer chromatography technique

(Et2O:n-hexane 9:1). After 1, 3, and 24-hours reaction time, alliquots of the reaction so-

lutions (2.0 mL) were quenched with ca. 5 mL of a stock solution of NaOH (0.1 m)

and extracted with ethyl acetate (3×4 mL). The collected organic phases were removed

completely to dryness and the residue was redissolved in deuterated chloroform (600 μL)

and analyzed by 1H-NMR to determine the yield. From this solution was then taken

60 μL of chloroform, removed the solvent to dryness and the residue redissolved in 2 mL

dichlormethane and the enantiomeric excess was determined by chiral HPLC. HPLC

retention times for the methylphenyl sulfoxides (r) = 21.17 min and (s) = 29.60 min

(hexane:2-propanol, 95:5).



Chapter 4

Vanadium(v) complexes with

L-β-alanine residue ligands

Based on the reported crystal structure of vanadium chloroperoxidase, amino acid residues

such as serine, lysine, histidine, arginine and aspartate are present at the active center,[19]

and stabilize the vanadate moiety by hydrogen bonding interactions. A vital role for the

catalytic reaction of V-HPOs has been attributed to Lys353, an amino acid bonded to

one of the equatorial oxygen atom of the prosthetic group.[114, 115] In order to model

unspecific vanadium binding to proteins, the complexation behaviour of vanadate to

protein fragments is of interest. The vanadium binding to l-α-alanyl-l-histidine, has

been published.[116] Although much knowledge is available about the complex formation

between vanadium and amino acids,[40, 46–58] no work has been reported on the complex-

ation of dioxovanadium(v) complexes with N -Salicylidene β-alanine hydrazide ligands.

The interesting information found in the literature is represented by similar described cis-

dioxovanadium(v) complexes based on N -salicylidene hydrazides that contain an amino-

functionalized aliphatic side chain.[41]

This chapter describes the synthesis and characterization of cis-dioxovanadium(v)

complexes which contain a β-alanine ligand. Introducing of a β-alanine has been achieved

in order to design a new ligand system capable of mimicking the hydrogen bonding

interaction of vanadate moiety from the natural system with lysine residue. Therefore

this ligand seemed to be suitable for the synthesis of cis-dioxovanadium(v) complexes,

which would be potentially interesting as oxidation catalyst.

119
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4.1 cis-Dioxovanadium complexes derived from N -

salicylidene Boc-L-β-alanine hydrazide ligands

The synthesis of the Schiff base ligand involves, in the first step, the esterification of Boc-

l-β-alanine, in DMF solution, using methyl-iodite, giving the corresponding methyl-ester.

The second step is the reaction between ester and two equivalent of hydrazine hydrate.

The reaction was performed in methanol solution at room temperature, under continuous

stirring, to form the Boc-l-β-alanine hydrazide. Afterwards the Schiff base condensation

with salicylaldehyde affords N -salicylidene-Boc-l-β-alanine hydrazide, which exists in

two tautomeric forms. The schematic representation of the synthesis pathway is depicted

in Figure 4.1.
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Figure 4.1: Schematic representation of the synthesis of N -Salicylidene-hydrazide ligand

with Boc-l-β-alanine residue.

The stoichiometric reactions of these new Schiff base ligand with ammonium or potassium

vanadate as vanadium sources in refluxing methanol results in the formation of the corre-

sponding neutral complex 27, and the potassium salt of the anionic cis-dioxovanadium(v)

complex 28. The synthesis pathway is depicted in Figure 4.2 and is similar with the pre-
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Figure 4.2: Synthesis of cis-dioxovanadium complexes containing β-alanine; complexes

27 left, and 28 right.

viously described procedures outlined in chapter 2.

4.1.1 Spectroscopic Characterization

The infrared spectrum of the Schiff base ligand HsalhyBocβala recorded using a KBr disc

shows an absorption at 1651 cm−1, which is attributed to a C=O stretching vibration[117].

This band is shifted at 1615 cm−1 upon complexation in the neutral cis-dioxovanadium

complex 27 and disappears in the IR spectra of the potassium salt of the correspond-

ing anionic complex 28. The IR spectra of the potassium salt shows instead a strong

band at 1613 cm−1, attributed to the stretching vibration of the conjugate HC=N–N=C

group[118, 119] a characteristic IR feature of vanadium complexes with the enolized form

of N -salicylidenehydrazide ligands.[42, 82] A broad O–H stretching vibration for the free

ligand, is observed at 3180 cm−1. This is an indication for hydrogen bonding, because

the normal position for free O–H is in the range 3730–3520 cm−1.[117] This band is not

present in the IR spectra of both cis-dioxo complexes, indicating deprotonation of the

phenol group on coordination of the metal center. A strong band at ca. 3350 cm−1,
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attributed to the stretching vibration N–H-Boc is present in the IR spectra of the free

ligand as well as in the IR spectra of both complexes. A strong C=N stretching vibration

band is observed at 1664 cm−1. A band at 1533 cm−1 may be assigned to C=C stretch-

ing vibration.[117] The formation of the cis-dioxovanadium complexes is confirmed by

strong IR vibrations corresponding to the ν(VO+
2 ) group, which are observed at 908 and

966 cm−1 in the neutral complexes 27, and 908 and 947 cm−1 in the anionic complexes 28.

These stretching vibrations are similar with those found for the previously described cis-

dioxovanadium complexes with α-amino acid residue ligands, and moreover comparable

with the stretching vibrations of reported values for ν(VO+
2 ) group.[81, 82, 84, 112, 113]

Solution characterization of the complexes has been achieved through 1H–, 13C–NMR

and 51V–NMR measurements. The 1H–NMR data for the novel cis-dioxovanadium(v)

complexes are consistent with the proposed structures and exhibit shifted resonances in

comparison with the corresponding proton resonances of the free ligands. In particular,

the full deprotonation of the free N -salicylidene hydrazide ligands in the anionic com-

plexes 28 is confirmed by the absence of the downfield 1H–NMR resonance corresponding

to the O−H proton. Moreover, the 1H–NMR spectra of the Schiff base ligand shows two

sets of resonances at 8.25 and 8.33 ppm, attributable to the azomethine (-CH=N) proton

due to the E-Z isomerism. The azomethine bond is stabilized through vanadium coor-

dination proved by an observed deshielded resonance of its singlet at 8.75 ppm in the

1H–NMR of the complex (see Experimental part). The aromatic protons of the ligand

and the complex as well as the α-CH, and β-CH2 protons of alanine residue, appear in

the expected region, with slight shifts in their positions.

A comparison between the 13C–NMR patterns of the free ligand and the corre-

sponding 13C–NMR spectra of complexes proved the coordination mode of the ligand.

The most indicative resonance is the down field shift at 155 ppm of the imine carbon

atom (CH=N), that resonate around 140 – 147 ppm, respectively in the free ligand as a

consequence of the E-Z isomers.

Furthermore, 51V–NMR is indicative of the cis-VO+
2 formation. 51V–NMR per-

formed in DMSO-d6 shows one resonance for the potassium salt of cis-dioxovanadium(v)

complex 28 at -534 ppm, which is certainly specific for cis-dioxovanadium(v) complexes

with this type of ligand, and also similar with the resonances of the complexes with
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α-amino acid residue ligands, described in the previous chapters.

4.1.2 Reactivity of the complexes

Bromination reaction of TMB/MCD

Vanadium bromoperoxidases, isolated mainly from marine organism catalyze the oxi-

dation of bromide[120] and iodide[4] by hydrogen peroxide. The oxidized halide species

can subsequently react with appropriate organic substrates to yield halogen-containing

derivates.[23, 121] Many covalent vanadate complexes functionally mimic vanadium bro-

moperoxidases (V-BPO).[1, 92, 122–124] The first functional mimic of the V-BPO enzyme is

represented by ammonium vanadate.[93] This is able to catalyze the peroxidative halo-

genation of 1,3,5-trimetoxybenzene (TMB) in acidified DMF solution with a maximum

turnover frequency of 15 molBr-TMBh−1mol−1

catalyst.
[93, 125] V-BPO enzymes have been

reported to catalyze the same reaction with a turnover frequency of

4.7×105 molBr-TMBh−1mol−1
enzyme at pH 6.5 in water.[120, 126, 127] Contrary to the na-

tive enzyme, all the reported functional vanadium complexes catalyze the oxidation of

bromide at lower pH, with turnover rates 104 times slower then the native enzyme.[79]

Recently the catalytic activity of vanadate is enhanced by changing water for acetoni-

trile, using 1,3,5-trimethoxybenzene (TMB) and monochlorodimedone (MCD) as organic

substrate.[128, 129] The herein reported cis-dioxovanadium(v) complex 28 has been also

tested towards its capability to catalyze the oxidative bromination of TMB/MCD using

hydrogen peroxide as oxidant and HClO4 as acid.

The competitive bromination of 1,3,5-trimethoxybenzene TMB/MCD was performed in

acetonitrile. Therefore stock solutions of 1 mM MCD, 4 mM TMB, 10.6 mM H2O2,

9.21 mM HClO4 in acetonitrile and 1 mM catalyst in MeCN/MeOH (95:5) and 8 mM

NaBr in MeCN/H2O (99:1) were prepared. The final concentrations in the cuvette were

6 μM catalyst, 0.05 mM MCD, 0.12 mM TMB, 0.24 mM NaBr and 0.53 mM H2O2 in

2 ml MeCN. The reaction was initiated by addition of HClO4 (at least 0.24 mM) and

followed by UV at 258 nm (characteristic absorption of MCD). When the bromination of

TMB was completed, MCD was brominated as indicated by the decreasing UV intensity.
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The period until decreasing of the intensity corresponds to the total reaction time of

TMB bromination (TTMB in the Figure 4.3).

The bromination of TMB catalyzed by cis-dioxovandium complex with β-alanine

ligand, took 277 s. This corresponds to a turn over of 260 molBr-TMBh−1mol−1

catalyst,

whereas the same reaction catalyzed by vanadate standard (nBu4N)2HVO4), took 480 s,[94]

which corresponds to a turn over of 150 molBr-TMBh−1mol−1

catalyst. This is the first ex-

ample where the cis-dioxovanadium complexes containing β-amino acid residue catalyze

bromination of both substrates (TMB/MCD) and moreover with a high turnover fre-

quency.

Figure 4.3: Competitive catalytic bromination of TMB/MCD, followed by UV at 258 nm.

Reaction conditions: 6 μm vanadate, 0.05 mm MCD, 0.12 mm TMB, 0.53 mm H2O2,

0.24 mm NaBr and 0.24 mm HClO4.
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Oxidation of sulfides catalyzed by cis-dioxovanadium complexes with β-alanine

functionalized ligands

The catalytic properties of the complex 28 was examined in the oxidation of organic

sulfides to the corresponding sulfoxide (Figure 4.4). This is another important reaction

catalyzed by vanadium haloperoxidases,[26, 28] as well as by vanadium complexes.[95, 96]

1 mol-% catalyst was used and the reaction was performed in a mixture of CH2Cl2/

CH3OH 7:3, at 0 ◦C. As oxidant was used 1.2 equivalents of a 8.24 m solution of hydrogen

peroxide. 1,3,5-trimethoxybenzene (2.0 mmol) was used as internal standard. After

defined intervals of time, aliquots were taken from the reaction mixture and the product

analyzed by NMR (determination of the yield) and HPLC (determination of the ee).

With the cis-dioxovanadium complex 28, the reaction seems to be very fast. Oxidation

of methyl phenyl sulfide, afforded methyl phenyl sulfoxide, in 68% yield, within 1 hour,

while the reaction was completed in 3 hours giving the corresponding sulfoxide in 100%

yield and 0.83% ee (s). The results are comparable with those of vanadium complexes

described in two previous chapters 2 and 3.

S
CH3

S
CH3

O

O

N
N

O NH BocV

O O K

1 mol%

cat. 1 mol%

H2O2  (8.24 mM) 1.2 eq.
3 h, CH2Cl2/ MeOH 7:3

Yield 100%

Figure 4.4: Catalytic oxidation of sulfide to sulfoxides promoted by Schiff base-

vanadium(v) complex derived from β-alanine.



126 Chapter 4: V(v)-complexes with L-β-alanine ligands

4.2 Complexation studies using free β-alanine ligand

Catalytic data showed that the vanadium complex with Boc-β-alanine, described in this

chapter, reacts faster towards bromination of TMB/MCD, as well as the oxidation of

methyl phenyl sulfide, comparing with the data of vanadium complexes containing Boc-

α-amino acid ligands, described in chapter 2. Moreover comparing the catalytic data

of the vanadium complexes with free and Boc-α-amino acid ligands, showed that the

complexes with free-α-amino acid residue ligands react faster than the corresponding

complexes with Boc-α-amino acid residue. Based on this information, we are focused on

the synthesis of the cis-dioxovanadium complexes which contain a free β-alanine ligand,

which we expect to have higher catalytic activity. Similar complexes, with N -salicylidene

hydrazide ligands that contain an amino-functionalized aliphatic side chain, have been

prepared recently in our research group.[41]

The synthesis of the Schiff base ligands with unprotected β-alanine residue follows

the pathway depicted in Figure 4.5 analogously to literature,[41] with some differences,

for example preventing heating under reflux, and some other differences.

O

O NH2 x HCl

MeOH
r.t

NH2 NH2

N
H

O NH2 x HCl

H2N

OH

O

N
H

O NH2 xHCl

N

OH

N

OH NH2 x HCl

N

OH

MeOH

r.t

Figure 4.5: Synthesis of Schiff base ligand with free β-alanine.

Thus β-alanine methyl ester as hydrochloride salt reacts with two equivalents of hy-

drazine hydrate, in methanol solution, under stirring at room temperature, resulting

in the formation of β-alanine hydrazide hydrochloride. Reaction of equivalent amounts

of this product and salicylaldehyde, in methanol (stirring) overnight at room tempera-
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ture gives a yellow suspension, from which the yellow precipitate was characterized as

disalicylidene-hydrazide. The ligand was isolated from the filtrate by evaporation of the

solvent. After purification by recrystallization from ethanol, the ligand was obtained in

43% yield.

Two attempts were made to synthesize cis-dioxovanadium(v) complexes from the

Schiff base ligand with free β-alanine, but unfortunately no well defined products were ob-

tained. Ammonium and potassium vanadate were used as vanadium sources and the reac-

tions were performed in refluxing methanol. In both attempts to synthesis the cis-dioxo-

vanadium(v) complexes, after slow evaporation of the solvent a dark brown powder was

obtained. Isolated products were characterized using 1H– and 51V–NMR spectroscopy, IR

spectroscopy, UV-Vis, and elemental analysis. 51V–NMR spectrum in DMSO-d6 shows

one resonance at -532 pm, which is similar to the value found for the other amino acid

dioxovanadium complexes. Infrared spectroscopy experiments revealed the presence of

cis-dioxovanadium species, since sharp signals were found in the region 969 and 909 cm−1.

Furthermore 1H–NMR shows some minor impurities. On the other hand the UV spec-

trum recorded in acetonitrile displays a band a 278 nm (ε = 10·103 M−1 cm−1), assuming

that the complex is monomeric, and a small shoulder at 407 nm (ε = 2·103 M−1 cm−1).

Attempts to purify the product by recrystallization from alcohol (MeOH, EtOH) were

unsuccessful. Although again a brown solid was obtained, unfortunately no well defined

complexes were isolated according to 1H–NMR. Nevertheless, according to the elemental

analysis the cis-dioxovanadium complex K[VO2(salhyβalaCl)]·H2O was formed.

