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1 Introduction 

Conjugated polymers1 have attracted considerable attention as a new class of electronic 

material, since the study of these systems has generated entirely new scientific concepts as 

well as potential for new technology. Conjugated polymers are organic semiconductors and as 

such important materials for applications in electronic and photonic devices. Prime examples 

are polymeric light-emitting diodes,2 plastic lasers,3 and polymer-based photovoltaic cells,4 

but at least in principle, conjugated polymers5 should be able to pertain all of the functions an 

inorganic semiconductor displays, FETs,6 and may lead in the future to "molecular 

electronics".7 The primary advantage of organic polymers over their inorganic counterparts is 

their ease of processing by dip coating, spin casting, printing,8 or use of doctor blade 

techniques. However, conjugated polymers are likewise important as sensory materials for 

water, organic vapors, and explosives either by fluorescence quenching or in artificial nose 

devices, which change their conductivity upon exposure to a suitable analyte.9  

The goal with organics-based devices is not necessarily to attain or exceed the level of 

performance of inorganic semiconductor technologies (silicon is still the best at the many 

things that it does) but to benefit from a unique set of characteristics combining the electrical 

properties of (semi)conductors with the properties typical of plastics, that is, low cost, 

versatility of chemical synthesis, ease of processing, and flexibility. Interest in conjugated 

polymers picked up significantly after the 1976 discovery that they can be made highly 

electrically conducting following a redox chemical treatment.10 This discovery led to the 2000 

Nobel Prize in Chemistry awarded to Alan Heeger, Alan MacDiarmid, and Hideki Shirakawa. 

By the mid-eighties, many research teams in both academia and industry were investigating -

conjugated oligomers and polymers for their nonlinear optical properties or their 

semiconducting properties, paving the way to the emergence of the fields of plastic 

electronics and photonics.1 

During the past 20 years these conjugated polymers have given rise to an enormous amount of 

experimental and theoretical work devoted to (i) the analysis of their structure and properties 

using a whole arsenal of physical techniques, (ii) the development of synthetic methods 

allowing a better control of their structure and electronic properties, (iii) the synthesis of 

functional polymers in which the electronic properties are associated with specific properties 

afforded by covalently attached prosthetic groups,11-13 and (iv) the analysis of their multiple 
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technological applications extending from bulk utilizations such as antistatic coatings, energy 

storage, to highly sophisticated electronic, photonic, and bioelectronic devices. 

The class of conjugated polymers which has found the most attention in the past is 

undoubtedly the poly(p-phenylenevinylene)s (PPVs) which "made it big" since Friend's 1990 

report of organic polymeric LEDs.2,14 Other well-established classes of conjugated polymers 

are the polydiacetylene (PDA),15 polyphenylene (PPP),16,17 and polyacetylene (PA).18  
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1.1 Motivation  

The worldwide demand for energy has grown dramatically over the last century with an 

increase in the industrialization of the world. The need for energy is likely to grow even more 

in the 21st century with the improvements in living standards across the planet. This high 

demand of energy brings into question the energy sources currently used and the depletion of 

natural resources. 

1.1.1 Fossil Fuels 

Oil, coal, and natural gas are usually referred to as fossil fuels. The percentage of energy 

production that is from fossil fuels was more than 70 %. The combustion of fossil fuels is 

used to produce electric power and heat. The other renewable sources summarize geothermal, 

non-wood waste, solar, wind, wood and wood waste. The percent missing to add up to 100 % 

is due to rounding byproducts of this combustion process are carbon dioxide (CO2) and sulfur 

compounds like SO2. While the former is related to the greenhouse effect19 leading to global 

warming and the rise in sea level, the latter is a cause of acid rain harming the environment. In 

addition to the catastrophic environmental consequences of using fossil fuels, the earth’s 

resources of oil, coal, and natural gas are limited and will deplete sooner or later. Estimates 

suggest that within 20 years oil and natural gas production rates will start to decrease.20,21 

With these prospects, new sources of energy must be implemented that do not rely on 

depleting resources. 

1.1.2 Renewable Energy 

Renewable energy sources use natural resources without depleting them and with no harmful 

side effects for the environment. Examples include power plants that use wind energy; energy 

from water due to waves, tidal motion or potential energy (rivers); and solar energy. The 

energy provided by the sun can be used in solar collector systems to heat water or by direct 

conversion into electric energy in photovoltaic devices. Current renewable energy systems 

cannot produce energy at the low cost that conventional fossil fuel power plants can. For 

large-scale implementation of renewable energy power plants, it is therefore necessary to 

develop systems that can compete on an economic level with fossil fuel facilities, either by 

decreasing cost, increasing efficiency, or a combination of both. 

1.1.3 Plastic Solar Cells 

Photovoltaics are attractive renewable energy power sources. The sun supplies a peak 

intensity of about 1 kW/m2 on the surface of the earth. Of course, this intensity is reduced 
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when the sun is not at zenith due to location or time of day. The optical energy supplied by 

the sun can be converted into electric energy in a solar cell. Due to the rather high cost of Si 

solar cell systems today, they are mainly used in remote locations where there is no power 

line from a conventional power plant available. To make solar cell systems more competitive 

with fossil fuel power plants, a significant reduction in cost must be achieved. 

A promising approach towards low cost photovoltaic devices is fabrication of solar cells 

based on organic materials.22-27 In one class of these devices, Si or GaAs are replaced by 

semiconducting polymer materials in combination with fullerene materials as the active layer. 

These materials are usually soluble in common organic solvents. This solubility makes device 

production relatively easy. Thin films can be spin cast28 or doctor bladed29  from solution. 

Even screen printing and ink jet printing have been demonstrated.30 Since thin organic films 

are flexible, they can also be applied to flexible plastic substrates making the whole device 

flexible and allowing for cheap roll-to-roll production methods. 

Another unique characteristic of polymeric materials is that the optical and electrical 

properties can be changed by altering the molecular structure of the monomers. It is therefore 

possible to tune the optical and electrical properties of the polymer in order to optimize device 

performance. 

Band gap engineering of such π-conjugated species play crucial roles in optimizing the 

performance of optoelectronic devices based on active organic components.31-38  

The field of solar cells based on conjugated polymers is subject to intensive research. Several 

device architectures to incorporate the materials have been explored,39-42 and those based on 

the bulk heterojunction concept are promising due to power conversion efficiencies up to 5% 

recently accomplished.43,44 

Polymers with a high absorption coefficient and broad absorption spectra are required for 

efficient harvesting of the solar energy. Most conjugated polymers have a band gap >2 eV, 

and absorb only small part of solar photon flux spectrum, which ranges from 300 to 2500 nm 

with a maximum flux around 700 nm. Low band gap polymers (Eg ≤ 1.8 eV) are an approach 

for absorbing the solar spectrum on a broader range.45,46  

 Background on Polymer Photovoltaics 

The discovery of conducting polymers in the mid 1970's has led to intense research of a whole 

new class of materials, showing that the electrical properties of polymers can range from 

insulating to semiconducting to conducting (conductivity >100,000 S/cm has been shown.47 

These new semiconducting and conducting materials combine the electrical and optical 

properties of inorganic semiconductors with the mechanical flexibility of polymers. While the 
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electrical and optical properties can be quite similar to inorganics, the charge carriers and 

charge transport mechanisms in semiconducting polymers are essentially different from their 

inorganic counterparts. 

This part introduces, the charge carriers and excitation processes that are important for 

organic photovoltaic devices  and a basic understanding of the most important characteristics 

of solar cells with a focus on organic devices.48,49 

Charge Transport in Organic Materials 

Semiconducting polymers can usually be described as quasi-one-dimensional semiconductors. 

Semiconducting and conducting polymers are conjugated polymers, which refers to the 

alternating single and double bonds between the carbon atoms on the polymer backbone. The 

double bonds result from the fact that, while carbon has four valence electrons, the carbon 

atoms in conjugated molecules bind to only three (or sometimes two) other atoms. The 

remaining electrons form π-electron bonds that are delocalized over the entire molecule. 

While the polymer chains can be very long (microns), the conjugation length along the chain 

can be interrupted (e.g. by foreign atoms, bending of the polymer chain, or crosslinks) and is 

typically less than 100 nm. The molecular levels are grouped in bands, and in the limit of very 

long conjugation length, the band structure picture associated with inorganic semiconductors 

can be applied to organic semiconductors. The band edge of the valence band is referred to as 

the "Highest Occupied Molecular Orbital" (HOMO) and the edge of the conduction band is 

called the "Lowest Unoccupied Molecular Orbital" (LUMO). 

Photoexcitation in Polymers 

The energy gap between the HOMO and LUMO level in conjugated polymers is typically 

within the range of visible photons. Upon absorption of an incoming photon, an electron is 

promoted into the LUMO level, leaving behind a hole in the HOMO level. 

Donor-Acceptor Interface 

In most conjugated polymers, the predominant excited species is the singlet exciton. At room 

temperature the electron and hole are bound to each other and there are no free charge 

carriers. An essential process for polymeric solar cells after photoexcitation is charge 

separation. Since the electron and hole are bound together, a mechanism must be found to 

efficiently separate electron and hole and to prevent recombination of the two. A possibility to 

achieve this charge separation is by introducing an electron acceptor that dissociates the 

exciton by transferring the electron from the polymer (therefore being the electron donor) to 

the electron acceptor material. As a result, the polymer is left with a P+
 polaron that can drift 

through the film to the anode while the electron is in the acceptor material and can be 
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transported to the cathode. The main condition for the exciton dissociation to occur is that the 

electron affinity of the acceptor is larger than the ionization potential of the donor. 

A well-known acceptor material is the buckminsterfullerene C60. Since the discovery of 

ultrafast charge transfer from conjugated polymers to C60,50 its properties as an electron 

acceptor have been subject to intense research. The charge transfer typically occurs within the 

femtosecond time regime. An upper time limit was found to be 300 fs51 which is three orders 

of magnitude faster than any electron-hole recombination process within the polymer. The 

charge transfer range is about 5-10 nm, which makes close proximity of C60 to the 

photoexcitation on the polymer essential. While the charge transfer range is similar in 

different models, the mechanism leading to the electron transfer from the polymer to the 

fullerene is a subject of controversy. Halls et al. suggest that the singlet excitons diffuse from 

the location of photoexcitation to the polymer-fullerene interface and are dissociated at the 

interface.52 They studied the photovoltaic response in heterojunction devices prepared from 

poly(phenylenevinylene) (PPV) and C60. In addition to experiments, they modeled the 

photocurrent spectra under the assumption that all absorbed photons create singlet excitons 

and all singlet excitons within the diffusion range of the interface are dissociated and 

contribute to the photocurrent. From the quantitative agreement of the modeled current 

spectra and the experimental spectra they deduce a diffusion range of 6-8 nm and conclude 

that the agreement is strong evidence for the diffusion model. 

There are two general ways to create a donor-acceptor interface in organic devices. One is to 

bring two films in contact at the surface, which creates a heterojunction. In this case, only a 

fraction of the bulk of the materials (within ~10 nm of the interface) builds a donor-acceptor 

interface. The other is to blend the two materials to form one mixed layer. In this case, the 

whole bulk of the device has a donor-acceptor interface. These devices are called bulk-

heterojunction devices. There are various methods to create a bulk-heterojunction including 

blending of the materials in a solution from which the film is cast, interdiffusion of the two 

materials into each other, or coevaporation of both materials. 
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Figure 1.1. Schemetic diagram of organic solar cells. 

Short Circuit Current , Open Circuit Voltage and Fill Factor53 

The typical current–voltage characteristic of a solar cell is shown in Figure 1.2. A few 

important points on the curve that are used to determine the efficiency of solar cells and to 

compare different cells are labeled in the graph:  

 
Figure 1.2. Current versus voltage characteristic of a solar cell under illumination. 
 

• The intersection of the curve with the y-axis (current) is referred to as the short circuit 

current ISC. ISC is the maximum current the solar cell can put out under a given illumination 
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power without an external voltage source connected. It is measured by connecting both 

electrodes to an ammeter. 

• The intersection with the x-axis (voltage) is called the open circuit voltage (VOC). VOC is the 

maximum voltage a solar cell can put out. It is measured by connecting the illuminated solar 

cell to a voltmeter. 

• IMP and VMP are the current and voltage at the point of maximum power output of the solar 

cell. IMP and VMP can be determined by calculating the power output P of the solar cell 

(P=I*V) at each point between ISC and VOC and finding the maximum of P. 

Out of these quantities, the fill factor FF can be calculated. FF is defined as 

 
 The fill factor is the ratio of the rectangles given by the maximum power point and ISC and 

VOC (see Figure 1.2). The fill factor therefore gives a measure of the quality of the I-V 

characteristic of the solar cell. Its theoretical limits are between 0.25 (ohmic nonrectifying 

behavior of the solar cell) and 1. In practice, FF can even drop below 0.25 when a blocking 

contact is formed at one of the electrodes. 

In general, the overall efficiency of a solar cell is larger for larger FF. In the ideal limit of FF 

approaching 1 the solar cell puts out a constant maximum current at any voltage between 0 

and VOC. 
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1.1.4 Thieno[3,4-b]pyrazine, A promising material for optoelectronic devices 

Thieno[3,4-b]pyrazines have been shown to be excellent precursors for the production of low 

band gap conjugated polymers.54-57 Recently, photovoltaic devices consisting of thieno[3,4-

b]pyrazines based low-band gap polymers54-57 as hole-transporting materials have shown 

improved efficiencies. 

Thieno[3,4-b]pyrazine is a polarized species58 and lowers the bandgap dramatically when 

incorporated into a polymer backbone. Recent theoretical calculations suggested a lower 

band-gap for the poly(thieno[3,4-b]pyrazine) (0.70 eV) even lower than for 

poly(isothianaphthene) (0.80 eV).  

 
However, for these compounds to be fully utilized in optoelectronic applications, a general 

synthetic route must be developed that allows access to a large number of different 

functionalities in the 2, 3, 5 and 7 positions. Such functionalities are necessary to tune and  

modulate the physical, electronic, and optical properties of the polymers.54-57,59 

 

 
The goal of this research work was to synthesize thieno[3,4-b]pyrazine based polymers, 

belonging to the quinoid family of low band gap polymers. A new narrow band gap system 

was designed, symbolized as [-A-Q-A-]n, where A is aromatic donor unit and Q is o-quinoid 

acceptor unit. The properties of polymers are considered to correlate straightforwardly to 

those of structurally defined monomers [A-Q-A]. Although donor-acceptor type polymers in 
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electrochemically generated systems have received much attention,60 little work has been done 

on the synthesis of these polymers using chemically grown polymers which are soluble and 

processable. Moreover there are no previous studies on fully substituted conjugated 

poly(arylenevinylene)s which demonstrate the efficiency of this approach for band gap 

shortening. We have combined both tactics and prepared the novel 

poly(heteroarylenevinylene)s, with a new backbone architecture. However investigations of 

structure-property relationships of polymers are essential for a full understanding of the role 

of a particular n-type moiety. 

 

 
Our previous studies report the incorporation of thieno(3,4-b)pyrazine group into 

poly(arylene)s61 and poly(aryleneethynylene)s62 backbone that results in a remarkable 

increase in absorption maxima and lowering of band gap. There is no research on the 

characteristics of introducing the pendant thieno(3,4-b)pyrazine group into the poly(p-

phenylenevinylene) and poly(arylene)s backbone. Second part of the work presents the 

synthesis, characterization of a series of new  poly(p-phenylenevinylene)s and poly(arylene)s 

containing symmetrically 5,7-disubstituted pendant thieno(3,4-b)pyrazine group. 
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2 General Part 

2.1   Horner–Wadsworth–Emmons reaction (HWE) 
 
Wittig–Horner reaction or Horner–Wadsworth–Emmons reaction (HWE) is one of the most 

important reactions in organic synthesis used to form α,β-unsaturated ketones, α,β-unsaturated 

esters and other conjugated systems. The synthetic importance of the reaction is based on the 

fact that the new carbon–carbon double bond in the product molecule is generated at a fixed 

position. Other methods for the formation of carbon–carbon double bonds, e.g. elimination of 

water or HX, or pyrolytic procedures often lead to mixtures of isomers.63 Olefin synthesis 

employing phosphonium ylides was introduced in 1953 by Witting and Geissler.64 In 1958 

Horner disclosed a modified Witting reaction employing phosphonate-stabilized carbanions;65 

the scope of the reaction was further defined by Wadsworth and Emmons.66  

1-Overall Reaction 

The chemical reaction of stabilized phosphonate carbanion with aldehyde (or ketones) 

produces predominantly E-alkenes. 

 

 
 

Scheme 2.1. PPV synthesis by Horner–Wadsworth–Emmons Polycondensation. 

  

2- Reaction Mechanism 

As first reported by Horner,67 carbanionic phosphine oxides can be used; today carbanions 

from alkyl phosphonates are most often used. The latter are easily prepared by application of 

the Arbuzov reaction. The reactive carbanionic species is generated by treatment of the 

appropriate phosphonate with base, e.g. sodium hydride, n-butyllithium or potassium t-

butoxide. 
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Scheme 2.2. Mechanism of Horner–Wadsworth–Emmons condensation. 

Nucleophilic addition of phosphonate carbanion to the carbonyl is rate determining.68 The 

four ring intermediate with P and O, called oxaphosphetane, is typical of the HWE reaction. 

The resulting phosphate byproduct is readily separated from the desired products by simply 

washing with water.  The electron withdrawing group alpha to the phosphonate is necessary 

for the final elimination to occur. Absence of electron withdrawing group afford stable ß-

hydroxyphosphonates.69 Direct interconversion of intermediates is possible when R = H. The 

ratio of olefin isomers is dependent upon the stereochemical outcome of the initial addition 

and upon the ability of intermediates to equilibrate.70 Thomson and Heathcock have 

performed a systematic study on the stereochemical outcome without modifying the structure 

of the phosphonate.71 They found greater E-steroeselectivity with the following conditions: 

• Increasing steric bulk of the aldehyde 

• Higher reaction temperature 

• Li> Na > K salts 

• Using the solvent  DME over THF 

It was also found that bulky phosphonate and bulky electron withdrawing groups enhance E-

alkene selectivity. 
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2.2   Knoevenagel condensation  
 

The Knoevenagel condensation is an important carbon carbon bond-forming reaction in 

organic synthesis.72 Ever since its discovery in 1894,73 the Knoevenagel reaction has been 

widely used in organic synthesis to prepare coumarins and their derivatives, which are 

important intermediates in the synthesis of cosmetics, perfumes and pharmaceuticals.74 In 

recent times, there has been a growing interest in Knoevenagel products not only because of 

their significant biological activities but also for the synthesis of new conducting materials, in 

particular for the synthesis of poly(phenylene cyanovinylene)s.75 These materials have been 

shown to exhibit  electroluminescence, that is, a light emission produced by the action of an 

electrical current. 

The reaction involves the condensation of a carbonyl compound (aldehyde or ketone) with an 

active methylene compound of the type Z-CH2-Z'. The Z groups are electron withdrawing 

groups, such as CHO, COR, COOH, COOR, CN, NO2, SOR, SO2R, SO2OR or similar 

groups. This classical reaction is usually catalyzed by organic bases (primary, secondary and 

tertiary amines), ammonia and ammonium salts or by Lewis acids such as CuCl, ZnCl2. 

1-Overall Reaction 

 

 
 

2- Knoevenagel polycondensation 

 

 
Scheme 2.3. General PPV synthesis by Knoevenagel Polycondensation. 

 

3-Mechanism of Knoevenagel condensation 

The reaction belongs to a class of carbonyl reactions that are related to the aldol reaction. The 

mechanism76 is formulated by analogy to the latter. The initial step is the deprotonation of the 

CH-acidic methylene compound. A catalytic amount of base can be used for this purpose. The 

corresponding anion formed by deprotonation subsequently adds to the carbonyl substrate to 
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give aldol type intermediate. Loss of water from intermediate leads to a primary α,β-

unsaturated product. 

 
Scheme 2.4. Mechanism of Knoevenagel condensation. 

 

Virtually any aldehyde or ketone and any CH-acidic methylene compound can be employed 

in the Knoevenagel reaction; however the reactivity may be limited due to steric effects. Some 

reactions may lead to unexpected products from side-reactions or from consecutive reactions 

of the initially formed Knoevenagel product. Suitable substituents X and Y that can activate 

the methylene group to become CH-acidic, are electron-withdrawing groups—e.g. carboxy, 

nitro, cyano and carbonyl groups. Malonic acid as well as cyano acetic acid and derivatives 

(ester, nitrile, and amide) are often used. In general two activating groups X and Y are 

required to achieve sufficient reactivity; malononitrile CH2(CN)2 is considered to be the most 

reactive methylene compound with respect to the Knoevenagel reaction. As would be 

expected, ketones are less reactive than aldehydes. In addition yield and rate of the 

condensation reaction are influenced by steric factors. Because of the mild reaction 

conditions, and its broad applicability, the Knoevenagel reaction is an important method for 

the synthesis of α,β-unsaturated carboxylic acids.72 Comparable methods77 are the 

Reformatsky reaction, the Perkin reaction, as well as the Claisen ester condensation. The 

Knoevenagel reaction is of greater versatility; however the Reformatsky reaction permits the 

preparation of α,β-unsaturated carboxylic acids that are branched in α-position. 
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2.3 Gilch Reaction 
 

A useful synthetic route to PPVs is the polymerization of 1,4-bis(chloromethyl)arenas by 

treatment with about equiv. of  potassium tert-butoxide in non alcoholic solvents like THF. 

The analogous reaction with 1,4-bis(bromomethyl)arenes can also be used. This methodology 

was used by Gilch and Wheelwright78 as one of the more early PPV synthesis. Gilch 

polymerization has been widely preferred as it offers a number of important advantages for 

the introduction of vinylene units along the polymer backbone with high molecular weight, 

low polydispersity index and allows for easy purification.  

1-Overall Reaction 

1,4-dihalo-p-xylylenes are treated with excess of  potassium tert-butoxide in organic solvents 

(e.g. THF), where polymerization is carried out either by the controlled addition of monomer 

to a solution of base or by the controlled addition of base to a solution of monomer.79  

 

 
 

Scheme 2.5. PPV synthesis by Gilch Polymerization. 

 

2-Mechanism of Gilch Polymerization 

Even though this synthesis is currently being applied, the mechanism of the polymerization of 

the p-quinodimethane-based polymerization is still the subject of an ongoing discord. The two 

mechanistic possibilities -anionic or radical- have been hard to distinguish. 

The mechanistic route involves p-quinodimethane system as actual monomer. The first step is 

a base-induced 1,6-elimination from a p-xylene derivative, leading to the in situ formation of 

the p-quinodimethane system. Second, this intermediate polymerizes spontaneously to the 

precursor polymer. The conjugated structure is obtained in a third step, directly or after 

thermal treatment depending on the specific chemical structure of the starting monomer and 

the polymerization conditions.  
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Scheme 2.6. Proposed mechanisms of Gilch Polymerization. 

 

For the second step- the polymerization itself -there are two reasonable possibilities: (i) a free 

radical mechanism, which is claimed for precursor polymerization e.g. by Vanderzande80 and 

Wessling,81 or (ii) an anionic induced polymerization, which is described by Hsieh82 for the 

chloro precursor route. It is even possible that these two pathways compete with each other, 

depending on the exact reaction conditions. Several recent publications on the Gilch route 

state or favor an anionic polymerization mechanism83,84 while others argue that the route 

proceeds via a radical mechanism.85,86  

 



2. General Part                                                                                                                  17(138)                        

2.4 Suzuki Cross-Coupling 
 

The Pd-catalysed Suzuki–Miyaura (SM) coupling reaction87 is one of the most efficient 

methods for the construction of C–C bonds. Although several other methods (e.g. Kharash 

coupling, Negishi coupling, Stille coupling, Himaya coupling, Liebeskind–Srogl coupling and 

Kumuda coupling) are available for this purpose, the SM cross-coupling reaction which 

produces biaryls has proven to be the most popular in recent times. The preference for the SM 

cross-coupling reaction above the other Pd-catalysed cross-coupling reactions is not 

incidental. The key advantages of the SM coupling are the mild reaction conditions and the 

commercial availability of the diverse boronic acids that are environmentally safer than the 

other organometallic reagents.88-95 In addition, the handling and removal of boron-containing 

by-products is easy when compared to other organometallic reagents, especially in a large-

scale synthesis.  

1-Overall Reaction 

 
Scheme 2.7. 