4.3 Conclusions

In this chapter the synthesis of new cis-dioxovanadium(v) complexes 27 and 28 is de-

scribed, based on N -salicylidene Boc-β-alanine hydrazide ligand which is easily obtain-

able. The complex 28 was examined in bromination reaction of TMB/MCD, and the

results were compared with those obtained for the cis-dioxovanadium(v) complexes with

α-amino acids described in chapters 2 and 3. For the herein described complex the best

results were obtained, it appeared to be the more active catalyst with a turnover number

of 260 molBr-TMBh−1mol−1

catalyst.
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The catalyst was also tested on its ability to oxidise the organic sulfides to the

corresponding sulfoxides. The results showed that the reaction was completed in 3 hours

giving the corresponding sulfoxide in 100% yield.

The ligand with free β-alanine is inappropriate for the synthesis of cis-dioxovanadium(v)

complexes, since no well characterized complexes were isolated. Using modified proce-

dures, there were indications that vanadium ions were coordinated to the ligand system,

but mixture of products were obtained, that were difficult to characterize. The attempts

to purify the products were unsuccessful.

4.4 Experimental part

4.4.1 Synthesis of Schiff base ligand with Boc-L-β-alanine

Boc-l-β-alanine-methyl-ester (Boc-β-alaOMe)

To a suspension of NaHCO3 (1.50 g, 17.4 mmol, 1.1 eq.) in 30 ml dry DMF was added

Boc-l-β-alanine (3 g, 15.9 mmol, 1 eq.) and methyl iodide (1.10 mL, 17.9 mmol, 1.1 eq).

The mixture was stirred at room temperature under argon atmosphere for 20 hours.

Distilled water (50 mL) was added and the product extracted with ethyl acetate (3 x

50 mL). The combined organic layers were washed with distilled water and than dried

over Na2SO4, and concentrated in vacuum to obtain the product as yellow-orange oil.

This is purified by column chromatography (eluent hexan/ethyl acetate 1:1) to obtain

yellow oil product.

Total yield: 1.4 g (6.9 mmol, 44%).

1H-NMR (200 MHz, DMSO-d6): δ = 1.36 (s, 9H, C(CH3)3), 2.41 (t, 3J = 6.96 Hz,

2H, α-CH2), 3.14 (q, 2J = 6.70 Hz, 2H, β–CH2), 3.57 (s, 3H, CH3–ester), 6.81 (t, 3J =

6.96 Hz, 1H, NHBoc) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 28.11(C(CH3)3), 34.06 (α-CH2), 36.04 (β-CH2),

51.20 (CH3 ester), 77.63 (OC(CH3)3), 155.40 (NHC=OBoc), 171.61 (O=CNHN) ppm.
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Boc-l-β-alanine-hydrazide (Bocβalahy)

To a solution of BocβalaOMe (1.28 g, 6.3 mmol) in methanol (30 mL) was added slowly

dropwise hydrazine monohydrate (0.92 mL, 18.9 mmol) (100%). The clear colorless

reaction mixture was stirred at room temperature for 30 hours. After removing of the

solvent, the product was recrystallized from ethyl acetate, and dried under vacuum. The

product was obtained as a colorless crystalline solid. m.p. 116–118◦C.

Total yield: 1.23 g (6.05 mmol, 96%).

Elemental analysis for C8H17N3O3 (203.24 g/mol): calculated C: 47.28%, H: 8.43%,

N: 20.68%; found C: 47.52%, H: 8.30%, N: 20.56%.

1H-NMR (200 MHz, DMSO-d6): δ = 1.35 (s, 9H, C(CH3)3), 2.14 (t, 3J = 7.39 Hz, 2H,

α-CH2), 3.14 (q, 2J = 6.70 Hz, 2H, β–CH2), 4.14 (s, 2H, NH2), 6.61 (t, 3J = 7.39 Hz,

1H, NHBoc), 8.94 (s, 1H, NH–NH2) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 28.21 (C(CH3)3), 33.92 (α-CH2), 36.71 (β-CH2),

77.56 (OC(CH3)3), 155.40 (NHC=OBoc), 169.72 (O=CNHN) ppm.

N -Salicylidene-Boc-l-β-alanine-hydrazide (HsalhyBocβala)

Salicylaldehyde (0.23 mL, 3.026 mmol) was slowly added dropwise to a solution of Boc-l-

β-alanine-hydrazide (Bocβalahy) (0.62 g, 3.3.026 mmol) in 20 mL methanol. The reaction

mixture turns its color to pale yellow once the salicylaldehyde is added. The mixture was

stirred at room temperature for 24 hours. The product was obtained as a colorless solid.

(The reaction was followed by TLC). The NMR data confirm the presence of two isomers

in ratio 1:1.75. m.p 170 ◦C.

Total yield: 1.12 g (2.68 mmol, 85.5%).

Elemental analysis for C15H23N3O4 (307.34 g/mol): calculated C: 58.62%, H: 6.89%,

N: 13.67%; found C: 58.40%, H: 7.09%, N: 13.57%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.36 (s, 9H, C(CH3)3), 2.37 (t, 2J = 7.06 Hz, 2H,

α-CH2), 2.20 (t, 3J = 7.06 Hz, 2H, β-CH2), 6.76 (bs, 1H, NH–Boc), 6.81 – 6.90 (m, 2H,

Ph), 7.19 – 7.28 (m, 1H, Ph), 7.48–7.68 (m, 1H, Ph), 8.25, 8.33 (s, 1H, CH=N), 10.05,

11.12(s, 1H, OH, NH), 11.24 and 11.61 (s, 1H, OH) ppm.
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13C-NMR (100 MHz, DMSO-d6): δ = 28.15 (C(CH3)3), 32.58, 34.41 (α-CH2), 35.81,

36,33 (β-CH2), 77.47, 77.59, (OC(CH3)3), 116.02, 116.26 (Ph), 118.48, 119.18 (Ph),

119.29, 120.00 (Ph), 126.69, 129.41 (Ph), 130.81, 131.10 (Ph), 140.89, 146.65 (CH=N),

155.45, 156.26, (Ph), 157.26 (C=OBoc), 166.59, 172.19 (O=C) ppm.

MS (FAB+, nba): m/z = 307 (70% [M+]), 251 (100%).

Selected IR data (cm−1): ν̃ = 3351 (N–H), 3180 (O–H), 1664 (C=N), 1657 (C=O).

4.4.2 Synthesis of vanadium complexes with Boc-L-β-alanine

[VO2(HsalhyBocβala)]·MeOH (27)

To a solution of Schiff base ligand HsalhyBocβala (0.10 g, 0.325 mmol) in methanol

(20 mL) was added NH4VO3 (41.8 mg, 0.325 mmol). The reaction mixture was heated

at reflux for 3 hours yielding a red-brown colored solution. The hot reaction mixture

was filtrated, the solvent was removed to dryness and the residue is recrystallized from

ethanol to obtain the product as a brown solid.

Total yield: 61.5 mg (0.146 mmol, 45%).

Elemental analysis: for C16H23N3O7V (420.31 g/mol) calculated C: 45.72%, H: 5.52%,

N: 10.00%; found C: 45.85%, H: 6.22%, N: 11.09%.

Selected IR data (cm−1): ν̃ = 3340 (s, br; N–H), 1615 (s, C=O), 966 (s, VO2), 908

(s, VO2).

K[VO2(salhyBocβala)]·H2O (28)

To a solution of salhyBocβala ( 0.10 g, 0.33 mmol) in 30 mL methanol was added KVO3

(44.86 mg, 0.33 mmol). The resulting reaction mixture was heated under reflux with

continuous stirring for 24 hours till all vanadate was reacted. The clear yellow reac-

tion mixture was filtrated, and allowed to evaporate slowly at room temperature. The

product was precipitated as a yellow solid, which is filtrated, and dried under vacuum.

m.p 221–225 ◦C.
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Total yield : 103 mg (0.23 mmol, 70%).

Elemental analysis: for C15H21N3O7VK (445.38 g/mol) calculated C: 40.45%, H:

4.75%, N: 9.43%; found C: 40.52%, H: 4.72%, N: 9.41%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.37 (s, 9H, C(CH3)3), 2.37 (m, 2H, α-CH2),

3.19 (m, 2H, β-CH2), 3.32 (s, 2H, H2O), 6.74 (m, 2H, Ph + NHBoc), 7.28 (m, 1H, Ph),

7.48 (m, 1H, Ph), 8.75 (s, 1H, CH=N) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 28.23 (C(CH3)3), 32.70 (β-CH2), 37.39 (α-

CH2), 77.59, (OC(CH3)3), 116.49 (Ph), 119.41 (Ph), 119.69 (Ph), 132.37 (Ph), 132.83

(Ph), 154.69 (CH=N), 155.37 (Ph), 157.26 (C=OBoc), 164.42, (NHC=OBoc), 174.05

(O–CNNC) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -533.67 ppm.

Selected IR data (cm−1): ν̃ = 3357 (s, br; N–H), 1613 (s, C=N–N=C), 947 (s, VO2),

908 (s, VO2).

UV/Vis (MeOH solution, λmax in nm (ε in 104 M−1 cm−1)): 214 (21.5), 272 (10.9), 384

(5.9).

ESI-MS (negative ion mode): (MeOH) m/z = 388 ([VO2(salhyBocβala)] – H+).

4.4.3 Synthesis of Schiff base ligand with L-β-alanine

β-Alanine-hydrazide hydrochloride

To a solution of β-alanine-methylester-hydrochloride (3.02 g, 21.63 mmol) in methanol

(80 mL), hydrazine monohydrate (2.10 mL, 43.3 mmol) (100%) was added under contin-

uous stirring. The resulting solution was stirred at room temperature overnight, until the

TLC (methanol/hexan 2:1, visualized by vanillin/H2SO4) didn’t show any starting mate-

rial. The solvent was removed to dryness and the remaining viscous oil was dried under

strong vacuum, and recrystallized from methanol, to obtain the product as a colorless

solid. m.p 188–191 ◦C.

Total yield : 1.92 g (13.75 mmol, 64%).

Elemental analysis: for C3H10ClN3O (139.58 g/mol) calculated C: 25.81%, H: 7.22%,
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N: 30.10%; found C: 24.53%, H: 6.94%, N: 30.80%.

1H-NMR (200 MHz, DMSO-d6): δ = 1.38 (m, 2H, α-CH2), 3.75 (m, 2H, β-CH2), 4.34

(br, 2H, NH2), 8.24 (br, 2H, NH2), 9.58 (br, 1H, NH) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 17.20 (β-CH2), 47.00 (α-CH2), 168.45 (C=O)

ppm.

N -Salicylidene-l-β-alanine-hydrazide-hydrochloride

(Hsalhyβala×HCl)

To a solution of β-alanine-hydrazide hydrochloride (1.19 g, 8.53 mmol) in methanol

(60 mL), salicylaldehyde (1.04 g, 8.53 mmol) was added dropwise. The resulting yel-

low solution was stirred at room temperature for 2 days. A yellow solid was separated

out, which was filtrated and characterized as disalicylidene-hydrazide. The filtrate was

concentrated to dryness and the residue is recrystallized from ethanol to obtain the prod-

uct as a colorless solid. The NMR data confirm the presence of two isomers in ratio 1:2.

m.p 197–205 ◦C.

Total yield : 0.94 g (3.86 mmol, 43%).

Elemental analysis: for C10H14ClN3O2 (243.69 g/mol) calculated C: 49.29%, H: 5.79%,

N: 17.24%; found C: 49.84%, H: 5.69%, N: 17.05%.

1H-NMR (200 MHz, DMSO-d6): δ = 1.45 (m, 3H, α-CH2, β-CH), 3.98 and 4.5 (s, 1H,

β-CH), 6.85 (m, 2H, Ph), 7.29 (m, 1H, Ph), 7.66 (m, 1H, Ph), 8.36 (br, 3H, NH3
+Cl−),

8.38 and 8.52 (s, 1H, CH=N), 10.14, 10.84 (s, 1H, NH), 11.75, 12.45 (s, 1H, OH) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 15.83, 17.00 (β-CH2), 46.54, 57.52 (α-CH2),

116.37, 118.67 (Ph), 119.34, 119.91 (Ph), 125.72, 128.70 (Ph), 131.63, 133.00 (Ph), 142.16,

147.81 (CH=N), 156.65, 157.30 (Ph), 158.53, 162.51 (Ph), 165.84, 170.53 (C=O) ppm.

Selected IR data (cm−1): ν̃ = 3461 (NH+
3 Cl−), 3169 (NH), 1703 (C=O), 1683 (C=N).



Section 4.4: Experimental part 133

4.4.4 Attempted synthesis of vanadium complexes with L-β-

alanine

K[VO2(salhyβalaCl)]·H2O (29)

To a solution of Schiff base ligand Hsalhyβala×HCl (0.47 g, 1.93 mmol) in methanol

(30 mL) was added KVO3 (0.26 g, 1.93 mmol). The resulting reaction mixture was heated

under reflux with continuous stirring for 3.5 hours till all vanadate was reacted. The red-

brown reaction mixture was filtrated. The volume of the solution was concentrated to

about half under reduce pressure and left at room temperature when a brown precipitate

is formed overnight. The resulting precipitate was filtrated off and the solution volume

removed under reduce pressure for additional material. m.p 360 ◦C.

Total yield : 0.64 g (1.76 mmol, 43%).

Elemental analysis: for C10H14ClKN3O5V (381.73 g/mol) calculated C: 31.46%, H:

3.70%, N: 11.01%; found C: 31.97%, H: 3.31%, N: 9.59%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.52 (m, 3H, α-CH2, β-CH), 3.33 (s, 2H, H2O),

3.68 (m, 1H, β-CH), 6.85 (br, 3H, NH+
3 ), 6.95 (m, 2H, Ph), 7.32 (m, 2H, Ph), 8.99 (s,

1H, CH=N) ppm.

51V-NMR (105 MHz, DMSO-d6): δ = -532 ppm.

Selected IR data (cm−1): ν̃ = 3400 (s, NH+
3 ), 1608 (br, -C=N-N=C-), 969 and 909

(s, VO2).

UV/Vis (acetonitrile solution, λmax in nm (ε in 104 M−1 cm−1)): 278 (10), 407 (2).

[VO2(salhyβala)]·H2O (30)

To a solution of Schiff base ligand-Hsalhyβala×HCl (0.47 g, 1.93 mmol) in methanol

(50 mL) was added NH4VO3 (0.23 g, 1.93 mmol). The resulting mixture was refluxed for

24 hours, till all vanadate was reacted, filtrated, and the solution was allowed to stand at

room temperature, to evaporate slowly the solvent to obtain the dark brown solid which

was collected by filtration, and dried in air.

UV/Vis (acetonitrile solution, λmax in nm (ε in 104 M−1 cm−1)): 272 (10.4), 316 (6.7),



134 Chapter 4: V(v)-complexes with L-β-alanine ligands

399 (2.7).

4.4.5 Catalytic oxidative bromination of TMB/MCD

The bromination reaction was performed in acetonitrile solution, thermostat at 20 ◦C.

For each complex three standard solutions of the same concentration were prepared.

All measurements were performed in triplicate. Typical procedure: The standard assay

mixture was prepared in an optical cuvette, covered with a teflon-cover, and contained:

0.24 mm sodium bromide (NaBr), 0.24 mm HClO4, 0.12 mm TMB, 6 μm vanadium com-

plex, 0.53 mm hydrogen peroxide (H2O2), and 0.05 μm MCD (final concentration in the

cuvette). Total volume of the reaction mixture is 2 mL. Each compound was added in

the following order: 1,3,5-Trimethoxybenzene (TMB), monochlorodimedone (MCD) and

NaBr were premixed in acetonitrile to have the concentrations of 0.27 mm, 0.114 mm

and 0.54 mm, in ratio 3:3:9 respectively. 880 μL of this mixture was added to 12 μL of

vanadium complex, followed by 100 μL of hydrogen peroxide (H2O2). The reaction was

initiated by addition of 52 μL of HClO4 and followed by UV at 258 nm.