 

SM cross-coupling reaction is also used for polycondensation and can proceed in two ways as 

shown in scheme 2.8. In AB type,96 a bifunctional monomer leads to polycondsation, while 

AA/BB type polycondsation involves two types of monomers with different functionalities, 

yielding alternative copolymers.97,98  

AB-Polycondensation 

 
AA/BB-Polycondensation 

 
Scheme 2.8. 
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2- Mechanism of Suzuki Cross-Coupling 
 

 
Scheme 2.9. Mechanism of Suzuki Coupling 

 

The general catalytic cycle for the cross-coupling of organometallics with organic halides 

catalysed by transition metals, which involves (a) oxidative addition, (b) transmetallation, (c) 

reductive elimination sequences, is widely accepted. Although a similar catalytic cycle has 

also been suggested for the Suzuki reaction,99 it differs in that two equivalent bases are 

required (Scheme 2.9). The coupling reaction of organic boron compounds proceeds only in 

the presence of bases. This is due to the fact that the organic group on boron is not 

nucleophilic enough for the transfer from the boron to the palladium in the transmetallation 

step because of the strong covalent character of the B-C bond in boron compounds. Therefore, 

it is necessary to increase the carbanion character of organic groups by the formation of an 

organoborate with a tetravalent boron atom, which utilizes base. Further, it is known that 

bases substitute for Pd-X to form Pd-OH (or Pd-OR) which has higher activity. Thus, the 

transmetallation reaction in the Suzuki reaction is favored by the formation of both four-

coordinated boron compounds and Pd-OH (or Pd-OR). 
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Aryl halide and aryl triflate function as electrophiles whose reactivity order is Ar-I > Ar-Br > 

Ar-OTf >> Ar-Cl. Aryl chlorides are usually not reactive enough, with the exception of those 

having heteroaromatic rings and electron-withdrawing groups. This is because the oxidative 

addition of aryl chlorides to palladium complexes is too slow to develop the catalytic cycle. A 

recent paper showed that the use of nickel catalysts for the cross-coupling reaction with aryl 

chlorides obtained favorable results.100 Although the most often used catalyst in the Suzuki 

reaction is Pd(PPh3)4, various palladium catalysts are also employed, such as Pd(dppb)Cl2, 

PdCl2(PPh3)2, Pd(OAc)2 and PdCl2 etc. PPh2(m-C6H4SO3Na) is used as phosphine ligand 

when the reaction is carried out in aqueous solvent. For example, the cross coupling reaction 

using the water-soluble palladium complex Pd[PPh2(m-C6H4SO3Na)]3 between sodium 4-

bromobenzenesulfonate and 4-methylbenzeneboronic acid  obtained the corresponding biaryl 

in good yield,101 compared to using Pd(PPh3)4 in a two-phase organic solvent. Bases are 

always required in the Suzuki reaction as opposed to the coupling reaction using organotin or 

organozinc reagents. The best results are achieved with the use of a relatively weak base and 

Na2CO3 is a most frequently used. However, the strong bases such as Ba(OH)2 and K3PO4 are 

efficient in reactions involving steric hindrances. 

It is known that the base is involved in the coordination sphere of the palladium and the 

formation of the Ar-PdL2–OR from Ar-PdL2–X is known to accelerate the transmetalation 

step. There are some drawbacks with the Pd-mediated SM cross coupling reaction. Only aryl 

bromides and iodides can be used, as the chlorides only react slowly. Some of the recent 

results to overcome this problem are addressed by Kotha et al. in a review.102 By-products 

such as self-coupling products, coupling products of phosphine-bound aryls, are often formed. 

The most frequently used catalyst, Pd(PPh3)4, suffers from this drawback and the phenyl 

group of the PPh3 becomes incorporated in the products giving scrambled derivatives. A 

bulky phosphine ligand (o-MeOC6H4)3P is sufficient to retard this type of side-reactions and 

deliver high yields of the desired product. Under oxygen-free conditions, homocoupling 

products can be avoided and, in order to remove the dissolved oxygen, it is desirable to de-gas 

the solvents by a suitable method. 
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2.5 Basics of Polycondensation 
 

The classical subdivision of polymers into two main groups was made around 1929 by W. H. 

Carothers, who proposed that a distinction be made between polymers prepared by the 

stepwise reaction of monomers (condensation polymers) and those formed by chain reactions 

(addition polymers). 

One basic simplifying assumption proposed by Flory, was that all functional groups can be 

considered as being equally reactive. This implies that a monomer will react with either 

monomer or polymer species with equal ease. 

Carothers Equation 

W. H. Carothers, pioneer of step-growth reactions, proposed a simple equation relating 

number-average degree of polymerisation⎯Pn to a quantity p describing the extent of the 

reaction for linear polycondensations or polyadditions. 

If N0 is the original number of molecules present in an A-B monomer system and N the 

number of all molecules remaining after time t, then the total number of the functional groups 

of either A or B which have reacted is (N0 – N). At that time t the extent of reactivity p is 

given by 

P = (N0 – N)/N0            or           N = N0(1 - p)     

If we remember that ⎯Pn = N0/N, a combination of expression gives the Carothers equation, 

 ⎯Pn  = 1/(1 – p)       (Eq. 2.1) 

The Carothers equation is particularly enlightening when we examine the numerical relation 

between⎯Pn and p; thus for p = 95%, ⎯Pn = 20 and when p = 99%, then⎯Pn = 100. Graphically 

Carothers equation can be represented as mentioned below. 
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Figure 2.1. Graphical presentation of Carothers equation. 

This equation is also valid for an A-A + B-B reaction when one considers that in this case 

there are initially 2N0 molecules. More usefully, a precisely controlled stoichiometry is 
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required and stoichiometric factor r can be added to Carothers equation and extended form 

can be expressed as 

⎯Pn  = (1 + r)/(1 + r – 2rp) ;    r = nA/nB ≤ 1              (Eq. 2.2) 

where r is the ratio of the number of molecules of the reactants.103 
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3 Results and Discussion 
 

3.1 Pi-conjugated polymers containing thieno[3,4-b]pyrazine unit 
incorporated in backbone chain. 

3.1.1 Synthesis and Characterization of Monomers and Model Compounds 

Starting from commercially available hydroquinone in four steps 4-formyl-2,5-

bis(hexyloxy)phenylboronic acid (5) was obtained as illustrated in Scheme 3.1. The first three 

steps leading to 4-bromo-2,5- bis(hexyloxy)benzaldehyde (3) were carried out according to 

literature procedures.104-106 The subsequent protection followed by the  reaction of (4) with 

trimethylborate, n-BuLi in THF provided (5) in 76% yield after recrystallization.  

 

 
Reagents and conditions: (a) 1-bromohexane, DMSO, KOH, room temperature; (b) DMF, 

bromine, room temperature; (c) diethyl ether, BuLi, DMF, 10-15 0C; (d) toluene, 1,3-propandiol, 

BF3.OEt2, 6 h reflux; (e) i) THF, BuLi, trimethylborate, -78 0C to room temperature, ii) 1M HCl, room 

temperature, 24 h. 

Scheme 3.1. Synthesis of Compound 5. 
 

Another four step synthesis resulting in the formation of 1,2-bis-[4-(2-ethyl-hexyloxy)-

phenyl]-ethane-1,2-dione (11) was started with the alkylation of 4-bromophenol with 

ethylhexyloxy bromide in the presence of KOH in anhydrous dimethyl sulfoxide. By 

Sonogashira cross coupling reaction107 of 1-(2-ethylhexyloxy)-4-bromobenzene (7) with 

trimethylsilylacetylene  and deprotection in THF, methanol mixture using aq. KOH led to the 

formation of  1-(2-ethylhexyloxy)-4-ethynylbenzene (9). Compound (9) was coupled with (7) 

again by following Sonogashira reaction conditions to synthesize 1,1'-ethyne-1,2-diyl-bis[4-

(2-ethyl-hexyloxy)benzene] (10) which was further oxidized by KMnO4 in acetone and water 

at room temperature to give respective dione (11)  in good yield. 
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Reagents and conditions: (a) 1-bromoalkane, DMSO, KOH, room temperature; (b) 

trimethylsilylacetylene, diisopropylamine, Pd(PPh3)2Cl2, CuI, 70 0C, 12 h; (c) THF, methanol, aq. 

KOH (2M), room temperature, 5 h; (d) 21, diisopropylamine, Pd(PPh3)4, 80 0C, 12 h; (e) acetone, 

water, KMnO4, room temperature, 4 h. 

Scheme 3.2. Synthesis of Compound 11. 

 

Thieno[3,4-b]pyrazine and its 2,3-disubstituted analogues can be readily synthesized from 

thiophene as shown in Scheme 3.3.108,109 Compound 13 was readily produced by the nitration 

of 12 via fuming HNO3 and H2SO4. Without the use of the fuming acids, only the mononitro 

product was produced. Likewise, an extended 3h reaction time was required, as lesser times 

resulted in mixtures of mono- and dinitro- products. Treatment of 13 with Sn and HCl 

reduced both the NO2 functionalities and removed the Br protecting groups. As the reduction 

was carried out under acidic conditions, the isolated precipitate is the diammonium salt (14). 

The isolated 3·2H+ salt was purified by diethyl ether and acetonitrile washes.109d To obtain 

amine, the salt is taken in diethyl ether and water (1:1) at 0 0C and basify it with 4N Na2CO3. 

The amine is highly hygroscopic and has to be subsequently used in next step. 

 



3. Results and Discussion                                                                                           24(138) 

 
 

Reagents and conditions: (a) diethyl ether, aq. HBr, bromine, -10 0C, 15 min.; (b) conc. H2SO4, 

conc. HNO3, fuming H2SO4, 20-25 0C, 3 h; (c) Sn, conc. HCl, room temperature, 24 h; (d) ethanol, -

diones, triethylamine, room temperature, 24 h; (e) CHCl3, CH3COOH, NBS, dark, room temperature. 

Scheme 3.3. Synthesis of Compounds 18, 19 and 20. 

 

Due to instability of amine, we have treated the diammonium salt with -diones (benzil, 2,3-

butadione and 11) in absolute ethanol for 24h and the thieno[3,4-b]pyrazines (15, 16 and 17) 

were recovered in relatively higher yields. The initially isolated products were all relatively 

free of impurities, and analytical samples could be prepared by either recrystallization or 

chromatography. The dibromo derivatives (18 and 19) were prepared by bromination of 15, 

16 using NBS in a mixture of chloroform and acetic acid (1:1) in dark under argon. In case of 

17 bromination was performed using NBS in DMF at –25 0C for 3h in dark under argon to 

obtain compound 20 in quantitative yield. 

By Pd-catalyzed Suzuki cross coupling91 of mono boronic acids (5 and 6) with respective 5,7-

dibromo-2,3-disubsituted thieno[3,4-b]pyrazines (18, 19, 20), deep coloured products (M-1-

M-4) were obtained in quantitative yields after chromatographic purification. 

 



3. Results and Discussion                                                                                           25(138) 

 
Scheme 3.4. Synthesis of Monomers M1, M-2, M-3 and M4. 

 

Monomers (M-5, M-6 and M-8) were synthesized in high yields according to the known 

literature procedures.104,110 3,4-Dibromothiophene was converted to 3,4-dihexylthiophene (21) 

by Kumada coupling. Bisbromomethyl derivative of (21) was obtained in quantitative yield 

using HBr (30% in acetic acid) and paraformaldehyde in acetic acid. Compound (22) was 

finally converted to 3,4-dihexyl-2,5-bis(methylenediethylphosphate)-thiophene (M-7) by 

Michealis-Arbuzov reaction. 
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Reagents and conditions: (a) i) diethyl ether, Mg, 1-bromohexane, reflux, 2h, ii) Ni(dppp)Cl2, 0 0C 

to reflux, 24h; (b) paraformaldehyde, HBr (30 % in acetic acid), glacial CH3COOH, room temperature, 

24 h. (c) triethyl phosphite, 160 0C, 4 h. 

Scheme 3.5. Synthesis of Monomer M-7. 

 

Diethyl(4-methyl-2,5-bis(octyloxy)phenyl)methylphosphonate (25) was synthesized by 

Michaelis Arbuzov reaction of the corresponding1-(bromomethyl)-4-methyl-2,5-

bis(octyloxy)benzene (24) following reported procedure.111 

 

 

Reagents and conditions: (a) 1-bromoalkane, DMSO, KOH, room temperature; (b) formaldehyde, 

NaBr, conc. H2SO4, glacial CH3COOH, 70 0C, 4h; (c) triethyl phosphite, 160 0C, 4 h. 

Scheme 3.6. Synthesis of Compound 25. 

 

Synthesis of model compounds (MD-1, MD-2) was accomplished by Horner-Wadsworth-

Emmons (HWE) olefination reaction of M-1 with two equivalents of commercially available 

diethyl benzylphosphonate and mono phosphonate ester (25) respectively. While model 

compound (MD-3) is the Knoevenagel condensation product of M-1 with phenyl acetonitrile. 

All the three model compounds were obtained in good yield after chromatographic 

purification and were soluble in common organic solvents. MD-1 was dark violet in colour 

while MD-1 and MD-3 were green solids. 
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Reagents and conditions: (a) diethyl benzylphosphonate, THF, t-BuOK, 0 0C to room temperature 

3 h; (b) 25, THF, t-BuOK, 0 0C to room temperature 3 h; (c)  phenyl acetonitrile, THF, t-BuOK, t-

BuOH, 40 0C, 4 h. 

Scheme 3.7. Synthesis of Model Compounds MD-1, MD-2 and MD-3. 

 

The chemical structures of monomers (M-1-M-8) and 5,7-dibromo-2,3-disubsituted 

thieno[3,4-b]pyrazines (18, 19, 20) were confirmed by NMR, Mass and elemental analysis. 

Figure 3.1 depicts the 1HNMR of M-1. The peaks could be readily assigned to their respective 

protons. The spectrum showed aldehyde proton signals at 10.41 ppm, two protons of 

alkoxyphenylene adjacent to thienopyrazine moiety appeared at 9.20 ppm, while other two 

protons of alkoxy phenylene and phenyl rings protons appear between 7.60-7.26 ppm. The 

OCH2 protons appeared between 4.20-3.9 ppm and other alkyl protons appeared upfield 

between 2.0-0.80 ppm. 
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Figure 3.1. 1HNMR of monomer M-1. 

In 1HNMR spectrum of monomer M-2, signals of two pyrazine protons (2,3-position) 

appeared along with phenyl protons adjacent to thienopyrazine at 8.57 ppm. The location of 

rest of protons signals similar to those of M-1. 

 
Figure 3.2. 1HNMR of monomer M-2. 

In case of M-3 signals of phenyl protons adjacent to thiophene ring were detected at 8.51 ppm 

and those adjacent to aldehydic group were located at 7.55 ppm. The phenylene protons in the 

vicinity of pyrazine ring appeared downfield at around 7.98 ppm and the other phenylene 

protons close to alkoxy substituents appeared at 6.92 ppm respectively. Alkoxy protons were 

detected at 3.92 ppm and alky side chain protons were upfield between 1.78-0.86ppm. 
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Figure 3.3. 1HNMR of monomer M-3. 
 

1HNMR spectrum of monomer M-4 showed phenyl protons adjacent to thiophene ring 

downfield at 8.52 and 8.00 ppm respectively. The protons of phenyl substituents at 2,3-

position of pyrazine ring appeared between 7.58-7.34 ppm.  

 
Figure 3.4. 1HNMR of monomer M-4. 
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Figure 3.5. 1HNMR of model compound MD-1. 

 
1HNMR spectra of model compounds MD-1-MD-3 are depicted in Figures 3.5-3.7. All the 

upfield resonances could be readily assigned to side chains protons and those of down field 

resonances in aromatic region to the backbone protons. 

 

 
Figure 3.6. 1HNMR of model compound MD-2. 
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Figure 3.7. 1HNMR of model compound MD-3. 

3.1.2 Synthesis and Characterization of Polymers 

The synthetic strategy employed for the synthesis of poly(heteroarylenevinylene)s (PHAVs) 

(P-1-P-6)  was based on Horner polycondensation route,112 and  for Cyano-PHAVs (P-7-P-9) 

Knoevenagel polycondensation,113 suitable for the synthesis of well-defined strictly 

alternating copolymers. The molecular structures of the PHAVs are shown in Scheme 3.8. 

With these synthetic routes, we obtained the PHAVs and CN-PHAVs polymers with high 

purity and good solubility. After purification and drying polymers were obtained as green 

solid. 
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Scheme 3.8. Synthesis of Polymers P-1-P-9. 

 

The chemical structure of the polymers (P-1-P-9) was confirmed by FTIR, 1H, 13C NMR and 

elemental analysis. 1H NMR data were consistent with the proposed structure of the polymers. 

Compared with the 1H NMR peaks of monomers, those of the polymers were broadened. 
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Figure 3.8. 1HNMR of polymer P-1. 

 

 The 1H NMR spectrum of P-1 in CDCl3 showed peaks indicating two protons of phenyl rings 

adjacent to thienopyrazine (5,7-position) at δ = 9.00, while protons of phenyl rings of 

thienopyrazine unit along two protons of phenyl rings adjacent to thienopyrazine moiety, 

vinylene and phenyl protons between δ = 7.63-7.26, and phenyl protons at δ = 6.89 ppm 

respectively. While that of –OCH2 protons alkoxy side chain of phenyl units appeared 

between δ = 4.29-4.15 and other alkoxy side chain protons signals were present at δ = 2.06-

0.93 ppm.  

 
Figure 3.9. 1HNMR of polymer P-3. 

 

Similarly the 1H NMR spectrum of P-3 in CDCl3 showed peaks indicating protons of 

thienopyrazine unit at δ = 8.57, phenyl rings adjacent to thienopyrazine at δ = 8.42, while 

other protons of phenyl rings adjacent to thienopyrazine moiety at δ = 7.59, vinylene and 

phenyl protons between δ = 7.34-6.87 ppm respectively. While that of –OCH2 protons alkoxy 
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side chain of phenyl units appeared between δ = 4.20-4.12 and other alkoxy side chain 

protons signals were present at δ = 1.93-0.88 ppm.  

 
Figure 3.10. 1HNMR of polymer P-6. 

 

The 1H NMR spectrum of P-6 in CDCl3 showed peaks indicating protons of thienopyrazine 

unit at δ = 8.57, phenyl rings adjacent to thienopyrazine at δ = 8.45, vinylene protons at δ = 

7.56-7.52 and δ = 7.25-7.21, while other protons of phenyl rings adjacent to thienopyrazine 

moiety at δ = 7.17 ppm respectively. While that of –OCH2 protons alkoxy side chain of 

phenyl units appeared at δ = 4.20, the –CH2 protons of alkyl side chain of thiophene appeared 

at δ = 2.69 and other alkyl and alkoxy side chain protons signals were present at δ = 2.00-0.83 

ppm. (For detailed NMR data of other polymers, see experimental, 1H NMR and 13C NMR 

spectra are present in appendix). 

 The average molecular weights of polymers were determined by gel permeation 

chromatography (GPC) with polystyrene as standards. THF served as eluting solvent. The 

number-average molecular weight ⎯Mn, values of polymers (P-1-P-9) were between 50200-

10000 g/mol, leading to degree of polymerisation between 39-9, (see Table 3.1). 
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Table 3.1. GPC data of polymers P-1-P-9. 

Polymer 

 

⎯Mn 

(g/mol) 

⎯Mw 

(g/mol) 

PDI 

 

⎯Pn 

 

Yield (%) 

 

P-1 32100 65100 2.0 26 55 

P-2 33500 53100 1.5 27 70 

P-3 29200 64600 2.2 27 63 

P-4 10000 13300 1.5 09 51 

P-5 13300 19200 1.4 13 67 

P-6 15600 34200 2.1 14 55 

P-7 50200 279000 5.0 39 55 

P-8 42200 140000 3.3 37 55 

P-9 10500 14000 1.9 09 50 

     Mn, GPC (polystyrene standards). 

 

 

Figure 3.11. GPC curves of polymers P-1, P-2, P-4, P-6 and P-8. 

 

We investigated the thermal properties of these copolymers by thermogravimetric analysis 

(TGA) and differential scanning calorimetry (DSC) at a rate of 10 K/minute. All the polymers 

are thermally stable and have 5% weight loss temperatures in air >300 °C. We did not detect 

any possible phase transition signals during repeated heating/cooling DSC cycles for 

polymers (P-1-P-9). This observation probably results from the stiffness of the polymer’s 
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chains. Obviously, the thermal stability of the PHAVs and CN-PHAVs is adequate for their 

applications in polymer solar cells and other optoelectronic devices. 

3.1.3 Optical Properties of Monomers and Model Compounds 

The photophysical characteristics of the new monomers and model compounds were 

investigated by UV-vis absorption and photoluminescence in dilute chloroform solution as 

well as in solid state. The optical data of monomers and model compounds are summarized in 

Table 3.2, namely the absorption peak maxima, λa, the absorption coefficients at the peak 

maxima, log ε, the optical band gap energy, Eg
opt (calculated from λ10%max, wavelength at 

which the absorption coefficient has dropped to 10% of the peak value),114 the emission 

maxima λe, and the fluorescence quantum yields, Φfl. All emission data given here were 

obtained after exciting at the wavelength of the main absorption band. Figures 3.12, 3.13 and 

3.14 show the absorption and emission spectra of monomers and model compounds. 

 
Figure 3.12. UV-vis spectra of M-1-M-4 and emission spectra of M-1 and M-2 in solution 

(Toluene 10-7mol). 

 

The absorption spectra of the monomers (M-1-M-4) show two peaks located in the UV and 

visible region from ~358 to ~ 525 nm.The absorption maxima of monomers M-1 and M-2 are 

red shifted relative to M-3 and M-4, due to presence of electron donor alkoxy phenylene 

adjacent to thienopyrazine moiety (see Figure 3.12). This indicates the substituent effect is 

more pronounced at 5 and 7 position of thieno[3,4-b]pyrazine. Presence of strong donor 

groups at these positions leads to a red shift in absorption spectra.  
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Table 3.2. Optical Data of Monomers (M-1-M-4) and Model Compounds (MD-1-MD-3) in 

Dilute Toluene Solution (~ 10-7 M) and in Solid State.b 

Comp

ound 

UV-vis 

λmax, nm 

Eg opt. 

eVc 

PLd 

λem, nm 

% φfl 

 

 

Toluene 

(log ε)a 

λ0.1max 

(nm ) 

filmb 

 

λ0.1max 

( nm) 

Toluene

 

film 

 

Toluene 

 

film 

 

Toluene 

 

M-1 

 

377, 525 

(4.3)(4.3) 

662 

 

- 

 

 

 

1.87 

 

 612  69 

M-2 

 

382, 499 

(4.4)(4.5) 

638 

 

- 

 

 

 

1.94 

 

 665  73 

M-3 

 

361, 436 

(4.7)(4.3) 

659 

 

- 

 

 

 

2.20 

 

- 

 

- 

 

- 

 

- 

 

M-4 

 

358, 487 

(4.3)(4.3) 

662 

 

- 

 

 

 

1.87 

 

- 

 

- 

 

- 

 

- 

 

MD-1 

 

399, 564 

(4.7)(4.2) 

660 

 

325,545 

 

596 

 

1.87 

 

2.08 

 

684 

 

634 

 

20 

 

MD-2 

 

412, 575 

(4.8)(4.4) 

676 

 

437,626 

 

720 

 

1.83 

 

1.72 

 

694 

 

726 

 

11 

 

MD-3 

 

433, 567 

(4.7)(4.5) 

650 

 

449,597 

 

692 

 

1.90 

 

1.79 

 

668 

 

697 

 

30 

 
aMolar absorption coefficient. Molarity is based on the repeating unit. bSpin coated from chlorobenzene solution. 
cEg

opt = hc /λ 0.1max. dPhotoluminescence data. 
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Figure 3.13. Normalized UV-vis and emission spectra of MD-1, MD-2 and MD-3 in solution 

(Toluene 10-7mol). 

 

The absorption maxima of model compounds (MD-1-MD-3) are red shifted relative to 

monomers (see Figures 3.13 and 3.14). Obviously, increase in conjugation length is the reason 

for this red shift. 

 
Figure 3.14. Normalized UV-vis of MD-1, MD-2 and MD-3 and emission spectra of MD-2 

and MD-3 in solid state. (film from chlorobenzene) 



3. Results and Discussion                                                                                           39(138) 

3.1.4 Optical Properties of Polymers 

In comparison to monomers and model compounds, the respective polymers (P-1-P-9), show 

a red-shift in the UV absorption maxima (see Figure 3.15-3.20 and Tables 3.3-3.4). The 

differences in absorption can be probably due to higher number of repeating units of polymers 

P-1-P-9 and hence an increase in effective conjugation length.115  

 
Figure 3.15. Normalized UV-vis and emission spectra of P-1, P-2, P-3 and P-4 in solution 

(Toluene 10-7mol). 

 

The copolymers, P-5 and P-6, show the lowest energy absorption peak at a longer wavelength 

than the polymers (P-1, P-2, P-3, P-4, P-7, P-8 and P-9) presumably owing to the presence of 

the strong electron donating alkyl thiophene units to give an enhanced intermolecular CT 

(charge transfer) interaction in these copolymers.  
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Figure 3.16. Normalized UV-vis and emission spectra of P-5 and P-6 in solution (Toluene 

10-7mol). 

 

While, in case of polymers P-4 and P-9 due to presence of phenyl instead of alkoxy phenyl or 

alkylthiophene adjacent to thienopyrazine, a blue shift was observed relative to other 

polymers.  

 
Figure 3.17. Normalized UV-vis and emission spectra of P-7, P-8 and P-9 in solution 

(Toluene 10-7mol). 

 

The polymers P-1-P-9 show a strong red shift of λmax (approximately 29-61 nm) when spin 

cast into thin films on quartz substrate from a chlorobenzene solution (see Figures 3.18-3.20).  
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Figure 3.18. Normalized UV-vis and emission spectra of P-1, P-2, P-3 and P-4 in solid state. 

(film from chlorobenzene) 

 

This indicates enhanced interchain interactions due to stacking of the polymers in the solid 

state, possibly assisted by planarization and with it an increase of conjugation length.116 As 

anticipated, the alternation of electron-rich alkoxy phenylene/ alkyl thiophene and electron-

deficient thienopyrazine units along conjugated backbone results in a low optical band gap 

(~1.56-2.08 eV). 
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Table 3.3. UV-Vis Data of polymers P-1-P-9 in Dilute CHCl3 Solution and in Solid State 

(Thin Films of 100-150 nm Thickness Spin-Casted from Chlorobenzene Solution). 

Polymer 

 

UV-vis 

λmax, nm 

Eg opt. 

eVc 

 

 

Toluene 

(log ε)a 

λ0.1max 

(nm ) 

filmb 

 

λ0.1max 

( nm) 

Toluene 

 

film 

 

P-1 458, 589 

(4.5)(4.2) 

690 462, 650 750 1.80 1.65 

P-2 446, 592 

(4.6)(4.5) 

689 450, 624 735 1.80 1.69 

P-3 437, 552 

(4.5)(4.4) 

659 

 

448, 608 

 

721 1.88 1.72 

P-4 422, 553 

(4.7)(4.3) 

659 428, 582 685 1.88 1.81 

P-5 465, 615 

(4.5)(4.5) 

718 468, 650 790 1.72 1.57 

P-6 458, 585 

(4.5)(4.5) 

689 467, 645 795 1.80 1.56 

P-7 434, 573 

(4.3)(4.3) 

660 449, 614 721 1.87 1.72 

P-8 432, 550 

(4.4)(4.5) 

676 435, 596 713 1.94 1.74 

P-9 387, 511 

(4.4)(3.9) 

592 384, 518 596 2.09 2.08 

aMolar absorption coefficient. Molarity is based on the repeating unit. bSpin coated from chlorobenzene solution. 
cEg

opt = hc /λ 0.1max. dPhotoluminescence data. 
 

The emission maxima of P-1, P-2 and P-6 in dilute chloroform solution are at λmax,em ~ 705 

nm, while the emission curves of P-3, P-4 and P-5, showing their maxima at λmax,em = 690, 

665 and 726 nm, respectively. The fluorescence quantum yields were found to be around 03-

33% for P-1-P-9.  
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Figure 3.19. Normalized UV-vis of P-5 and P-6 and emission spectrum of P-5 in solid state. 

(film from chlorobenzene) 

The emission maxima of polymers (P-1-P-9) (except for P-6, no emission was observed) in 

solid film are red shifted than in solution, and a lower fluorescence quantum yield around 01-

10% observed (Figures 3.18-3.20). We assumed, the reason for the low photoluminescence 

(PL) efficiency is a π-π stacking of the conjugated backbone cofacial to each other due to the 

favourable inter-chain π-π interactions, which lead to a self-quenching process of the 

excitons.23-25  

 
Figure 3.20. Normalized UV-vis and emission spectra of P-7, P-8 and P-9 in solid state. (film 

from chlorobenzene) 
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Table 3.4. Photoluminescence Data of P-1-P-9 in Dilute Toluene Solution (~ 10-7 M) and in 

Solid State.a 

Poly

-mer 

PLb 

λem, nm 

Stokes Shift λ0-0,  

nm 

Eg
0-0 % φfl 

 

 Toluene film Toluene film Toluene film Toluene film Toluene film 

P-1 706 772 117 122 658 725 1.88 1.71 07 1 

P-2 705 738 113 114 662 698 1.87 1.77 09 1 

P-3 690 742 138 134 636 693 1.94 1.78 07 1 

P-4 665 713 112 131 615 652 2.01 1.90 17 1 

P-5 726 785 111 135 686 745 1.80 1.66 03 0 

P-6 703 000 118 - 664 - 1.86 - 03 0 

P-7 677 722 104 108 634 684 1.95 1.81 07 5 

P-8 658 682 108 86 620 674 2.00 1.83 20 5 

P-9 619 627 108 109 561 565 2.21 2.19 33 10 
aSpin coated from chlorobenzene solution. bPhotoluminescence data. 
 

The Stokes shifts between the absorption and emission of the polymers P-1-P-9 are relatively 

large (between 104-138 nm in solution and 86-135 nm in film). Usually the Stokes shift 

comes from the two sources: emission either from the excited segments of a conjugated 

polymer undergoing deformation into more planar conformation along the chain or from the 

migrated excitons in other segments where ring rotations are not hindered.117 The absence of 

substituents at 2,3-position of thienopyrazine moiety enable strong π-π interchain interaction, 

leading to the formation of excimers which provide radiationless decay channels for the 

excited states and hence resulting in larger Stokes shifts in case of polymer P-3 and lower 

fluorescence quantum yields.118-120 The presence of bulky substituents at 2,3-position of 

thienopyrazine moiety hinders strong π-π interchain interactions, less chances of excimer 

formation and hence relatively small Stokes shifts and better fluorescence quantum yields in 

case of polymers P-7, P-8 and P-9. 

3.1.5 Thermal Annealing Effect of P-1, P-2 and P-5 Films.  

To get information about the molecular packing and effect of thermal annealing on polymer 

films, we performed thermal annealing of polymer films being prepared from a chlorobenzene 
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solution at different temperatures. At each temperature gradient the polymer film was 

annealed for 10 minutes, cooled to room temperature and UV absorption was measured.   

As mentioned above, the visible absorption spectra of P-1, P-2 and P-5 films red-shifted 

obviously in comparison with their solution. The visible absorption peak of the polymer P-1 

film remain unchanged after the films were treated at 80, 100, 110, 125 and 150 °C for 10 

min, as shown in Figure 3.21.  

 
Figure 3.21. UV-vis spectra of P-1 in solid state at different temperatures. (film from 

chlorobenzene) 

 

In case of polymer P-2, the visible absorption peak was lowered in intensity by thermal 

annealing, and the second band almost disappear by annealing at 130 0C. The chromophore 

system is apparently destroyed. 

 
Figure 3.22. UV-vis spectra of P-2 in solid state at different temperatures. (film from 

chlorobenzene) 
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In case of polymer P-5, the visible absorption peak was slightly red-shifted further to 675 nm 

after the films were treated at 130 °C for 10 min, as shown in Figure 3.23. After the thermal 

annealing, the band gap of the polymer calculated from the absorption edge is 1.53 eV. This 

phenomenon was also observed in some other polythiophene derivatives. For example, when 

the film of regioregular poly- [3-(4-octylphenyl)thiophene] (P3OPT) was thermally annealed 

or treated in chloroform vapor, its band gap reduced from 2.1 to 1.85 eV, along with 

significant increase of structure ordering.121 When the film was thermally annealed, the 

macromolecular chains of the polymer could realign, and then the conjugation effect could be 

enhanced. So the band gap of the polymers, which determines the absorption of the π-π* 

transition of the main chain, could be decreased after the thermal annealing. 

 
Figure 3.23. UV-vis spectra of P-5 in solid state at different temperatures. (film from 

chlorobenzene) 

3.1.6 Aggregate Formation in Solvent/Nonsolvent Solution 

  In order to obtain further information on the assumed self assembly of these polymers and 

aggregation, the absorption and emission spectra of polymers P-1, P-2 and P-8 in 

chloroform/methanol mixtures with different volume concentrations of methanol are shown in 

Figures 3.24, 3.25 and 3.26, respectively. 
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Figure 3.24. UV-vis spectra of P-1 in CHCl3 with different concentration of MeOH. 

 

 It should be noted here that in all cases the bulk solution maintains homogeneity. With an 

increase of methanol concentration, the second absorption band of these polymers is red 

shifted. Addition of methanol to the chloroform solution of P-1, P-2 and P-8 led to a change 

in the λmax  and above 50 % Vol. of methanol, a decrease in the intensity of the first band and 

a shift in second band at higher wavelength was observed. Clearly, the presence of significant 

amount of nonsolvent (methanol) in solution makes solute-solvent interaction energetically 

less favorable, thereby forcing polymer chain segments to approach each other for aggregate 

formation.  

 
Figure 3.25. UV-vis spectra of P-2 in CHCl3 with different concentration of MeOH. 
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The aggregate band in solution occurred at nearly the same wavelength as that in the spin-cast 

film of these polymers, clearly showing that the aggregate structure retained in the film state 

once formed in solution. Similar phenomena were found in chloroform/methanol solutions of 

many conjugated polymers.122  

 
Figure 3.26. UV-vis spectra of P-8 in CHCl3 with different concentration of MeOH. 

 

3.1.7 Electrochemical Studies of Model Compounds and Polymers 

 The cyclic and square-wave voltammetry were carried out using thin films of polymers 

prepared from dichloromethane(5 mg/mL) in acetonitrile at a potential scan rate of 15 mV/s. 

Ag/AgCl served as the reference electrode; it was calibrated with ferrocene (E1/2
ferrocene = 0.52 

V vs Ag/ AgCl). The supporting electrolyte was tetrabutylammonium hexafluorophosphate 

(n-Bu4NPF6) in anhydrous acetonitrile (0.1 M). The onset potentials are the values obtained 

from the intersection of the two tangents drawn at the rising current and the baseline charging 

current of the CV curves. Several ways to evaluate HOMO and LUMO energy levels from the 

onset potentials, Eox/onset and Ered/onset, have been proposed in the literature.123-130 These were 

estimated here on the basis of the reference energy level of ferrocene (4.8 eV below the 

vacuum level)126,127 according to the following equation: 

 EHOMO/LUMO = [-(Eonset (vs. Ag/AgCl) – Eonset (Fc/Fc+ vs. Ag/AgCl))] – 4.8 eV.  

The onset and the peak potentials, the electrochemical band gap energy, and the estimated 

position of the upper edge of the valence band (HOMO) and of the lower edge of conduction 

band (LUMO) are listed in Table 3.5. 
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Figure 3.27. Cyclic voltammetry-curves of polymers (P-1-P-6 and P-8) in 0.1M 
TBAPF6/CH3CN at 25 0C. 
 

All the electrochemical data for the polymers (P-1, P-2, P-3, P-5 and P-6) obtained from the 

films are listed in Table 3.5. As shown by the cyclic voltammograms in Figure 3.27, the 

electrochemical oxidation (or p-doping) of P-1 starts at about 0.81 V Ag+/Ag and gives p-

doping peak at 1.04 V vs Ag+/Ag, respectively. In a range from 0.0 to 2.0 V vs Ag+/Ag, the 

film revealed stable in repeated scanning of CV, giving same CV curves. Similarly the 

oxidation of P-2 and P-3 starts at about 0.89 and 0.86 V Ag+/Ag and gives p-doping peaks at 

1.15 and 1.25 V Ag+/Ag, respectively. However, oxidation of the polymers P-5 and P-6 starts 

at 0.64 and 0.70 V Ag+/Ag and gives peaks at 0.83 and 0.93 V, respectively. Similarly the 

reduction of P-2, P-3, P-5 and P-6 starts at about -1.17, -0.91, -1.19 and -1.26 V Ag+/Ag and 

gives n-doping peaks at –1.36, -1.09, -1.39 and –1.42 V Ag+/Ag, respectively. In a range from 

0.0 to -2.2 V vs Ag+/Ag, the films revealed stable in repeated scanning of CV, giving same 

CV curves. However, we were not able to determine reduction in case of P-1. These 

moderately negative reduction potentials have been attributed to the electron withdrawing 

effects of thieno[3,4-b]pyrazine moiety.60 The band gap energy directly measured from CV 

(Egec/onset  between 1.61-2.06 eV) and the optical band gap energy are close to each other. The 

discrepancy ( Eg) of both values lies within the range of error. From the onset potentials, 
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HOMO and LUMO energy levels were estimated. These values indicate these polymers can 

be good hole transporting materials making them suitable candidate for hole-injection and 

transport (Figure 3.28).  

 
Figure 3.28. Energy Levels of the Polymers (P-1-P-3, P-5, P-6 and P-8) and PCBM. 

 

We have also measured the electrochemical data for model compounds in dichloromethane 

solution. All the three model compounds (MD-1, MD-2 and MD-3) show reversible oxidation 

and reduction peaks (see Figure 3.29). The data is comparable to that of polymers. In Figures 

3.27 and 3.29 there are reversible p-doping/dedoping (oxidation/rereduction) processes at 

positive potential range and n-doping/dedoping (reduction/reoxidation) processes at negative 

potential range for all the polymers. After repeated cycles of the potential scan, the 

reproducibility of the cyclic voltammograms is very good, which definitely verifies the 

reversibility of the p-doping/ dedoping and n-doping/dedoping processes. For the application 

of conjugated polymers and oligomers to electrochemical capacitors (ECCs), the reversible p-

doping and n-doping processes are both needed. The reversible p-doping and n-doping 

properties of the polymers studied here indicate that these polymers and model compounds 

could also be promising materials for ECCs.  
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Figure 3.29. Cyclic voltammetry-curves of Model Compounds (MD-1-MD-3) in 0.1M 

TBAPF6/CH3CN at 25 0C. 
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Table 3.5. Electrochemical Potentials and Energy Levels of the Polymers P-1, P-2, P-3, P-5, 

P-6, P-8 and Model Compounds (MD-1-MD-3). 

Polymer Oxidation Potential Reduction Potential Energy Levelsb Band Gap 

 Eox
a           Eonset, Ox 

(V vs Ag/Ag+) 

Ered
a    Eonset, Red 

(V vs Ag/Ag+) 

HOMO      LUMO 

(eV)            (eV) 

Eg
ec          Eg

opt 

P-1 1.04 0.81 ---- ---- -5.10 -3.49a 1.61 1.61 

P-2 1.15 0.89 -1.36 -1.17 -5.17 -3.11 2.06 1.68 

P-3 1.25 0.86 -1.09 -0.91 -5.15 -3.38 1.77 1.72 

P-5 0.83 0.64 -1.39 -1.19 -4.93 -3.10 1.83 1.55 

P-6 0.93 0.70 -1.42 -1.26 -4.99 -3.03 1.96 1.56 

P-8 1.31 1.13 -1.60 -1.32 -5.42 -2.97 2.45 1.72 

MD-1 0.92 0.82 -1.07 -0.90 -5.11 -3.39 1.72 1.84 

MD-2 0.85 0.78 -0.81 -0.73 -5.07 -3.56 1.51 1.72 

MD-3 1.19 1.05 -0.91 -0.78 -5.34 -3.51 1.83 1.79 

  aReduction and oxidation potential measured by cyclic voltammetry. bCalculated from the reduction and 

oxidation potentials assuming the absolute energy level of ferrocene/ferrocenium to be 4.8 eV below vacuum. 

 

3.1.8 Photovoltaic Properties of Polymers P-1, P-2 and P-5 

Thermal annealing of polymers and PCBM blends: 

Blends of polymers P-1, P-2 and P-5 with well known acceptor PCBM (1:4) were spin 

coated from chlorobenzene solution on a quartz glass and thermally treated at different 

temperatures as shown in Figures 3.30-3.32. 

In case of polymer P-1:PCBM (1:4) blend, there was no change in UV-absorption of film, 

when it was treated at 80 0C, 100 0C and 125 0C for 5 minutes at each temperature gradient. 

However, there is a slight change in absorption of film when it was thermally treated at 150 
0C for 5 minutes. The intensity of band at ~ 440 nm is increased mainly due to formation of 

large aggregate or clusters of PCBM in blend. The colour of film was olive green before and 

after thermal annealing. 
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Figure 3.30. UV-vis spectra of P-1:PCBM (1:4) in solid state at different temperatures. (film 

from chlorobenzene) 

 
Similarly in case of polymer P-2:PCBM (1:4) blend, there was no change in UV-absorption 

of film, when it was treated at 80 0C, 100 0C and 125 0C for 5 minutes at each temperature 

gradient. However, there is a slight change in absorption of film when it was thermally treated 

at 150 0C for 5 minutes. The intensity of band at ~ 440 nm is increased mainly due to 

formation of large aggregate or clusters of PCBM in blend. In case of polymer P-2, the colour 

of film was also olive green before and after thermal annealing. 

 

 
Figure 3.31. UV-vis spectra of P-2:PCBM (1:4) in solid state at different temperatures. (film 

from chlorobenzene) 
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Polymer P-5:PCBM (1:4) blend exhibit no change in UV-absorption of film, when it was 

treated at 80 0C, 100 0C and 125 0C for 5 minutes at each temperature gradient. However, 

there is a slight change in absorption of film when it was thermally treated at 150 0C for 5 

minutes. The intensity of band at ~ 440 nm is increased but not as in case of polymer P-1 and 

P-2, mainly due to formation of large aggregate or clusters of PCBM in blend. In case of 

polymer P-5, the colour of film was also olive green before and after thermal annealing. 

 
Figure 3.32. UV-vis spectra of P-5:PCBM (1:4) in solid state at different temperatures. (film 

from chlorobenzene) 

 

 
Figure 3.33. UV-vis spectra of polymer blends P-1, P-2, P-5 with PCBM (1:4) in solid state 

at room temperature. (film from chlorobenzene) 
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Photovoltaic devices 

For photovoltaic device preparation the substrates (polyester foil coated with indium tin oxide 

ITO, surface resistance of 60 Ω/square) were cleaned in an ultrasonic bath in methanol and 

isopropanol. The area of the substrates was 5 cm x 5 cm. After drying the substrate a thin 

layer (~ 100 nm) of PEDOT:PSS (poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) 

(Baytron P, Bayer AG/Germany) was spin-coated and dried. Subsequently, the photoactive 

layer was prepared by spin coating from composite solutions: P-1 or P-2 or P-5/ PCBM (1:4 

weight ratio) in chlorobenzene on the top of the PEDOT:PSS layer. PCBM ([6,6]-phenyl-C61-

butanoic acid methyl ester) comes from the laboratory of J. C. Hummelen at the University of 

Groningen. The thickness of the photoactive layers was typically in the range of 100-150 nm. 

The aluminium cathode was thermally deposited (~ 80 nm) through a shadow mask, which 

defines a device area of 0.25 cm². I/V curves were recorded with a Keithley SMU 2400 

Source Meter by illuminating the cells from the ITO side with 100 mW/cm² white light from a 

Steuernagel solar simulator to realise AM1.5 conditions. All cells were prepared and 

measured under ambient conditions. 

Figures 3.34-3.36 show the I-V curves of the polymer solar cells under the illumination of AM 

1.5, 100 mW/cm2. The cell based on P-1:PCBM has an open-circuit voltage (Voc) of 678 

mV, a short-circuit current (ISC) of 3.48 mA/cm², a calculated fill factor (FF) of 0.46 and an 

AM1.5 power conversion efficiency of 1.10 %. The device parameters using P-2:PCBM were 

4.31 mA/cm2, 758 mV, 0.48 and 1.57 %. While in case of P-5:PCBM, device parameters 

were 3.81 mA/cm2, 589 mV, 0.45 and 1.01 %. 

The higher short circuit current and the open-circuit voltage of the P-2:PCBM cell compared 

with P-1:PCBM and P5:PCBM may be due to the somewhat lower HOMO level of P-2 

versus P-1 and P-5, and presence of bulky ethylhexyloxy chains. In case of polymer P-5, the 

HOMO level (4.93 eV) is a bit higher than PEDOT:PSS (5.1 eV), this makes the potential 

barrier for the hole injection at the P-5/PEDOT:PSS interface slightly higher than that at P-1 

or P-2/PEDOT:PSS. Simultaneously the voltage influencing difference between the HOMO 

level of the donor polymer and the LUMO level of PCBM is slightly increased for P-

2:PCBM.  

These initial values for P-2 are higher compared to the low band gap polymer diodes reported 

in the literature.55,61 Nevertheless, these first devices are still not optimized. Further studies 

are underway to optimize devices based on these promising materials for photovoltaic 

devices. 
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For future advancement, the relatively high VOC = 0.758 V at an optical band gap of Eg = 1.69 

eV is encouraging, certainly in comparison with that of P3HT:PCBM devices where VOC = 

0.63 V and Eg = 1.9 eV.44 On the other hand, the AM1.5 current density of ISC = 4.31 mA/cm2 

is less than in P3HT:PCBM cells (ISC = 9.5 mA/cm2),44 despite the extension of the spectral 

response to longer wavelengths. This can be attributed to a very low optical density of the 100 

nm photoactive layer in optimized cells. 

 

 
Figure 3.34. (a) I-V measurement of P-1:PCBM 1:4 weight, solar cells measured in the dark 

and under illumination 100 mW/cm2. (b) Shows the same data in a semi-logarithmic plot. 

 

 

 
Figure 3.35. (a) I-V measurement of P-2:PCBM 1:4 weight, solar cells measured in the dark 

and under illumination 100 mW/cm2. (b) Shows the same data in a semi-logarithmic plot. 
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Figure 3.36. (a) I-V measurement of P-5:PCBM 1:4 weight, solar cells measured in the dark 

and under illumination 100 mW/cm2. (b) Shows the same data in a semi-logarithmic plot. 

 
 
The slope of the I–V curves in reverse bias indicates that the charge carrier transport is highly 

field driven. We assume that this fact and the resulting modest fill factor of 0.48 are caused by 

a low hole mobility in these polymers as compared to the electron mobility in PCBM, creating 

a transport limitation. In addition, part of the charges may very well recombine to the polymer 

triplet state.131 PIA measurements are in progress, but currently it is not clear to which extend 

this happens.  

 

Table 3.6. Summary of photovoltaic properties of polymers P-1, P-2 and P-5  

Blend 

 

ISC 

mA/cm2 

VOC 

Volts 

Fill Factor 

% 

PCE η 

% 

P-1:PCBM 1:4 3.48 0.758 46 1.10 

P-2:PCBM 1:4 4.31 0.678 48 1.57 

P-5:PCBM 1:4 3.81 0.589 45 1.01 
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3.2 Pi- conjugated polymers containing thieno[3,4-b]pyrazine as pendant 

group 

3.2.1 Synthesis and Characterization of Monomers and Model Compounds 

The synthetic procedures used to prepare the monomers and model compounds are outlined in 

Schemes 3.9, 3.10 and 3.11. Monomers (M-9-M-15 and M-20) were synthesized in multistep 

synthesis. Commercially available 4,4´-dimethylbenzil was brominated to its bromomethyl 

derivative (27)132 by NBS-bromination. Similarly from commercially available 4-

bromophenol in two steps 4-(2-ethylhexyloxy)phenyl boronic acid (30)133 was obtained in 

good yield. By Suzuki coupling91 of 2,5-dibromo-3,4-dinitro thiophene (13) with boronic 

acids (29, 30), compounds (31, 32) were obtained in good yields. 2,5-disubstituted-3,4-

dinitrothiophenes (31, 32) were reduced to their respective diaminothiophenes (33, 34) by tin 

chloride (anhydrous) in conc. HCl. The condensation134 of  (33, 34) with commercially 

available 1,4-dibromo-butane-2,3-dione led to monomers (M-9, M-10) on one side and with 

1,2-bis(4-(bromomethyl)phenyl)ethane-1,2-dione (27), monomers (M-11, M-12)   were 

obtained on the other side.  