4.4.6 Catalytic oxidation of methyl phenyl sulfide

Vanadium complex (0.02 mmol) was dissolved at room temperature in a mixture of

CH2Cl2/CH3OH 7:3 (20 mL) and 1,3,5-trimethoxybenzene (0.34 g, 2.0 mmol) as inter-

nal standard was added followed by (0.24 ml, 2.0 mmol) phenyl methyl sulfide. The

resulting solution was cooled down on an ice-bath and H2O2 8.24 m (1.2 equiv., 0.31 mL,

2.5 mmol) was added dropwise. The reaction solution was warmed up to room tempera-

ture and stirred in a capped flask and monitored by thin-layer chromatography technique

(Et2O:n-hexane 9:1). After 1, and 3-hours reaction time, aliquots of the reaction solutions

(2.0 mL) were quenched with ca. 5 mL of a stock solution of NaOH (0.1 m) and extracted

with ethyl acetate (3×4 mL). The collected organic phases were removed completely to

dryness and the residue was redissolved in deuterated chloroform (600 μL) and analyzed

by 1H-NMR to determine the yield. From this solution was then taken 60 μL of chloro-

form, removed the solvent to dryness and the residue redissolved in 2 mL dichlormethane
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and the enantiomeric excess was determined by chiral HPLC. HPLC retention times for

the methylphenyl sulfoxides (r) = 21.17 min and (s) = 29.60 min (hexane:2-propanol,

95:5).



Chapter 5

Molybdenum(vi) complexes with

Boc-L-amino acid residue ligands

The coordination chemistry of molybdenum(vi) has assumed special importance due to

its biochemical significance[60, 130, 131] as well as for the involvement of Mo(vi) compounds

as catalysts in several industrial processes such as amoxidation of propene,[132] epoxi-

dation of olefins,[133] olefin metathesis and isomerization of allylic alcohols.[134] In order

to mimic the biological systems, a number of dioxomolybdenum complexes have been

synthesized and characterized[62, 135–137] Here we describe the preparation and charac-

terization of a series of mononuclear cis-dioxo molybdenum(vi) complexes, containing

the tridentate Schiff base ligands derived from salicylaldehyde itself or one of its ring

substituted derivative, and Boc-amino acid hydrazides. The oxidation catalysis are also

reported. As far as we are aware no structures of this type of ligands have been described

in the literature.

The synthesis of the Schiff base ligands were performed according to the proce-

dure described in chapter 2 and 3 for Boc-α and β amino acid respectively, where the

same ligands were used to synthesize cis-dioxovanadium complexes. The reactions of

MoO2(acac)2 with tridentate Schiff bases in appropriate solvent results in the formation

of corresponding cis-dioxo molybdenum(vi) complexes. The complexes are yellow solids

and in the case of β amino acid could be crystallized from methanol to obtain single

crystals suitable for X-Ray analysis.

136
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5.1 Molecular structure of complex 36

The reaction of MoO2(acac)2 with ligand HsalhyBocala, the Schiff base ligand with Boc-

β-alanine residue in refluxing methanol, were accompanied by an immediate change of

the solution color to yellow-orange. After reducing the volume of the solution, yellow

colored single crystal were formed at -28 ◦C, within two weeks. The complex crystallizes

in the monoclinic space group P21/n, with two methanol molecules as solvent of crys-

tallization. The molecular structure and the atom numbering scheme for the complexes

36 is shown in Figure 5.1, with the relevant bond distances and angles collected in Table

5.1. The coordination geometry around molybdenum atom can be described as distorted

octahedral where the ligand dianion acts in tridentate manner forming one five-membered

and another six-membered metallo-cycle involving the MoO2
2+ moiety.

Figure 5.1: Molecular structure of [MoO2(salhyBocala)(MeOH)] in crystals of

[MoO2(salhyBocala)(MeOH)]·2MeOH (36) (thermal ellipsoids are drown at the 50%

probability level).

As expected the Schiff base ligand is coordinated in the deprotonated iminolate form,

through the phenolate oxygen atom O3, the imine nitrogen atom N1, amide oxygen atom
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O4. The Mo atom has two additional oxo groups O1 and O2. One methanol molecule

completes the distorted octahedral coordination sphere which lies trans to oxo group O1.

The molybdenum atom is significantly displaced from the plane, formed by the ligand,

toward the apical oxygen atom O1 by 31.3 pm. The ring system and the hydrazide

group lie in the mean plane. The alanine residue raises out of the mean plane by a

torsion angle (C9–C10–N3–C11) of 96.1 ◦. Both Mo=O distances, ranging from 169.6(3)

to 169.8(2) pm, and the O=Mo=O angle of 105.6 ◦, are in the usual range for cis-MoO2

complexes.[45, 138, 139] The Mo - O1M bond of 233.6(2) pm, is significantly longer than the

other Mo - O bonds from 169.6(3) to 202.1(2) pm, indicating that the alcohol molecule

is weakly bonded to the MoO2
2+-core.

Table 5.1: Selected bond lengths (pm) and angles (◦) for

complex 36.

Bond lengths

Mo−O1 169.6(3) Mo−O1M 233.6(2)

Mo−O2 169.8(2) Mo−N1 224.6(3)

Mo−O3 192.8(2) C8−N2 128.9(5)

Mo−O4 202.1(2) C8−O4 132.3(4)

Bond angles

O1−Mo−O2 105.56(12) O2−Mo−O3 102.72(11)

O1−Mo−O3 100.37(12) O2−Mo−N1 157.97(12)

O1−Mo−O4 96.46(11) O2−Mo−O4 97.31(10)

O1−Mo−N1 94.71(11) O2−Mo−O1M 83.99(2)

O1−Mo−O1M 169.76(2) O4−Mo−N1 71.44(10)

O3−Mo−N1 81.57(9) O4−Mo−O1M 78.37(1)

O3−Mo−O4 149.18(10) O3−Mo−O1M 80.68(1)
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The complex crystallizes with two methanol molecules which form hydrogen bond-

ing interactions. Thus the coordinated methanol molecule is involved in intermolecular

hydrogen bonding with the oxygen atom of the Boc group O5 (O5· · ·O1M 263.2 pm).

The oxo group O1 forms hydrogen bonding with a second methanol molecule of one

neighboring molecule (O1· · ·H2MA 275.5 pm). The hydrazide nitrogen atom N2 forms in-

termolecular hydrogen bonding interaction with a second methanol molecule (N2· · ·O2M

280.7) which is further involved in bifurcated bonding interaction with the third methanol

molecule of a neighboring molecule O3MB (O2M· · ·O3MB 270.1 pm). The amino func-

tionality of alanine forms intermolecular hydrogen bond with a third methanol molecule

(N3· · ·O3M 287.4 pm), which is further hydrogen bonded to one methanol molecule of

another neighboring molecule (see Figure 5.2).

Figure 5.2: Representation of the hydrogen bonding interactions in crystals of

[MoO2(salhyBocala)(MeOH)]·2MeOH (36). Only hydrogen atoms bonded to hetero-

atoms are shown, broken lines represent hydrogen bonds, dashed circles symmetry equiv-

alent atoms; relevant distances (in pm): O1· · ·H2MA 275.5, N3· · ·O3M 287.4, O5· · ·O1M

263.2, N2· · ·O2M 280.7, O2M· · ·O3MB 270.1 (symmetry operators: A: 1 – x, 1 – y, – z;

B: 3
2

– x, 1
2

+ y, 1
2

– z; C: 3
2

– x, – 1
2

+ y, 1
2

– z.
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5.2 Spectroscopic Characterization

Selected spectroscopic data of the complexes are summarized in Table 5.2. In all of

them, the ligand is found to coordinate through the deprotonated phenolate oxygen, eno-

late oxygen, and the azomethine nitrogen atoms. The IR spectra of the complexes do

not exhibit the ligand bands at ca. 3477 cm−1 [ν(OH)], and 3209 cm−1 [ν(NH)].[117, 140]

Characteristic strong bands at 1661–1675 cm−1 due to the carbonyl moiety ν(C=O)

stretching vibrations of the ligands[117, 140, 141] are not observed any more in the spectra

of the complexes. Instead a strong band is observed at around 1617 cm−1 which can be

attributed to the stretching vibration of the conjugate –C=N–N=C– grouping.[84] This

band is characteristic for the coordination of the iminolate form of the ligand to the dioxo

molybdenum(vi) moiety. The Mo=O stretching modes occur as a pair of sharp strong

peaks in the 946 –908 cm−1 range,[45, 131, 142–144], the higher frequency band originating

from the antisymmetric while the lower one from the symmetric stretching mode, thus

confirming the formation of mononuclear molybdenum(vi) complexes.

Table 5.2: Characteristics IR bands [cm−1] for the com-

plexes.

Formula Complex ν(C=N–N=C) ν(MoO2)

[MoO2(salhyBocser)] 31 1617 944, 911

[MoO2(salhyBoctrp)]·Et2O 32 1615 944, 910

[MoO2(salhyBocphe)] 33 1618 942, 910

[MoO2(BrsalhyBocphe)] 34 1621 946, 914

[MoO2(MesalhyBocphe)] 35 1601 941, 908

[MoO2(salhyBocala)(MeOH)]·2MeOH 36 1616 942, 912

The formation of the cis-dioxomolybdenum complexes has been also confirmed by 1H–

and 13C–NMR. The 1H–NMR spectra of all complexes are in agreement with the proposed

formula, they confirm the dianionic coordination of the ligands by the loss of the signals

for the OH and NH protons. The azomethine proton (–CH=N) is upfield shifted by
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around 0.4 ppm, with respect to the corresponding free ligands. The aromatic protons,

as well as the α-CH, β-CH2, and hydroxy group of serine amino acid, appear in the

expected region, with slight shifts in their positions. The 1H–NMR spectra of complex

36 and the elemental analysis show 0.88 methanol molecule per formula unit, which does

not agree with the crystal structure analysis. This can be explained due to the fact that

the X-ray analysis were performed on fresh crystals from methanol solution, whereas

for NMR and elemental analysis the sample was dried completely before analysis, which

results in the loss methanol molecules of crystallization, only the coordinated methanol

is retained.

A comparison between the 13C–NMR patterns of the free ligands and the corre-

sponding 13C–NMR spectra of complexes proved the coordination mode of the ligands.

The most indicative resonance is the down field shift at 156 ppm of the imine carbon

atom (CH=N), that resonate around 140 – 147 ppm, respectively in the free ligands.

The presence of ether molecule in complex 32 is confirmed by the resonances of the CH3

protons at 1.09 ppm, of the CH2 protons at 3.48 ppm, and the 13C resonances at 15.12

and 64.88 ppm for the CH3 and CH2 carbons respectively. Whereas the presence of the

coordinated methanol in complex 36 is confirmed by the specific resonances of the CH3

protons at 3.15 – 3.18 ppm and 4.06 ppm for the OH proton with the 13C resonance at

42.6 ppm.

5.3 Oxidation of sulfides catalyzed by dioxomolybde-

num complexes with Boc-amino acid functional-

ized ligands

Complexes were examined as catalysts in the oxidation reaction of methyl phenyl sulfide

using hydrogen peroxide as oxidant. Details about the conditions applied are given in

the experimental section. Results are shown in Table 5.3. Despite having different amino

acid residues, complexes with Boc-α-amino acid residues show a similar catalytic activity.

There is a strong decrease in activity on going from α to β-amino acids. Accordingly, the

lowest activity is found for catalyst 32, after 3 hours of the reaction time 82% yield can
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Table 5.3: Catalyzed asymmetric oxidation of methyl

phenyl sulfide using various complexes

Formula Complex Time Yielda ee b Configurationc

(h) (%) (%)

[MoO2(salhyBocser)] 31 1 58 1.62 s

[MoO2(salhyBocser)] 31 3 90 0.22 s

[MoO2(salhyBoctrp)]·Et2O 32 1 45 n.dd n.d

[MoO2(salhyBoctrp)]·Et2O 32 3 82 n.d n.d

[MoO2(BrsalhyBocPhe)] 34 1 40 n.d n.d

[MoO2(BrsalhyBocPhe)] 34 3 91 n.d n.d

[MoO2(MesalhyBocPhe)] 35 1 55 3.02 s

[MoO2(MesalhyBocPhe)] 35 3 98 1.97 s

[MoO2(salhyBocala)] 36 1 99 0.12 s

All reactions were carried out at 0 ◦C with vanadium complexes loading to

1 mol-% and (1.2 equivalents) of hydrogen peroxide (8.24 m), in a mixture

CH2Cl2/CH3OH 7:3. a isolated yield determined by 1H–NMR (400 MHz)

using 1,3,5-trimethoxybenzene as internal standard. b Determined by HPLC

using a (S,S)-WHELK-01 chiral column (25 cm × 4.6 mm). The column

was eluted with hexane:2-propanol (90:10), at a flow rate of 2.0 mL/min.

c Absolute configuration of the major product was determined to be s, by

comparison of the chromatogram in HPLC with the authentic sample. d n.d.

not determined.

be obtained, while 99% were reached after 1 hour, when the catalyst 36 was used (see

Figure 5.3).

The haloperoxidase activity of the cis-dioxomolybdenum complexes has been per-

formed following the procedure described for vanadium complexes in chapters 2 and 3.

Unfortunately no catalytic activity of the molybdenum complexes has been found to-

wards the peroxidative bromination of 1,3,5-trimethoxybenzene/monochlorodimedone,
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Figure 5.3: Oxidation of methyl phenyl sulfide catalyzed by molybdenum complexes with

Boc-amino acid ligands.

although the ligand system is capable to coordinate molybdenum in a similar manner

with vanadium complexes. This observation is in agreement with the results reported

for vanadium haloperoxidase enzyme where the molybdate bonded enzyme was reported

as inactive.[18] Compared to the inorganic molybdate and vanadate, were the molyb-

date proved to be an efficient catalyst of the haloperoxidase reaction, the replacement of

vanadate with molybdate in this case did not afford the same positive effect.

5.4 Conclusions

In this chapter the synthesis of a series of new cis-dioxomolybdenum complexes is de-

scribed, based on the tridentate Schiff base ligands derived from salicylaldehyde itself or

one of its ring substituted derivative, and Boc-amino acid hydrazides. Boc-α-serine, tryp-

tophan, phenylalanine and Boc-β-alanine were used as amino acids. The catalysts were

tested on the ability to catalyze the oxidative bromination of TMB/MCD by hydrogen
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peroxide, but they are not suitable for such catalytic reaction, they show no catalytic ac-

tivity, contrary to the corresponding cis-dioxovanadium(v) complexes described in chap-

ters 2 and 3. The complexes were also examined as catalyst in sulfoxidation reaction of

sulfides to corresponding sulfoxides and the results were compared. All types of catalysts

showed high activity. The best results were obtained using cis-dioxomolybdenum com-

plex 31 with Boc-β-alanine residue ligand. It appeared to be the most active catalyst,

which accomplished 99% conversion after one hour of reaction.

5.5 Experimental part

5.5.1 [MoO2(salhyBocser)] (31)

O

N
N

O

OH

Mo

O O

Boc HN H

To a solution of the ligand HsalhyBocser (0.17 g, 0.52 mmol) in methanol (20 mL) was

added MoO2(acac)2 (0.17 g, 0.52 mmol). The reaction mixture was heated at reflux for

35 minutes yielding a clear yellow solution. The hot solution was cooled down to room

temperature and the solvent removed slowly at room temperature to obtain a yellow

solid, which was dried in air.

Total yield: 0.20 g (0.42 mmol, 80.7%).

Elemental analysis for C16H23MoN3O8 (481.31 g/mol): calculated C: 39.93%, H: 4.82%,

N: 8.73%; found C: 39.60%, H: 4.95%, N: 8.31%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.39 (s, 9H, C(CH3)3), 3.33 (s, H2O), 3.56 – 3.62

(m, 2H, β-CH2), 4.31 (s, 1H, α-CH), 4.88 (s, 1H, OH–Amino acid), 6.88 – 6.94 (m, 2H,

Ph), NHBoc), 7.00 – 7.07 (m, 1H, Ph), 7.45 – 7.54 (m, 1H, Ph), 7.65 – 7.70 (m, 1H, Ph),

8.78 (s, 1H, CH=N) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 31.42 (C(CH3)3), 54.18 (α-CH), 62.00 (β-CH2),

78.30 (OC(CH3)3), 118.61 (Ph), 120.21 (Ph), 121.54 (Ph), 134.32 (Ph), 134.92 (Ph),
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155.27 (Ph), 156.05 (C=N), 159.53 (C=OBoc), 173.30 (O–CNNC) ppm.

Selected IR data (cm−1): ν̃ = 3365 (s, br; O–H), 1617 (s, br; C=N–N=C), 944 (s,

MoO2), 911 (s, MoO2).

5.5.2 [MoO2(salhyBoctrp)]·Et2O (32)

O

N
N

OMo

O O

Boc HN H
NH

Et2O

To a solution of Schiff base ligand HsalhyBoctrp (158 mg, 0.374 mmol) in 50 mL methanol

was added MoO2(acac)2 (119.7 mg, 0.374 mmol). The resulting orange reaction mixture

was heated under reflux for 4 hours when a clear orange solution was obtained. The

hot solution was filtrated off, reduced the volume to ∼ 5 mL and allowed to cool down

to room temperature. Diethyl ether was added which results in the precipitation of the

yellow-orange solid, which was filtrated and air dried.

Total yield: 0.16 g (0.257 mmol, 68.7%)

Elemental analysis for C27H34MoN4O7 (622.52 g/mol): calculated C: 52.09%, H: 5.51%,

N: 9.00%; found C: 53.07%, H: 5.48%, N: 9.24%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.09 (t, 3J= 7 Hz, 3H, Et2O), 1.31 (s, 9H,

C(CH3)3), 3.02 (m, 2H, β-CH2), 3.48 (q, 3J = 7 Hz, 2H, Et2O), 4.45 (m, 1H, α-CH),

6.90 (s, 1H, NHBoc), 6.94 – 7.06 (m, 5H, Ph), 7.14 (m, 1H, Ph), 7.31 (m, 1H, Ph), 7.50

(m, 2H, Ph), 7.65 (m, 1H, Ph), 8.40 (s, 1H, CH=N), 10.80 (s, 1H, NH) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 15.12 (Et2O), 28.00 (C(CH3)3), 30.65 (β-CH2),

52.31 (α-CH), 64.88 (Et2O), 78.00 O(C(CH3)3), 110.00 (Ph), 111.33 (Ph), 116.31 (Ph),

118.09 (Ph), 118.33 (Ph), 118.50 (Ph), 120.08 (Ph), 120.85 (Ph), 121.41 (Ph), 123.58

(Ph), 127.54 (Ph), 134.17 (Ph), 134.81 (Ph), 136.02 (Ph), 155.04 (Ph), 156.06 (CH=N),

159.36 (C=OBoc), 174.34 (O–CNNC) ppm.

Selected IR data (cm−1): ν = 3412 (br, NH), 1695 (C=O-Boc), 1615 (C=N–N=C),

944 (s, MoO2), 910 (s, MoO2).

MS (FAB+, nba): m/z = 548 (8% [M]+).
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5.5.3 [MoO2(salhyBocphe)] (33)

O

N
N

OMo

O O

Boc HN H

To a solution of Schiff base ligand HsalhyBocphe (0.77 g, 2.00 mmol) in 10 mL methanol

was added MoO2(acac)2 (0.66 g, 2.00 mmol). The resulting orange reaction mixture was

stirred at room temperature for 15 hours when a clear orange solution was obtained. The

volume of this dark orange solution was then reduced to 5 ml. On standing at room

temperature, the solution deposited orange precipitate, which was collected by rapid

filtration, washed well with cold methanol and dried in vacuo. m.p 167 ◦C

Total yield: 0.61 g (1.2 mmol, 60%).

1H-NMR (200 MHz, DMSO-d6): δ = 1.30 (s, 9H, C(CH3)3), 2.82 – 3.02 (m, 2H, β-

CH2), 4.44 (m, 1H, α-CH), 6.83 – 7.08 (m, 2H, Ph), 7.17 – 7.30 (m, 6H, Ph, NHBoc),

7.50 (m, 1H, Ph), 7.70 (m, 1H, Ph), 8.78 (1H, s, CH=N) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 28.16 (C(CH3)3), 38.25 (β-CH2), 52.92 (α-CH),

78.04 (OC(CH3)3), 118.51 (Ph), 120.05 (Ph), 121.44 (Ph), 126.30 (Ph), 128.07 (Ph),

129.20 (Ph), 134.23 (Ph), 134.87 (Ph), 137.78 (Ph), 155.03 (CH=N), 156.14 (Ph), 159.34

(C=OBoc), 173.99 (O–CNNC) ppm.

Selected IR data (cm−1): ν = 3340 (br, NH), 1662 (C=O-Boc), 1618(C=N–N=C), 942

(s, MoO2), 910 (s, MoO2).
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5.5.4 [MoO2(BrsalhyBocphe)] (34)

O

N
N

OMo

O O

Boc HN H

Br

To a solution of Schiff base ligand BrsalhyBocphe (0.51 g, 1.11 mmol) in 30 mL methanol

was added MoO2(acac)2 (0.36 g, 1.11 mmol). The resulting orange reaction mixture

was heated under reflux for 21 hours when a clear orange solution was obtained. The

hot solution was filtrated, reduced the volume to ∼ 10 mL and allowed to cool down

to room temperature. An orange solid was precipitated, which was filtrated, dried and

recrystallized from a CH2Cl2/hexane mixture, to obtain the product as a yellow solid.

Total yield: 0.18 g (0.31 mmol, 28%).

1H-NMR (400 MHz, DMSO-d6): δ = 1.38 (s, 9H, C(CH3)3), 2.86 (m, 2H, β-CH2),

4.43 (m, 1H, α-CH), 6.88 (m, 1H, Ph), 7.23 (m, 6H, Ph + NHBoc), 7.48 (m, 1H, Ph),

7.93 (m, 1H, Ph), 8.75 (s, 1H, CH=N) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 28.13 (C(CH3)3), 37.61 (β-CH2), 52.94 (α-CH),

78.05 (OC(CH3)3), 112.07 (Ph), 1210.83 (Ph), 121.99 (Ph), 126.27 (Ph), 129.00 (Ph),

129.59 (Ph), 135.73 (Ph), 136.87 (Ph), 137.96 (Ph), 154.98 (CH=N), 158.50 (Ph), 163.51

(C=OBoc), 174.61 (O–CNNC) ppm.

Selected IR data (cm−1): ν = 3340 (br, NH), 1621 (s, C=N–N=C), 946 (s, MoO2),

914 (s, MoO2).

EI-MS (negative ion mode,

in methanol): m/z = 592 ([MoO2(BsalhyBocphe)] – H+).

5.5.5 [MoO2(MesalhyBocphe)] (35)

The Schiff base ligand MesalhyBocphe (0.61 g, 1.5 mmol) was dissolved in methanol

(30 mL) by heating slowly on a water bath and MoO2(acac)2 (0.5 g, 1.5 mmol) was
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O

N
N

OMo

O O

Boc HN H

added to the resultant solution and the mixture stirred at room temperature for 4 hours

and then filtrated. Slow evaporation of the orange filtrate over 3 days produced dark

orange precipitate, which was filtrated, and dried in air. m.p 86 ◦C

Total yield: 0.5 g (0.96 mmol, 64%).

Elemental analysis for C22H25MoN3O6 (523.39 g/mol): calculated C: 50.49 %, H: 4.81

%, N: 8.03 %; found C: 50.69 %, H: 5.50 %, N: 7.78 %.

1H-NMR (400 MHz, DMSO-d6): δ = 1.32 (s, 9H, C(CH3)3), 2.71 (3H, s, CH3), 2.84 –

3.06 (m, 2H, β-CH2), 4.5 (m, 1H, α-CH), 6.90 – 7.08 (m, 2H, Ph), 7.17 – 7.30 (5H, m,

Ph; 1H, NHBoc), 7.55 (1H, m, Ph) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 16.56 (CH3), 28.18 (C(CH3)3), 38.25 (β-CH2),

53.42 (α-CH), 78.00 (OC(CH3)3), 118.58 (Ph), 121.52 (Ph), 122.65 (Ph), 126.23 (Ph),

129.18 (Ph), 130.86 (Ph), 131.39 (Ph), 136.23 (Ph), 138.04 (Ph), 155.37 (N=C(CH3)),

159.96 (Ph), 164.06 (C=OBoc), 173.54 (O–CNNC) ppm.

Selected IR data (cm−1): ν = 3330 (br, NH), 1601 (s, C=N–N=C), 941 (s, MoO2),

908 (s, MoO2).

MS (FAB+, nba): m/z = 523 (40% [M]+).

5.5.6 [MoO2(salhyBocala)(MeOH)]·2MeOH (36)

O

N
N

O NHMo

O O O

O

To a solution of HsalhyBocala (0.16 g, 0.52 mmol) in 20 mL methanol was added
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MoO2(acac)2 (0.17 g, 0.52 mmol). The reaction mixture changed color to orange. The re-

sulting mixture was heated at 65◦C with continuous stirring. In 30 minutes all molybdate

was reacted. The mixture was heated for an additional 40 minutes, then the volume of

the solution was reduced to about 5 mL, and left at -28◦C. Yellow colored single crystals

suitable for X-ray studies formed within two weeks. m.p 130–135 ◦C, Elemental analysis

and NMR show 0.88 MeOH

Total yield: 65 mg, (0.123 mmol, 76.9%).

Elemental analysis for C18H31MoN3O9 (529.39 g/mol): calculated C: 40.84%, H: 5.90%,

N: 7.94%; found C: 40.80%, H: 4.94%, N: 8.82%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.37 (s, 9H, C(CH3)3), 2.37 (m, 2H, α-CH2), 3.18

(m, 2H, β-CH2 overloaded with MeOH ), 4.06 (s, 1H, MeOH), 6.79 (br, 1H, NH–Boc),

6.88 (m, 1H, Ph), 7.00 (m, 1H, Ph), 7.49 (m, 1H, Ph), 7.68 (m, 1H, Ph), 8.30 (s, 1H,

CH=N) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 28.23 (C(CH3)3), 32.70 (β-CH2), 38.65 (α-CH2),

42.45 (MeOH), 77.78 (OC(CH3)3), 118.48 (Ph), 120.02 (Ph), 121.41 (Ph), 134.16 (Ph),

134.74 (Ph), 155.40 (CH=N), 155.42 (Ph), 159.29 (C=OBoc), 173.64 (O–CNNC) ppm.

Selected IR data (cm−1): ν = 3362 (s, br; N–H), 1674 (C=O-Boc), 1616 (s, C=N–N=C),

942 (s, MoO2), 912 (s, MoO2).

5.5.7 Catalytic oxidation of methyl phenyl sulfide:

Molybdenum complex (0.02 mmol) was dissolved at room temperature in a mixture of

CH2Cl2/CH3OH 7:3 (20 mL) and 1,3,5-trimethoxybenzene (0.34 g, 2.0 mmol) as inter-

nal standard was added followed by (0.24 ml, 2.0 mmol) phenyl methyl sulfide. The

resulting solution was cooled down on an ice-bath and H2O2 8.24 m (1.2 equiv., 0.31 mL,

2.5 mmol) was added dropwise. The reaction solution was warmed up to room tempera-

ture and stirred in a capped flask and monitored by thin-layer chromatography technique

(Et2O:n-hexane 9:1). After 1, and 3-hours reaction time, aliquots of the reaction solutions

(2.0 mL) were quenched with ca. 5 mL of a stock solution of NaOH (0.1 m) and extracted

with ethyl acetate (3×4 mL). The collected organic phases were removed completely to

dryness and the residue was redissolved in deuterated chloroform (600 μL) and analyzed
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by 1H-NMR to determine the yield. From this solution was then taken 60 μL of chloro-

form, removed the solvent to dryness and the residue redissolved in 2 mL dichlormethane

and the enantiomeric excess was determined by chiral HPLC as described in chapter 2.



Chapter 6

Molybdenum(vi) complexes with

free L-α-amino acid residue ligands

The present chapter investigates the synthesis, spectral and structural characterization

of cis-dioxomolybdenum(vi) complexes of the tridentate Schiff base ligands containing

free amino acid residues. The oxidation catalysis are also reported. Although, many cis-

dioxomolybdenum(vi) complexes have been synthesized and characterized previously, as

far as we are aware no molybdenum complexes with amino acid hydrazide ligands have

been reported.

The Schiff base ligands were prepared following the procedure described in Chapter

3. In order to prepare dioxomolybdenum(vi) complexes (37 – 42), the Schiff base ligands

were allowed to react with MoO2(acac)2 in 1:1 molar proportion in methanol (Figure 6.1).

The mixture was heated under reflux. This reaction leads to the formation of two types

of products; the first one is the desired cis-dioxomolybdenum complex signed as I formed

in high yield. The second product II was formed by condensation of the amino acid func-

tionality with the acac (acetylacetonate) group of the MoO2(acac)2, in a low yield. All of

them are dark yellow–orange crystalline solids. The complexes I are air sensitive and have

a very good solubility in polar organic solvents like DMSO or methanol, whereas the com-

plexes of type II are little soluble in these solvents. This makes possible the separation

of the two products, by crystallization of II out of the methanolic solution. The decom-

position of all types of complexes occurs slowly in solution and the color changes from

yellow to green in the presence of moisture. Dioxomolybdenum(vi) complexes of type I

151
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Figure 6.1: Schematic representation of the synthesis of cis-dioxomolybdenum complex

with free amino acid functionalized ligands

could be more successfully obtained by the use of NaMoO4·2H2O instead of MoO2(acac)2.

6.1 Structural characterization

6.1.1 Mo-complex with leucine residue (37)

Yellow crystals of complex 37 suitable for X-Ray analysis were obtained by slow evapora-

tion at room temperature of a methanol solution. The crystal structure is shown in Figure

6.2, and the selected bond distances and angles in Table 6.1. The molybdenum center
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is coordinated with two oxo groups in cis position, the phenolate oxygen atom O3, the

imine nitrogen atom N1, and amide oxygen atom O4 of the tridentate ligand. The sixth

coordination site around Mo is occupied by a solvent (MeOH) molecule, thereby provid-

ing a distorted octahedral coordination environment around Mo in which the coordinated

MeOH lies trans to oxo group O1.