 

Reagents and conditions: (a) triflouromethanesulphonic acid, N-bromosuccinamide, room 

temperature, 3h; (b) CCl4, NBS, reflux, 2h; (c) 1-bromo-2-ethylhexane, DMSO, KOH, room 

temperature; (d) THF, BuLi, trimethylborate, -78 0C to room temperature.  

Scheme 3.9. Synthesis of Compounds 26, 27 and 30. 

 

Monomers (M-9, M-11) are deep red while (M-10, M-12) are violet in colour. Monomers 

(M-9, M-10) were further converted to their respective phosphonate esters (M-13, M-14) by 
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Michael Arbuzov reaction.135 Commercially available 9,10-phenanthrenequinone was 

brominated by a reported procedure136 to give bright orange crystals of 2,7-

dibromophenanthrene-9,10-dione (26) in quantitative yield. The monomer (M-15) is the 

condensation product of compound (26) with (34). M-15 is green in colour due to enhanced 

conjugation compared to other monomers (M-9-M-12). Despite of two bulky side chains, the 

solubility of M-15 was relatively lower due to rigidity of the structure.  

 

Reagents and conditions: (a) toluene, THF, aq. K2CO3 (2M), Pd(PPh3)4, 80 0C, 12 h; (b) ethanol, 

SnCl2 (anhydrous), conc. HCl, reflux, overnight; (c) 1,4-dibrom-2,3-butandione, CHCl3, p-

toluenesulfonic acid, room temperature 12 h; (d) 1,2-bis(4-(bromomethyl)phenyl)ethane-1,2-dione, 

CHCl3, p-toluenesulfonic acid, room temperature 12 h; (e) 2,7-dibromophenanthrene-9,10-dione, 

CHCl3, p-toluenesulfonic acid, room temperature 12 h (f) triethyl phosphite, 160 0C, 4 h; (g) 

benzaldehyde, THF, t-BuOK, 0 0C to room temperature 3 h. 

Scheme 3.10. Synthesis of Monomers M9-M-15 and Model Compounds MD-4-MD-5. 
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From monomers (M-13 and M-14) two model compounds (MD-4 and MD-5) were 

synthesized according to the Horner-Wadsworth-Emmons olefination reaction.137,138 The 

synthesis was carried out in THF at 0 0C in presence of strong base potassium tert. butoxide. 

Both model compounds were violet in colour and were obtained in good yields.  

 

 
 

Reagents and conditions: (a) sodium iodide, sodium acetate (anhydrous), DMF, 140°; (b) ethanol, 

water, sodium hydroxide; (c) pyridium chlorochromate, molecular sieves, silica gel, CH2Cl2. 

Scheme 3.11. Synthesis of Monomer M-20. 

 

Monomers (M-17, M-19 and M-20) containing alkyl and alkoxy chains in order to fulfill 

solubility requirement of designed polymers were also prepared as counter part of  thieno[3,4-

b]pyrazine containing monomers according to the procedures described in the 

literature.104,139,140  

 

Figure 3.36. 1HNMR of monomer M-9. 
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The chemical structures of monomers (M-9-M-15, M-17, M-19, and M-20) were confirmed 

by NMR, Mass and elemental analysis. 1H and 13C NMR spectra were in good agreement with 

the proposed structure of the monomers. The 1H NMR spectrum of M-9 in CDCl3 showed 

peaks indicating four protons of phenyl rings adjacent to thienopyrazine (5,7-position) at δ = 

7.98, while four protons of phenyl rings adjacent to methyl appeared at δ = 7.20, CH2Br 

protons at  δ = 4.80 and methyl protons signals were present at δ = 2.34 ppm. 

 

 

Figure 3.37. 1HNMR of monomer M-12. 

 

The 1H NMR spectrum of M-12 in CDCl3 showed peaks indicating four protons of phenyl 

rings adjacent to thienopyrazine (5,7-position) at δ = 8.10, four protons of phenyl rings 

adjacent to pyrazine ring (2,3-position) at δ = 7.44,  four protons of phenyl rings adjacent to 

CH2Br (2,3-position) at δ = 7.28, while four protons of phenyl rings adjacent to ethylhexyloxy 

side chain (5,7-position)  appeared at δ = 6.94, CH2Br  protons at  δ = 4.43, OCH2 protons at  

δ = 3.84 and alkyl protons appeared between δ = 1.17-0.81 ppm.  
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Figure 3.38. 1HNMR of monomer M-13. 

The 1H NMR spectrum of M-13 in CDCl3 showed peaks indicating four protons of phenyl 

rings adjacent to thienopyrazine (5,7-position) at δ = 8.03, while four protons of phenyl rings 

adjacent to methyl appeared at δ = 7.20, OCH2 protons at  δ = 4.06, CH2 protons adjacent to 

pyrazine ring (2,3-position) at  δ = 3.83-3.74 and terminal methyl protons signals of tolyl 

were present at δ = 2.35 ppm while methyl protons of phosphonate ester appeared at-1.18 

ppm.  

 

Figure 3.39. 1HNMR of monomer M-15. 

Similarly 1H NMR spectrum of M-15 in CDCl3 showed peaks indicating two protons of 

phenazine at δ = 9.18, two more quinoxaline protons appeared at δ = 8.4, four protons of 
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phenyl rings adjacent to thienopyrazine (5,7-position) at δ = 8.06, remaining two protons of 

quinoxaline ring at δ = 7.03,  four protons of phenyl rings adjacent to ethylhexyloxy side 

chain (5,7-position) appeared at δ = 6.93,  four  OCH2 protons at  δ = 3.91 and  twenty six 

alkyl protons appeared between δ = 1.49-0.85 ppm. 

The 1H NMR spectrum of MD-4 in CDCl3 showed peaks indicating four protons of phenyl 

rings adjacent to thienopyrazine (5,7-position) at δ = 8.17, while four protons of vinylene 

bonds at δ = 7.90 and 7.64, protons of phenyl rings attached to vinylene bonds showed 

multiple signals between δ = 7.52-7.38, while four protons of phenyl rings adjacent to methyl 

appeared at δ = 7.29 and terminal methyl protons signals were present at δ = 2.44 ppm, 

respectively.  

 

Figure 3.40. 1HNMR of model compound MD-4. 

3.2.2 Synthesis of Polymers 

Poly(p-phenylenevinylene)s containing 5,7-disubstituted pendant thieno(3,4-b)pyrazine (P-

10,P-11,P-12) were synthesized by Horner-Wadsworth-Emmons polycondensation route, 

suitable for the synthesis of well-defined strictly alternating copolymers. The polymers were 

reddish brown in colour and were soluble in common organic solvents such as chloroform, 

toluene and tetrahydrofuran (THF). The average molecular weights of polymers were 

determined by gel permeation chromatography (GPC) with polystyrene as standards. THF 
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served as eluting solvent. The number-average molecular weight ⎯Mn, values of polymers (P-

10-P-12) were between 8800-6000 g/mol, leading to degree of polymerisation between 13-7 

with a polydispersity index of 1.7-1.3, (see Table 3.7). 

 

 

Scheme 3.12. Synthesis of Polymers P-10-P-12. 

 

Copolymers (P-13, P-14) were synthesized via Gilch polymerization.78 this method requires 

the use of excess strong alkali to ensure the formation of the fully eliminated structure. The 

polymerization route offers a number of important advantages for the introduction of vinylene 

units along the polymer backbone with high molecular weight, low polydispersity and allows 

for easy purification.The monomers are treated with potassium tert-butoxide in organic 

solvents (THF), where the polymerization is carried out either by the controlled addition of 

monomer to a solution of base or by the controlled addition of base to a solution of monomer. 

One of the major problems associated with the latter route is gel formation.79 Indeed, if the 

rate of addition of monomer to base or base to monomer is not controlled precisely, the 

reaction typically leads to the formation of a gel, which limits the yield, molecular weight, 

polydispersity, solubility, and processability of the polymer. As an alternative approach, 

therefore, we have carried out the Gilch polymerization by first adding an equimolar amount 

of base into the reaction system. About 1 h later, the resultant solution was diluted with dry 

THF, to which an excess amount of the strong organic base was then added slowly. Most of 

the polymers with electron-withdrawing thieno(3,4-b)pyrazine units in side or main chains 

exhibit poor solubility that limits their application.  In an attempt to improve the solubility, 

polymers (P-13, P-14, P-15 and P-16) with longer flexible side chain were designed. These 

bulky side groups interrupt conjugation and interfere with the packing of the polymer chain, 

which results in the formation of amorphous PPVs. 
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Scheme 3.13. Synthesis of Polymers P-13-P-16. 

 

 The number-average molecular weight ⎯Mn, values of polymers (P-13, P-14) were between 

11600-6100 g/mol, leading to degree of polymerisation between 13-9 with a polydispersity 

index of 6.1-4.2. High value of polydispersity index and low molecular weight of these 

polymers are possibly due to steric hinderance imposed by bulky substituents. 

Two homopolymers (P-15, P-16) were also synthesized via Gilch polymerization. The 

number-average molecular weight ⎯Mn, values of polymers (P-15, P-16) were between 

11500-4200 g/mol, leading to degree of polymerisation between 16-7 with a polydispersity 

index of 1.7-1.2.   

Random and alternating poly(9,9-didecylflourene-co-thienopyrazine) copolymers (P-17, P-

18, P-19) were synthesized by Suzuki coupling polymerization. The polymers are green in 

colour. P-17 and P-18 were soluble in chloroform, toluene and tetrahydrofuran while P-19 
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showed solubility only on heating, low solubility of P-19 can be attributed to its high 

molecular weight.  

 

Scheme 3.14. Synthesis of Polymers P-17-P-19. 

 

Figure 3.41. GPC curves of polymers P-10, P-12, P-16, P-17 and P-19. 
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The number-average molecular weight ⎯Mn, values of polymers (P-17-P-19) were between 

18600-14000 g/mol, leading to degree of polymerisation between 54-12 with a polydispersity 

index of 1.8-1.5. (see Figure 3.41  and Table 3.7 ) 

Table 3.7. GPC data of polymers P-10-P-19. 

Polymer 

 

⎯Mn 

(g/mol) 

⎯Mw 

(g/mol) 

PDI 

 

⎯Pn 

 

Yield (%) 

 

P-10 8800 14800 1.68 13 72 

P-11 5800 8400 1.46 07 65 

P-12 7400 10900 1.46 11 64 

P-13 6100 25200 4.2 09 70 

P-14 11600 70500 6.05 13 58 

P-15 4200 5000 1.2 07 67 

P-16 11500 19400 1.7 16 69 

P-17 14000 25500 1.8 12 71 

P-18 18600 28800 1.5 42 73 

P-19 18300 26800 1.5 54 67 

     Mn, GPC (polystyrene standards). 

3.2.3 Characterization of Polymers 

The chemical structures of the polymers (P-10-P-19) were verified by FTIR, 1H, 13C NMR 

and elemental analysis. The 1H NMR spectra of the copolymers and homopolymers were 

consistent with the proposed structure of the polymers. Compared with the 1H NMR peaks of 

monomers, those of the polymers were broadened. The 1H NMR spectrum of P-10 in CDCl3 

showed peaks indicating aromatic and vinylene protons between 8.26-7.25 ppm, -OCH2 

protons at 4.10 ppm, methyl protons of tolyl group at 2.47 ppm and remaining alkoxy side 

chain protons were present between 1.85-0.79 ppm, respectively.  

Similarly 1H NMR spectrum of P-16 in CDCl3 exhibited peaks indicating four protons of 

phenyl rings adjacent to thienopyrazine (5,7-position) at 8.22 ppm, while remaining phenyl 

and vinylene protons were present between 7.61-7.02 ppm. The -OCH2 protons of 

ethylhexyloxy side chain appeared at 3.95 ppm and other alkyl protons were present upfield 

between 1.80-0.96 ppm. The signals of –CH2Br end group can be seen at 4.53 ppm. 
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Figure 3.42. 1HNMR of polymers P-10 and P-16. 

 

Figure 3.43 showed the 1H NMR spectra of (P-17, P-18 and P-19) in CDCl3. In 1H NMR 

spectra of all the three polymers, protons signals of quinoxaline ring were present at about 9.7 

and 8.59 ppm, respectively. Remaining aromatic protons were present between 8.15-7.15 

ppm. The –OCH2 protons of ethylhexyloxy side chains can be seen at 4.05 ppm. While other 

alkyl side chain protons were present upfield between 2.37-0.84 ppm. The height of –OCH2 

protons signals in the three spectra is indicative of presence of monomer (M-15) in these 

polymers. 
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Figure 3.43. 1HNMR of polymers P-17, P-18 and P-19. 

 

We investigated the thermal properties of these copolymers by thermogravimetric analysis 

(TGA) and differential scanning calorimetry (DSC) at a heating rate of 10 K/minute. All the 

polymers are thermally stable and thermal decomposition starts at >300 °C. We did not detect 

any possible phase transition signals during repeated heating/cooling DSC cycles for 

polymers (P-10-P-19) which indicate that the polymers have amorphous structures. 

 



3. Results and Discussion                                                                                           70(138) 

3.2.4 FT-IR Analysis 

As the structure difference among P10-P16 only lies in the different side chains attached to 

the phenylene rings, IR spectra of these polymers were similar to each other. It can be seen 

that the vibrational bands at 1607 and 1532 cm-1 in all the polymers (P-10-P-16) are due to 

stretching vibrations of the C═N group in the thienopyrazine ring. The polymers showed 

characteristic absorption bands at 2958, 2928, 2870 (C-H stretching of aliphatic segments); 

1608, 1510, 1456 (aromatic); and 1242, 1176 (ether bond). The absorption bands at ~3056 

and ~961 cm-1 are due to stretching modes for the vinylene C=C bond and C-H out-of-plane 

bending, respectively, of the trans configuration. The spectrum of model compounds   (MD-4, 

MD-5) were very similar but did not display any absorption at about ~ 965 cm-1 that was 

assigned to the out-of-plane deformation of the trans vinylene moiety.141 

 
Figure 3.44. FT-IR of polymers P-10, P-11, P-14 and P-16. 

 

An absorption peaked at ~965 cm-1 was clearly visible for all polymers, while no signals 

could be found at 875 cm-1, indicating that these predominantly contains a trans-CH═CH 

group under Horner and Gilch conditions. Therefore, it is concluded that both Horner and 

Gilch reactions are suitable for developing polymers with regular molecular configurations. 
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3.2.5 Optical Properties 

The photophysical characteristics of the new monomers, model compounds and polymers 

were investigated by UV-vis absorption and photoluminescence in dilute chloroform solution 

as well as in solid state. The optical data are summarized in Table 3.8, namely the absorption 

peak maxima, λa, the absorption coefficients at the peak maxima, log ε, the optical band gap 

energy, Eg
opt (calculated from λ10%max, wavelength at which the absorption coefficient has 

dropped to 10% of the peak value),114 the emission maxima λe, and the fluorescence quantum 

yields, Φfl. All emission data given here were obtained after exciting at the wavelength of the 

main absorption band. Figure 3.45 show the absorption and emission spectra of model 

compounds. 

 
Figure 3.45. Normalized UV-vis and emission spectra of MD-4 and MD-5 in solution 

(Toluene 10-7mol). 

 

The absorption spectra of the monomer (M-9) shows two peaks located in the UV and visible 

region at 307 nm due to the presence of tolyl group and at 503 nm due to thieno(3,4-

b)pyrazine system. Similarly two peaks in the absorption spectra of the monomer (M-15) are 

located at 347 nm  due to presence of electron donor alkoxy phenyl groups adjacent to 

thienopyrazine moiety (5,7 position) and 621 nm attributed to the effective chromophore 

system. This indicates that the presence of strong donor groups at 5 and 7 position of 

thieno[3,4-b]pyrazine lead to a red shift in absorption spectra. The absorption maxima of 

model compounds (MD-4-MD-5) are red shifted relative to monomers (M-13-M-14) (Table 

3.8). Obviously, increase in conjugation length is the reason for this red shift. In comparison 
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to monomers and model compounds, the respective polymers (P-10-P-16) show a little or no 

change in the  first absorption band (~330 nm), a blue shift  is observed in the second 

absorption band originated from the  π-π* absorption of conjugated main chain.  

 

Table 3.8. Optical Data of Polymers P-10-P-16 and Model Compounds MD-4-MD-5 in 

Dilute Toluene Solution (~ 10-7 M) and in Solid State.b 

Poly

mer 

 

UV-vis 

λmax, nm 

Eg opt. 

eVc 

PLd 

λem, nm 

% φfl 

 

 

Toluene 

(log ε)a 

λ0.1max 

(nm ) 

filmb 

 

λ0.1max 

( nm)

Toluene

 

film

 

Toluene 

 

film 

 

Toluene 

 

film

 

P-10 338, 440 

(4.4)(4.3) 

573 444 

 

590 

 

2.16 2.10 560 

 

618 

 

12 

 

1 

 

P-11 300, 420 

(4.3)(4.0) 

549 484 604 2.26 2.05 706 - 02 - 

P-12 341, 405 

(4.5)(4.4) 

516 

 

427 

 

651 

 

2.40 

 

1.90

 

508 

 

- 

 

02 

 

0 

P-13 300, 457 

(4.4)(4.0) 

599 

 

467 605 

 

2.07 

 

2.05

 

- 

 

- 

 

- 

 

- 

 

P-14 312, 476 

(4.4)(4.2) 

615 

 

488 

 

605 

 

2.01 

 

2.05

 

- 

 

- 

 

- 

 

- 

 

P-15 321, 540 

(4.3)(3.3) 

600 

 

325, 

545 

602 

 

2.06 

 

2.06

 

694 

 

- 

 

05 

 

0 

 

P-16 337, 530 

(4.5)(3.5) 

627 

 

338, 

530 

630 1.97 1.96

 

665 

 

680 

 

44 

 

1 

 

MD-4 

 

361, 538 

(4.6)(3.5) 

633 340 

 

615 

 

1.96 

 

2.01

 

676 

 

- 

 

13 

 

0 

 

MD-5 

 

363, 565 

(4.6)(3.6) 

678 397 620 1.82 2.00 728 - 02 0 

aMolar absorption coefficient. Molarity is based on the repeating unit. bSpin coated from chlorobenzene solution. 
cEg

opt = hc /λ 0.1max. dPhotoluminescence data. 
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Figure 3.46. Normalized UV-vis and emission spectra of P-10, P-11 and P-12 in solution 

(Toluene 10-7mol). 

The thieno(3,4-b)pyrazine unit is attached to the PPV such that the polymer backbone is 

kinked, thereby shortening conjugation lengths. The blue shift especially in the absorption 

maxima of  alternating copolymers suggests increased disruption of  conjugation caused by 

increased amount of bent 5,7-disubstituted thieno(3,4-b)pyrazine linkages in the polymer 

backbone. The incorporation of such kinked linkages in polymer backbones has been used 

successfully in poly(p-phenylenevinylene) backbones to control the conjugation length of the 

polymer and tune the emission colors.142 The absorption maxima of  homopolymers (P-15 and 

P-16) show a bathochromic shift (λmax 530-540 nm) relative to other copolymers probably due 

to the absence of steric hinderance caused by long alkoxy side chains. 

 
Figure 3.47. Normalized UV-vis and emission spectra of P-13, P-14, P-15 and P-16 in 

solution (Toluene 10-7mol). 
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Figure 3.48 shows the normalized optical absorption spectra of thin films of copolymers and 

homopolymers (P-10-P-16) are almost similar to those of the absorption spectra in dilute 

solution. The distinct similarity between the thin film absorption spectra and the dilute 

solution spectra suggests comparable groundstate electronic structures of the polymers with 

no significant aggregation in the condensed state. 

 
Figure 3.48. Normalized UV-vis spectra of P-10, P-12 and P-16 in solid state. (film from 

chlorobenzene) 

 This again confirms that the bent 5,7-disubstituted thieno[3,4-b]pyrazine linkages introduce 

disorder in the polymer backbones and thus prevent ordered intrachain conformations. The 

optical band gaps derived from the absorption edge of the thin film spectra gave values of 1.9-

2.1 eV for (P-10-P-16). 

The PL emission spectra of model Compounds, homo and the copolymers in dilute toluene 

solution are shown in Figures 3.45, 3.46 and 3.47. All emission data given were obtained by 

the excitation at the maximum absorption peaks. The emission maximum of MD-4 in dilute 

toluene solution is at λmax,em =676 nm, while the emission curve of MD-5, showing its 

maximum at λmax,em = 728 nm. The fluorescence quantum yields were found to be around 2 

and 13% for MD-4 and MD-5 respectively. In dilute solutions, the polymers (P-10-P-16) only 

show one emission peak ranging between 508 to 706 nm. The fluorescence quantum yields 

were found to be around 2 and 44% for P-10-P-16. Large Stokes shift between 75-286 nm 

were observed in these polymers. The emission maximum of P-10 in solid film is located at 

λmax,em = 618 nm leading to Stokes shift of 174 nm, and a lower fluorescence quantum yield 

of 1%. We assumed that thienopyrazine moiety serves as a quenching channel (both radiative 

and non-radiative) in these polymers. 
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Table 3.9. Optical Data of P-17-P-19 and monomer M-15 in Dilute Toluene Solution (~ 10-7 

M) and in Solid State.a 

Poly

mer 

 

UV-vis 

λmax, nm 

Eg opt. 

eVb 

PLc 

λem, nm 

% φfl 

 

 

 

Toluene 

(log ε)a 

λ0.1max 

(nm ) 

filmb 

 

λ0.1max 

( nm) 

Toluene

 

film 

 

Toluene 

 

Toluene 

 

P-17 358, 612 

(4.9)(3.7) 

735 

 

361, 

621 

755 

 

1.68 

 

1.64 

 

746 

 

2 

 

P-18 353, 399, 611 

(4.4) (4.1)(3.0) 

680 

 

358, 

612 

725 

 

1.82 

 

1.71 

 

491, 

 745 

5, 

3 

P-19 360, 382, 402,613 

(4.0)(4.0)(4.1)(2.2) 

620 

 

378, 

399,  

636 

715 

 

2.00 

 

1.73 

 

436,  

746 

7,  

2 

M-15 347, 621 

(4.8) (3.8) 

745 

 

- 

 

- 

 

1.66 

 

- 

 

- 

 

- 

 
aSpin coated from chlorobenzene solution. bEg

opt = hc /λ 0.1max. cPhotoluminescence data. 

 

However, the emission of all the polymers (P-10-P-16) remains blue as compared to emission 

of model compounds (MD-4-MD-5) with simultaneous loss in vibronic structure of the 

emission spectra. This loss of the well-resolved structure of the emission spectra in the 

copolymers suggests lack of intrachain ordering due to the many kinks in the polymer 

backbone. 

                            
Figure 3.49. Normalized UV-vis and emission spectra of P-17, P-18 and P-19 in solution 

(Toluene 10-7mol). 
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Polymer P-17 show two absorption peaks in UV-vis region similar to that of monomer (M-

15), at ~ 358 and 612 nm respectively. The statistical polymers P-18 and P-19 showed many 

peaks in range of ~350-400 nm, mainly due to presence of anthracene and fluorene moities. 

The band due to monomer M-15 was present at longer wavelength around ~ 615 nm. 

Although in these copolymers conjugated system is retained, because thienopyrazine moiety 

is present as a pendant group, so the intensity of the band at longer wavelength is lower in 

intensity as compared to those polymers, where thienopyrazine moiety was present in main 

chain. 

The polymers P-17 exhibit emission peak at ~ 746 nm, while in case of P-18 and P-19 two 

emission peaks were observed, one in blue region at ~ 491 and ~ 436 nm respectively, second 

similar to that of P-17 at ~ 745 nm. In case of P-19, the PL intensity of first emission (7%) is 

greater than the intensity of second emission peak (2%). 

Polymer P-17 shows the normalized optical absorption spectra of thin film similar to those of 

the absorption spectra in dilute solution. 

 
Figure 3.50. Normalized UV-vis spectra of P-17, P-18 and P-19 in solid state. (film from 

chlorobenzene) 

3.2.6 Thermal Annealing Effect of P-10 and P-17 Films  

To get information about the molecular packing and effect of thermal annealing on polymer 

films, we performed thermal annealing of polymer films being prepared from a chlorobenzene 

solution at different temperatures. At each temperature gradient the polymer film was 

annealed for 10 minutes, cooled to room temperature and UV absorption was measured.   
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As mentioned above, the visible absorption spectra of P-10 and P-17 films show no change in 

comparison with their solution. Very interestingly, the visible absorption peak of the polymer 

P-10 film was slightly blue-shifted after annealing for 10 minutes at 80 0C, and intensity of 

the absorption peak was lowered. Further annealing did not bring any change in absorption 

spectrum of polymer P-10. 