Figure 6.2: Molecular structure of [MoO2(Brsalhyleuacac)(MeOH)] (37) (thermal ellip-

soids are drawn at the 50% probability level)

The Mo=O bond distances [168.8(3) and 169.3(3) pm], and the average O=Mo=O bond

angle are very common for cis-dioxomolybdenum(vi) complexes,[45, 131, 138, 145, 146] and also

not significant different from those observed in MoviO2 complex with β-alanine residue

ligand presented in chapter 5 [169.6(3)–169.8(2) pm, and 105.56 ◦]. The imine nitrogen

and methanol oxygen atoms, which are trans to the terminal oxo-groups, are bound to

Movi ions at distance of 224.0(4) pm for nitrogen and 233.1(3) pm for oxygen, respec-

tively. The cis angles around Mo ranges from 71.48(12) ◦ for N1–Mo–O4 to 105.86(16) ◦

for O1–Mo–O2, while the two trans angles vary from 170.04(14) ◦ for O1–Mo–O1M, to

149.81(13) ◦ for O3–Mo–O4. The C8–N2 bond distance is 128.0(5) pm, which is pretty
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close to the usual C=N length.[147] The molybdenum atom is significantly displaced from

the plane, formed by the ligand aromatic part, toward the apical oxygen atom O1 by

30.2 pm. The ring system and the hydrazide group lie in the mean plane. The leucine

residue raises out of the mean plane, towards the apical oxo group O1 by an torsion angle

(C9–C10–N3–C11) of 81.9 ◦, whereas the amino functionality of the leucine together with

the acac group deviate by an torsion angle (C8–C9–N3–C14) of 145.2 ◦.

Figure 6.3: Representation of the hydrogen bonding interactions in crystals of complex

[MoO2(Brsalhyleuacac)(MeOH)] (37) (broken lines represent hydrogen bonds); relevant

distances (in pm): O5· · ·O1MA 262.7, O5· · ·N3 271.4 (symmetry transformations: A:

– x, y, 1 – z).

The hydrogen bonding interactions in complex 37 were also observed with involvement

of different donor patterns. The coordinated methanol molecule is in hydrogen bonding

interaction with the oxygen atom O5 of the acac group of the neighboring molecule

(O1M· · ·O5A 262.7 pm). An intermolecular hydrogen bond interaction was found, which

involved the nitrogen atom N3 of the leucine functionality, and the oxygen atom of the

acac group O5 (N3· · ·O5 271.4 pm).
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6.1.2 Mo-complex with phenylalanine residue (39)

The molecular structures of complex 39 is shown in Figure 6.4, with the relevant bond

distances and angles collected in Table 6.1. The coordination geometry around the Movi

atom is quite similar with the other studied Mo complexes. The Schiff base ligand is

bonded to the cis-MoviO2
2+ ion in an xy-plane through the phenolate oxygen atom O3,

the imine nitrogen atom N1, amide oxygen atom O4 of the tridentate ligand, and the

two oxo groups O1 and O2.

Figure 6.4: Molecular structure of [MoO2(Mesalhypheacac)(MeOH)]·2MeOH (39) (ther-

mal ellipsoids are drawn at the 50% probability level)

A methanol molecule completes the distorted octahedral coordination sphere and is

trans to the oxo group O1. The O=Mo=O angle of 105.74(18) ◦ and the Mo=O distances

(168.7(2)-170.2(3) pm ) are typical for cis-dioxomolybdenum complexes.[45, 131, 138, 145, 146]

The imine nitrogen and methanol oxygen atoms, which are trans to the terminal oxo

groups, bond to Movi ions with distances of 225.7(3) pm for nitrogen and 233.3(3) for

oxygen, respectively. On the whole the structure of complex 39 is very similar to those

of dioxomolybdenum(vi) complexes described previously.



156 Chapter 6: Mo(VI)-complexes with free amino acid ligands

Complex crystallizes in the monoclinic space group C2, with two additional methanol

molecules as solvent of crystallization. An intermolecular hydrogen bonding interaction

is established between two uncoordinated methanol molecules (O2M· · ·O3M 270.2 pm),

from which one is hydrogen bonded to the methanol molecule of the neighboring molecule

O1MB (O2M· · ·O1MB 266.7 pm), and the other to the oxygen atom of the acac group

of another neighboring molecule O5C (O3M· · ·O5C 162.2 pm) (Figure 6.5).

Figure 6.5: Representation of the hydrogen bonding interactions in crystals of complex

[MoO2(Mesalhypheacac)(MeOH)]·2MeOH (39) (broken lines represent hydrogen bonds);

relevant distances (in pm): N3· · ·O5 266.0, O1M· · ·O2MD 266.7, O2M· · ·O3M 270.2,

O5· · ·O3MA 262.2; (symmetry transformations: A: 1 – x, 1 + y, 1 – z; B: x, – 1 + y, z;

C: 1 – x, – 1 + y, 1 – z; D: x, 1 + y, z).

An intermolecular hydrogen bond interaction is established between the nitrogen atom N3

of the phenylalanine functionality, and the oxygen atom of the acac group O5 (N3· · ·O5

266.0 pm). The hydrogen bonding interaction established in the crystal packing of cis-

dioxomolybdenum complex 39 results in the formation of layered polymeric structure

(Figure 6.6).
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Figure 6.6: Representation of the two-dimensional hydrogen bonding interactions in crys-

tals of complex [MoO2(Mesalhypheacac)(MeOH)]·2MeOH (39), as viewed along the [010]

direction; broken lines represent hydrogen bonding interactions.

6.1.3 Mo-complex with tyrosine residue (42)

Good quality crystals of 42 were obtained from methanol solution. The X-ray crystallo-

graphic study revealed that the Movi center is present in a distorted octahedral donor

environment consisting of cis-oxo atoms O1 and O2, trans-phenolate and iminolate oxy-

gen atoms O3 and O4, which are cis to O1 and O2, and an imine nitrogen atom N1

(Figure 6.7). The sixth weaker coordination comes from the solvent molecule methanol.

The atoms O2, N1, O3 and O4 show a high degree of planarity from the equatorial base,

the metal ion is displaced by approximately 34 pm towards the apical oxo group O1

from this plane and the O1M is trans to O1. The Mo=O1 and Mo=O2 bonds of MoO2

group are equal 170.3(3) pm, they are somewhat longer than those in MoviO2 complexes

with other amino acid residue ligands described previously, but still within reported

ranges.[45, 131, 138, 145, 146, 148] The Mo-N1 and more so the Mo-O1M bonds are the longest

in the coordination polyhedron (see Table 6.1). The longest bond from the methanol

coordination indicates that the alcohol molecule is weakly bonded to the MoO2
2+-core.
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Figure 6.7: Molecular structure of [MoO2(Mesalhytyracac)(MeOH)]·2MeOH·Et2O (42)

(thermal ellipsoids are drawn at the 50% probability level)

The O=Mo=O angle of 106.10(15) ◦ is very similar to those of dioxomolybdenum(vi)

complexes described previously. Complex crystallizes in the orthorhombic space group

P212121, with two additional methanol molecules and one diethylether molecule as sol-

vent of crystallization, which are involved in hydrogen bonding interaction. An inter-

molecular hydrogen bonding is established between the coordinated methanol molecule

O1M and the second methanol molecule O2M (O1M· · ·O2M 265.3 pm), which is further

hydrogen bonded to the oxygen atom of the ether molecule from the neighboring mole-

cule (O2M· · ·O1EC 277.3 pm). Another intermolecular hydrogen bonding is observed,

which involves the nitrogen atom of the tyrosine functionality N3 and the oxygen atom

of the acac group (N3· · ·O6 263.6). The same situation was found in two other cis-

dioxomolybdenum complexes with leucine and phenylalanine residue ligands, described

previously. Further the third methanol molecule is hydrogen bonded to the oxygen atom

of the acac group of one neighboring molecule (O3M· · ·O6B 265.0 pm).

Thy hydrogen bonding interaction established in the crystal packing of cis-dioxomolybden-
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Figure 6.8: Representation of the hydrogen bonding interactions in crystals of com-

plex [MoO2(Mesalhytyracac)(MeOH)]·2MeOH·Et2O (42) (broken lines represent hydro-

gen bonds); relevant distances (in pm): N3· · ·O6 263.6, O1M· · ·O2M 265.3, O6· · ·O3MA

265.0, O1E· · ·O2MD 277.3; (symmetry transformations: A: 1 + x, y, z; B: – 1 + x, y, z;

C: 1 – x, – 1
2

+ y, 1
2

– z; D: 1 – x, – 1
2

+ y, 1
2

– z).

um complex 42 results in the formation of layered polymeric structure (Figure 6.9).

Moreover, at first sight the molecular structure of [MoO2(Mesalhytyracac)(MeOH)]

·2MeOH·Et2O (42) shows high similarity with that observed for [MoO2(Mesalhypheacac)

(MeOH)]·2MeOH (39). The overlay of the covalent parts of the two structures shown in

Figure 6.10 confirms this. The aromatic ring of the amino acid residue deviates from the

mean plane by a torsion angle (C9–C10–C11–C12) of 80.0◦ in complex 39, whereas this

deviation in complex 42 is 80.6◦ which shows no significant differences. Nevertheless,

a slight different orientation of the acac group has been observed in complex 39 by

comparison to the complex 42. This is illustrated by the torsion angle C18–N3–C9–C8
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Figure 6.9: Representation of the two-dimensional hydrogen bonding interactions in crys-

tals of complex [MoO2(Mesalhytyracac)(MeOH)]·2MeOH·Et2O (42), as viewed along the

[100] direction; broken lines represent hydrogen bonding interactions.

which has a value of 96.6◦ in complex 39 with phenylalanine residue, whereas in complex

42 the acac group is orientated with the torsion angle of 84.5◦.
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Figure 6.10: Overlay of the molecular structures of complex 39 with phenylalanine side

chain (thick lines) and complex 42 with tyrosine side chain (atom numbering extension

A, broken lines).
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Table 6.1: Selected bond lengths (pm) and angles (◦) for

complexes 37, 39, and 42.

37 39 42

Bond lengths

Mo–O1 168.8(3) 168.7(2) 170.3(3)

Mo–O2 169.3(3) 170.2(3) 170.3(3)

Mo–O3 193.5(3) 192.1(3) 192.0(3)

Mo–O4 199.9(4) 200.1(3) 200.3(2)

Mo–O1M 233.1(3) 233.3(3) 233.1(2)

Mo–N1 224.0(4) 225.7(3) 225.0(3)

O4–C8 131.0(6) 132.7(5) 132.8(4)

N1–N2 141.6(5) 142.3(4) 141.6(4)

N1–C7 128.9(5) 130.5(5) 131.4(5)

N2–C8 128.0(5) 129.5(5) 128.9(5)

Bond angles

O1–Mo–O2 105.86(16) 105.74(18) 106.10(15)

O1–Mo–O3 98.72(15) 99.66(13) 99.37(14)

O1–Mo–O4 97.40(15) 100.64(16) 99.34(14)

O1–Mo–O1M 170.04(14) 168.64(16) 171.1(2)

O2–Mo–O3 103.78(15) 104.53(14) 103.16(13)

O2–Mo–O4 96.08(14) 95.61(11) 96.03(12)

O2–Mo–O1M 84.05(15) 85.61(16) 82.73(1)

O3–Mo–O4 149.81(13) 146.18(12) 148.20(12)

O1–Mo–N1 94.38(15) 91.50(16) 93.22(13)

O2–Mo–N1 157.62(15) 160.65(15) 159.14(13)

O3–Mo–N1 81.97(13) 80.58(11) 80.83(11)

O3–Mo–O1M 79.53(13) 76.64(11) 78.85(1)

O4–Mo–N1 71.48(12) 72.15(12) 72.65(11)

O4–Mo–O1M 80.19(12) 78.16(14) 78.71(1)
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6.2 Spectroscopic Characterization

The infrared spectra of complexes 37 to 42 (see Table 6.2) exhibit, beside typical ligand

vibrations, two strong absorptions at 903–914 and 922–941 cm−1 which are attributed

to the symmetric and asymmetric ν(Mo=O) vibrations of the cis- MoO2
2+ groups, re-

spectively, thus confirming the formation of mononuclear molybdenum(vi) complexes

in chapter 5. This stretching vibrations are similar with those found for the previ-

ous described cis-dioxomolybdenum complexes with amino acid residue ligands. Co-

ordination of the imine group through nitrogen is seen in the ν(C=N–N=C) at 1598-

1604 cm−1, which is slightly lower than in uncoordinated bases. Characteristic strong

bands at 1654–1684 cm−1 due to the carbonyl moiety ν(C=O) stretching vibrations of

the ligands[117, 140, 141] are not observed any more in the spectra of the complexes. The

coordination of the ligands through the phenolate function is confirmed for all complexes

by the disappearance of the ν(O–H) vibration in comparison to the spectra of free ligands.

The 1H–NMR spectra of the complexes are indicative of binding of the ligands through

the deprotonated phenolate oxygen, enolate oxygen, and the azomethine nitrogen atoms.

Coordination from the imine nitrogen is reflected in the downfield shift of about 0.5 ppm

of the CH=N proton in the NMR spectra of the complexes 37 and 40. The aromatic

protons of ligands and complexes as well as the α-CH, β-CH2, and hydroxy group of

tyrosine amino acid, appear in the expected region, with slight shifts in their positions (see

Experimental Section). The presence of acac group in the spectra of complexes 37, 39 and

42 is shown by singlet signals at 1.89 and 1.96 ppm for the CH3 protons and 4.91 ppm for

CH proton. The 1H–NMR spectra of the complexes also showed a doublet (3.2 ppm, CH3)

and quartet (4.1 ppm, OH) of coordinated methanol. In addition, in the case of complexes

40 and 41 the presence of water molecules are confirmed by the specific resonance at

3.3 ppm. The 1H–NMR spectra of complex 42 shows only three methanol molecules, but

does not show any diethyl ether molecule, and moreover the elemental analyzes confirm

this. Whereas the structure analyzes show also one diethyl ether molecule, per formula

unit. This can be explained due to the fact that the X-ray analysis were performed on
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fresh crystals from the solution, whereas for NMR and elemental analysis the sample was

dried completely before analyzing. It seems that after drying diethyl ether is removed.