 
Figure 3.51. UV-vis spectra of P-10 in solid state at different temperatures. (film from 

chlorobenzene) 

 

In case of polymer P-17, the visible absorption peak was slightly red-shifted further to 632 

nm for after the films were treated at 150 °C for 10 min, as shown in Figure 3.45. After the 

thermal annealing, the band gap of the polymers calculated from the absorption edge is 1.63 

eV. This phenomenon was also observed in some other polythiophene derivatives. For 

example, when the film of regioregular poly- [3-(4-octylphenyl)thiophene] (P3OPT) was 

thermally annealed or treated in chloroform vapor, its band gap reduced from 2.1 to 1.85 eV, 

along with significant increase of structure ordering.121 When the film was thermally 

annealed, the macromolecular chains of the polymer could realign, and then the conjugation 

effect could be enhanced. So the band gap of the polymers, which determines the absorption 

of the π-π* transition of the main chain, could be decreased after the thermal annealing. 
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Figure 3.52. UV-vis spectra of P-17 in solid state at different temperatures. (film from 

chlorobenzene) 

 

3.2.7 Electrochemical Studies  

The electrochemical behavior of the copolymers was investigated by cyclicvoltametry (CV), a 

useful method for measuring electrochemical behaviors and evaluation of the relative HOMO, 

LUMO energy levels and the band gap of a polymer. The solution of polymers (P-10, P-12, 

P-15, P-16, P-17, and P-18) was prepared in dichloromethane (5 mg/mL). The 

DPP(Differential pulse polarography) of polymers was carried out in dichloromethane at a 

potential scan rate of 15 mV/s. Ag/AgCl served as the reference electrode; it was calibrated 

with ferrocene (E1/2
ferrocene = 0.52 V vs Ag/ AgCl). The supporting electrolyte was 

tetrabutylammonium hexafluorophosphate (n-Bu4NPF6) in acetonitrile (0.1 M). Several ways 

to evaluate HOMO and LUMO energy levels from the onset potentials, Eox/onset and Ered/onset, 

have been proposed in the literature.123-130 HOMO and LUMO energy levels were estimated 

here on the basis of the reference energy level of ferrocene (4.8 eV below the vacuum level) 

according to the following equation:  

EHOMO/LUMO = [-(Eonset (vs. Ag/AgCl) – Eonset (Fc/Fc+ vs. Ag/AgCl))] – 4.8 eV.  

The onset and the peak potentials, the electrochemical band gap energy, and the estimated 

position of the upper edge of the valence band (HOMO) and of the lower edge of conduction   

band (LUMO) are listed in Table 3.9. As shown by the cyclic voltammogramms in Figure 
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3.53, the polymer P-10 showed reversibility in n-doping processes and irreversibility for their 

p-doping processes. The electrochemical reduction (or n-doping) of P-10 starts at about -1.01 

V Ag+/Ag and gives n-doping peak at -1.31 V vs Ag+/Ag. The reduction CV traces of the P-

12 show peak at -0.87 V vs Ag+/Ag (onset at -0.76 V). Similarly the reduction of P-17 and P-

18 starts at about -0.98 and -0.82 V Ag+/Ag and gives n-doping peaks at –1.17 and –0.91 V 

Ag+/Ag, respectively. However, oxidation of the polymers P-17 and P-18 was irreversible 

with peaks at 1.28 and 1.16 V, respectively. Such irreversibility in the electrochemical 

processes has been reported for several other π-conjugated polymers.143 These moderately 

negative reduction potentials have been attributed to the electron withdrawing effects of 

thieno[3,4-b]pyrazine moiety.60 

 

Figure 3.53. Cyclic voltammetry-curves of polymers (P-10 and P-17) in 0.1M 
TBAPF6/CH3CN at 25 0C. 
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Table 3.10. Electrochemical Potentials and Energy Levels of the Polymers P-10, P-12 and P-

15-P-18. 

Polymer Oxidation Potential Reduction Potential Energy Levelsb Band Gap 

 Eox
a           Eonset, Ox 

(V vs Ag/Ag+) 

Ered
a    Eonset, Red 

(V vs Ag/Ag+) 

HOMO      LUMO 

(eV)            (eV) 

 Eg
ec          Eg

opt 

P-10 1.42 1.18 -1.31 -1.01 -5.47 -3.28 2.19 2.10 

P-12 1.28 1.10 -0.87 -0.76 -5.39 -3.53 1.86 2.18 

P-15 1.22 1.12 -0.88 -0.76 -5.41 -3.53 1.88 2.06 

P-16 1.11 1.03 -1.05 -0.83 -5.32 -3.46 1.86 1.96 

P-17 1.28 1.04 -1.17 -0.98 -5.33 -3.31 2.02 1.69 

P-18 1.16 1.01 -0.91 -0.82 -5.30 -3.47 1.83 1.83 

  
aReduction and oxidation potential measured by cyclic voltammetry. bCalculated from the reduction and 

oxidation potentials assuming the absolute energy level of ferrocene/ferrocenium to be 4.8 eV below vacuum. 

                     

                    

                     
Figure 3.54. Cyclic voltammetry-curves of Model Compound (MD-4), Polymers P-15 and P-

16 in 0.1M TBAPF6/CH3CN at 25 0C. 
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4 Experimental 
 

4.1 Instrumentation   

 

Melting Point. Melting points were obtained by a melting point apparatus Melting Point B-

540 of Büchi. 

NMR Spectroscopy. 1H NMR and 13C NMR spectra were recorded using a Bruker DRX 400 

and a Bruker AC 250. The 1H NMR was checked by using 250 MHz and 400 MHz while 13C 

NMR by using 62 MHz and 400 MHz. The deuterated solvents used were CDCl3, Acetone-D6 

and DMSO-D6. Chemical shifts (  values) are given in parts per million with tetramethylsilane 

as an internal standard.  

Elemental Analysis. The C-H-N-S was measured on a CHNS-932 Automat Leco. While the 

Bromine was measured by potentiometric titration. 

FT-IR. Infrared spectroscopy was recorded on a Nicolet Impact 400.  

Thermogravimetric Analysis (TGA). A NETZSCH apparatus served for the 

thermogravimetric measurements.  

Vapour Pressure Osmometry (VPO). The measurements were performed in chloroform in a 

Knauer Osmometer. 

Gel Permeation Chromatography (GPC). The GPC measurements were performed on a set 

of Knauer using THF as eluent and polystyrene as a standard.  

UV/Vis-Spectroscopy. The absorption spectra were recorded in dilute chloroform solution 

(10-5-10-6 M) on a Perkin-Elmer UV/vis-NIR spectrometer Lambda 19.  

Luminescence Spectroscopy. Quantum-corrected emission spectra were measured in dilute 

chloroform solution (10-6 M) with an LS 50 luminescence spectrometer (Perkin-Elmer). 

Photoluminescence quantum yields were calculated according to Demas and Crosby144 against 

quinine sulfate in 0.1 N sulfuric acid as a standard (φfl = 55%). The solid-state absorption and 

emission were measured with a Hitachi F-4500. The films were cast from chlorobenzene. The 

quantum yield in the solid state was determined against a CF3P-PPV (poly{1,4-phenylene-[1-

(4-trifluoromethylphenyl)ethenylene]-2,5-dimethoxy-1,4-phenylene-[2-(4-

trifluoromethylphenyl)ethenylene]}) copolymer reference that has been measured by 

integrating sphere as 0.43. 

Cyclic Voltammetry. For study on electrochemical behavior, a polymer thin film was 

prepared on a platinum wire as a working electrode, using a platinum wire as the counter 
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electrode and Ag/Ag+ as the reference electrode in a solution of tetrabutylammonium 

hexafluorophosphate (0.1 M) in acetonitrile. The reference electrode potential vs normal 

hydrogen electrode (NHE) is 0.2223 V.145 The cyclic voltammogram was recorded on a 

computer-controlled EG&G potentiostat/galvanostat model 283. The lowest unoccupied 

molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) energy levels 

of the polymers were converted from the onset reduction and oxidation potentials, 

respectively, with the assumption that the energy level of ferrocene/ferrocenium (Fc) is 4.8 eV 

below vacuum. 

Differential Scanning Calorimetry (DSC). The glass transition temperature Tg was 

measured by DSC. For the measurements an instrument Perkin-Elmer-DSC 2C.  
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4.2 Pi-conjugated polymers containing thieno[3,4-b]pyrazine unit 

incorporated in backbone chain. 

Materials.   All starting materials including thiophene, glyoxal, hydroquinone, 2-

methylbenzene-1,4-diol were purchased from commercial suppliers (Fluka, Merck, and 

Aldrich). Toluene, tetrahydrofuran and diethyl ether were dried and distilled over sodium and 

benzophenone. Diisopropylamine was dried over KOH and distilled. If not otherwise 

specified, the solvents were degassed by sparkling with argon or nitrogen 1 h prior to use. 1,4-

dihexyloxy benzene (1),1041,4-dihexyloxy-2,5-dibromo benzene (2),105 4-bromo-2,5-bis-

dihexyloxy-benzaldehyde (3),106 4-formylphenylboronic acid (6),146 4-bromo-(2-ethyl-

hexyloxy)benzene (7),104 1-(2-ethylhexyloxy)-4-ethynylbenzene (9),147 2,5-dibromo 

thiophene (12),109a 2,5-dibromo-3,4-dinitro thiophene (13),109d 3,4-diaminothiophene 

hydrochloride (14),109d 3,4-dihexylthiophene (21)122 [4-(diethoxy-phosphorylmethyl)-2,5-bis-

octyloxy-benzyl]-phosphonic acid diethyl ester (M-5),104 [4-(diethoxy-phosphorylmethyl)-

2,5-bis-(2-ethyl-hexyloxy)-benzyl]-phosphonic acid diethyl ester  (M-6),104 (4-cyanomethyl-

2,5-bis-octyloxy-phenyl)-acetonitrile (M-8),110 were prepared according to known literature 

procedures. 

 

4.2.1 Synthesis of Monomer Precursors 

2-(4-Bromo-2,5-bis-hexyloxy-phenyl)-[1,3]dioxane (4). To a solution of 4-bromo-2,5-bis-

dihexyloxy-benzaldehyde (3) (10g, 25.95 mmol) and propane-1,3-diol (2.2g, 28.8mmol) in 

toluene (30 mL) was added BF3•OEt2 (3-4 drops). This mixture was refluxed for 6-7 h in a 

Dean Stark apparatus to remove the theoretical amount of water. The solution was washed 

with 1 M aq. NaHCO3 and then with water, dried over MgSO4 and concentrated in vacuum to 

give 5 (10.8g, 94 %) as a white solid, which was sufficiently pure to be employed in the next 

step. 

 

4-Formyl-2,5-bis(hexyloxy)phenylboronic acid (5). A 2.5M solution of n-butyllithium 

(11.3mL, 28.4 mmol) was added to an argon-purged solution of 2-(4-Bromo-2,5-bis-

hexyloxy-phenyl)-[1,3]dioxane (4) (10.5g, 23.7mmol) in anhydrous THF (50mL) at -78 °C 

using a syringe. The solution was then stirred for 2 h. Trimethyl borate (3g, 28.4mmol) was 

added with a syringe. The resulting mixture was allowed to come to room temperature and stir 

for 24 h. Then it was cooled to 0°C, 2N HCl (43mL) was added and the mixture was at room 

temperature for an additional 20 h. The organic layer was separated and the aqueous layer was 
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extracted with (3x50 mL) diethyl ether. The combined ether layers were washed twice with 50 

mL of water, brine and dried over magnesium sulfate. After filtration, solvent was then 

removed under reduced pressure. The crude product was purified by recrystallization from 

hexane to give a light yellow powder. Yield: 6.3g (76%). 1H NMR (250 MHz, CDCl3): δ =  

10.50 (s, 1H), 7.50 (s, 1H), 7.32 (s, 1H), 6.46 (bs, 2H), 4.09 (t, 2H), 3.95 (t, 2H), 2.16-0.88 

(m, 22H), 13C NMR (62 MHz, CDCl3): δ = 190.33, 157.74, 155.88, 127.23, 121.27, 108.89, 

69.29, 31.65, 31.57, 29.32, 29.27, 25.86, 25.77, 22.70, 22.64, 14.13, 14.08. Elemental analysis 

calculated for C19H31BO5 (350.26 g/mol): C, 65.15;  H, 8.92. Found: C, 65.28;  H, 9.09. 

 

1,1´-Ethyne-1,2-diyl-bis[4-(2-ethyl-hexyloxy)benzene] (10) To a degassed solution of 

diisopropylamine (40 ml) and toluene (50 ml) were added 1-Bromo-4-(2-ethyl-hexyloxy) 

benzene (7) (6.19g, 21.7mmol),1-(2-Ethyl-hexyloxy)-4-ethynylbenzene (9) (5g, 21.7mmol), 

bis(triphenylphosphine)-palladium(II)chloride([Pd(PPh3)2]Cl2) (420 mg, 0.6 mmol) and 

copper(I)iodide(CuI) (114 mg, 0.6 mmol). The reaction mixture was stirred at 80 °C for 12 h 

under inert gas atmosphere (argon). After cooling, the ammonium bromide precipitates were 

filtered off and washed with hexane. The solvent was removed under reduced pressure, and 

the residue was chromatographed over a silica gel column with n-hexane:10% Toluene as 

eluent to obtain desired product as light yellow liquid. Yield: 7.1g (51%). 1H NMR (250 

MHz, CDCl3): δ = 7.38-7.32 (d, 4H), 6.80-6.76 (d, 4H), 3.77-3.71 (d, 4H), 2.27-0.85 (m, 

30H), 13C NMR (62 MHz, CDCl3): δ = 158.19, 131.76, 114.43, 113.50, 86.93, 69.54, 38.33, 

29.49, 28.06, 22.83, 22.02, 13.05, 10.08. 

 

 1,2-Bis-[4-(2-ethyl-hexyloxy)-phenyl]-ethane-1,2-dione (11) To a mixture of (10) (5g, 

11.5mmol), acetone (120mL), and distilled water (40mL) KMnO4 (9.1g, 58.2mmol) was 

slowly added and stirred at room temperature for 4 h. After the reaction was completed, black 

MnO2 solids were removed by filtration. The concentrated filtrate was extracted with 500 mL 

of ethyl acetate. The organic layer was washed several times with water, brine and dried over 

anhydrous MgSO4. After the solvent was removed under reduced pressure, the product was 

purified by chromatography (solvent, dicholomethane:hexane,2:1). Yield: 4.2g (79%) yellow 

oil. 1H NMR (250 MHz, CDCl3): δ = 7.88-7.82 (d, 4H), 6.91-6.85 (d, 4H), 3.85-3.83 (d, 4H), 

1.71-0.75 (m, 30H), 13C NMR (62 MHz, CDCl3): δ = 192.58, 163.70, 131.31, 125.04, 113.71, 

69.88, 38.20, 29.40, 28.00, 22.76,2197, 13.03, 10.04.  
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Thieno[3,4-b]pyrazine (15).  3,4-diaminothiophene hydrochloride (14) (5g, 26.7mmol) was 

added to 5% Na2CO3 (100 mL). Glyoxal (1.7g, 29.4mmol) was then added as an aqueous 

solution prepared by diluting 4.25g of a 40% glyoxal solution to 5 mL with water. This 

mixture was stirred at room temperature for one hour and then extracted repeatedly with ether. 

The combined ether fractions were washed with water, dried with anhydrous Na2SO4, and 

concentrated by rotary evaporation without heating to give light brown oil. Analytical samples 

were prepared by dissolving the oil in a minimal amount of CH2Cl2 and purified by 

chromatography using ether as the eluting solvent to give 2.4g of a light tan solid (66%). M.p. 

47.3-48.1 °C (lit.1 46.5 °C); 1H NMR (250 MHz, CDCl3): δ = 8.46 (s, 2H), 8.01 (s, 2H). 13C 

NMR (62 MHz, CDCl3): δ = 144.4, 142.8, 118.4. Elemental analysis calculated for C6H4N2S 

(136.18 g/mol): C, 52.92; H, 2.96; N, 20.57. Found: C, 53.03; H, 3.28; N, 20.23. 

 

2,3-Diphenylthieno[3,4-b]pyrazine (16).    3,4-diaminothiophene hydrochloride (14) (5g, 

26.7mmol) and Benzil (5.62g, 26.7mmol) were combined in 100 mL absolute ethanol. 

Triethyl amine (5.76g, 56mmol) was added and mixture stirred overnight in dark and then 

concentrated by rotary evaporation without heating to give a solid residue. The residue was 

washed repeatedly with petroleum ether; the combined petroleum ether washes were dried 

with anhydrous Na2SO4, and then concentrated by rotary evaporation to give a light tan 

product. The product was purified further by chromatography (solvent, dichloromethane) to 

give light yellow-tan needles. Yield: 5.16 g (67 %). M.p. 169.1-171.0 ºC. 1H NMR (250 MHz, 

CDCl3): δ = 7.30-7.45 (m), 8.05 (s), 13C NMR (62 MHz, CDCl3): δ = 116.54, 127.13, 127.82, 

128.60, 138.12, 140.59, 152.33. Elemental analysis calculated for C18H12N2S (288.37 g/mol): 

C, 74.97; H, 4.19; N, 9.71. Found: C, 74.64; H, 4.36; N, 9.65. 

 

2,3-Bis-[4-(2-ethylhexyloxy)-phenyl]-thieno[3.4-b]pyrazine (17). Same procedure was 

followed as mentioned above for 16. 3,4-diaminothiophene hydrochloride (14) (1.4g, 

75mmol) and 1,2-Bis-[4-(2-ethylhexyloxy)-phenyl]-ethane-1,2-dione (11) (3.5g, 75mmol). 

Yield: 2.45g (60%). 1H NMR (250 MHz, CDCl3): δ =7.85 (s, 1H), 7.32-7.28 (d, 4H), 6.76-

6.72 (d, 4H), 3.77-3.74 (d, 4H), 1.68-0.79 (m, 30H), 13C NMR (62 MHz, CDCl3): δ = 159.02, 

152.04, 140.58, 130.52, 130.05, 115.77, 113.21, 69.60, 38.30, 29.47, 28.06, 22.82, 22.0, 

13.06, 10.08. Elemental analysis calculated for C34H44N2O2S (544.79 g/mol): C, 74.96; H, 

8.14; N, 5.14. Found: C, 74.81; H, 8.23; N, 5.03. 

 



4. Experimental                                                                                                              86(138) 

5,7-Dibromo-thieno[3,4-b]pyrazine (18).  To Compound (15) (2g, 14.7mmol) in 

chloroform/ acetic acid (1:1) 60mL was added NBS (5.75g, 32.3mmol) in dark and stirred 

overnight under argon. The reaction mixture was diluted with equal amount of water; the 

chloroform layer was separated and washed once with KOH solution and once with water, 

dried over MgSO4. The organic layer was concentrated by rotary evaporation without heating 

to give a solid residue. The product was further purified by chromatography using Hexane: 

dichloromethane (1:1) to give greenish yellow solid. Yield: 2.85g (66%). 1H NMR (250 MHz, 

CDCl3): δ = 8.70 (s, 2H). 13C NMR (62 MHz, CDCl3): δ = 154.4, 152.8, 108.4. Elemental 

analysis calculated for C6H2Br2N2S (293.97): C, 24.51; H, 0.69: N, 9.53; Br, 54.36. Found: C, 

24.30; H, 0.60: N, 9.24; Br, 54.20. 

 

5,7-Dibromo-2,3-diphenylthieno[3,4-b]pyrazine (19). Same procedure was followed as 

mentioned above for 18. Compound (16) (3g, 10.4mmol), NBS (2.28g, 22.8 mmol). Yield: 

3.4g (74%). M.p. 169.1-171.0 ºC. 1H NMR (250 MHz, CDCl3): δ = 7.44-7.32 (m). 13C NMR 

(62 MHz, CDCl3): δ = 154.63, 139.29, 138.23, 130.25, 129.86, 129.37, 128.49. Elemental 

analysis calculated for C18H10Br2N2S (446.16 g/mol): C, 48.46; H, 2.26; N, 6.28; Br, 35.82. 

Found: C, 48.36; H, 2.08; N, 6.24; Br, 35.60. 

 

5,7-Dibromo-2,3-bis-[4-(2-ethylhexyloxy)-phenyl]-thieno[3.4-b]pyrazine (20) In the 

absence of light, a solution of NBS (1.3g, 7.4mmol) in DMF (10mL) was slowly and 

dropwise added to a solution of 2,3-Bis-[4-(2-ethylhexyloxy)-phenyl]-thieno[3.4-b]pyrazine 

(17) (2g, 3.67mmol) in DMF (20 mL), and the mixture was stirred at -25 0C for 3h, poured 

onto ice, and extracted several times with diethyl ether. The organic phases were combined, 

washed with water, and dried over sodium sulfate. Evaporation of the solvent and 

chromatography (solvent, dichloromethane: hexane (2:1)) yielded 5,7-Dibromo-2,3-Bis-[4-(2-

ethylhexyloxy)-phenyl]-thieno[3.4-b]pyrazine (14) (1.6g, 62%) as a yellowish liquid.  1H 

NMR (250 MHz, CDCl3): δ =  7.39-7.36 (d, 4H), 6.78-6.74 (d, 4H), 3.79-3.77 (d, 4H) 1.68-

0.75 (m, 30H), 13C NMR (62 MHz, CDCl3): δ = 159.6, 153.3, 138.22, 130.40, 129.63, 113.23, 

103.02, 69.63, 38.29, 29.48, 28.06, 22.82, 22.02, 13.06, 10.08. Elemental analysis calculated 

for C34H42Br2N2O2S (702.58 g/mol): C, 58.12; H, 6.03; N, 3.99; Br, 22.75. Found: C, 58.06; 

H, 6.10; N, 3.90; Br, 22.65. 
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4.2.2 Monomers Synthesis 

General Procedure for Synthesis of Monomers (M-1, M-2, M-3 and M-4): 

Under an argon atmosphere, 5,7-dibromo-2,3-disubsituted thieno[3,4-b]pyrazines (18, 19, 20) 

(5 mmol) and 4-formyl-2,5-bis(substituted)phenylboronic acids (5, 6) (12.5 mmol) were 

added to degassed aqueous solution of potassium carbonate 16 mL (2.0 M), toluene and THF 

40 mL (1:1, volume ratio). After 30 minutes degassing 3 mol% (173mg, 0.15mmol) of 

Pd(PPh3)4 was added. The mixture was stirred vigorously at 80-90 °C for 24 h under an argon 

atmosphere. The reaction mixture was cooled to room temperature, followed by the addition 

toluene and water. The organic layer was separated and washed with water, brine and dried 

over MgSO4. After evaporation of solvent, the product was further purified by 

chromatography (solvent, toluene). Finally, pure product can be obtained by recrystallization 

from hexane.  

 

2,3-Diphenyl-thieno[3,4-b]pyrazine-5,7-diyl-bis(2´,5´-dihexyloxy-4´-benzaldehyde) (M-

1): 5,7-Dibromo-2,3-diphenylthieno[3,4-b]pyrazine (19) (2.24g, 5mmol) and 4-formyl-2,5-

bis(hexyloxy)phenylboronic acid (5) 4.38g, 12.5mmol). Yield: 2.5g (57%).1H NMR (250 

MHz, CD2Cl2): δ = 10.54 (s, 2H), 9.23 (s, 2H), 7.58-7.31 (m, 12H), 4.27-4.13 (m, 8H), 2.02-

0.87 (m, 44H). 13C NMR (62 MHz, CDCl3): δ = 190.64, 157.95, 153.51, 151.23, 142.21, 

141.64, 139.99, 131.99, 131.47, 131.03, 130.47, 130.14, 125.28, 117.34, 113.16, 111.66, 

72.06, 71.32, 33.76, 33.64, 31.49, 31.08, 27.97, 27.34, 24.77, 24.51, 15.95, 15.88. FAB MS: 

m/z 896 (M+). Elemental analysis calculated for C56H68N2O6S (897.22 g/mol): C, 74.97; H, 

7.64; N, 3.12; S, 3.57. Found: C, 74.96; H, 7.52; N, 3.08; S, 3.46. 