Table 6.2: Characteristics IR bands [cm−1] for the com-

plexes

Formula Complex ν(C=N–N=C) ν(MoO2)

[MoO2(Brsalhyleuacac)(MeOH)] 37 1598 937, 914

[MoO2(Mesalhyphe)] 38 1603 934, 908

[MoO2(Mesalhypheacac)(MeOH)]·2MeOH 39 1603 938, 908

[MoO2(Brsalhyphe)(MeOH)]·H2O 40 1602 941, 907

[MoO2(Mesalhytyr)]·2H2O 41 1604 922, 903

[MoO2(Mesalhytyracac)(MeOH)]·2MeOH·Et2O 42 1601 939, 911

6.3 Oxidation of sulfides catalyzed by dioxomolybde-

num complexes with Boc-amino acid functional-

ized ligands

The new cis-dioxomolybdenum complexes with free amino acid ligands, were also tested

toward their capability to catalyze the oxidation of methyl phenyl sulfide, using hydrogen

peroxide as oxidant. Following typical procedure described in chapter 2, 1 mol-% catalyst

has been used for the reaction and a slight excess (1.2 equivalents) of hydrogen peroxide,

in a mixture CH2Cl2/CH3OH 7:3. After defined intervals of time, aliquots were taken

from the reaction mixture and the product analyzed by NMR (determination of the

yield) and HPLC (determination of the ee). The outcomes of the catalytic reaction are

summarized in Table 6.3 for the cis-dioxomolybdenum(vi) complexes with free-amino

acid residues. After 1 hour of the reaction time 100% of the corresponding sulfoxide was

obtained when complex 37, with leucine residue, was used as catalyst, which is also the

most efficient catalyst of the herein described molybdenum complexes (see Figure 6.11).
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Table 6.3: Catalyzed asymmetric oxidation of methyl

phenyl sulfide using various complexes

Formula Complex Time Yielda ee b Configurationc

(h) (%) (%)

[MoO2(Brsalhyleuacac)(MeOH)] 37 1 100 n.dd –

[MoO2(Mesalhyphe)] 38 1 61 2.92 s

[MoO2(Mesalhyphe)] 38 3 94 2.34 s

[MoO2(Mesalhytyr)]·2H2O 41 1 61 2.61 s

[MoO2(Mesalhytyr)]·2H2O 41 3 80.4 0.79 s

[MoO2(Mesalhytyracac)(MeOH)] 42 1 86 2.75 s

·2MeOH·Et2O

All reactions were carried out at 0 ◦C with vanadium complexes loading to 1 mol-%

and (1.2 equivalents) of hydrogen peroxide (8.24 m), in a mixture CH2Cl2/CH3OH 7:3.

a isolated yield determined by 1H–NMR (400 MHz) using 1,3,5-trimethoxybenzene as

internal standard. b Determined by HPLC using a (S,S)-WHELK-01 chiral column (25

cm × 4.6 mm). The column was eluted with hexane:2-propanol (90:10), at a flow rate

of 2.0 mL/min. c Absolute configuration of the major product was determined to be s,

by comparison of the chromatogram in HPLC with the authentic sample. d n.d. not

determined.
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Figure 6.11: Oxidation of methyl phenyl sulfide catalyzed by molybdenum complexes

with free-amino acid ligands. The conversions in % were reached after 1 hour of the

reaction time

6.4 Conclusions

The synthesis of new cis-dioxomolybdenum complexes(vi) 37 to 42 is described based on

free amino acid residue ligands. The main product was the desired cis-dioxomolybdenum

complexe(vi). This was accompanied by the second product formed by condensation of

the amino acid functionality with the acac (acetylacetonate) group of the MoO2(acac)2,

in a low yield. The complexes were examined as catalyst in the sulfoxidation reaction of

methyl phenyl sulfide to the corresponding sulfoxide. There are no significant differences

in the catalytic activity. All types of catalysts showed high activity, but unfortunately,

the ee values were two low, which can be explained as in the case of the corresponding

dioxovanadium complexes with the fact that, the chiral center is far away from the

dioxo molybdenum(vi) moiety. Nevertheless, these complexes are more reactive than

the corresponding dioxovanadium complexes.
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6.5 Experimental part

6.5.1 [MoO2(Brsalhyleuacac)(MeOH)] (37)

To a solution of Schiff base ligand Brsalhyleu (0.82 g, 2.5 mmol) in methanol (30 mL) was

added MoO2(acac)2 (0.82 g, 2.5 mmol). The green brown reaction mixture was stirred

at room temperature for 3 days, when a yellow solution was formed. The solution was

filtrated, to remove small amounts of unreacted molybdate, the volume of the filtrate

was reduced to about 5 mL, and left at room temperature when an yellow precipitate is

formed. The resulting precipitate was filtrated, recrystallized from methanol, and kept

in an open flask at room temperature. After slow evaporation of the solvent suitable

crystals for X-ray measurement were isolated.

Total yield: 0.57 g (1.00 mmol, 40%).

Elemental analysis for C19H26BrMoN3O6 (568.27 g/mol): calculated C: 40.16%, H:

4.61%, N: 7.39%; found C: 39.85%, H: 4.84%, N: 7.12%.

1H-NMR (400 MHz, DMSO-d6): δ = 0.95 (m, 6H, (CH3)2), 1.65 (m, 3H, γ-CH, β-

CH2), 1.89 (s, 3H, CH3(acac)), 1.96 (s, 3H, CH3(acac)), 3.16 (s, 3H, MeOH), 4.01 (s,

1H, MeOH), 4.42 (m, 1H, α-CH), 4.91 (s, 1H, CH(acac)), 6.90 (m, 1H, Ph), 7.66 (m,

1H, Ph), 7.94 (s, 1H, Ph), 8.82 (s, 1H, CH=N), 10.84 (br, 1H, NH) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 19.06 (CH3(acac)), 22.62, 22.82, (C(CH3)2),

24.83 (γ-CH), 29.21 (CH3(acac)), 42.53 (β-CH2), 49.06 (MeOH), 52.30 (α-CH), 95.62

(CH(acac)), 112.76 (Ph), 121.36 (Ph), 122.36 (Ph), 136.38 (Ph), 137.59 (Ph), 156.07

(CH=N), 158.88 (Ph), 162.32 (C=N), 174.55 (CH=O), 194.60 (CH=Oacac), ppm.

MS (FAB+, nba): m/z = 536 [30% M + H+], 410 (80%), 307 (100%), 289 (70%).

Selected IR data (cm−1): ν = 1598 (s, C=N–N=C), 937 (s, MoO2), 914 (s, MoO2).

6.5.2 [MoO2(Mesalhyphe)] (38)

Method A To a solution of Mesalhyphe (0.12 g, 0.40 mmol) in 20 mL methanol was added

MoO2(acac)2 (0.13 g, 0.40 mmol). The reaction mixture changed color to orange. The

resulting mixture was heated under reflux with continuous stirring. In a few minutes a

yellow precipitate is formed. The mixture was heated for an additional 2 hours, then the
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yellow precipitate was filtrated, and dried in air. m.p 240◦C

Total yield: 0.15 g (0.354 mmol, 88.5%).

Elemental analysis for C17H17MoN3O4 (423.3 g/mol): calculated C: 48.24%, H: 4.02%,

N: 9.93%; found C: 47.00%, H: 3.85%, N: 9.59%.

1H-NMR (200 MHz, DMSO-d6): δ = 2.67 (s, 3H, CH3), 2.80 (m, 1H, β–CH2), 2.97

(m, 1H, β–CH2), 3.78 (br, 1H, α-CH), 6.88 (m, 1H, Ph), 7.04 (m, 1H, Ph), 7.18 (m, 5H,

Ph), 7.57 (m, 1H, Ph), 7.82 (m, 1H, Ph) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 16.58 (CH3), 38.25 (β–CH2), 54.11 (α-CH),

118.63 (Ph), 121.46 (Ph), 122.59 (Ph), 126.10 (Ph), 128.00 (Ph), 129.41 (Ph), 130.84

(Ph), 133.46 (Ph), 138.37 (Ph), 159.82 (Ph), 163.84 (C=N), 174.36 (C=O) ppm.

Selected IR data (cm−1): ν = 3321, 3257 (s, NH), 1603 (s, C=N–N=C), 934 (s, MoO2),

908 (s, MoO2).

Method B To a solution of the ligand Mesalhyphe (0.25 g, 0.84 mmol) in 30 mL methanol

was added NaMoO4·2H2O (0.20 g, 0.84 mmol). The reaction mixture was stirred at room

temperature for 30 minutes followed by heating under reflux for 1 hour till all molybdate

was reacted. The volume of the yellow clear solution was reduced to about half of its

original volume and left at room temperature when a yellow precipitate is formed. The

resulting precipitate was filtrated and dried in air.

Total yield: 0.20 g (0.47 mmol, 56%).

1H-NMR (400 MHz, DMSO-d6): δ = 2.27 (s, 3H, CH3), 2.72 (m, 1H, β–CH2), 2.97

(m, 1H, β–CH2), 3.78 (m, 1H, α-CH), 6.88 (m, 1H, Ph), 7.04 (m, 1H, Ph), 7.18 (m, 5H,

Ph), 7.57 (m, 1H, Ph), 7.82 (m, 1H, Ph) ppm.

13C-NMR (100 MHz, DMSO-d6): δ = 13.23 (CH3), 38.25 (β–CH2), 55 (α-CH), 117.22

(Ph), 118.33 (Ph), 119.27 (Ph), 126.08 (Ph), 128.04 (Ph),128.27 (Ph), 129.31 (Ph), 130.98

(Ph), 138.54 (Ph), 155.54 (Ph), 158.69 (C=N), 171.54 (C=O) ppm.

6.5.3 [MoO2(Mesalhypheacac)(MeOH)]·2MeOH (39)

The yellow crystals of this type of complex were obtained and isolated from the concen-

trated solution of the filtrate from complex 38 when kept at -28◦C for 3 days.

mp 185–192◦C.
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Total yield: 28 mg (0.046 mmol, 11.5%).

Elemental analysis for C24H31MoN3O7 (569.46 g/mol): calculated C: 50.62%, H: 5.49%,

N: 7.38%; found C:51.18%, H: 4.66%, N: 8.03%.

Selected IR data (cm−1): ν = 3400 (s, NH), 1603 (s, C=N–N=C), 938 (s, MoO2), 908

(s, MoO2).

6.5.4 [MoO2(Brsalhyphe)(MeOH)]·H2O (40)

To a solution of the ligand Brsalhyphe (0.190 g, 0.520 mmol9 in 20 mL methanol was

added MoO2(acac)2 (0.170 g, 0.520 mmol). The reaction mixture changed color from

yellow to orange. The mixture was heated under reflux for 30 minutes, when all molybdate

was reacted. The volume of the solution was reduced to half of its original volume, and

left at room temperature when a yellow precipitate is formed. The resulting precipitate

was filtrated and dried in air.

Total yield: 0.31 g (0.50 mmol, 96%).

Elemental analysis for C22H26MoN3O7 (620.30 g/mol): calculated C: 42.60%, H: 4.22%,

N: 6.77%; found C: 42.184%, H: 3.94%, N: 6.54%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.89 (s, 3H, CH3(acac)), 1.96 (s, 3H, CH3(acac)),

2.98 (m, 2H, β-CH2), 3.16 (s, 3H, MeOH), 3.33 (s, 3H, CH(acac) overlapping with H2O),

4.51 (m, 1H, α-CH), 6.90 (m, 1H, Ph), 7.25 (m, 6H, Ph), 7.62–7.91 (m, 1H, Ph), 8.76 (s,

1H, CH=N), 10.89 (s, 1H, NH) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 23.37 (CH3(acac)), 33.60 (CH3(acac)), 45.50 (β-

CH2), 48.59 (MeOH), 53.46 (α-CH), 100.75 (Ph), 117.16 (Ph), 125.78 (Ph), 126.75 (Ph),

131.63 (Ph), 133.15 (Ph), 134.23 (Ph), 134.70 (Ph), 140.81 (Ph), 141.23 (Ph), 142.04

(Ph), 160.56 (CH=N), 163.30 (Ph), 166.45 (C=N), 178.07 (C=O), 195.00 (C=O) ppm.

Selected IR data (cm−1): ν = 1602 (s, C=N–N=C), 941 (s, MoO2), 907 (s, MoO2).

6.5.5 [MoO2(Mesalhytyr)]·2H2O (41)

To a solution of Mesalhytyr (439 mg, 1.40 mmol) in 60 mL hot methanol was added

MoO2(acac)2 (450 mg, 1.40 mmol). The reaction mixture changed color to orange. The

resulting yellow solution was heated under reflux with continuous stirring. In a few
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minutes a yellow precipitate is formed. The mixture was heated for an additional 1 hour,

then the yellow precipitate was filtrated, and dried in air.

Total yield: 0.35 g ( 0.74 mmol, 53%).

Elemental analysis for C17H21MoN3O7 (475.30 g/mol): calculated C: 42.96%, H: 4.45%,

N: 8.84%; found C: 43.00%, H: 3.91%, N: 8.88%.

1H-NMR (200 MHz, DMSO-d6): δ = 2.68 (s, 3H, CH3), 2.83–2.93 (m, 2H, β–CH2),

3.33 (s, 2H, H2O), 3.72 (m, 1H, α–CH), 6.64 (m, 2H, Ph), 6.91 (m, 2H, Ph), 7.03 (m,

2H, Ph), 7.50 (m, 1H, Ph), 7.78 (m, 1H, Ph), 8.04 (br, 1H, OH–amino acid) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 16.6 (CH3), 38.15 (β–CH2), 54.22 (α-CH), 114.87

(Ph), 118.61 (Ph), 121.47 (Ph), 122.30 (Ph), 129.45 (Ph), 130.31 (Ph), 130.85 (Ph),

132.90 (Ph), 155.73 (Ph), 159.81 (Ph), 163.12 (C=N), 170.93 (O–CNNC) ppm.

Selected IR data (cm−1): ν = 3503 (s, br; O–H), 3316 (s, N–H), 1604 (s, br; C=N–N=C),

922 (s, MoO2), 903 (s, MoO2).

EI-MS (negative ion mode, in methanol): m/z = 442 ([MoO2(Mesalhytyr)] – H+ 10%),

335.9 (100%).

6.5.6 [MoO2(Mesalhytyracac)(MeOH)]·2MeOH·Et2O (42)

To a solution of Mesalhytyr (304 mg, 0.97 mmol) in 40 mL methanol was added

MoO2(acac)2 (311 mg, 0.97 mmol). The reaction mixture changed color to orange. The

resulting mixture was heated under reflux with continuous stirring for 4 hours. Then the

volume of the solution was reduced to about 5 mL, diethyl ether was added which results

in the formation of a slurry solution, which left at -28◦C. Yellow colored single crystals

suitable for X-ray studies formed within two weeks.

Total yield: 62 mg (0.100 mmol, 10.4%).

Elemental analysis for C25H35MoN3O9 (617.50 g/mol): calculated C: 48.63%, H: 5.71%,

N: 6.80%; found C: 47.41%, H: 5.42%, N: 7.06%.

1H-NMR (400 MHz, DMSO-d6): δ = 1.73 (s, 3H, CH3(acac)), 1.86 (s, 3H, CH3(acac)),

2.71 (s, 3H, CH3), 2.81–2-87 (dd, 3J = 8.21, 2J = 13.72 Hz, 1H, β–CH2), 3.02–3-03 (dd,

3J = 5.61, 2J = 13.72 Hz, β–CH2), 3.16 (d, 3J = 5.20 Hz, CH3OH), 3.32 (s, 4H, Et2O),

4.91 (s, 1H, CH(acac)), 6.61 (m, 1H, Ph), 6.91 (m, 1H, Ph), 7.05 (m, 3H, Ph), 7.48 (m,



Section 6.5: Experimental part 171

1H, Ph), 7.87 (m, 1H, Ph), 9.21 (s, 1H, OH), 10.93 (br, 1H, NH(acac)) ppm.

13C-NMR (50 MHz, DMSO-d6): δ = 18.47 (CH3), 28.70 (CH3(acac)), 29.21

(CH3(acac)), 40.75 (β–CH2), 48.58 (MeOH), 55.56 (α-CH), 95.62 (CH(acac)), 115.02

(Ph), 118.65 (Ph), 121.65 (Ph), 122.43 (Ph), 126.60 (Ph), 130.46 (Ph), 131.01 (Ph),

133.71 (Ph), 156.03 (Ph), 159.75 (Ph), 164.69 (C=N), 170.97 (O–CNNC), 193.73

(C=O(acac)) ppm.

Selected IR data (cm−1): ν = 3368 (s, br; N–H), 1601 (s, C=N–N=C), 939 (s, MoO2),

911 (s, MoO2).