 

Thieno[3,4-b]pyrazine-5,7-diyl- bis(2´,5´-dihexyloxy-4´-benzaldehyde) (M-2): 

 5,7-Dibromo-thieno[3,4-b]pyrazine (18) (1.47g, 5mmol) and 4-formyl-2,5-

bis(hexyloxy)phenylboronic acid (5) (4.38g, 12.5mmol). Yield: 1.7g (68%). 1H NMR (250 

MHz, CDCl3): δ = 10.44 (s, 2H), 8.57 (s, 4H), 7.40 (s, 2H), 4.15-3.96 (m, 8H), 1.85-0.72 (m, 

44H). 13C NMR (62 MHz, CDCl3): δ = 188.40, 155.15, 148.49, 142.52, 140.65, 128.63, 

127.97, 122.97, 115.15, 109.20, 69.09, 68.46, 30.83, 30.75, 28.42, 28.38, 25.06, 24.99, 21.85, 

21.75, 13.27, 13.17. FAB MS: m/z 744.4 (M+). Elemental analysis calculated for 

C44H60N2O6S (745.025 g/mol): C, 70.94; H, 8.12; N, 3.76; S, 4.30. Found: C, 71.20; H, 8.26; 

N, 3.54; S, 4.28. 
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2,3-Bis-[4-(2-ethylhexyloxy)-phenyl]-thieno[3.4-b]pyrazine-5,7-diyl-bis(2´,5´-dihexyloxy-

4´-benzaldehyde) (M-3): 5,7-Dibromo-2,3-bis-[4-(2-ethylhexyloxy)-phenyl]-thieno[3.4-

b]pyrazine (20).(1.4g, 2mmol) and 4-formylphenylboronic acid (6) (1.16g, 5mmol). Yield: 

0.8g (56%). 1H NMR (250 MHz, CDCl3): δ = 10.04 (s, 2H), 8.51 (d, 4H), 7.98 (d, 4H), 7.55 

(d, 4H), 6.92 (d, 4H),3.92 (d, 4H), 1.78-0.86 (m, 30H). 13C NMR (62 MHz, CDCl3): δ = 

191.41, 160.61, 153.30, 150.78, 140.26, 138.96, 135.11, 131.37, 130.23, 129.46, 127.91, 

114.33, 70.72, 39.39, 31.92, 30.55, 29.68, 29.11, 23.88, 23.03, 23.01, 22.67, 14.06, 14.04,  

11.12. FAB MS: m/z 752 (M+). Elemental analysis calculated for C48H52N2O4S (753.0 

g/mol): C, 76.56; H, 6.96; N, 3.72; S, 4.26. Found: C, 76.25; H, 7.26; N, 3.77; S, 4.18. 

 

2,3-Diphenyl-thieno[3,4-b]pyrazine-5,7-diyl-bis(4´-benzaldehyde) (M-4): 5,7-Dibromo-

2,3-diphenylthieno[3,4-b]pyrazine (19).(1.34g, 3mmol) and 4-formylphenylboronic acid (6) 

(1.12g, 7.5mmol). Yield: 0.94g (63%).1H NMR (250 MHz, CDCl3): δ = 10.06 (s, 2H), 8.52 

(d, 2H), 8.00 (d, 2H), 7.58-7.34 (m, 10H). FAB MS: m/z 496.1 (M+). M.p. 324-325 0C. 

Elemental analysis calculated for C32H20N2O2S (496.12 g/mol): C, 77.40; H, 4.06; N, 5.64; S, 

6.46. Found: C, 77.21; H, 4.09; N, 5.49; S, 6.38. 

 

2,5-Bis(bromomethyl)-3,4-dihexylthiophene (22). Compound (21) (10.0g, 39.6mmol) and 

paraformaldehyde (2.84g, 94.6mmol) were dissolved in 5 mL of acetic acid and HBr solution 

(30% in acetic acid, 95mmol, 20 mL). The reaction was stirred at room temperature under 

argon overnight. The reaction was diluted with 200 mL of ethyl ether washed with water, 

saturated NaHCO3 solution and brine. After the solvent removal, 13 g of light brown oil was 

obtained (75% yield), which was sufficiently pure for next step reaction.  

 

3,4-Dihexyl-2,5-bis(methylenediethylphosphate)-thiophene (M-7). Compound (22) (8.76 

g, 20mmol) reacted with triethyl phosphite (10 g, 60mmol) at 120 °C for 4 h. The crude 

product was purified by column chromatography on silica gel using acetone-hexane (25:75) 

as an eluent to give 8.8 g of light yellow oil (80% yield). 1H NMR (250 MHz, CDCl3): δ = 

4.14-4.01 (m, 8 H), 3.26-3.21 (m, 4 H), 2.46 (t, 4 H), 1.42-0.86 (m, 34 H). 13C NMR (62 

MHz, CDCl3): δ = 139.98, 124.53, 62.26, 31.64, 30.58, 29.53, 27.25, 25.86, 22.59, 16.37, 

16.05, 14.01. 
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4.2.3 Model Compounds Synthesis 

MD-1: Dialdehyde M-1 (0.5 g, 0.56 mmol) and diethyl benzylphosphonate (0.28 g, 1.2 

mmol) were dissolved in dried THF (7 mL) while stirring vigorously under argon at 0 0C. 

Potassium-tert-butoxide (1M in THF, 1 mL, 1.8 mmol) was added dropwise and the solution 

was stirred for further 2 h at room temperature. The reaction was quenched by addition of 

water and aqueous layer was extracted with diethyl ether (25mL) three times. The ether layer 

was washed with water, brine and dried over anhydrous MgSO4. After the solvent was 

removed under reduced pressure, the product was purified by chromatography (solvent, 

dicholomethane:hexane,2:1). Yield: 0.42g (73%) dark violet solid. 1H NMR (400 MHz, 

CDCl3): δ = 8.97 (s, 2H), 7.61-7.20 (m, 26H), 4.27-4.15 (m, 8H), 2.04-0.87 (m, 44H). 13C 

NMR (400 MHz, CDCl3): δ = 150.98,  150.56, 149.48, 139.87, 139.01, 138.09, 129.88, 

128.84, 128.62, 128.52, 127.89, 127.53, 127.33, 126.52, 125.68, 123.69, 123.45, 114.91, 

110.48, 70.11, 69.20, 31.65, 29.57, 29.46, 25.98, 25.86, 22.67, 22.60, 14.03. FAB MS: m/z 

1044.6 (M+).UV-Vis (CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 370(45800), 398(45300), 

564(16000). Elemental analysis calculated for C70H80N2O4S (1045.46 g/mol): C, 80.42; H, 

7.71; N, 2.68; S, 3.07. Found: C, 80.64; H, 8.03; N, 2.29; S, 2.84. 

 

MD-2: Dialdehyde M-1 (0.5g, 0.56 mmol) and (25) (0.61g, 1.2 mmol). Yield: 0.42g (71%) 

dark green solid. 1H NMR (400 MHz, CDCl3): δ = 8.94 (s, 2H), 7.63-7.32 (m, 16H), 7.14 (s, 

2H), 6.76 (s, 2H), 4.26-3.97 (m, 16H), 2.27 (s, 6H), 2.04-0.86 (m, 104H). 13C NMR (400 

MHz, CDCl3): δ = 151.60, 150.77, 150.53, 150.44, 149.93, 138.91, 129.89, 128.47, 127.86, 

127.58, 127.54, 126.70, 125.36, 123.90, 122.97, 122.51, 116.22, 114.90, 110.29, 109.34, 

70.03, 69.78, 69.17, 68.84, 31.88, 31.83, 31.68, 31.65, 29.58, 29.47, 29.42, 29.33, 29.30, 

26.20, 25.97, 25.89, 22.70, 22.66, 22.60, 16.43, 14.07, 14.01. FAB MS: m/z 1586 (M+). UV-

Vis (CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 411(68900), 574(23500). Elemental analysis 

calculated for C104H148N2O8S (1586.36 g/mol): C, 78.74; H, 9.40; N, 1.77; S, 2.02. Found: C, 

78.68; H, 9.34; N, 1.72; S, 1.93. 

 

MD-3: Dialdehyde M-1 (0.5g, 0.56 mmol) and phenyl acetonitrile (0.14g, 1.2 mmol). Yield: 

0.48g (79%) dark green solid. 1H NMR (400 MHz, CDCl3): δ = 9.17 (s, 2H), 8.09-7.31 (m, 

20H), 4.36-4.11 (m, 16H), 2.36 (s, 6H), 2.07-0.86 (m, 104H). 13C NMR (400 MHz, CDCl3): δ 

= 150.06, 148.95, 147.07, 137.87, 137.76, 134.31, 133.29, 128.01, 127.13, 127.08, 126.84, 

126.32, 126.07, 124.68, 124.02, 119.79, 117.01, 112.13, 109.28, 107.62, 68.15, 67.29, 29.75, 

29.72, 27.53, 27.40, 24.03, 23.93, 23.91, 20.73, 12.11, 12.06. FAB MS: m/z 1094 (M+). UV-
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Vis (CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 329(31300), 431(44700), 564(28900). Elemental 

analysis calculated for C72H78N4O4S (1095.48 g/mol): C, 78.94; H, 7.18; N, 5.11; S, 2.93. 

Found: C, 78.70; H, 7.20; N, 5.02; S, 2.76. 

 

4.2.4 Synthesis of Polymers 

General Procedure for Horner-Wadsworth-Emmons polycondensation 

Dialdehyde (0.56 mmol) and corresponding phosphonate derivative (0.56 mmol) were 

dissolved in dried toluene (10 ml) while stirring vigorously under argon and heating under 

reflux. The polycondensations was started by adding potassium-tert-butoxide (2.23 mmol) 

and the solution refluxed for further 3.5 h. After cooling to room temperature toluene (15 ml) 

and an excess of dilute HCl were added. The organic layer was separated and extracted 

several times with distilled water until the water phase became neutral (pH = 6 – 7). A Dean-

Stark apparatus was used to dry the organic layer. The hot (50-60°C) toluene solution was 

filtered, the filtrate was concentrated to the minimum by using a rotary evaporator and then 

precipitated in vigorously stirred methanol (300 ml). The polymer was extracted (soxhlet 

extractor) 12 h with methanol, acetone and finally with diethyl ether to remove oligomers, 

dried under vacuum. The polymer yields are mentioned after purification. 

 

P-1: Dialdehyde M-1 (0.5g, 0.56 mmol) and M-5 (0.35g, 0.56 mmol). Yield: 0.49g (0.401 

mmol, pertaining of the repeating unit) of dark green polymer were obtained. Yield: 491mg ( 

72%). 1H NMR (400 MHz, CDCl3): δ = 9.00 (bs, 2H), 7.63-7.26 (m, 16H), 6.89 (bs, 2H), 

4.29-4.15 (m, 12H), 2.06-0.93 (m, 74H). 13C NMR (400 MHz, CDCl3): δ = 151.04, 150.56,  

150.44, 149.67, 148.86, 140.03, 139.07, 129.92, 128.49, 127.89, 127.37, 127.22, 126.73, 

126.09, 125.53, 125.19, 123.74, 123.53, 123.41, 116.39, 115.12, 114.41, 110.92, 110.56, 

70.19, 69.94, 69.73, 69.32, 31.89, 31.69, 31.49, 29.63, 29.55, 29.48, 29.34, 26.29, 25.98, 

25.72, 22.66, 14.02. GPC (THF):⎯Mw = 65100 g/mol,⎯Mn = 32100; PDI = 2.0;⎯Pn = 26. 

UV-Vis (CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 446 (32300), 589 (20000). Elemental analysis 

calculated for (C80H106N2O6S)n (1223.8)n : C, 78.52; H, 8.71: N, 2.29; S, 2.62; Found: C, 

77.35; H, 8.74,: N, 2.13; S, 2.53. 

 

P-2: Dialdehyde M-1 (0.5g, 0.56 mmol) and 1,4-bis(2-ethylhexyloxy)-2,5-

di(methylenediethylphosphate)-benzene (M-6) (0.31g, 0.56 mmol). Yield: 0.48g (70%) green 

polymer. 1H NMR (400 MHz, CDCl3): δ = 8.99 (bs, 2H), 7.63-7.26 (m, 16H), 6.88 (bs, 2H), 

4.28-4.01 (m, 12H), 2.04-0.72 (m, 74H). 13C NMR (400 MHz, CDCl3): δ = 150.56, 150.41, 
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149.70, 148.86, 140.03, 139.05, 129.91, 128.48, 127.88, 127.63, 127.15, 126.78, 126.13, 

125.58, 125.11, 123.34, 123.14, 122.91, 122.64, 116.40, 115.22, 114.37, 110.11, 110.02, 

71.95, 71.83, 71.65, 70.06, 69.35, 69.15, 68.79, 39.92, 39.78, 39.40, 31.66, 30.95, 30.76, 

30.63, 29.57, 29.25, 28.92, 25.94, 25.72, 24.38, 24.11, 23.11, 22.89, 22.66, 22.60, 14.02, 

13.95. GPC (THF):⎯Mw = 53100 g/mol,⎯Mn = 33500; PDI = 1.50;⎯Pn = 27. UV-Vis 

(CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 446 (47000), 592 (29100). Elemental analysis calculated 

for (C80H106N2O6S)n (1223.8)n : C, 78.52; H, 8.73: N, 2.29; S, 2.62; Found: C, 78.15; H, 

8.83,: N, 2.26; S, 2.62. 

 

P-3: Dialdehyde M-2 (0.5g, 0.67 mmol) and M-5 (0.43g, 0.67 mmol). 0.43g (0.440 mmol, 

pertaining of the repeating unit) of dark green polymer were obtained. Yield: 65%. 1H NMR 

(400 MHz, CDCl3): δ = 8.57 (bs, 2H), 8.42 (bs, 2H), 7.59 (bs, 2H),  7.34-6.87 (m, 6H), 4.2-

4.12 (m, 12H), 1.93-0.88 (m, 74H). 13C NMR (400 MHz, CDCl3): δ = 151.25, 150.89, 

149.77, 142.63, 140.48, 128.36, 127.62, 127.35, 123.80, 123.37, 122.54, 115.72, 114.29, 

110.73, 110.38, 69.97, 69.63, 69.46, 31.89, 31.72, 31.62, 29.61, 29.46, 29.35, 26.30, 25.99, 

25.90, 22.67, 22.58, 14.07, 13.98. GPC (THF, polystyrene):⎯Mw = 64600 g/mol,⎯Mn = 

29200; PDI = 2.2;⎯Pn = 27. UV-Vis (CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 326 (18200), 437 

(33300), 552 (23400). Elemental analysis calculated for (C68H98N2O6S)n (1071.58)n : C, 

76.22; H, 9.22: N, 2.61; S, 2.99. Found: C, 75.40; H, 9.36; N, 2.43; S, 2.54. 

 

P-4: Dialdehyde M-3 (0.5g, 0.66 mmol) and M-5 (0.42g, 0.66 mmol) Yield:  0.39g ( 54%) 

dark red polymer. 1H NMR (400 MHz, CDCl3): δ = 8.40-6.87 (m, 22H), 4.10-3.90 (m, 8H), 

1.96-0.91 (m, 60H). 13C NMR (400 MHz, CDCl3): δ = 160.17, 153.17, 150.09, 139.83, 

137.99, 132,87, 131.42, 130.27, 129.54, 128.78, 127.65, 126.40, 125.45, 124. 67, 116.78, 

115.97, 115.30, 112.34, 111.68, 70.84, 69.91, 69.76, 69.33, 39.44, 36.61, 31.71, 30.57, 29.26, 

29.11, 26.08, 23.91, 22.99, 22.60, 18.68, 13.99, 11.08. GPC (THF):⎯Mw = 34200 g/mol,⎯Mn 

= 15600; PDI = 2.1;⎯Pn = 14. UV-Vis (CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 422 (47800), 553 

(21000). Elemental analysis calculated for (C72H90N2O4S)n (1079.56)n : C, 80.10; H, 8.40: N, 

2.59; S, 2.97; Found: C, 79.38; H, 8.17,: N, 2.31; S, 2.81. 

 

P-5: Dialdehyde M-1 (0.5g, 0.56 mmol) and M-7 (0.31g, 0.56 mmol) Yield: 0.34g ( 54 %) 

green polymer. 1H NMR (250 MHz, CDCl3): δ = 9.02 (s, 2H), 7.63-7.18 (m, 14H), 4.27-4.21 

(m, 8H), 2.71 (t, 4H), 2.05-0.94 (m, 66H). 13C NMR (62 MHz, CDCl3): δ = 151.30, 150.61, 

149.68, 141.51, 140.30, 139.15, 136.50, 129.91, 128.48, 127.90, 127.65, 126.91, 126.11, 
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124.42, 123.73, 123.18, 122,47, 114.88, 112.02, 70.28, 69.24, 31.69, 31.39, 29.66, 29.57, 

29.26, 27.33, 25.91, 25.54, 22.67, 14.04, 13.97. GPC (THF):⎯Mw = 13300 g/mol,⎯Mn = 

1000; PDI = 1.50;⎯Pn = 9. UV-Vis (CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 465 (31100), 615 

(30300). Elemental analysis calculated for (C74H96N2O4S2)n (1141.7)n : C, 77.85; H, 8.48: N, 

2.45; S, 5.62; Found: C, 77.24; H, 8.11,: N, 2.40; S, 5.29. 

 

P-6: Dialdehyde M-2 (0.5g, 0.67 mmol) and M-7 (0.37g, 0.67 mmol) Yield: 0.33g ( 50%) 

blue polymer. 1H NMR (400 MHz, CDCl3): δ = 8.57 (bs, 2H), 8.45 (bs, 2H), 7.56-7.52 (d, 

2H),  7.25-7.21 (d, 2H), 7.17 (bs, 2H), 4.2 (m, 8H), 2.69 (t, 4H), 2.00-0.83 (m, 66H). 13C 

NMR (400 MHz, CDCl3): δ = 151.18, 149.73, 142.58, 141.53, 140.55, 136.40, 128.35, 

126.88, 123.57, 122.45, 122.17, 115.72, 111.84, 70.16, 69.48, 31.68, 31.58, 31.35, 29.51, 

27.30, 25.92, 25.84, 22.63, 22.53, 13.99, 13.88. GPC (THF):⎯Mw = 19200 g/mol,⎯Mn = 

13300; PDI = 1.40;⎯Pn = 13. UV-Vis (CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 458 (31000), 585 

(33100). Elemental analysis calculated for (C62H88N2O4S2)n (989.5)n : C, 75.26; H, 8.96: N, 

2.83; S, 6.48; Found: C, 74.30; H, 8.41,: N, 2.50; S, 6.07. 

 

General Procedure for Knoevenagel Polycondensation 

Tetrabutylammonium hydroxide (62 μL, 1.0 M in methanol) was added into the degassed 

mixture solution of the dinitrile (0.56 mmol), the dialdehyde (0.56 mmol), THF (5 mL), and 

tertbutyl alcohol (3 mL). The reaction mixture was heated to 50 °C while stirring under 

nitrogen atmosphere. After stirring for 2 h, the dark mixture was poured into methanol (150 

mL), and the precipitate was collected by filtration. The crude polymer was Soxhlet extracted 

12 h with methanol, acetone and finally with diethyl ether to remove oligomers, dried under 

vacuum. The polymer yields are mentioned after purification. 

 

P-7: Dialdehyde M-1 (0.5g, 0.56mmol) and M-8 (0.23g, 0.56 mmol) Yield: 0.5g ( 71%) 

green polymer. 1H NMR (400 MHz, CDCl3): δ = 9.17 (s, 2H), 8.19 (s, 2H), 7.61-7.18 (m, 

14H), 4.41-4.15 (m, 12H), 2.08-0.87 (m, 74H). 13C NMR (400 MHz, CDCl3): δ = 151.94, 

151.43, 150.79, 149.27, 140.82, 140.19, 139.80, 129.88, 129.44, 128.70, 128.33, 127.92, 

126.93, 126.51, 123.18, 122.25, 118.88, 115.30, 114.78, 114.25, 112.91, 111.72, 110.09, 

106.97, 71.25, 70.23, 70.02, 69.23, 31.79, 31.58, 29.38, 29.30, 29.22, 26.12, 25.87, 25.79, 

22.59, 13.94. GPC (THF):⎯Mw = 279000 g/mol,⎯Mn = 50200; PDI = 5.0;⎯Pn = 39. UV-Vis 

(CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 434 (29500), 573 (17400). Elemental analysis calculated 
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for (C82H104N2O6S)n (1273.8)n : C, 77.32; H, 8.23: N, 4.40; S, 2.52; Found: C, 76.92; H, 

8.26,: N, 4.15; S, 2.19. 

 

P-8: Dialdehyde M-2 (0.5g, 0.67 mmol) and dinitrile M-8 (0.28g, 0.67 mmol) Yield: 0.50g ( 

67 %) green polymer. 1H NMR (400 MHz, CDCl3): δ = 8.65 (bs, 2H), 8.19-8.16 (m, 4H), 

7.18 (bs, 2H),  7.05 (s, 2H), 4.33-3.75 (m, 12H), 2.00-0.82 (m, 74H). 13C NMR (400 MHz, 

CDCl3): δ = 151.86, 150.81, 149.22, 142.80, 141.12, 140.91, 128.67, 126.33, 125.81, 122.87, 

118.76, 114.82, 111.85, 107.02, 70.14, 70.04, 69.42, 31.89, 31.77, 31.57, 29.30, 29.19, 26.10, 

25.81, 22.57, 13.90. GPC (THF):⎯Mw = 140000 g/mol,⎯Mn = 42200; PDI = 3.3;⎯Pn = 37. 

UV-Vis (CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 432 (29000), 550 (31600). Elemental analysis 

calculated for (C70H96N4O6S)n (1121.62)n : C, 74.96; H, 8.63: N, 5.00; S, 2.86; Found: C, 

74.53; H, 8.50,: N, 4.89; S, 2.59. 

 

P-9: Dialdehyde M-3 (0.5g, 0.66 mmol) and M-8 (0.27g, 0.66 mmol) Yield: 0.44g ( 57%) 

brownish red  polymer. 1H NMR (400 MHz, CDCl3): δ = 8.50-6.89 (m, 20H), 4.06-3.90 (m, 

8H), 1.76-0.94 (m, 60H). 13C NMR (400 MHz, CDCl3): δ = 160.48, 153.00, 150.29, 148.33, 

145.99, 139.93, 135.02, 133,07, 131.32, 130.22, 129.94, 129.38, 127.85, 126.40, 125.45, 

118.28, 117.47, 114.60, 114.34, 113.08, 70.79, 69.96, 69.66, 69.15, 39.44, 36.61, 31.71, 

30.57, 29.26, 29.11, 26.08, 23.91, 22.99, 22.60, 18.68, 13.99, 11.08. GPC (THF):⎯Mw = 

14000 g/mol,⎯Mn = 10500; PDI = 1.90;⎯Pn = 9. UV-Vis (CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 

387 (25100), 511 (7950). Elemental analysis calculated for (C74H88N4O4S)n (1129.58)n : C, 

78.68; H, 7.85: N, 4.96; S, 2.84; Found: C, 77.94; H, 8.06,: N, 4.44; S, 2.45. 
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4.3 Pi- conjugated polymers containing thieno[3,4-b]pyrazine as pendant 

group 

Materials. All starting materials including 4,4´-dimethylbenzil, 4-bromophenol, 1,4-dibromo-

butane-2,3-dione, phenanthrene-9,10-dione, anthracene, benzaldehyde, 4-tolyl boronic acid 

(29), terephthalaldehyde (M-16), and 9,10-dibromoanthracene (M-18) and were purchased 

from commercial suppliers (Fluka, Merck, and Aldrich). Toluene, tetrahydrofuran and diethyl 

ether were dried and distilled over sodium and benzophenone. Diisopropylamine was dried 

over KOH and distilled. If not otherwise specified, the solvents were degassed by sparkling 

with argon or nitrogen 1 h prior to use., 1,4-dioctyloxy benzene,
104 

1-(2-ethylhexyloxy)-4-

bromobenzene (28),105  4-(2-ethylhexyloxy)phenyl boronic acid (30),133 1,2-bis(4-

(bromomethyl)phenyl)ethane-1,2-dione (27),132 2,7-dioxaborolan-9,9-didecylfluorene (M-

17)139 and 1,4-bis(bromomethyl)2,5-bis(octyloxy)benzene (M-19)104  were prepared 

according to known literature procedures. 

 

4.3.1 Synthesis of Monomer Precursors 

2,7-dibromophenanthrene-9,10-dione (26): Phenanthrene-9,10-dione ( 2g, 9.6 mmol) was 

placed in a round bottom flask under nitrogen. Triflouromethanesulphonic acid (8.4ml, 96 

mmol) was added to the flask followed by cooling to 0°C. N-bromosuccinimide (3.4g, 

19.2mmol) was added slowly over 5 min and the reaction was allowed to gradually warm to 

room temperature.  After 6 h at room temperature the reaction was poured onto ice, filtered 

and dried. Recrystallized from toluene to afford (26) in 85% yield as a bright orange crystals. 
1H NMR (CDC13): δ = 7.97 (d, J = 2.0 Hz, 2H), 7.66 (dd, J = 8.5 Hz, 2H), 7.03 (d, J = 8.4 Hz, 

2H). 13C NMR (CDCl3): δ = 170.34, 139.71, 134.62, 130.49, 129.24, 127.94, 89.35. 

Elemental analysis calculated for C14H6Br2O2 (366.0 g/mol): C, 45.94; H, 1.65; Br, 43.66. 

Found: C, 45.66; H, 1.59; Br, 43.48. 

 

3,4-dinitro-2,5-dip-tolylthiophene (31): Under an argon atmosphere, 2,5-dibromo-3,4-

dinitro-thiophene (13) (6g, 18mmol) and p-tolyl boronic acid (29)  (6.12g, 45.1mmol) were 

added to degassed aqueous solution of potassium carbonate 50mL (2M), toluene and THF 100 

mL (1:1, volume ratio). After 30 minutes degassing 3mol% (624mg, 0.54mmol) of Pd(PPh3)4 

was added. The mixture was stirred vigorously at 80-90 °C for 24 h under an argon 

atmosphere. The reaction mixture was cooled to room temperature, diluted with toluene and 

water. The organic layer was separated and washed with water, brine and dried over MgSO4. 
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After evaporation of solvent, the product was purified by column chromatography on silica 

gel using a hexane/dichloromethane mixture (2:1) to yield 4.5g,(70 %) of the title compound 

as a pale yellow solid. 1H NMR (CDC13): δ = 7.34 (d, J = 8.7 Hz, 4H, Ph), 7.18 (d, J = 8.9 

Hz, 4H, Ph), 2.31 (s, 6H, CH3). 13C NMR (CDCl3): δ =  141.32, 140.77, 129.92, 128.89, 

125.24, 124.84, 21.45. Elemental analysis calculated for C18H14N2O4S  (354.39 g/mol): C, 

61.01; H, 3.98; N, 7.90; S, 9.05. Found: C, 60.97; H, 3.95; N, 7.88; S, 8.95. 

 

2,5-bis[4-(2-ethylhexyloxy)phenyl]-3,4-dinitrothiophene (32): Same procedure was 

followed as mentioned above for (31). 2,5-dibromo-3,4-dinitro-thiophene (13) (6g, 18mmol) 

and 1-borohydroxy-4-(2-ethylhexyloxy)benzene (30)  (11.26g, 45mmol). Yield 6.5 g (62 %) 

of the title compound as a lemon yellow crystals. 1H NMR (CDC13): δ = 7.38 (d, J = 8.8 Hz, 

4H, Ph), 6.92 (d, J = 9.2 Hz, 4H, Ph), 3.82 (t, 4H, OCH2), 1.70-0.83 (m, 26H, CH2CH3). 13C 

NMR (CDCl3): δ =  161.40, 140.68, 136.25, 130.52,  119.90, 115.25, 70.65, 39.26, 30.45, 

29.03, 23.80, 23.00, 14.04, 11.06. Elemental analysis calculated for C32H42N2O6S  (582.76 

g/mol): C, 65.95; H, 7.26; N, 4.81; S, 5.50. Found: C, 65.81; H, 7.23; N, 4.67; S, 5.39. 

 

2,5-dip-tolylthiophene-3,4-diamine (33): The dinitro-compound (31) (4g, 11.3mmol) was 

suspended in absolute ethanol (80mL) and treated with anhydrous stannous chloride (21.4g, 

113mmol) dissolved in 45 mL conc. HC1 and subsequently heated at reflux overnight. The 

homogeneous solution was poured into ice water and made alkaline by treating with aqueous 

sodium hydroxide. The solids formed were collected by filtration and dried under vacuum. 

The off white solid was recrystallized from a dichloromethane/hexane mixture to yield an 

analytically pure sample. Yield 2.7 g (82 %) 1H NMR (CDC13): δ = 7.58 (d, J = 8.6 Hz, 4H, 

Ph), 7.17 (d, J = 8.7 Hz, 4H, Ph), 3.34 (bs, 4H, NH2), 2.30 (s, 6H, CH3). 13C NMR (CDCl3): δ 

= 136.44, 132.90, 131.49, 129.81, 127.54, 116.18, 21.21. Elemental analysis calculated for 

C18H18N2S  (294.42 g/mol): C, 73.43; H, 6.16; N, 9.51; S, 10.89. Found: C, 73.50; H, 5.97; N, 

9.27; S, 11.01. 

 

2,5-bis[4-(2-ethylhexyloxy)phenyl]thiophene-3,4-diamine (34): Same procedure was 

followed as mentioned above for (33). 

2,5-bis[4-(2-ethyl-hexyloxy)phenyl]-3,4-dinitrothiophene (32) (5g, 8.6mmol), absolute 

ethanol (60mL), anhydrous stannous chloride (16.3g, 86 mmol) dissolved in 34 mL cone. 

HC1.The title compound was obtained as thick yellow liquid. Yield 3.4g (76 %) 1H NMR 

(CDC13): δ = 7.21 (d, J = 8.7 Hz, 4H, Ph), 6.85 (d, J = 9.2 Hz, 4H, Ph), 5.1(bs, 4H, NH2) 3.76 
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(t, 4H, OCH2), 1.67-0.82 (m, 26H, CH2CH3). 13C NMR (CDCl3): δ = 160.34, 135.56, 129.43, 

124.15,  121.96, 115.60, 70.62, 39.26, 30.46, 29.04, 23.81, 23.02, 14.05, 11.08. Elemental 

analysis calculated for C32H46N2O2S  (522.78 g/mol): C, 73.52; H, 8.87; N, 5.36; S, 6.13. 

Found: C, 73.31; H, 8.69; N, 5.23; S, 6.05. 

 

2,5-Dioctyloxy-1,4-phenylenemethylene diacetate  (35): 1,4-bis(bromomethyl)2,5-

bis(octyloxy)benzene (M-19) (4g, 7.7mmol), sodium iodide (2.3g, 15.4mmol), anhydrous 

sodium acetate (3.8g, 46.3mmol) and DMF (70ml) were charged in a round-bottom flask. The 

mixture was heated to 140 °C for 2 days with stirring. After cooling to room temperature, the 

mixture was poured into 200 mL of water and extracted with ethyl acetate three times (25 mL 

each). The organic phase was washed with water and brine and then dried with anhydrous 

MgSO4. After decolorization with active charcoal, the solvent was evaporated by rotary 

evaporation, and the residue was purified by recrystallization in ethyl acetate to afford  3.6g 

(97 %) of white crystals. 1H NMR (CDC13): δ =  6.89 (s, 2H, Ph), δ =  5.37 (s, 4H, CH2 ), δ =  

3.94 (t, J=6.2, 4H, OCH2), δ =  2.12 (s, 6H, Ac), δ = 1.46-1.39 (m, 24H, Alk), δ =  0.83-0.79 

(t, 6H, CH3). 13C NMR (CDCl3): δ = 174.93, 157.88, 128.36, 114.58, 69.22, 63.05, 35.75, 

31.39, 28.18, 25.32, 22.35, 13.92. Elemental analysis calculated for C28H46O6 (478.66 g/mol): 

C, 70.26; H, 9.69. Found: C, 70.11; H, 9.75. 

 

2,5-Dioctyloxy-1,4-bishydroxymethylbenzene  (36): Compound (35) (3.45g, 7.2mmol) was 

added into 200 mL of mixed solvent of ethanol-water (1:1) containing sodium hydroxide 

(3.5g). The mixture was refluxed for 4 h with stirring. After cooling to room temperature, 

ethanol was evaporated through a rotary evaporator. The residue was extracted with ethyl 

acetate, and the organic layer was washed with water and brine and then dried by anhydrous 

MgSO4. After the solvent was evaporated, the crude product was purified by recrystallization 

from ethyl acetate to give 2.2g (82 %) of white crystals. 1H NMR (CDC13): δ =  6.67 (s, 2H, 

Ph), δ =  4.92 (d, 4H, CH2), δ = 4.79 (s, 4H, OH), δ =  3.84 (d, 4H, OCH2), δ = 1.37-1.33 (m, 

24H, Alk), δ = 0.83 (t, 6H, CH3). 13C NMR (CDCl3): δ =154.33, 131.62, 113.49, 69.20, 63.16, 

31.41, 28.17, 25.32, 22.36, 13.92. Elemental analysis calculated for C24H42O4 (394.6 g/mol): 

C, 73.05; H, 10.73. Found: C, 74.91; H, 10.81. 

4.3.2 Monomers Synthesis 

2,3-bis(bromomethyl)-5,7-dip-tolylthieno[3,4-b]pyrazine (M-9): The  diamine (33) ( 2.5 g, 

8.5 mmol) and 1,4-dibromo-butane-2,3-dione (2.07g, 8.5mmol) were dissolved in dry 

chloroform (75 mL) and a catalytic amount of p-toluene sulfonic acid was added to effect the 
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reaction. The mixture was stirred overnight at room temperature. After the volatiles were 

driven off, the violent red residue was adsorbed onto silica gel and subjected to column 

chromatography. The desired product was eluted with hexane/dichloromethane mixture (1:2). 

Yield: 3g (71%). 1H NMR (CDC13): δ = 7.98 (d, J = 8.04 Hz, 4H, Ph), 7.20 (d, J = 8.03 Hz, 

4H, Ph), 4.80 (s, 4H, CH2Br), 2.34 (s, 6H, CH3). 13C NMR (CDCl3): δ = 149.25, 138.29, 

138.11, 132.44, 129.93, 129.62, 127.97, 31.79, 21.34. Elemental analysis calculated for 

C22H18N2Br2S (502.26 g/mol): C, 52.61; H, 3.61; N, 5.58; S, 6.38; Br, 31.82. Found: C, 

52.57; H, 3.60; N, 5.56; S, 6.13; Br, 31.90. 

 

2,3-bis(bromomethyl)-5,7-bis[4-(2-ethylhexyloxy)phenyl]thieno[3,4-b]pyrazine (M-10): 

Same procedure was followed as mentioned above for M-9.  

Compound (34) (3g, 5.7mmol), 1,4-dibromo-butane-2,3-dione (1.4g, 5.7mmol) were 

dissolved in dry chloroform (50 mL). The violet product was eluted with 

hexane/dichloromethane mixture (3:2). Yield: 3.2g (76%). 1H NMR (CDC13): δ = 8.08 (d, J = 

8.8 Hz, 4H, Ph), 7.03 (d, J = 8.8 Hz, 4H, Ph), 4.87(s, 4H, CH2Br) 3.93 (t, 4H, OCH2), 1.80-

0.90 (m, 26H, CH2CH3). 13C NMR (CDCl3): δ = 159.53, 148.93, 137.62, 131.67,  129.25, 

125.92, 114.98, 70.62, 39.33, 31.90, 30.90, 29.06, 23.85, 23.04, 14.07, 11.09. Elemental 

analysis calculated for C36H46O2N2Br2S (730.64     g/mol): C, 59.18; H, 6.35; N, 3.83; S, 

4.39; Br, 21.87. Found: C, 59.43; H, 6.28; N, 3.73; S, 4.16; Br, 21.60. 

 

2,3-bis[4-(bromomethyl)phenyl]-5,7-di p-tolylthieno[3,4-b]pyrazine (M-11): Same 

procedure was followed as mentioned above for M-9. 

Compound (33) (3g, 10.2mmol), 1,2-bis(4-(bromomethyl)phenyl)ethane-1,2-dione (27) (4g, 

10.2mmol) were dissolved in dry chloroform (50 mL). The violet red product was eluted with 

hexane/dichloromethane mixture (1:2). Yield: 4.5g (69%).1H NMR (CDC13): δ = 8.17 (d, J = 

8.04 Hz, 4H, Ph), 7.53 (d, J = 8.03 Hz, 4H, Ph), 7.37 (d, J = 8.04 Hz, 4H, Ph), 7.31 (d, J = 

8.03 Hz, 4H, Ph), 4.50 (s, 4H, CH2Br), 2.41 (s, 6H, CH3). 13C NMR (CDCl3): δ = 151.29, 

149.97, 144.71, 139.40, 138.35, 137.80, 130.49, 130.25, 129.59, 128.81, 127.65, 32.98, 21.32. 

Elemental analysis calculated for C34H26Br2 N2S  (654.5 g/mol): C, 62.40; H, 4.00; N, 4.28; 

S, 4.90; Br, 24.42. Found: C, 62.34; H, 4.13; N, 4.12; S, 4.79; Br, 24.27. 

 

2,3-bis[4-(bromomethyl)phenyl]-5,7-bis[4-(2-ethyl-hexyloxy)phenyl]thieno[3,4-

b]pyrazine (M-12): Same procedure was followed as mentioned above for M-9. 

Compound (34) (3g, 5.7mmol), 1,2-bis(4-(bromomethyl)phenyl)ethane-1,2-dione (27) (2.3g, 
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5.7mmol) were dissolved in dry chloroform (50 mL). The deep violet product was eluted with 

hexane/dichloromethane mixture (3:2). Yield: 3.6g (72%).  1H NMR (CDC13): δ = 8.10 (d, J = 

8.04 Hz, 4H, Ph), 7.44 (d, J = 8.03 Hz, 4H, Ph), 7.28 (d, J = 8.04 Hz, 4H, Ph), 6.94 (d, J = 

8.03 Hz, 4H, Ph), 4.43 (s, 4H, CH2Br), 3.84 (t, 4H, OCH2), 1.71-0.81 (m, 26H, CH2CH3). 13C 

NMR (CDCl3): δ = 157.34, 149.14, 137.60, 136.36, 135.92, 128.74, 128.35, 127.13, 126.91, 

124.00, 113.10, 68.75, 37.45, 31.15, 28.63, 27.18, 21.97, 21.17, 12.21, 9.22. Elemental 

analysis calculated for C48H54O2N2Br2S  (882.8 g/mol): C, 65.30; H, 6.17; N, 3.17; S, 3.63; 

Br, 18.10. Found: C, 65.21; H, 6.28; N, 3.03; S, 3.46; Br, 17.97. 

 

[3-(Diethoxy-phosphorylmethyl)-5,7-dip-tolylthieno[3,4-b]pyrazin-2-ylmethyl]-

phosphonic acid diethyl ester (M-13): A mixture of M-9 (2g, 3.9mmol) and excess 

triethylphosphite (2.1g, 12.7mmol) was heated slowly to 150-160 0C, and the evolving ethyl 

bromide was distilled off simultaneously. After 4 h, vacuum was applied for 30 min at 160 0C 

to distil off the excess of triethyl phosphite. The resulting oil was allowed to cool to room 

temperature to form a deep red solid, which was recrystallized from diethyl ether  yielding 

2.1g (85%) of pure substance. 1H NMR (CDC13): δ = 8.03 (d, J = 8.03 Hz, 4H, Ph), 7.20 (d, J 

= 7.65 Hz, 4H, Ph), 4.06 (m, 8H, OCH2), 3.83 (s, 2H, CH2), 3.74 (s, 2H, CH2), 1.18 (t, 12H, 

CH3). 13C NMR (CDCl3): δ = 147.34, 138.32, 137.72, 130.74,  130.38, 129.40, 127.68, 62.49, 

35.72, 33.60, 21.29, 16.30, 16.20. Elemental analysis calculated for C30H38N2O6P2S  (616.65 

g/mol): C, 58.43; H, 6.21; N, 4.54; S, 5.20. Found: C, 58.41; H, 6.14; N, 4,53; S, 4.94. 

 

{3-(Diethoxy-phosphorylmethyl)-5,7-bis[4-(2-ethyl-hexyloxy)-phenyl]thieno[3,4-

b]pyrazin-2-ylmethyl}-phosphonic acid diethyl ester (M-14): Same procedure was 

followed as mentioned above for M-13. Compound (M-10) (2g, 2.7mmol), triethyl phosphite 

(1.45g, 8.7mmol) Yield:1.9g dark purple solid (82%) 1H NMR (CDC13): δ = 8.14 (d, J = 8.7 

Hz, 4H, Ph), 7.01 (d, J = 8.8 Hz, 4H, Ph), 4.18 (m, 8H, OCH2) 3.93 (t, 4H, OCH2), 3.89 (s, 

2H, CH2), 3.83 (s, 2H, CH2) 1.79-0.90 (m, 26H, CH2CH3). 13C NMR (CDCl3): δ = 159.21, 

147.19, 137.85, 129.96,  128.99, 125.85, 114.84, 70.70, 62.43, 39.40, 35.38, 34.06, 31.91, 

30.55, 29.34, 29.10, 23.90, 23.05, 22.67, 16.30, 16.08,14.06, 11.11. Elemental analysis 

calculated for C44H66N2O8P2S  (845.02 g/mol) : C, 62.54; H, 7.87; N, 3.32; S, 3.79. Found: C, 

62.60; H, 8.01; N, 3.09; S, 3.70. 

 

1,3-bis[4-(2-ethylhexyloxy)phenyl]-6,11-dibromodibenzo[a,c]thieno[3,4-b]quinoxaline 

(M-15): The  diamine (34) ( 2.5 g, 4.8 mmol) and 2,7-dibromophenanthrene-9,10-dione (26) 
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(1.7g, 4.8 mmol) were dissolved in dry chloroform (75 mL) and a catalytic amount of p-

toluene sulfonic acid was added to effect the reaction. The mixture was stirred overnight 

40°C. After the volatiles were driven off, the bluish green residue was adsorbed onto silica gel 

and subjected to column chromatography using chloroform as an eluent. Yield: 2.8g (69%). 

1H NMR (CDC13): δ = 9.18 (s, 2H, quinoxaline), 8.40 (d, J = 8.79 Hz, 2H, quinoxaline), 8.06 

(d, J = 9.18 Hz, 2H, Ph), 7.05 (d, J = 8.79 Hz, 2H, quinoxaline), 6.97 (d, J = 9.18 Hz, 2H, 

phenazine), 3.91 (s, 4H, OCH2), 1.49-0.85 (d, 30H, CH2CH3). Elemental analysis calculated 

for C46H48 Br2N2O2S (852.76 g/mol): C, 64.79; H, 5.67; N, 3.29; S, 3.76; Br, 18.74. Found: 

C, 64.61; H, 5.80; N, 3.13; S, 3.64; Br, 18.66. 

 

2,5-Dioctyloxy-1,4-diformylbenzene  (M-20): Compound (36) (4g, 10.1mmol), pyridium 

chlorochromate (8.7g, 40.4mmol), freshly dried 4Å molecular sieves (1.75g) ,silica gel 

(1.75g) and 77mL of dry methylene chloride were charged into a 150 mL round-bottom flask. 

The mixture was cooled to 0 °C in an ice bath and stirred for 4 h, warmed to room 

temperature, and stirred for another 24 h. TLC monitoring indicated the diol compound had 

been completely converted to diformyl product. The mixture was run through a reduced 

pressure silicon gel column eluted with hexane. After the solvent was evaporated,  yellow 

crystals 3.2g (81%) were obtained. 1H NMR (CDC13): δ =  10.13 (s, 2H, CHO), δ =  6.97 (s, 

4H, Ph), δ =  4.20 (t, 4H, OCH2), δ = 1.30- 1.19 (m, 24H, Alk), δ =  0.84 (t, 6H, CH3). 13C 

NMR (CDCl3): δ = 174.93, 157.88, 128.36, 114.58, 69.22, 63.05, 35.75, 31.39, 28.18, 25.32, 

22.35, 13.92. Elemental analysis calculated for C24H38O4 (390.56 g/mol): C, 73.81; H, 9.81. 

Found: C, 73.69; H, 9.75. 

 

4.3.3 Model Compounds Synthesis 

2,3-distyryl-5,7-dip-tolylthieno[3,4-b]pyrazine (MD-4): Compound (M-13) ( 308mg, 0.5 

mmol) and benzaldehyde (117mg, 1.1 mmol) were dissolved in dried THF ( 7 mL) while 

stirring vigorously under argon at 0 0C. Potassium-tert-butoxide (1M in THF, 1 mL, 1.8 

mmol) was added dropwise and the solution was stirred for further 2 h at room temperature. 

The reaction was quenched by addition of water and aqueous layer was extracted with diethyl 

ether (25mL) three times. The ether layer was washed with water, brine and dried over 

anhydrous MgSO4. After the solvent was removed under reduced pressure, the product was 

purified by chromatography (solvent, dicholomethane:hexane,2:1). Yield: 213mg (82%) dark 

violet solid. 1H NMR (400 MHz, CDCl3): δ = 8.17 (d, 4H), 7.90 (d, 2H), 7.65 (d, 2H) 7.52-

7.39 (m, 10H), 7.29 (d, 4H), 2.44 (s, 6H). 13C NMR (400 MHz, CDCl3): δ = 159.89, 153.03, 
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139.11, 134.75, 131.96, 131.10, 130.41, 129.51, 129.43, 129.36, 127.96, 127.83, 127.77, 

127.66, 127.54, 127.29, 117.58, 114.22, 22.56.  FAB MS: m/z 520.2 (M+).UV-Vis (CHCl3): 

λmax/nm (ε/(1·mol-1·cm-1)) 265(20500), 333(52700), 361(39500), 538(3150). Elemental 

analysis calculated for C36H28N2S  (520.69 g/mol): C, 83.04; H, 5.42; N, 5.38; S, 6.16. Found: 

C, 82.93; H, 5.55; N, 5.27; S, 6.00. 

 

5,7-bis-[4-(2-ethylhexyloxy)phenyl]-2,3-distyrylthieno[3,4-b]pyrazine (MD-5): M-14 

(422mg, 0.5mmol) and benzaldehyde (117mg, 1.1 mmol) Yield: 295mg (79%) dark green 

solid. . 1H NMR (400 MHz, CDCl3): δ = 8.21 (d, 4H), 7.92 (d, 2H), 7.67 (d, 2H) 7.56-7.36 

(m, 10H), 7.04 (d, 4H), 3.96-3.95 (m, 4H, OCH2), 1.82-0.93 (m, 30H). 13C NMR (400 MHz, 

CDCl3): δ = 159.10, 147.88, 145.72, 138.34, 137.15, 136.83, 136.34, 133.14, 129.55, 129.04, 

128.84, 128.78, 127.67, 127.60, 126.41, 123.26, 114.96, 114.22, 70.79, 39.51, 30.63, 29.15, 

23.98, 23.05, 14.03, 11.13. FAB MS: m/z 748.2 (M+). UV-Vis (CHCl3): λmax/nm (ε/(1·mol-

1·cm-1)) 266(26800), 336(57300), 363(45300), 565(3830). Elemental analysis calculated for 

C50H56N2O2S (749.06 g/mol): C, 80.17; H, 7.54; N, 3.74; S, 4.28. Found: C, 80.00; H, 7.45; 

N, 3.80; S, 4.20. 

4.3.4 Synthesis of Polymers 

General Procedure for Horner-Wadsworth-Emmons polycondensation 

Dialdehyde (0.8mmol) and corresponding phosphonate derivative (0.8mmol) were dissolved 

in dried toluene (10 ml) while stirring vigorously under argon and heating under reflux. The 

polycondensations was started by adding potassium-tert-butoxide (3.2 mmol) and the solution 

refluxed for further 3.5 h. After cooling to room temperature toluene (15 ml) and an excess of 

dilute HCl were added. The organic layer was separated and extracted several times with 

distilled water until the water phase became neutral (pH = 6 – 7). A Dean-Stark apparatus was 

used to dry the organic layer. The hot (50-60°C) toluene solution was filtered, the filtrate was 

concentrated to the minimum by using a rotary evaporator and then precipitated in vigorously 

stirred methanol (300 ml). The polymer was extracted (soxhlet extractor) 12 h with methanol, 

acetone and finally with diethyl ether to remove oligomers, dried under vacuum. The polymer 

yields are mentioned after purification. 

 

P-10: M-13 (493mg, 0.8mmol) and 2,5-bis(octyloxy)benzene-1,4-dialdehyde (M-20) (312mg, 

0.8mmol) Yield: 72%. 1H NMR (400 MHz, CDCl3): δ = 8.26-7.20 (m, 14H), 4.15-3.95 (m, 

4H), 2.47 (s, 6H), 1.87-0.79 (m, 30H). 13C NMR (400 MHz, CDCl3): δ = 152.28, 149.09, 

139.11, 137.19, 133.38, 131.11, 129.46, 127.83, 113.30, 69.72, 31.78, 29.23, 26.27, 22.54, 
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21.28, 13.95. GPC (THF, polystyrene):⎯Mw = 14800 g/mol,⎯Mn = 8800; PDI = 1.68;⎯Pn = 

13. UV-Vis (CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 338 (28200), 440 (2100). Elemental analysis 

calculated for (C46H54N2O2S)n (699.0)n : C, 79.04; H, 7.79; N, 4.01; S, 4.59. Found: C, 78.40; 

H, 7.63,: N, 3.95; S, 4.21. 