6.5.7 Catalytic oxidation of methyl phenyl sulfide

Molybdenum complex (0.02 mmol) was dissolved at room temperature in a mixture of

CH2Cl2/CH3OH 7:3 (20 mL) and 1,3,5-trimethoxybenzene (0.34 g, 2.0 mmol) as inter-

nal standard was added followed by (0.24 ml, 2.0 mmol) phenyl methyl sulfide. The

resulting solution was cooled down on an ice-bath and H2O2 8.24 m (1.2 equiv., 0.31 mL,

2.5 mmol) was added dropwise. The reaction solution was warmed up to room tempera-

ture and stirred in a capped flask and monitored by thin-layer chromatography technique

(Et2O:n-hexane 9:1). After 1, and 3-hours reaction time, aliquots of the reaction solu-

tions (2.0 mL) were quenched with ca. 5 mL of a stock solution of NaOH (0.1 m) and

extracted with ethyl acetate (3×4 mL). The collected organic phases were removed com-

pletely to dryness and the residue was redissolved in deuterated chloroform (600 μL)

and analyzed by 1H–NMR to determine the yield. From this solution was then taken

60 μL of chloroform, removed the solvent to dryness and the residue redissolved in 2 mL

dichlormethane and the enantiomeric excess was determined by chiral HPLC as described

in chapter 2.
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Summary

Amino acids occupy a special place in the coordination chemistry of transition metal

ions. Since amino acids are the constituents from which proteins are built, the complexes

formed by metal ions and amino acids have served as model systems for metalloprotein

studies.[149] A knowledge of the interaction between vanadium and amino acids is of

significance for the understanding of biological action of the metal. For example: (1)

vanadium(iv) and (v) are thought to be bound to the serum protein transferrin via

amino acids as ligands, (2) the tunichromes are catechol derivatives thought to play

an important role in the accumulation and storage of vanadium by marine organisms

tunicats, (3) the interaction of vanadium with tyrosine is thought to be responsible for

the insulin enhancing effects of vanadate, and (4) vanadium is known to have a function

in various enzymes of plants and organisms (Butler and Carrano, 1991; Kendrick et al.,

1992).

After vanadium haloperoxidase had been found in various enzymes as an essential

part, the focus on the structure and function of vanadium-dependent haloperoxidases has

increased. Hydrogen bonding plays an important role in both the fixation of vanadate in

the active site and in the activation of a peroxide substrate.

The objective of the present work was to synthesize chiral cis-dioxovanadium(v)

complexes, which model the active site and catalytic function of vanadium haloperoxi-

dases. To the best of our knowledge, no data on the formation of cis-dioxovanadium(v)

complexes with N -salicylidene-amino-acid-hydrazide ligands have been reported. There-

fore vanadium(v) complexes with the Schiff bases derived from salicylaldehyde itself or
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one of its ring substituted derivative and amino acid hydrazides were prepared. Starting

from protected amino acids, free (unprotected amino group of the amino acids) different

amino acids were used. By this we propose to probe the role of the amino acid residues

involved in the hydrogen bonding network of the protein bound vanadate in haloperoxi-

dases.

The synthesis of cis-dioxovandium complexes with protected amino acids such as

Boc-l-α-serine, Boc-l-α-histidine, Boc-l-α-tryptophan, and Boc-l-α-phenylalanine were

described in chapter 2. Preparations were carried out with potassium or ammonium

vanadate as vanadium sources. The resulting complexes were characterized and in the

case of Boc-l-α-serine residue the complex has been structurally characterized by X-ray

diffraction analysis, which showed the vanadium atom in a distorted square pyramidal

coordination environment. Their oxidizing properties were studied in competitive bromi-

nation of 1,3,5-trimetoxybenzene (TMB) and monochlordimedone (MCD), in acetonitrile

solution, using hydrogen peroxide as oxidant. The results showed that they are good cat-

alysts. The best results were obtained with the serine residue vanadium complexes with

bromo-substituted aldehyde NH4[VO2(BrsalhyBocser)]·MeOH (4). They are often almost

as active or even more active than the vanadate standard (nBu4N)2HVO4.

The capability of the new chiral cis-dioxovanadium(v) complexes to function as

catalysts for the oxidation reaction of methyl phenyl sulfide by hydrogen peroxide was also

investigated. The best results were obtained with complexes derived from Boc-l-α-serine,

the reaction was completed in less than three hours, thus they have the highest efficient

catalytic activity of the herein described complexes with Boc-amino acid residues. The

enantioselectivity of the cis-dioxovanadium(v) complexes was very low. This indicates

that the chiral center is too far away from the vanadate moiety.

In order to see the influence of the amino acids protecting group on the catalytic

activity of vanadium complexes, free amino acids were introduced as described in chapter

3. The synthesis of cis-dioxovanadium complexes followed the same procedure as in the

case of protected ones, in addition vanadyl sulfate was used as an alternative method

to synthesize the neutral complexes. The Schiff base ligands with hydroxy acetophenone

proved to be successful to incorporate vanadium in the desired manner. X-ray crystal

structures revealed the vanadium atom in a slightly distorted square pyramidal, where
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the protonated amino acids functionality compensate the negative charge of the vanadate

moiety, similar to the lysine residue in the vanadium dependent haloperoxidase enzymes.

The Schiff base ligands with salicylaldehyde, and its bromo substituted derivative,

were not able to give the desired complexes. Instead vanadium complexes 21 to 26 were

obtained as the products of the oxidative removal of amino acid residues from the α-

methyl groups, followed by oxidation of the Cα–C bond, leading to the formation of the

α-ketoamides. The unprecedented complexes thus formed, serve as very good catalyst

for the oxidation reaction of Cα–C to C=O. The cis-dioxovanadium(v) complexes with

free amino acid residues, described in chapter 3 were also tested towards their capability

to catalyze the oxidative bromination of TMB/MCD. The results showed that they react

faster than those with Boc protected described in chapter 2. The complexes showed also

high efficient capability in catalyzing the oxidation of sulfide when H2O2 was used as

oxidizing agent, comparable with the results found from the vanadium complexes with

protected amino acid residue ligands.

In order to see the influence of β-amino acids on the catalytic activity, Boc-l-β-

alanine was introduced as described in chapter 4. Therefore, a new ligand system was

designed which proved to be successful to incorporate vanadium(v), capable of mimicking

the hydrogen bonding interactions of vanadate moiety from the natural system with

lysine residue. Complex K[VO2(salhyBocβala)]·H2O (28) was tested for its catalytic

activity in the reaction where TMB/MCD were used as substrate and hydrogen peroxide

as the oxidant. It was found a good active catalyst. The results are comparable with

those obtained for cis-dioxovanadium complexes with α-amino acids, even more active

than vanadium complexes with protected α-amino acids. Therefore it could serve as a

functional mimic for vanadium bromoperoxidase.

The catalyst 28 was also tested on its ability to oxidise the organic sulfides to the

corresponding sulfoxides. The results showed that the reaction was completed in 3 hours

giving the corresponding sulfoxide in a very high yield.

Based on the results of both catalytic reactions, attempts were made to synthesize

cis-dioxovanadium complexes which contain a free β-alanine ligand, which we expect to

have higher catalytic activity. Unfortunately, the ligand with free β-alanine was inappro-

priate for the synthesis of cis-dioxovanadium(v) complexes, since no well characterized
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complexes were isolated.

The replacement of vanadate from vanadium haloperoxidase with molybdate or

tungstate yielded an inactive enzyme.[14] Therefore, cis-dioxomolybdenum(vi) complexes

based on N -salicylidene amino acid hydrazides were also obtained in order to address the

question whether a synthetic molybdenum complex can catalyze the bromoperoxidase

reaction. Molybdenum complexes which contain protected amino acid were described in

chapter 5, whereas those with unprotected ones in chapter 6. But, however they showed

no bromoperoxidase activity, in contrary to the corresponding cis-dioxovanadium(v) com-

plexes. Instead, they served as very good catalyst in sulfoxidation reaction. Within the

protected amino acid group there was a strong decrease in activity on going from α- to β-

amino acids. Furthermore, cis-dioxomolybdenum(vi) which contain unprotected amino

acid, turned out to be even more active.
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Zusammenfassung

Aminosäuren nehmen einen speziellen Platz in der Koordinationsschemie der Übergangs-

metalle ein. Da sie die Bausteine der Proteine sind, können Komplexe aus Metallionen

und Aminosäuren als Modellsystheme für die Untersuchung von Metalloproteinen dienen.

Das Wissen über die Wechselwirkung zwischen Vanadium und Aminosäuren kann für das

Verständnis der biologischen Aktivität des Metalls von Bedeutung sein. Zum Beispiel:

(1) Man nimmt an, dass Vanadium(iv) und (v) an das Serumprotein, Transferrin, durch

Aminosäuren als Liganden gebunden sind, (2) dass in Tunikaten, maritimen Organismen,

Catecholderivate, so genannte Tunichrome, eine wichtige Rolle bei der Aufnahme und

Speicherung von Vanadium tragen, (3) die Wechselwirkung von Vanadium mit Tyrosin

für den insulinmimetischen Effekt des Vanadates verantwortlich ist und (4) Vanadium

eine Funktion in verschiedenen Enzymen in Pflanzen und Organismen trägt (Butler und

Carrano, 1991; Kendrick et al., 1992).

Nachdem Vanadium in verschiedenen Organismen, z.B. in Haloperoxidasen, als ein

essentieller Bestandteil gefunden wurde hat sich der Blick auf die Struktur und Funktion

vanadium-abhängiger Enzyme verstärkt. Wasserstoffbrückenbindungen spielen dabei eine

wichtige Rolle, zum einen bei der Fixierung des Vanadates im aktiven Zentrum und auch

bei der Aktivierung des Peroxidsubstrates.

Das Ziel der vorliegenden Arbeit war es chirale cis-Dioxovanadium(v)-Komplexe

zu synthetisieren, die das aktive Zentrum und die katalytische Funktion der Vanadi-

umhaloperoxidase nachbilden. Nach unserem Kenntnisstand wurden bisher keine Daten

über die Bildung von cis-Dioxovanadium(v)-Komplexen mit N -Salicyliden-aminosäurehy-

drazidliganden veröffentlicht. Daher wurden Vanadium(v) Komplexe mit Schiffschen

Basen ausgehend von Salicylaldehyd selbst oder eines seiner ringsubstituierten Derivate

und Aminosaurehydraziden hergestellt. Ausgehend von geschützten Aminosäuren wur-

den verschiedene freie Aminosäuren schrittweise eingeführt. Dies dient dazu die Bedeu-

tung der Aminosäurereste, welche über Wasserstoffbrückenbindungen mit dem äquatorial-

en Sauerstoffatom der prosthetischen Gruppe in der vanadiumhaltigen Haloperoxidase in

Wechselwirkung stehen, zu untersuchen.

Die Synthese der cis-Dioxovandiumkomplexe mit den geschützten Aminosäuren

Boc-l-α-Serin, Boc-l-α-Histidin, Boc-l-α-Tryptophan und Boc-l-α-Phenylalanin wird
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in Kapitel 2 beschrieben. Die Darstellungen wurden mit Kalium oder Ammoniumvana-

dat als Vanadiumquelle durchgeführt. Die gebildeten Komplexe wurden charakterisiert

und im Falle des Boc-l-α-Serinerestes strukturell durch eine Kristallstrukturanalyse un-

tersucht, wobei das Vanadiumatom in einer verzerrt quadratisch pyramidalen Koordi-

nationsumgebung vorliegt. Ihre Oxidationseigenschaften wurden bei der Bromierung

von 1,3,5-Trimetoxybenzen (TMB) und Monochlordimedon (MCD) in Acetonitril, mit

Wasserstoffperoxid als Oxidationsmittel, untersucht. Die Ergebnisse zeigen, dass sie

sehr gute Katalysatoren sind. Die besten Ergebnisse wurden mit dem Vanadiumkom-

plexe mit Serinrest und Brom-substituierten Aldehyd NH4[VO2(BrsalhyBocser)]·MeOH

(4) erzielt. Oftmals sind die Kompelxe fast so aktiv oder aktiver als der Vanadatstandard

(nBu4N)2HVO4.

Die Vermögen der neuen chiralen cis-Dioxovanadium(v)-Komplexe als Katalysator

für die Oxidation von Methylphenylsulfid mittels Wasserstoffperoxid zu dienen wurde

ebenfalls untersucht. Die besten Ergebnisse wurden mit den Komplexen die sich von Boc-

l-α-Serin ableiten, erreicht. Die Reaktion war in weniger als drei Stunden abgeschlossen,

also haben sie die größte katalytische Aktivität der hier beschriebenen Komplexe mit

Boc-Aminosäureresten. Die Enantioselektivität der cis-Dioxovanadium(v) Komplexe ist

sehr gering, was darauf zurück-zuführen ist, dass das chirale Zentrum weit vom Vana-

datzentrum entfernt liegt.

Um den Einfluss der Aminosäureschutzgruppe auf die katalytische Aktivität des

Vanadiumkomplexes zu untersuchen, werden in Kapitel 3 freie Aminosäuren vorgestellt.

Die Synthese der cis-Dioxovanadiumkomplexe folgt dem selben Schema wie bei den

geschützten Komplexen, zusätzlich wurde Vanadylsulfat-Trihydrat als eine alternative

Methode der Komplexbildung verwendet. Die Schiff Base Liganden mit Hydroxyace-

tophenon erwiesen sich als geeignet um das Vanadium in der gewünschten Art und Weise

zu koordinieren. Die Kristallstrukturanalyse zeigt wieder das Vanadium in einer leicht

verzerrten quadratisch pyramidalen Koordination, wobei die protonierten Aminosäure-

funktionalitäten die negative Ladung des Vanadats ausgleichen, ähnlich wie bei dem

Lysinrest im vanadiumabhängigen Haloperoxidase-Enzym.

Mit den Schiff Base Liganden von Salicylaldehyd und seines bromsubstituierten

Derivates konnten nicht die gewünschten Komplexe gebildet werden. Die beispiellose
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Bildung der Vanadiumkomplexe 21–26 resultiert aus der oxidativen Abspaltung des

Aminosäurerestes von der β-Methylgruppe, gefolgt von der Oxidation dieser C–C-Bindung.

Die cis-Dioxovanadium(v)-Komplexe mit freien Aminosäureresten, die im Kapitel 3 be-

schrieben sind wurden auch auf ihre Fähigkeit zur Katalyse der oxidativen Bromierung

von TMB/MCD getestet. Es zeigt sich, dass die Komplexe schneller reagieren als die in

Kapitel 2 beschriebenen Boc-geschützten. Sie zeigten auch bei der katalytischen Oxida-

tion von Sulfiden mit H2O2 Aktivität, vergleichbar mit der welche für die Vanadiumkom-

plexe mit geschützten Aminosäureresten am Liganden gefunden wurde.

Um den Auswirkung von β-Aminosäuren auf die katalytische Aktivität zu zeigen,

wird in Kapitel 4 Boc-β-Alanin vorgestellt. Deshalb wurde ein neues Ligandensystem

designed, welches sich als erfolgreich für die Koordination von Vanadium(v) erwies und

fähig ist die Wasserstoffbrückenbindungen der Vanadatumgebung des natürlichen Sys-

tems mit Lysinrest nachzubilden. Es wurde anhand der Reaktion mit TMB/MCD

als Substrat und Wasserstoffperoxid als Oxidationsmittel untersucht ob der Komplex

K[VO2(salhyBocβala)]·H2O (28) als ein funktioneller Imitator für die Vanadiumbro-

moperoxidase dient. Es erwies sich als guter Katalysator, was vergleichbar mit den für

die cis-Dioxovanadiumkomplexe mit α-Aminosäuren erhaltenen Werten ist, und er war

aktiver als die Vanadiumkomplexe mit geschützten α-Aminosäuren.

Der Komplex 28 wurde auch auf die Eignung zur Oxidation von organischen Sul-

fiden zu den korrespondierenden Sulfoxiden untersucht. Die Reaktion war in 3 Stunden

beendet.

Ausgehend von den Resultaten der beiden katalytischen Reaktionen, wurden Ver-

suche unternommen einen cis-Dioxovanadiumkomplex mit einem freien β-Alaninliganden

herzustellen, für welchen eine höhere katalytisch Aktivität erwartet werden würde. Be-

dauerlicherweise war der Ligand mit freiem β-Alanine ungeeignet für die Synthese von

cis-Dioxovanadium(v)-Komplexen, da keine charakterisierbaren Komplexe isoliert wer-

den konnten.

Der Ersatz von Vanadat in Vanadiumhaloperoxidasen mit Molybdat oder Wol-

framat führte zu inaktiven Enzymen. Deshalb wurden auch cis-Dioxomolybdän(vi)-

Komplexe basierend auf N -Salicylidenaminosäurehydraziden synthetisiert um die Frage

zu beantworten, ob synthetische Molybdänkomplexe die Bromoperoxidasereaktion kataly-
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sieren können. Die Molybdänkomplexe mit geschützten Aminosäuren werden in Kapitel

5 beschrieben, und die ungeschützten in Kapitel 6. Allerdings zeigten sie keine Bro-

moperoxidaseaktivität, im Gegensatz zu den korrespondierenden cis-Dioxovanadium(v)-

Komplexen. Sie dienen aber als sehr gute Katalysatoren für die Sulfoxidation, wobei bei

den geschützten Aminosäuren eine große Abnahme der Aktivität von α- zu β-Aminosäuren

zu verzeichnen war. Des Weiteren stellte sich heraus, dass die cis-Dioxomolybdän(vi)-

Komplexe mit ungeschützter Aminosäure noch aktiver sind.
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Characterization techniques

8.1 Elemental analyses

Carbon, hydrogen and nitrogen contents were determined at the ”Institut für Organiche

und Makromolekulare Chemie”, Friedrich-Schiller University, Jena using LECO CHN/932

and VARIO EL III elemental analyzers.

8.2 NMR spectroscopy

1H, 13C, 51V NMR, 1H{1H} COSY and 1H{13C} heteronuclear correlation NMR spectra

were recorded on Bruker Avance 200 and 400 MHz spectrometers.

8.3 Mass spectrometry

Mass spectrometry analysis were conducted on a MAT95XL Finnigan instrument, using

electron spray ionization, negative and positive mode.
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8.4 Infrared spectroscopy

IR spectra were recorded on Bruker IFS55/Equinox spectrometer on samples prepared

as KBr pellets.

8.5 UV-Vis measurements

The principal method used for catalytic bromination reactions was UV/Vis-spectroscopy.

All photometric measurements were carried with a Varian Cary 5000 UV/Vis/NIR spec-

trophotometer using solvents of high purity. The spectrophotometer was equipped with

dual cell peltier accessory, which offered a continuous stirring and temperature control.

8.6 HPLC analyses

HPLC data were recorded using Jasco HPLC instrument equipped with UV-diode array

detector, with a (S,S)-WHELK-01 chiral column (25 cm × 4.6 mm). The Borwin pro-

gram was used to evaluate peak areas. The column was eluted with hexane:2-propanol

(90:10), at a flow rate of 2.0 mL/min.

8.7 Crystal structure analyses

The crystallographic data were collected on a Nonius KappaCCD difractometer, using

graphite-monochromated Mo-Kα radiation of 71.073 pm. A summary of crystallographic

data and data collection for all complexes is given in the last part of the thesis. The struc-

tures were solved by direct methods (SHELXT) and subsequent least square refinement.

All non-hydrogen atoms were refined by using anisotropic displacement parameters, while

the hydrogen atoms were fixed and refined including their isotropic displacement para-

meters.
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The reactions carried out under argon were made by using standard Schlenk line tech-

nique.

8.8 General Remarks:

All solvents and chemicals were reagent grade and used without further purifications

unless otherwise specified: NH4VO3, KVO3, VOSO4 ·3H2O, Boc-l-α-amino acids, l-α-

amino acid methylester hydrochloride were purchased from Fluka. MoO2(acac)2 were

purchased from Aldrich. Acetonitrile was purchased from Merck and was of the purest

grade.

For catalytic reaction: A 30% (8.24 m) hydrogen peroxide solution, purchased from

Merck, was standardized by titrating with a 0.02 m solution of KMnO4, and the solution

was fresh prepared for each measurement. The concentration of a 60% (9.10 m) solution

of HClO4 was determined by titration with a 1 m solution of NaOH.
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Crystallographic data
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Table 8.1: Crystallographic data and structure refine-

mend for K[VO2(BrsalhyBocser)]·2H2O (3)

Empirical formula C15H21BrKN3O9V

Molecular mass, g/mol 557.30

Temperature, K 183(2)

Wavelength, pm 71.073

Crystal system, Space group orthorhombic, P212121

Unit cell dimensions,

a, pm; α, ◦ 672.96(7), 90

b, pm; β, ◦ 1146.27(9), 90

c, pm; γ, ◦ 2825.2(3) 90

Cell volume, nm3 2.1793(4)

Z 4

Calculated density, g/cm3 1.689

Absorbtion coefficient, mm−1 2.530

F(000) 1112

Crystal size, mm 0.03 x 0.03 x 0.02

θ range for data collection, ◦ 1.92 – 27.49

Flack parameter 0.02(2)

Index ranges -8 ≤ h ≤ 7,-13 ≤ k ≤ 14,

-32 ≤ l ≤ 36

Reflection collected 7133

Independent reflections 3220 (Rint = 0.0731)

R indices R1 = 0.095, ωR2 = 0.1968
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Table 8.2: Crystallographic data and structure refine-

mend for [VO2(Mesalhyphe)]·MeOH (18)

Empirical formula C18H22N3O5V

Molecular mass, g/mol 411.33

Temperature, K 183(2)

Wavelength, Å 0.71073

Crystal system, Space group orthorhombic, P212121

Unit cell dimensions,

a, pm; α, ◦ 782.38(3), 90

b, pm; β, ◦ 1309.77(4), 90

c, pm; γ, ◦ 1820.94(6), 90

Cell volume, pm3, 1865.99(11) x 106

Z 4

Calculated density, g/cm3 1.464

Absorbtion coefficient, mm−1 0.566

F(000) 856

Crystal size, mm 0.05 x 0.05 x 0.04

θ range for data collection, ◦ 2.83 – 27.48

Flack parameter 0.03(2)

Index ranges -10 ≤ h ≤ 10,-17 ≤ k ≤ 16,

-23 ≤ l ≤ 22

Reflection collected 4270

Independent reflections 3348 (Rint = 0.0775)

R indices R1 = 0.067, ωR2 = 0.086
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Table 8.3: Crystallographic data and structure refine-

mend for 2[VO2(Mesalhytyr)]·MeOH·2H2O (20a)

Empirical formula C35H26N6O14V2

Molecular mass, g/mol 876.66

Temperature, K 183(2)

Wavelength, Å 0.71073

Crystal system, Space group monoclinic, P21

Unit cell dimensions,

a, pm; α, ◦ 7446.30(10), 90

b, pm; β, ◦ 1046.97(2), 95.36(10)

c, pm; γ, ◦ 2579.15(6), 90

Cell volume, pm3, 2001.93(7) x 106

Z 2

Calculated density, g/cm3 1.454

Absorbtion coefficient, mm−1 0.540

F(000) 912

Crystal size, mm 0.04 x 0.04 x 0.03

θ range for data collection, ◦ 2.51 – 27.85

Index ranges 0 ≤ h ≤ 9,-13 ≤ k ≤ 13,

-33 ≤ l ≤ 33

Flack parameter 0.59(2)

Reflection collected 8982

Independent reflections 3510 (Rint = 0.0516)

R indices R1 = 0.064, ωR2 = 0.1379
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Table 8.4: Crystallographic data and structure refine-

mend for [VO2(Mesalhytyr)]·MeOH (20b)

Empirical formula C18H22N3O6V

Molecular mass, g/mol 427.33

Temperature, K 183(2)

Wavelength, Å 0.71073

Crystal system, Space group monoclinic, C2

Unit cell dimensions,

a, pm; α, ◦ 2107.74(15), 90

b, pm; β, ◦ 1279.48(8), 91.93(4)

c, pm; γ, ◦ 738.50(3), 90

Cell volume, pm3, 1990.5(2) x 106

Z 4

Calculated density, g/cm3 1.426

Absorbtion coefficient, mm−1 0.537

F(000) 888

Crystal size, mm 0.03 x 0.03 x 0.02

θ range for data collection, ◦ 1.86 – 27.46

Index ranges -27 ≤ h ≤ 24,-14 ≤ k ≤ 16,

-9 ≤ l ≤ 9

Flack parameter 0.01(2)

Reflection collected 4144

Independent reflections 3510 (Rint = 0.0993)

R indices R1 = 0.061, ωR2 = 0.0919
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Table 8.5: Crystallographic data and structure refine-

mend for Na[VO2(salhyCONH3)]·H2O·MeOH (21)

Empirical formula C10H14N3NaO7V

Molecular mass, g/mol 362.17

Temperature, K 183(2)

Wavelength, Å 0.71073

Crystal system, Space group monoclinic , P21/n

Unit cell dimensions,

a, pm; α, ◦ 736.39(2), 90

b, pm; β, ◦ 2350.31(9), 112.43(2)

c, pm; γ, ◦ 886.87(4), 90

Cell volume, pm3, 1418.86(9) x 106

Z 4

Calculated density, g/cm3 1.695

Absorbtion coefficient, mm−1 0.769

F(000) 740

Crystal size, mm 0.04 x 0.04 x 0.04

θ range for data collection, ◦ 2.63 – 27.48

Index ranges -8 ≤ h ≤ 9,-27 ≤ k ≤ 30,

-11 ≤ l ≤ 9

Reflection collected 3105

Independent reflections 2397 (Rint = 0.1056)

R indices R1 = 0.060, ωR2 = 0.097
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Table 8.6: Crystallographic data and structure refine-

mend for [MoO2(salhyBocala)(MeOH)]·2MeOH (36)

Empirical formula C18H31N3O9Mo

Molecular mass, g/mol 529.40

Temperature, K 183(2)

Wavelength, Å 0.71073

Crystal system, Space group monoclinic, P21/n

Unit cell dimensions,

a, pm; α, ◦ 1070.90(4), 90

b, pm; β, ◦ 998.79(5), 95.154(3)

c, pm; γ, ◦ 2294.81(9), 90

Cell volume, pm3, 2444.61(18) x 106

Z 4

Calculated density, g/cm3 1.438

Absorbtion coefficient, mm−1 0.585

F(000) 1096

Crystal size, mm 0.03 x 0.03 x 0.03

θ range for data collection, ◦ 2.03 – 27.48

Index ranges -13 ≤ h ≤ 13,-12 ≤ k ≤ 12,

-27 ≤ l ≤ 29

Flack parameter xx

Reflection collected 5568

Independent reflections 3537 (Rint = 0.1041 )

R indices R1 = 0.0470, ωR2 = 0.0880
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Table 8.7: Crystallographic data and structure refine-

mend for [MoO2(Brsalhyleuacac)]·MeOH (37)

Empirical formula C19H26BrN3O6Mo

Molecular mass, g/mol 568.28

Temperature, K 183(2)

Wavelength, Å 0.71073

Crystal system, Space group monoclinic , C2c

Unit cell dimensions,

a, pm; α, ◦ 2223.95(12), 90

b, pm; β, ◦ 782.34(6), 108.47(4)

c, pm; γ, ◦ 264.83(2), 90

Cell volume, pm3, 4370.4(5) x 106

Z 8

Calculated density, g/cm3 1.727

Absorbtion coefficient, mm−1 2.469

F(000) 2288

Crystal size, mm 0.04 x 0.04 x 0.03

θ range for data collection, ◦ 2.78 – 27.47

Index ranges -27 ≤ h ≤ 27,-10 ≤ k ≤ 8,

-26 ≤ l ≤ 34

Flack parameter x

Reflection collected 4770

Independent reflections 3015 (Rint = 0.103)

R indices R1 = 0.0471, ωR2 = 0.086
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Table 8.8: Crystallographic data and structure re-

finemend for [MoO2(Mesalhypheacac)(·MeOH)]·2MeOH

(39)

Empirical formula C25H35N3O8Mo

Molecular mass, g/mol 601.50

Temperature, K 183(2)

Wavelength, Å 0.71073

Crystal system, Space group monoclinic , C2

Unit cell dimensions,

a, pm; α, ◦ 3190.35(16), 90

b, pm; β, ◦ 849.18(4), 94.224(3)

c, pm; γ, ◦ 1043.82(4), 90

Cell volume, pm3, 2820.2(2) x 106

Z 4

Calculated density, g/cm3 1.417

Absorbtion coefficient, mm−1 0.515

F(000) 1248

Crystal size, mm 0.04 x 0.04 x 0.03

θ range for data collection, ◦ 3.13 – 27.46

Index ranges -36 ≤ h ≤ 41,-11 ≤ k ≤ 10,

-13 ≤ l ≤ 11

Flack parameter 0.10

Reflection collected 6055

Independent reflections 5001 (Rint = 0.063)

R indices R1 = 0.043, ωR2 = 0.081
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Table 8.9: Crystallographic data and structure

refinemend for [MoO2(Mesalhytyracac)(·MeOH)]

·2MeOH·Et2O (42)

Empirical formula C29H44N3O10Mo

Molecular mass, g/mol 690.61

Temperature, K 183(2)

Wavelength, Å 0.71073

Crystal system, Space group orthorhombic, P212121

Unit cell dimensions,

a, pm; α, ◦ 833.45(2), 90

b, pm; β, ◦ 1919.70(6), 90

c, pm; γ, ◦ 2127.62(6), 90

Cell volume, pm3, 3404.14(16) x 106

Z 4

Calculated density, g/cm3 1.348

Absorbtion coefficient, mm−1 0.515

F(000) 0.440

Crystal size, mm 0.04 x 0.04 x 0.03

θ range for data collection, ◦ 2.12 – 27.47

Index ranges -10 ≤ h ≤ 10,-24 ≤ k ≤ 23,

-26 ≤ l ≤ 27

Flack parameter 0.00(4)

Reflection collected 7744

Independent reflections 5886 (Rint = 0.0776 )

R indices R1 = 0.0486, ωR2 = 0.0917
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ala alanine

br brout

Br-TMB 1-bromo-2,4,6-trimethoxybenzene

ClPOs chloroperoxidases

DMF N,N-dimethylformamid

DMSO dimethylsulfoxid

EtOH ethanol

Hacac acetylalcetone

His histidine

Leu leucine

Lys lysine

MCD monochlordimedone

Me methyl

MeCN acetonitrile

MeOH methanol

MoO2(acac)2 bis (acetylacetonato) dioxomolybdenum(vi)

MS mass spectrometry

NMR nuclear magnetic resonance

Ph phenyl Phe phenylalanine

q quartet (NMR)

s singlet (NMR)

Ser serine

t triplet (NMR)

TFA trifluoro acetic acid

TLC thin layer chromatography

TMB 1,3,5-trimethoxybenzene

TOF turnover frequences

Trp tryptophan

Tyr tyrosine

UV-Vis ultraviolet visible (spectroscopy)

V-BrPOs vanadium-bromoperoxidases
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V-ClPOs vanadium-chloroperoxidase

V-HPOs vanadium haloperoxidases
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Universität Siegen, Siegen 2002.

[46] K. Nakajima, M. Kojima, K. Toriumi, K. Saito, J. Fujita, Crystal Structures of [VO(sal-
L-ala)(OCH3)(CH3OH](sal-L-ala= N -salicylidene-L-alaninate) and [VO(sal-L-ala)]2O2.
2CH2Cl2, and the Catalytical Activity of These and Related Complexes on Asymmet-
ric Oxidation of Methyl Phenyl Sulfide with t-Butyl Hydroperoxide, Bull. Chem. Soc.
Jpn. 1989, 62 , 760–767.
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