 

P-11: M-14 (676 mg, 0.8mmol) and 2,5-bis(octyloxy)benzene-1,4-dialdehyde (M-20) 

(312mg, 0.8mmol) Yield: 65%. 1H NMR (400 MHz, CDCl3): δ = 8.12-7.89 (m, 6H),  7.53-

7.51 (m, 4H), 6.97-6.94 (m, 4H) 3.95-3.90 (m, 4H), 1.92-0.85 (m, 60H). 13C NMR (400 

MHz, CDCl3): δ = 163.77, 153.28, 152.19, 150.78, 140.30, 136.32, 133.15, 132.42, 131.52, 

129.94, 128.78, 127.01, 124.61, 122.19, 116.74, 115.42,  114.14, 71.97, 70.84, 69.52, 68.79, 

42.93, 39.35, 37.45, 37.09, 32.76, 31.77, 30.51,  29.65, 29.06, 27.60, 27.06, 26.06, 24.45, 

23.87, 22.96, 22.57, 22.06, 20.88, 20.09, 19.64, 19.17, 13.96. GPC (THF, polystyrene):⎯Mw 

= 7600 g/mol,⎯Mn = 6000; PDI = 1.26;⎯Pn = 6. UV-Vis (CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 

300 (21400), 420 (11600). Elemental analysis calculated for (C60H82N2O4S)n (927.37)n : C, 

77.71; H, 8.91: N, 3.02; S, 3.46. Found: C, 77.08; H, 8.64; N, 3.02; S, 3.28. 

P-12: M-14 (676mg, 0.8mmol) and terephthalaldehyde (M-16) (107mg, 0.8mmol) Yield: 

64%.  1H NMR (400 MHz, CDCl3): δ = 8.23-7.95 (m, 4H), 7.65-7.53 (m, 6H), 7.12-6.95 (m, 

6H), 3.97-3.86 (m, 4H), 1.85-0.98 (m, 30H). 13C NMR (400 MHz, CDCl3): δ = 159.05, 

147.53, 138.29, 128.98, 127.82, 126.42, 123.65, 114.87, 70.80, 39.50, 30.61, 29.16, 23.96, 

23.06, 14.04, 11.14. GPC (THF, polystyrene):⎯Mw = 10800 g/mol,⎯Mn = 7400; PDI = 

1.45;⎯Pn = 11. UV-Vis (CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 341 (33000), 405 

(25000).Elemental analysis calculated for (C44H50N2O2S)n (670.95)n : C, 78.77; H, 7.51: N, 

4.18; S, 4.78. Found: C, 78.03; H, 7.61; N, 3.93; S, 4.48. 

 

General Procedure for Gilch polymerization 

2,3-bis(bromomethyl)-5,7-disubstituted thieno[3,4-b]pyrazine (0.8mmol) was dissolved in 10 

mL of anhydrous tetrahydrofuran, and 3 mL of potassium t-butoxide (1 M in THF) was 

slowly added dropwise to the solution under argon atmosphere. The reaction was let to 

proceed for 48 hours at room temperature. The reaction mixture was slowly added to an 

excess amount of methanol while stirring it. The crude polymer was precipitated two times in 

methanol for removal of low-molecular weight products. The polymer was extracted for 24 h 

with methanol and dried under vacuum. 
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P-13: M-9 (402mg, 0.8mmol) and 1,4-bis(bromomethyl)2,5-bis(octyloxy)benzene (M-19)  

(416mg, 0.8 mmol)Yield: 70%. 1H NMR (400 MHz, CDCl3): δ = 8.16-7.01 (m, 14H), 4.10-

3.73 (m, 4H), 2.41 (s, 6H), 1.90-0.90 (m, 30H). 13C NMR (400 MHz, CDCl3): δ = 151.24, 

137.40, 129.38, 127.67, 123.51, 114.59, 110.86, 69.67, 68.84, 31.87, 29.61, 29.45, 29.32, 

26.30, 22.63, 21.24, 14.00. GPC (THF, polystyrene): ⎯Mw = 25200 g/mol, ⎯Mn = 6100; PDI 

= 4.2; ⎯Pn = 9. UV-Vis (CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 300 (24500), 457 (45200), 552 

(10700). Elemental analysis calculated for (C46H54N2O2S)n (699.0)n : C, 79.04; H, 7.79; N, 

4.01; S, 4.59.  Found: C, 78.48; H, 6.95,: N, 3.94; S, 4.36; Br, 1.07. 

 

P-14: M-10 (584mg, 0.8mmol) and 1,4-bis(bromomethyl)2,5-bis(octyloxy)benzene (M-19) 

(416 mg, 0.8 mmol) Yield: 58%. 1H NMR (400 MHz, CDCl3): δ = 8.05-7.62 (m, 6H),  7.49-

7.46 (m, 4H), 6.76-6.72 (m, 4H) 3.84-3.81 (m, 4H), 1.90-0.86 (m, 60H). GPC (THF, 

polystyrene):⎯Mw = 70500 g/mol,⎯Mn = 11600; PDI = 6.1;⎯Pn = 13. UV-Vis (CHCl3): 

λmax/nm (ε/(1·mol-1·cm-1)) 312 (25000), 476 (16000) Elemental analysis calculated for 

(C60H82N2O4S)n (927.37)n : C, 77.71; H, 8.91: N, 3.02; S, 3.46. Found: C, 76.41; H, 9.00; N, 

2.84; S, 3.28; Br, 0.84. 

 

P-15: M-10 (584 mg, 0.8 mmol) Yield: 67%. 1H NMR (400 MHz, CDCl3): δ = 8.02-7.95 (m, 

4H),  7.08-6.95 (m, 8H), 3.96-3.91 (m, 4H), 1.78-0.96 (m, 30H). 13C NMR (400 MHz, 

CDCl3): δ = 159.11, 138.45, 130.45, 129.01, 128.20, 125.28, 114.87, 70.70, 39.47, 30.60, 

29.12, 23.02,  21.38, 14.01, 11.09. GPC (THF, polystyrene):⎯Mw = 5000 g/mol,⎯Mn = 4200; 

PDI = 1.2;⎯Pn = 7. UV-Vis (CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 321 (22900), 540 (2000). 

Elemental analysis calculated for (C36H44N2O2S)n (568.8)n : C, 76.02; H, 7.80: N, 4.92; S, 

5.64. Found: C, 75.48; H, 7.30; N, 4.79; S, 4.95; Br, 0.93. 

 

P-16: M-12 (706 mg, 0.8 mmol) Yield: 69%. 1H NMR (400 MHz, CDCl3): δ = 8.25-8.22 (m, 

4H),  7.59-7.33 (m, 10H), 7.05-7.01 (m, 4H) 3.95-3.94 (m, 4H), 1.80-0.95 (m, 30H). 13C 

NMR (400 MHz, CDCl3): δ = 159.17, 151.74, 141.04, 138.01, 130.31, 129.82, 129.02, 

126.76, 126.24, 115.03, 70.80, 39.46, 30.61, 29.11, 23.96,  23.04, 14.02, 11.10. GPC (THF, 

polystyrene):⎯Mw = 19400 g/mol,⎯Mn = 11500; PDI = 1.68;⎯Pn = 16. UV-Vis (CHCl3): 

λmax/nm (ε/(1·mol-1·cm-1)) 336 (32500), 530 (3570). Elemental analysis calculated for 
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(C48H52N2O2S)n (721.0)n : C, 79.96; H, 7.27: N, 3.89; S, 4.45. Found: C, 78.55; H, 7.49,: N, 

3.56; S, 4.02; Br, 1.26. 

 

General Procedure for Polymerization (Suzuki Coupling).Under an argon atmosphere, 

dibromo monomers (M-15) (0.8 mmol), 2,7-dioxaborolan-9,9-didecylfluorene (M-17) (0.8 

mmol) and 9,10-dibromoanthracene (M-18) (0 mmol) were mixed together with 1.0-1.5% 

(0.012 mmol) of Pd(PPh3)4 in a small flask. Degassed aqueous solution of potassium 

carbonate 10 mL (2.0 M) and toluene 20 mL (1:2, volume ratio) were added to the flask. The 

mixture was stirred vigorously at 80-90 °C for 72h under an argon atmosphere. The resulting 

solution was added dropwise into stirring methanol to precipitate the polymer. The fibrous 

solid was collected by filtration and washed with methanol and water. The material was 

washed continuously with methanol and acetone for 2 days in a Soxhlet extractor to remove 

the oligomers and catalyst residues. The product was dried under reduced pressure overnight. 

 

P-17: M-15 (682mg, 0.8mmol) and 2,7-dioxaborolan-9,9-didecylfluorene (M-17) (469mg, 

0.8 mmol) Yield: 71%. 1H NMR (400 MHz, CDCl3): δ = 9.57 (s, 2H), 8.25-7.63 (m, 14H), 

7.10-7.06 (m, 4H), 4.01 (bs, 4H, OCH2), 2.17-0.78 (m, 72H). 13C NMR (400 MHz, CDCl3): δ 

= 164.04, 159.19, 152.11, 151.07, 141.08, 140.62, 139.34, 133.35, 132.04, 131.07, 129.23, 

128.77, 126.61, 124.16, 123.58, 121.66, 120.43, 115.07, 114.31, 70.94, 55.53, 40.40, 39.56, 

39.42, 31.84, 30.59, 30.02, 29.66, 29.25, 24.01, 23.14, 23.02, 22.57, 14.11, 13.97, 11.23. 

GPC (THF, polystyrene):⎯Mw = 25500 g/mol,⎯Mn = 14000; PDI = 1.8;⎯Pn = 12. UV-Vis 

(CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 358 (79400), 612 (5000). Elemental analysis calculated 

for (C79H96N2O2S)n (1137.68)n : C, 83.40; H, 8.51; N, 2.46; S, 2.82.  Found: C, 84.08; H, 

8.40,: N, 2.25; S, 2.87; Br, 1.03. 

 

P-18: M-15 (341mg, 0.4mmol); 2,7-dioxaborolan-9,9-didecylfluorene (M-17)  (469mg, 0.8 

mmol) and and 9,10-dibromoanthracene (M-18) (134mg, 0.4mmol) Yield: 73%. 1H NMR 

(400 MHz, CDCl3): δ = 9.61 (s, 2H), 8.49-7.15 (m, 26H), 4.04 (bs, 4H, OCH2), 2.19-0.78 (m, 

72H). 13C NMR (400 MHz, CDCl3): δ = 159.26, 151.97, 151.31, 142.48, 140.49, 139.19, 

138.03, 137.71, 132.28, 131.46, 130.23, 129.21, 127.13, 126.64, 126.41, 125.07, 124.18, 

123.71, 122.94, 121.11, 120.39, 119.82, 115.13, 70.89, 55.62, 40.55, 39.59, 31.86, 30.69, 

30.14, 29.56, 29.25, 24.01, 23.09, 22.59, 14.00, 11.20.  GPC (THF, polystyrene):⎯Mw = 

28800 g/mol,⎯Mn = 18600; PDI = 1.5;⎯Pn = 42. UV-Vis (CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 
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353 (25100), 399 (12600), 611 (1000). Elemental analysis calculated for 

(C31.5H40N0.5O0.5S0.25)n (441.67)n : C, 85.66; H, 9.139; N, 1.58; S, 1.48.  Found: C, 85.33; H, 

8.88,: N,1.34; S, 1.48; Br, 1.10. 

 

P-19: M-15 (68mg, 0.08mmol); 2,7-dioxaborolan-9,9-didecylfluorene (M-17)  (469mg, 0.8 

mmol) and and 9,10-dibromoanthracene (M-18) (242mg, 0.72mmol) Yield: 67%. 1H NMR 

(400 MHz, CDCl3): δ = 9.71 (s, 2H), 8.52-7.25 (m, 26H), 4.06 (bs, 4H, OCH2), 2.12-0.90 (m, 

72H). 13C NMR (400 MHz, CDCl3): δ = 159.41, 151.31, 142.45, 140.51, 139.21, 138.03, 

137.73, 131.55, 130.23, 129.24, 127.13, 126.64, 126.42, 125.07, 124.18, 123.81, 122.95, 

121.11, 119.82, 115.18, 70.89, 55.54, 40.54, 39.59, 31.88, 30.69, 30.14, 29.56, 29.25, 24.33, 

24.03, 23.08, 22.61, 14.02, 11.18. GPC (THF, polystyrene):⎯Mw = 26800 g/mol,⎯Mn = 

18300; PDI = 1.5;⎯Pn = 54. UV-Vis (CHCl3): λmax/nm (ε/(1·mol-1·cm-1)) 360 (10000), 382 

(10000), 402 (12600), 613 (200). Elemental analysis calculated for (C25.1H32N0.1O0.1S0.05)n 

(338.3)n : C, 89.1; H, 9.53; N, 0.41; S, 0.47.  Found: C, 88.93; H, 9.50,: N, 0.39; S, 0.39; Br, 

1.07. 
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5 Zusammenfassung in Thesen 

 
Polymere mit konjugierten Doppelbindungen besitzen auf Grund des ausgedehnten Pi-

Bindungs-Systems unter anderem eine langwellige Lichtabsorption im sichtbarem 

Spektralbereich, und  sie zeigen nach Dotierung elektrische Leitfähigkeit bzw. 

Photoleitfähigkeit. Sie sind in den gebräuchlichen organischen Lösungsmitteln löslich und 

filmbildend. 

Konjugierte Polymere sind potentiell interessant für die “Molekular Elektronik” sie werden 

bereits eingesetzt in OLEDs , und weltweit wird ihre Verwendung als aktive Schicht in 

Polymersolarzellen untersucht. Hierbei werden das stereoreguläre Poly(3-hexylthiophen) und 

Poly(phenylenvinylen)e besonders intensiv untersucht. Insbesondere wünschenswert und 

verbesserungswürdig sind die langwellige breitbandige Lichtabsorption( größer als 600 nm, 

niedrige Band Gap Energie) und eine verbesserte Beständigkeit gegenüber Luftsauerstoff. 

Anliegen der vorliegenden Untersuchungen war es, einen Beitrag zur Lösung dieser beiden 

Probleme zu liefern. Hierzu wurden neue Polyarylen(heteroarylen)vinylene synthetisiert, die 

als Chromophor Thienopyrazin enthalten, das als Akzeptor mit elektronenreichen Aromaten ( 

Alkoxyphenylen, Alkylthiophen) alternierend verbunden ist. 

In der Arbeit werden insbesondere Polymere mit zwei unterschiedlichen  Primärstrukturen 

synthetisiert und charakterisiert:  

Polyarylen(heteroarylen)vinylene mit (3,4-b)Pyrazin 

a) in der Hauptkette 

b) als Seitengruppe. 

In die Untersuchungen werden die niedermolekularen Modellverbindungen mit einbezogen. 

Zur Synthese der Polymere und der Modellverbindungen sind die Suzuki-Kopplung und die 

Horner -Wittig Reaktion besonders geeignet. 

 

Im Folgenden sind die Ergebnisse dieser Arbeit in Thesen zusammengefasst. 

 

1. Schlüsselsubstanz für die Synthese der Polyarylen(heteroarylen)vinylene ist die 4-

Formyl-2,5-bis(alkoxy)phenylboronsäure(5), die unter Suzuki-Bedingungen mit 5,7-

Dibrom-2,3-disubstituiertenThieno(3,4-b)Pyrazinen zum entsprechenden Dialdehyd 

führt (M-1/M-2/M-3). 

2. die Dialdehyd-Monomere  M-1,M-2,M-3 lassen sich unter Standardbedingungen der  

      Horner-Reaktion zu den tieffarbigen Polymeren P-1-P-3 umsetzen. 
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3. Kondensation mit 3,4-Dihexyl-2,5-bis(methylendiethylphosphat)-thiophen (M-7) 

ergibt  in sehr guten Ausbeuten die Polymere P-5 und P-6. 

 
4. Der Polymerisationsgrad der Polymere P-1-P-3 und P-5-P-8 ist hoch (13 bis 39), die 

zahlenmittleren Molmassen betragen zwischen 29 000 und 42 000 g/mol.Sie zeigen 

eine enge Molmassenverteilung. Die Polymer sind gut löslich und bilden transparente 

farbige Filme. 

 

5. Tabelle 3.3 der Dissertation gibt die exakten UV/Vis- Daten der Polymere P-1-P-9 in 

Lösung sowie im Film an. Die daraus errechnete Band Gap Energie beträgt in Lösung 

1.80 eV; im Film ist sie deutlich niedriger (1.6 eV).  

 

6. Für eine potentielle  Anwendung in Polymersolarzellen spielt die thermische  

Belastung (thermal annealing) im Film eine wesentliche Rolle. Die Untersuchungen 

zeigen, dass die Polymere mit linearen Seitengruppen (z.B. P-1, P-5) bis 150 0C ihr 

UV/Vis Spektrum nicht verändern (Fig. 3.21), verzweigte großvolumige Reste 

dagegen zu einem irreversiblen Abbau der Farbbande (650 nm) führen. 

 
Figure 3.21. UV-vis spectra of P-1 in solid state at different temperatures. (film from 

chlorobenzene) 
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7. Die neuen Polymere aggregieren in Lösung bei Zugabe von Methanol (nonsolvent). 

Das Absorptionsmaximum verschiebt sich dabei bathochrom (Abb. 3.24/3.25) und 

entspricht dem im Film (Abb.3.18). 

 
Figure 3.18. Normalized UV-vis and emission spectra of P-1, P-2, P-3 and P-4 in solid state. 

(film from chlorobenzene) 

 

8. CV-Messungen zeigen, dass die Polymere reversibel oxidierbar und reduzierbar sind. 

 

9. Im zweiten Teil der Arbeit werden konjugierte Polymere beschrieben, die als 

Chromophor Thieno(3,4-b)pyrazin als Seitengruppe tragen. Es werden zwei 

unterschiedliche Polymer-Typen synthetisiert, einmal solche vom Polyarylen-Typ mit 

Thienopyrazin als Seitengruppe (P-17,P-18,P-19) und alternativ solche mit 

“unterbrochener“ Konjugation (P-10,P-11,P-12 ). Das folgende Bild gibt die für die 

Polymersynthese essentiellen Monomere und deren Preparation an . 
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Reagents and conditions: (a) toluene, THF, aq. K2CO3 (2M), Pd(PPh3)4, 80 0C, 12 h; (b) ethanol, 

SnCl2 (anhydrous), conc. HCl, reflux, overnight; (c) 1,4-dibrom-2,3-butandione, CHCl3, p-

toluenesulfonic acid, room temperature 12 h; (d) 1,2-bis(4-(bromomethyl)phenyl)ethane-1,2-dione, 

CHCl3, p-toluenesulfonic acid, room temperature 12 h; (e) 2,7-dibromophenanthrene-9,10-dione, 

CHCl3, p-toluenesulfonic acid, room temperature 12 h (f) triethyl phosphite, 160 0C, 4 h; (g) 

benzaldehyde, THF, t-BuOK, 0 0C to room temperature 3 h. 

Scheme 3.10. Synthesis of Monomers M9-M-15 and Model Compounds MD-4-MD-5. 

                                              

10. Die Polymersynthese gelingt durch HWE Reaktion, Die Gilch Methode liefert nach 

ersten Versuchen schlechtere Ergebnisse (niedrige Molmassen, hohe Polydispersität). 

 

11. Eine Copolymerisation ergibt hochmolekulare Polymere (PDI 1,5). 
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Figure 3.41. GPC curves of polymers P-10, P-12, P-16, P-17 and P-19.                                            

Table 3.7. GPC data of polymers P-10-P-19. 

Polymer 

 

⎯Mn 

(g/mol) 

⎯Mw 

(g/mol) 

PDI 

 

⎯Pn 

 

Yield (%) 

 

P-10 8800 14800 1.68 13 72 

P-11 5800 8400 1.46 07 65 

P-12 7400 10900 1.46 11 64 

P-13 6100 25200 4.2 09 70 

P-14 11600 70500 6.05 13 58 

P-15 4200 5000 1.2 07 67 

P-16 11500 19400 1.7 16 69 

P-17 14000 25500 1.8 12 71 

P-18 18600 28800 1.5 42 73 

P-19 18300 26800 1.5 54 67 

     Mn, GPC (polystyrene standards). 

 

12. Die elektrochemischen Untersuchungen zeigen für die Polymere eine reversible 

Reduktion (n-doping processes) und irreversible Oxidation (p-doping processes). 

 

13. Mit den Polymeren P-1, P-2, P-5 und PCBM wurden auf Polyesterfolien Solarzellen 

gefertigt und vermessen. In nicht optimierten Versuchen ergab sich eine Effizienz von 

1,57% und eine Stromdichte kleiner 4mA/cm2. Diese Werte entsprechen den bisher 

besten Werten der Literatur, die mit Low Band Gap Polymeren erreicht worden sind.  
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7 Appendix 
 

7.1 1H and  13C NMR Spectra 

 

 
 
Figure 1. 13C NMR of M-1. 
 
 

 
 
Figure 2. 13C NMR of M-2. 
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Figure 3. 13C NMR of M-3. 
 
 
 

 
 
Figure 4. 13C NMR of P-1. 
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Figure 5. 13C NMR of P-1. 
 
 

 
 
Figure 6. 1H NMR of P-2. 
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Figure 7. 13C NMR of P-2. 
 

 
 
Figure 8. 13C NMR of P-3. 
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Figure 9. 1H NMR of P-4. 
 
 
 
 

 
 

Figure 10. 13C NMR of P-4. 
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Figure 11. 1H NMR of P-5. 
 

 
 
Figure 12. 13C NMR of P-5. 
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Figure 13. 13C NMR of P-6. 
 
 

 
Figure 14. 1H NMR of P-7. 
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Figure 15. 13C NMR of P-7. 
 
 
 
 
 
 

 
 
Figure 16. 1H NMR of P-8. 
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Figure 17. 13C NMR of P-8. 
 
 

 
 
Figure 18. 1H NMR of P-9. 
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Figure 19. 13C NMR of P-9. 
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7.2 Molecular Formulae 
 
Structures of Model Compounds 
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Structures of Polymers 
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 7.3 Abbreviations 
 

BuLi    Butyl lithium 

CDCl3    Deutrated chloroform 

CHCl3    Chloroform 

CuI    Copper(I)-iodide 

CV    Cyclic voltammetry 

DMF    Dimethyl formamide 

DMSO    Dimethyl sulfoxide 

DSC    Differential scanning calorimetry 

Eg    Band gap energy 

Eg opt.    Optical band gap energy 

Eg ec    Electrochemical band gap energy 

Eox    Oxidation potential 

Ered    Reduction potential 

eV    Electron volt 

ε    Molar absorption coefficient 

Φfl    Quantum luminescence yield 

g    Gram 

GPC    Gel permeation chromatography 

H2O    Water 

HOMO   Highest occupied molecular orbital (valence band) 

K    Kelvin 

K2CO3    Potassium carbonate 

LUMO    Lowest unoccupied molecular orbital (conduction band) 

OLEDs   Organic light emitting diodes 

LiPF6    Lithium hexafluoro phosphate 

λmax    Wavelength at maximum absorption                                        

λ0.1max    Wavelength at longer wave length                                        

λmax, em    Wavelength at maximum emission                                

m    Meta 

mg    Milligram    

MHz    Mega Hertz                   

mL    Milliliter    
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⎯Mn    Number-average molecular weight 

⎯Mw    Weight-average molecular weight 

M.P.    Melting point     

n    Number of repeating units in polymer 

Na2CO3   Sodium Carbonate 

NaOH    Sodium hydroxide 

NMR    Nuclear magnetic resonance 

o    ortho 

p    para 

PDI    Poly dispersity index 

⎯Pn    Number-average degree of polymerization 

PAE    Poly(aryleneethynylene) and 

poly(heteroaryleneethynylene) 

PL    Photoluminescence 

ppm    Part per million 

PPP    Poly(para-phenylene) and Poly(heterophenylene) 

PPV    Poly(para-phenylenevinylene) 

RT    Room temperature 

TGA    Thermogravimetric analysis 

Tg    Glass transition temperature 

THF    Tetrahydrofuran 

UV/Vis   Ultraviolet/visible 

VPO    Vapour pressure osmometry 
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